JP2523524B2 - Superconducting wire manufacturing method - Google Patents

Superconducting wire manufacturing method

Info

Publication number
JP2523524B2
JP2523524B2 JP61198004A JP19800486A JP2523524B2 JP 2523524 B2 JP2523524 B2 JP 2523524B2 JP 61198004 A JP61198004 A JP 61198004A JP 19800486 A JP19800486 A JP 19800486A JP 2523524 B2 JP2523524 B2 JP 2523524B2
Authority
JP
Japan
Prior art keywords
superconducting
superconducting wire
wire
wires
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61198004A
Other languages
Japanese (ja)
Other versions
JPS6355875A (en
Inventor
穣 山田
実 田中
暁 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP61198004A priority Critical patent/JP2523524B2/en
Publication of JPS6355875A publication Critical patent/JPS6355875A/en
Application granted granted Critical
Publication of JP2523524B2 publication Critical patent/JP2523524B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、超電導線の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for manufacturing a superconducting wire.

(従来の技術) 超電導応用の近年の発展は自覚しく、各種の大型マグ
ネットが作製されている。しかし、この際問題となるの
は超電導線の接続である。大型マグネットでは、必要な
超電導線の長さは数Kmにもなる。一方、製造の面では、
こうした長い超電導線を特性のバラツキがなくまた断線
することなく作製することは極めて難しい。核融合,加
速器用マグネットなど、大型機器への超電導応用が盛ん
になるに従って、接続もより重要な問題となってくる。
(Prior Art) Recent developments in superconducting applications are remarkable, and various large magnets have been manufactured. However, the problem here is the connection of superconducting wires. With large magnets, the required superconducting wire length is several kilometers. On the other hand, in terms of manufacturing,
It is extremely difficult to produce such a long superconducting wire without variations in characteristics and without breaking. As the application of superconductivity to large devices such as nuclear fusion and magnets for accelerators has become popular, connection becomes an important issue.

しかしながら、現状では、これを解決する確定な方法
は得られていない。従来、最も一般的な方法は第2図に
示す様なハンダ付けによるものである。超電導芯線1と
安定化材の銅2からなる超電導線3を接続しようとする
個所を互いに重ねて直接ハンダ付する方法である。しか
し、この方法においては、接合部の超電導芯線1が不連
続であるため、電流は一部銅の部分を流れ抵抗が発生す
るという問題があった。
However, at present, there is no definite method to solve this. Conventionally, the most general method is by soldering as shown in FIG. This is a method in which the superconducting core wire 1 and the superconducting wire 3 made of copper 2 as a stabilizing material are directly soldered by overlapping the points to be connected. However, in this method, since the superconducting core wire 1 at the joint is discontinuous, there is a problem that a current flows through a part of the copper and resistance is generated.

特に、最近実用化が有望視されているMRI(磁気共鳴
イメージング装置)マグネットにおいては、高精度の磁
界均一性,及び長時間にわたる磁界の安定性(磁界の変
動が少ないこと)が要求されており、上記接続における
抵抗発生は極力避けなくてはならない。
Particularly, in MRI (Magnetic Resonance Imaging) magnets, which are expected to be put to practical use recently, highly accurate magnetic field homogeneity and long-term magnetic field stability (small fluctuation of magnetic field) are required. The generation of resistance in the above connection must be avoided as much as possible.

このため近年開発された方法として、金属間の拡散接
合を利用したものがある。この例を第3図に示す。ま
ず、接続しようとする超電導線3の清浄な断面を出し
て、固定治具4中に設置する。次に、この全体を図中矢
印方向に加圧しながら300〜600℃で熱処理する。する
と、この熱処理により突き合せ面で、左右の超電導線の
金属原子が拡散し、強固な接着が実現される。また、原
子間での接合なので、接合部でも完全な超電導が維持さ
れる。
Therefore, as a method developed in recent years, there is a method using diffusion bonding between metals. An example of this is shown in FIG. First, a clean cross section of the superconducting wire 3 to be connected is taken out and placed in the fixing jig 4. Next, this whole is heat-treated at 300 to 600 ° C. while being pressed in the direction of the arrow in the figure. Then, by this heat treatment, the metal atoms of the left and right superconducting wires are diffused on the abutting surfaces, and firm adhesion is realized. Moreover, since the bonding is between atoms, perfect superconductivity is maintained even at the bonded portion.

しかしながら、第3図に示した従来の方法では次の様
な問題があった。すなわち、第3図中の左右の超電導線
3中の超電導芯線1は、接合面で必ずしも1:1に対応せ
ず、このため、超電導線芯線1が相手方の安定化材のCu
2と接合される場合も多い。このため、接合試料ごと
に、特性が大きく異なり安定した特性が得られなかっ
た。例えば、臨界電流Icは、もし全体の超電導芯線の
内、半分しか互いに接合されなかったとすると、Icも元
の線の(すなわち接合していない試料の)半分になって
しまう。
However, the conventional method shown in FIG. 3 has the following problems. That is, the superconducting core wires 1 in the left and right superconducting wires 3 in FIG. 3 do not necessarily correspond to 1: 1 in the joint surface, and therefore, the superconducting wire core wires 1 are Cu of the stabilizing material of the other side.
Often joined with 2. For this reason, the characteristics were largely different for each bonded sample, and stable characteristics could not be obtained. For example, the critical current Ic, if only half of the entire superconducting core wire is joined to each other, Ic will be half of the original wire (that is, the unbonded sample).

さらに、現在最も良く使用されているNbTi超電導線を
用いる場合、上記拡散接合中の熱処理によりIcが大幅に
低下するという問題もあった。接合しようとするNbTi超
電導線は、それまでに熱処理と加工により十分Icを高め
てある。熱処理でTi析出物をNbTi芯線中に析出させ、そ
の後の加工で転位組織を導入する。
Further, when using the NbTi superconducting wire which is most widely used at present, there is a problem that Ic is significantly reduced by the heat treatment during the diffusion bonding. The NbTi superconducting wire to be joined has already had its Ic sufficiently increased by heat treatment and processing. A Ti precipitate is precipitated in the NbTi core wire by heat treatment, and a dislocation structure is introduced by subsequent processing.

この転位中にTi析出物が分散した組織が大きなIcを得
るのに有効であると言われている。
It is said that the structure in which Ti precipitates are dispersed in this dislocation is effective for obtaining a large Ic.

ところが、こうして得られたNbTi超電導線を上記拡散
接合工程中熱処理すると、中の転位組織が急激に減少す
るためIcが大幅に低減してしまう。
However, when the NbTi superconducting wire thus obtained is subjected to heat treatment during the diffusion bonding step, the dislocation structure in the inside is sharply reduced, so that Ic is greatly reduced.

(発明が解決しようとする問題点) 上述した様に、従来の接続方法特に拡散接合において
は、超電導芯線同士の接合が十分でなく、かつ拡散接合
工程中の熱処理により、大幅に臨界電流Ic等の超電導特
性が減少してしまうという問題があった。
(Problems to be Solved by the Invention) As described above, in the conventional connection method, particularly in diffusion bonding, the superconducting core wires are not sufficiently bonded to each other, and due to the heat treatment during the diffusion bonding process, the critical current Ic, etc. However, there was a problem that the superconducting property of was decreased.

本発明は、以上の点に鑑みてなされたもので、その目
的は、Ic特性劣化の少ない、超電導線の製造方法を提供
することにある。
The present invention has been made in view of the above points, and an object thereof is to provide a method for manufacturing a superconducting wire with less deterioration in Ic characteristics.

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段) 本発明の超電導線の製造方法は、複数本の超電導線の
接続しようとする部分の安定化材を各々取り除いて超電
導芯線を露出した後、互いに重ね合わせて加圧および熱
処理を行ってそれぞれの超電導芯線を接続し、その後接
続した部分に転位組織を導入するための減面加工を施す
ことを特徴としている。
(Means for Solving Problems) A method for manufacturing a superconducting wire according to the present invention is to remove the stabilizers in the portions to be connected to a plurality of superconducting wires to expose the superconducting core wires, and then superimpose them on each other. It is characterized in that pressurization and heat treatment are performed to connect the respective superconducting core wires, and then surface-reduction processing for introducing dislocation structure into the connected portions.

(作用) 本方法によれば、まず、超電導芯線をむき出しにし
て、重ね合せて拡散接合をするため、従来法の場合に比
べ超電導芯線同士の接触面が増えて、Icの減少が少なく
なる。また、この接合の後、新たに鍛造などの減面加工
も施すため、超電導芯線中に転位組織が導入され、接合
時の熱処理で減少したIcが、再び増加する。
(Operation) According to this method, first, the superconducting cores are exposed and then superposed and diffusion-bonded, so that the contact surface between the superconducting cores is increased and the decrease in Ic is less than in the case of the conventional method. Further, after this joining, surface-reducing processing such as forging is newly performed, so that a dislocation structure is introduced into the superconducting core wire, and Ic reduced by the heat treatment at the time of joining increases again.

(実施例) 以下、図面を用いて本発明を詳細に説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示す図である。まず、接
続しようとするNbTi超電導線3,3′の超電導芯線1,1′を
長さ5cmにわたり硝酸でエッチングしてむき出しにし
た。図中2,2′はCuの安定化材である。次に、両者の超
電導芯線1,1′を束ねて、Cu製の固定治具4に、図中矢
印の方向に設置した。この接合部を、同じく矢印の方向
に加圧しながら、400℃で30分間,10-5Torrの真空中で拡
散接合した。
FIG. 1 is a diagram showing an embodiment of the present invention. First, the superconducting core wires 1 and 1 ′ of the NbTi superconducting wires 3 and 3 ′ to be connected were exposed by nitric acid over a length of 5 cm to expose them. In the figure, 2 and 2'are Cu stabilizers. Next, the superconducting core wires 1 and 1'of both of them were bundled and placed on a Cu fixing jig 4 in the direction of the arrow in the figure. The joint was diffusion-bonded at 400 ° C. for 30 minutes in a vacuum of 10 −5 Torr while also applying pressure in the direction of the arrow.

次に、この接合部をスウェージングマシーンにより減
面加工した。すなわち、固定治具4を含めた接合部の外
径(正方形の一辺)が、加工前は、7mmであったが、こ
れをスウェージングにより2mm径に減面し丸線の形の超
電導線を製造した。
Next, the joint portion was subjected to surface reduction processing by a swaging machine. That is, the outer diameter (one side of the square) of the joint including the fixing jig 4 was 7 mm before processing, but this was reduced to a diameter of 2 mm by swaging to form a round superconducting wire. Manufactured.

各段階での臨界電流Icは測定したところ、拡散接合が
終了した段階ではIc=400A,その後の加工が終了した段
階ではIc=710Aの値が得られた(但し、いずれも5Tでの
値)。接続していない元の試料のIcは830Aであったの
で、本発明の方法でかなり良好な特性が得られたといえ
る。
The critical current Ic at each stage was measured. As a result, Ic = 400A was obtained at the stage when the diffusion bonding was completed, and Ic = 710A was obtained at the stage after the subsequent processing (all values were at 5T). . Since the original sample without connection had an Ic of 830A, it can be said that the method of the present invention provided fairly good characteristics.

〔発明の効果〕〔The invention's effect〕

以上説明した様に、本発明は超電導芯線をむき出しに
して、直接拡散接合して、超電導芯線同士の接触面を増
やしかつその後、接続した部分に転位組織を導入する加
工も行なったものであるから、接続による臨界電流Icの
低下を大幅に少なくすることができる。
As described above, the present invention is a process in which the superconducting cores are exposed, and the diffusion bonding is directly performed to increase the contact surface between the superconducting cores and then the dislocation structure is introduced into the connected portion. , The reduction of the critical current Ic due to the connection can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例を示す概略図、第2図,第
3図は従来法による方法を示す概略図である。 1,1′……超電導芯線、2,2′……安定化材(銅)、3,
3′……超電導線、4……固定治具。
FIG. 1 is a schematic diagram showing an embodiment of the present invention, and FIGS. 2 and 3 are schematic diagrams showing a method according to a conventional method. 1,1 ′ …… Superconducting core wire, 2,2 ′ …… Stabilizer (copper), 3,
3 '... Superconducting wire, 4 ... Fixing jig.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数本の超電導線の接続しようとする部分
の安定化材を各々取り除いて超電導芯線を露出した後、
互いに重ね合わせて加圧および熱処理を行ってそれぞれ
の超電導芯線を接続し、その後接続した部分に転位組織
を導入するための減面加工を施すことを特徴とする超電
導線の製造方法。
1. A superconducting core wire is exposed by removing a stabilizing material from a portion to be connected with a plurality of superconducting wires, respectively.
A method for producing a superconducting wire, characterized in that the superconducting core wires are connected to each other by applying pressure and heat treatment on top of each other, and then surface-reducing processing is carried out to introduce dislocation structures in the connected parts.
【請求項2】前記減面加工は、鍛造加工であることを特
徴とする特許請求の範囲第1項記載の超電導線の製造方
法。
2. The method for manufacturing a superconducting wire according to claim 1, wherein the surface-reducing process is a forging process.
JP61198004A 1986-08-26 1986-08-26 Superconducting wire manufacturing method Expired - Lifetime JP2523524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61198004A JP2523524B2 (en) 1986-08-26 1986-08-26 Superconducting wire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61198004A JP2523524B2 (en) 1986-08-26 1986-08-26 Superconducting wire manufacturing method

Publications (2)

Publication Number Publication Date
JPS6355875A JPS6355875A (en) 1988-03-10
JP2523524B2 true JP2523524B2 (en) 1996-08-14

Family

ID=16383909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61198004A Expired - Lifetime JP2523524B2 (en) 1986-08-26 1986-08-26 Superconducting wire manufacturing method

Country Status (1)

Country Link
JP (1) JP2523524B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2680516B2 (en) * 1992-11-25 1997-11-19 株式会社東芝 How to connect superconducting conductors
CN102027648A (en) 2009-02-05 2011-04-20 株式会社东芝 Superconductive conductor connecting method and superconductive coil
JP5276542B2 (en) * 2009-07-29 2013-08-28 株式会社日立製作所 Superconducting circuit, superconducting connection manufacturing method, superconducting magnet, and superconducting magnet manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3323576A1 (en) * 1983-06-30 1985-01-10 Siemens AG, 1000 Berlin und 8000 München EXTREMELY RESISTANT CONNECTING DEVICE BETWEEN THE END PIECES OF TWO SUPER LADDERS
JPS60175383A (en) * 1984-02-20 1985-09-09 住友電気工業株式会社 Method of connecting superconductive lead

Also Published As

Publication number Publication date
JPS6355875A (en) 1988-03-10

Similar Documents

Publication Publication Date Title
JPS60136109A (en) Superconductive conductor and method of producing same
JP2523524B2 (en) Superconducting wire manufacturing method
JPH0361991B2 (en)
JP3305233B2 (en) Superconducting wire connection method
JPH065345A (en) Different kind superconducting wire connecting method
JP2916214B2 (en) Superconducting wire connection method
JPH031469A (en) Connecting method for superconductive wire and compound superconductive wire
JPH01134881A (en) Jointig method for superconducting conductor
JPS6355876A (en) Method of jointing superconducting wire
JPH0355781A (en) Connection of superconductive wire
JPH0574508A (en) Superconductive wire connecting method
JPS6174282A (en) Connection for compound-based superconductive wire
JPS63216279A (en) Connecting method for superconductive wire
JPH0817487A (en) Superconducting wire connecting method
JP3303423B2 (en) Superconducting wire connection structure
JPH02106886A (en) Connection of superconductive wire
JPS61267282A (en) Connection of superconductor
JPH048900B2 (en)
JPS63245885A (en) Connection of superconductive wires
JPS61147984A (en) Joining method of composite material
JPH0634362B2 (en) Superconducting wire joining method
JPH0376101A (en) Joint of superconductive conductor
JPS62264575A (en) Superconductor connecting construction
JPS6219021B2 (en)
JPH04202065A (en) Method for joining oxide superconductor and metal superconductor