JP4366636B2 - Superconducting magnetic field generator and sputtering film forming apparatus using the same - Google Patents

Superconducting magnetic field generator and sputtering film forming apparatus using the same Download PDF

Info

Publication number
JP4366636B2
JP4366636B2 JP2003304668A JP2003304668A JP4366636B2 JP 4366636 B2 JP4366636 B2 JP 4366636B2 JP 2003304668 A JP2003304668 A JP 2003304668A JP 2003304668 A JP2003304668 A JP 2003304668A JP 4366636 B2 JP4366636 B2 JP 4366636B2
Authority
JP
Japan
Prior art keywords
superconductor
cooling
magnetic field
attachment member
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003304668A
Other languages
Japanese (ja)
Other versions
JP2005079158A (en
Inventor
佳孝 伊藤
雅章 吉川
陽介 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2003304668A priority Critical patent/JP4366636B2/en
Publication of JP2005079158A publication Critical patent/JP2005079158A/en
Application granted granted Critical
Publication of JP4366636B2 publication Critical patent/JP4366636B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は、着磁装置、磁気分離装置、磁場プレス機、核磁気共鳴装置、発電機、モータ、成膜用のスパッタリング成膜装置等の強磁場を必要とする各種装置に利用可能な、超電導体による磁場発生装置に関する。また磁場発生装置をスパッタガンの一部として用いたスパッタリング成膜装置に関する。   The present invention is a superconductivity that can be used in various devices that require a strong magnetic field such as a magnetizing device, a magnetic separation device, a magnetic field press, a nuclear magnetic resonance device, a generator, a motor, and a sputtering film forming device for film formation. The present invention relates to a magnetic field generator by a body. The present invention also relates to a sputtering film forming apparatus using a magnetic field generator as a part of a sputtering gun.

超電導体として、溶融凝固法により作製したY系等のバルク状(塊状)の高温超電導体を搭載する超電導磁場発生装置を、例にとって従来技術について説明する。溶融凝固法により作製したY系等のバルク状(塊状)の高温超電導体は、磁場を印加することでテスラ級の磁場を発生する強力な磁石となることから、種々の用途に向けた強磁場発生装置としての応用が検討されている。例えば、特許文献1、特許文献2には、超電導体を冷凍機で冷却し真空排気装置等と一体にした超電導磁石装置が開示されている。また、特許文献3、特許文献4には、超電導磁石装置をスパッタガンとして用いたマグネトロンスパッタリング成膜装置が開示されている。また、特許文献5、特許文献6には、補強リングで超電導体を包囲することにより強磁場発生を可能にした超電導磁場発生素子が開示されている。
特開平11−283822号公報 特開2001−68338号公報 特開平10−72667号公報 特開2002−146529号公報 特開平11−284238号公報 特開平11−335120号公報
As a superconductor, a conventional superconducting magnetic field generator equipped with a bulky (bulky) high-temperature superconductor such as a Y-system manufactured by a melt solidification method will be described as an example. Bulk-type high-temperature superconductors such as Y-systems produced by the melt-solidification method become powerful magnets that generate Tesla-class magnetic fields by applying a magnetic field, so a strong magnetic field for various applications Application as a generator is being studied. For example, Patent Literature 1 and Patent Literature 2 disclose a superconducting magnet device in which a superconductor is cooled by a refrigerator and integrated with a vacuum exhaust device or the like. Patent Documents 3 and 4 disclose a magnetron sputtering film forming apparatus using a superconducting magnet device as a sputtering gun. Patent Documents 5 and 6 disclose a superconducting magnetic field generating element that can generate a strong magnetic field by surrounding a superconductor with a reinforcing ring.
JP-A-11-283822 JP 2001-68338 A Japanese Patent Laid-Open No. 10-72667 JP 2002-146529 A JP-A-11-284238 JP 11-335120 A

上記した超電導体から大きな磁場を発生させるためには、超電導体を効率よく冷却させることが好ましいが、上記した公報技術によれば、超電導体を効率よく冷却させるには必ずしも充分ではなく、更なる改善が求められている。   In order to generate a large magnetic field from the superconductor described above, it is preferable to efficiently cool the superconductor. However, according to the above-described publication technique, it is not always sufficient to efficiently cool the superconductor. There is a need for improvement.

また、図14に示す超電導磁場発生装置1Xが近年開発されている。このものによれば、真空に排気される断熱容器5X内に、超電導体2X、冷凍機30Xの寒冷発生部として機能するコールドヘッド31X、取付部材4Xが収容されている。コールドヘッド31Xから延長部を介して超電導体2X側に延長された冷却部33Xが設けられている。   In addition, a superconducting magnetic field generator 1X shown in FIG. 14 has been recently developed. According to this, the superconductor 2X, the cold head 31X that functions as a cold generating part of the refrigerator 30X, and the mounting member 4X are accommodated in the heat insulating container 5X that is evacuated to vacuum. A cooling unit 33X is provided that extends from the cold head 31X to the superconductor 2X side through an extension.

取付部材4Xは天井に穴の開いたシルクハット形状をなしており、室をもつ筒状体40Xと、筒状体40Xの一端から径内方向に延設されたリング鍔形状の押圧部41Xと、筒状体40Xの他端から径外方向に延設されたリング鍔形状の外鍔部42Xとをもつ。超電導体2Xと冷却部33Xの間には、両者の熱接触を良好にするため、インジウムシート29Xが配置されている。このシルクハット形状取付部材4Xの室にバルク状の超電導体2Xが収容された状態で、外鍔部42Xの挿通孔に挿通したボルト部材7Xを、冷却部33Xの雌ねじ孔34Xにねじ込むことにより、取付部材4Xにより超電導体2Xが冷却部33Xに固定されている。ボルト部材7Xの頭部70Xは外鍔部42Xを押さえつけている。そして、超電導体2Xの磁場発生面21Xは取付部材4Xのリング鍔形状の押圧部41Xにより矢印Y1方向に押圧され、超電導体2Xの裏面はインジウムシート29Xを介して冷却部33Xに接触する。   The attachment member 4X has a top hat shape with a hole in the ceiling, and has a cylindrical body 40X having a chamber, and a ring hook-shaped pressing portion 41X extending radially inward from one end of the cylindrical body 40X. In addition, it has a ring flange-shaped outer flange portion 42X extending radially outward from the other end of the cylindrical body 40X. An indium sheet 29X is disposed between the superconductor 2X and the cooling unit 33X in order to improve the thermal contact between them. By screwing the bolt member 7X inserted into the insertion hole of the outer flange portion 42X into the female screw hole 34X of the cooling portion 33X in a state where the bulk superconductor 2X is accommodated in the chamber of the top hat-shaped attachment member 4X, The superconductor 2X is fixed to the cooling part 33X by the mounting member 4X. The head portion 70X of the bolt member 7X presses the outer flange portion 42X. The magnetic field generating surface 21X of the superconductor 2X is pressed in the direction of the arrow Y1 by the ring-shaped pressing portion 41X of the mounting member 4X, and the back surface of the superconductor 2X contacts the cooling unit 33X via the indium sheet 29X.

上記した超電導磁場発生装置1Xによれば、超電導体2Xを冷却部33Xに容易に取り付けることができる利点が得られる。しかしながら超電導体2Xの側面25Xは取付部材4Xの筒状体40Xに包囲されているものの、超電導体2Xの側面25Xは取付部材4Xの筒状体40Xの内壁面に必ずしも充分には接触していない。即ち、ボルト部材7Xの頭部70Xにより外鍔部42Xを押さえ付けることにより、取付部材4Xの押圧部41Xで超電導体2Xの磁場発生面21Xを押圧する方式が採用されている関係上、超電導体2Xの側面25Xと取付部材4Xの筒状体40Xの内壁面とが優先的に接触すると、ボルト部材7Xを冷却部33Xの雌ねじ孔34Xにねじ込んだとき、取付部材4Xの押圧部41Xが超電導体2Xの磁場発生面21Xを押圧する押圧力が充分に得られないためである。このため超電導体2Xの側面25Xと取付部材4Xの筒状体40Xとの間には、微小な隙間48Xが形成されている。このように図14に示す従来例によれば、超電導体2Xの側面25Xを積極的に冷却できず、取付部材4Xは超電導体2Xの冷却には必ずしも十分に寄与していないことになる。このように隙間48Xが形成されていると、取付部材4Xが冷却されても、取付部材4Xは超電導体2Xの側面25Xに接触する度合は小さい。   According to the superconducting magnetic field generator 1X described above, there is an advantage that the superconductor 2X can be easily attached to the cooling unit 33X. However, although the side surface 25X of the superconductor 2X is surrounded by the cylindrical body 40X of the mounting member 4X, the side surface 25X of the superconductor 2X is not necessarily sufficiently in contact with the inner wall surface of the cylindrical body 40X of the mounting member 4X. . That is, because the method of pressing the magnetic field generating surface 21X of the superconductor 2X with the pressing portion 41X of the mounting member 4X by pressing the outer flange portion 42X with the head portion 70X of the bolt member 7X, the superconductor is employed. When the side surface 25X of the 2X and the inner wall surface of the cylindrical body 40X of the attachment member 4X come into contact with each other, when the bolt member 7X is screwed into the female screw hole 34X of the cooling portion 33X, the pressing portion 41X of the attachment member 4X is superconductor. This is because the pressing force for pressing the 2X magnetic field generating surface 21X cannot be obtained sufficiently. For this reason, a minute gap 48X is formed between the side surface 25X of the superconductor 2X and the cylindrical body 40X of the mounting member 4X. Thus, according to the conventional example shown in FIG. 14, the side surface 25X of the superconductor 2X cannot be positively cooled, and the mounting member 4X does not necessarily contribute sufficiently to cooling the superconductor 2X. Thus, when the clearance gap 48X is formed, even if the attachment member 4X is cooled, the degree to which the attachment member 4X contacts the side surface 25X of the superconductor 2X is small.

また強磁場を発生させる超電導磁場発生装置としては、超電導体2Xを収容する断熱容器5Xの外に磁極としてできるだけ大きな磁場を発生できることが好ましい。しかしながら、上記した超電導磁場発生装置1Xによれば、図14に示すように、取付部材4Xは、超電導体2Xのうち磁場発生面21Xを押圧固定する押圧部41Xを有する必要があるため、取付部材4Xの押圧部41Xの影響により、超電導体2Xの磁場発生面21Xと断熱容器の先端部52Xとの距離がそれだけ離れ、その間の隙間53Xの隙間幅taが増加し、超電導体2Xに捕捉させる磁場は大きいものの、断熱容器5Xの外で実際に使える磁場としてはそれだけ小さくなり、超電導磁場発生装置1Xの本来の性能を充分に発揮するには限界があった。   In addition, as a superconducting magnetic field generator for generating a strong magnetic field, it is preferable that a magnetic field as large as possible can be generated as a magnetic pole outside the heat insulating container 5X that accommodates the superconductor 2X. However, according to the superconducting magnetic field generator 1X described above, as shown in FIG. 14, the mounting member 4X needs to have the pressing portion 41X that presses and fixes the magnetic field generating surface 21X of the superconductor 2X. Due to the influence of the 4X pressing portion 41X, the distance between the magnetic field generating surface 21X of the superconductor 2X and the distal end portion 52X of the heat insulating container is increased accordingly, the gap width ta of the gap 53X therebetween increases, and the magnetic field captured by the superconductor 2X. However, the magnetic field that can actually be used outside the heat insulating container 5X is so small that the superconducting magnetic field generator 1X has a limit to fully exhibit the original performance.

また、超電導体2Xから磁場を発生させるためには、超電導体2Xを予め着磁する必要がある。着磁の方法としては、超電導体2Xを収容した断熱容器5Xをリング状の超電導マグネット100のボアに挿入して静磁場を印加する方法、超電導体2Xを収容した断熱容器5Xの周囲にリング状の着磁コイルを配置し、コンデンサ等で構成されるパルス電源からパルス電流を通電して発生するパルス磁場により超電導体2Xを着磁する方法等がある。しかしながら超電導磁石装置1Xによれば、取付部材4Xの外鍔部42Xを上からボルト部材7Xで固定しているので、取付部材4Xの外鍔部42Xの影響により、超電導体2Xの径に対して磁極の径が大きくなる。ひいては超電導体2Xを収容する断熱容器5Xの径が大きくなる。このため、着磁に必要な超電導マグネット100の径や着磁コイルの径、更には、パルス電源等が大きくなるという問題点があった。また、磁極が大きいことで、複数の磁極を組合わせたり、装置に組み込んだりする場合に取付けの方法や場所が制約される等の問題があった。   In order to generate a magnetic field from the superconductor 2X, it is necessary to magnetize the superconductor 2X in advance. As a magnetizing method, a heat insulating container 5X containing the superconductor 2X is inserted into the bore of the ring-shaped superconducting magnet 100 and a static magnetic field is applied, and a ring shape is formed around the heat insulating container 5X containing the superconductor 2X. There is a method in which the superconductor 2X is magnetized by a pulse magnetic field generated by applying a pulse current from a pulse power source constituted by a capacitor or the like. However, according to the superconducting magnet device 1X, the outer flange portion 42X of the mounting member 4X is fixed from above with the bolt member 7X, so that the diameter of the superconductor 2X is reduced due to the influence of the outer flange portion 42X of the mounting member 4X. The diameter of the magnetic pole increases. As a result, the diameter of the heat insulating container 5X accommodating the superconductor 2X becomes large. For this reason, there has been a problem that the diameter of the superconducting magnet 100 necessary for magnetization, the diameter of the magnetizing coil, and the pulse power source are increased. In addition, since the magnetic poles are large, there are problems such as restrictions on the mounting method and location when a plurality of magnetic poles are combined or incorporated in an apparatus.

これらの問題は、図14に示すようにシルクハット形状の取付部材4Xで超電導体2Xを冷却部33Xに押付ける方式で超電導体2Xを固定していることに起因していることが判明した。   It has been found that these problems are caused by fixing the superconductor 2X by pressing the superconductor 2X against the cooling portion 33X with the top hat-shaped mounting member 4X as shown in FIG.

本発明はこれらの問題点に鑑みてなされたものであり、超電導体を効果的に冷却でき、更に、着磁に必要な機器(例えば超電導マグネット、着磁コイル、パルス電源等)が小型で済み、強力な磁場を発生できるコンパクトな磁極を持った高性能な超電導磁石装置とそれによるスパッタリング成膜装置を提供することを課題とする。   The present invention has been made in view of these problems, and can effectively cool a superconductor, and further, a device necessary for magnetization (for example, a superconducting magnet, a magnetizing coil, a pulse power source, etc.) can be small. It is an object of the present invention to provide a high-performance superconducting magnet device having a compact magnetic pole capable of generating a strong magnetic field and a sputtering film forming apparatus using the same.

様相1の発明は、超電導遷移温度以下に冷却され外部に磁場を発する超電導体と、超電導体を冷却する冷却部を有する冷却装置と、超電導体を冷却装置の冷却部に保持する冷却取付部材と、超電導体及び冷却取付部材を収容する断熱容器とを具備する超電導磁場発生装置において、冷却取付部材は、超電導体をこれの側面から固定する側面固定部を具備し、冷却取付部材を冷却装置の冷却部の側に向けて引っ張って固定する固定機構を有することを特徴とする。これによれば、通常の超電導体側より固定する方法に比べ、取付機構をより内側に位置させるのに有利となり、超電導体の周囲に配置される冷却取付部材の外径を小さくするのに有利となる。従って、径の小さなコンパクトな磁極とするのに有利となる。
例えば、冷却取付部材を冷却部に固定する機構として、冷却取付部材が雄ねじ部を有する構造にすれば、雄ねじ部を冷却部の一部に通し、雄ねじ部をナット部材で締結することにより、超電導体を冷却部側から引っ張って固定することができる。
上記超電導体は、必ずしも超電導物質そのものに限定されるものではなく、超電導体は樹脂含浸、金属皮膜等の表面処理や上記引例にあるような金属リングによる補強等がされていてもよい。上記冷却装置は、冷却部を有する冷凍機とすることができ、GM冷凍機、パルス管冷凍機、スターリング冷凍機等を用いることができる。この場合、冷却部とは、冷凍機のコールドヘッドそのものである場合もあれば、コールドヘッドから銅ブロック等で延長した部分である場合もある。また、上記した冷却取付部材としては、超電導体を取り付ける取付部材としての強度と、超電導体を冷却する冷却部材としての熱伝導性とを併有する材料で形成することが好ましい
The invention of aspect 1 includes a superconductor that is cooled below the superconducting transition temperature and generates a magnetic field to the outside, a cooling device that has a cooling portion that cools the superconductor, and a cooling attachment member that holds the superconductor in the cooling portion of the cooling device; In the superconducting magnetic field generating device comprising the superconductor and the heat insulating container for accommodating the cooling attachment member, the cooling attachment member comprises a side surface fixing portion for fixing the superconductor from the side surface thereof, and the cooling attachment member is disposed on the cooling device. It has the fixing mechanism which pulls and fixes toward the cooling unit side. According to this, compared with the method of fixing from the normal superconductor side, it is advantageous to position the mounting mechanism more inside, and it is advantageous to reduce the outer diameter of the cooling mounting member disposed around the superconductor. Become. Therefore, it is advantageous to obtain a compact magnetic pole having a small diameter.
For example, as a mechanism for fixing the cooling mounting member to the cooling portion, if the cooling mounting member has a structure having a male screw portion, the male screw portion is passed through a part of the cooling portion and the male screw portion is fastened with a nut member, thereby superconducting. The body can be pulled and fixed from the cooling part side.
The superconductor is not necessarily limited to the superconducting substance itself, and the superconductor may be subjected to surface treatment such as resin impregnation, a metal film, or reinforcement by a metal ring as in the above reference. The cooling device can be a refrigerator having a cooling unit, and a GM refrigerator, a pulse tube refrigerator, a Stirling refrigerator, or the like can be used. In this case, the cooling part may be the cold head itself of the refrigerator or may be a part extended from the cold head by a copper block or the like. Moreover, it is preferable that the above-described cooling attachment member is formed of a material having both strength as an attachment member for attaching the superconductor and thermal conductivity as a cooling member for cooling the superconductor .

また、冷却取付部材を冷却部に固定する機構として、冷却取付部材が雌ねじ孔を有する構造にすれば、冷却部側から冷却部の一部を挟んで雌ねじ孔をボルト部材で締結することにより、超電導体を冷却部側から引張って固定することができる。この場合、ねじの位置をより内側にできると同時に、冷却取付部材を突起部のない単純な筒形状にすることができ、超電導体と一体にして脱着することができる。特に、冷却取付部材は、超電導体の周を包囲する補強リングを兼ねることができ、磁極構成が簡単になると同時に、耐久性、信頼性に優れた磁場発生装置とすることができる
次に、様相の発明によれば、冷却取付部材は、超電導体の磁場発生面よりも前方に突き出ていないことを特徴とする。断熱容器の先端部の内面と超電導体の磁場発生面との距離を小さくすることができる。したがって、超電導体が捕捉した磁場の距離による減衰を小さくでき、磁極から発生する磁場を強力にすることができる。
次に、様相の発明によれば、超電導体の側面の少なくとも一部は断面でテーパ状となっており、且つ、冷却取付部材の側面固定部は超電導体のテーパ部分と係合すると共に断面でテーパ状の拘束面を有しており、冷却取付部材を冷却部に接近させることにより、冷却取付部材のテーパ状の拘束面及び超電導体のテーパ部分の係合を介して超電導体をこれの側面から固定することを特徴とする。この場合、冷却取付部材を冷却部に接近させることにより、超電導体のテーパ部分を介して超電導体をこれの側面から固定することができる。この場合、冷却取付部材を冷却部に接近させるだけで超電導体をこれの側面から固定できるので、固定が簡単で、また、脱着等の操作が容易である。
次に、様相の発明によれば、冷却取付部材の側面固定部は、超電導体よりも熱伝導性が高い材料を介して、超電導体をこれの側面から固定することを特徴とする。超電導体がセラミックス等のように脆い材料の場合には、機械的にではなく、熱伝導性が良く軟質の材料を介して固定することが、超電導体の損傷を避けるのに好ましい。また、超電導体と冷却取付部材との間に隙間が形成される場合には、熱伝導性の材料を両者の隙間の充填材として用いて超電導体を固定できる。熱伝導性の材料としては、In,Al,Cu,はんだ,ウッドメタル等の柔らかい低融点の金属が例示される。また、これらの金属、熱伝導性の粒子、熱伝導性の繊維の少なくとも1種を混合した樹脂等が例示される。
Further, as a mechanism for fixing the cooling mounting member to the cooling part, if the cooling mounting member has a structure having a female screw hole, by fastening the female screw hole with a bolt member with a part of the cooling part sandwiched from the cooling part side, it can be fixed taut Tsu pull the superconductor from the cooling unit side. In this case, the position of the screw can be made more inside, and at the same time, the cooling mounting member can be made into a simple cylindrical shape without a protrusion, and can be attached and detached integrally with the superconductor. In particular, the cooling mounting member can also serve as a reinforcing ring that surrounds the periphery of the superconductor, so that the magnetic pole structure can be simplified, and at the same time, a magnetic field generator excellent in durability and reliability can be obtained .
Next, according to the invention of aspect 2 , the cooling attachment member does not protrude forward from the magnetic field generation surface of the superconductor. The distance between the inner surface of the tip of the heat insulating container and the magnetic field generating surface of the superconductor can be reduced. Therefore, attenuation due to the distance of the magnetic field captured by the superconductor can be reduced, and the magnetic field generated from the magnetic pole can be strengthened.
Next, according to the invention of aspect 3 , at least a part of the side surface of the superconductor is tapered in cross section, and the side surface fixing portion of the cooling mounting member engages with the taper portion of the superconductor and has a cross section. In this case, by bringing the cooling attachment member closer to the cooling portion, the superconductor is moved through the engagement of the tapered restriction surface of the cooling attachment member and the tapered portion of the superconductor. It is fixed from the side. In this case, the superconductor can be fixed from the side surface of the superconductor through the taper portion of the superconductor by bringing the cooling attachment member closer to the cooling portion. In this case, since the superconductor can be fixed from the side surface only by bringing the cooling attachment member close to the cooling portion, the fixing is easy and the operation such as detachment is easy.
Next, according to the invention of aspect 4 , the side surface fixing portion of the cooling attachment member is characterized in that the superconductor is fixed from the side surface through a material having higher thermal conductivity than the superconductor. When the superconductor is a brittle material such as ceramics, it is preferable not to be mechanically, but to be fixed via a soft material having good thermal conductivity in order to avoid damage to the superconductor. Further, when a gap is formed between the superconductor and the cooling attachment member, the superconductor can be fixed using a heat conductive material as a filler for the gap between the two. Examples of the thermally conductive material include soft low melting point metals such as In, Al, Cu, solder, and wood metal. Moreover, the resin etc. which mixed at least 1 sort (s) of these metals, heat conductive particle | grains, and heat conductive fiber are illustrated.

次に、様相の発明によれば、超電導体は、溶融凝固法により作製され、その主成分がRE−Ba−Cu−O(REはY,La,Nd,Sm,Eu,Gd,Er,Yb,Dy,Hoのうちの1種以上)で表されるものであることが好ましい。一旦融点以上に加熱して溶融し再び凝固させる溶融凝固法で合成したRE−Ba−Cu−O系の超電導体は、結晶粒が粗大で、かつ、超電導となる母相に絶縁相が微細に分散した組織を有している。この絶縁相が磁場のピン止め点として働くため、捕捉磁場の大きい超電導体が得られ易くなり、磁場発生装置としての性能が向上する。 Next, according to the invention of aspect 5 , the superconductor is manufactured by a melt solidification method, and its main component is RE-Ba-Cu-O (RE is Y, La, Nd, Sm, Eu, Gd, Er, One or more of Yb, Dy, and Ho) are preferable. The RE-Ba-Cu-O-based superconductor synthesized by the melt-solidification method that once heated above the melting point and melted and solidified again has coarse crystal grains and a fine insulating phase in the superconducting parent phase. Has a distributed organization. Since this insulating phase acts as a pinning point for the magnetic field, it becomes easy to obtain a superconductor having a large trapping magnetic field, and the performance as a magnetic field generator is improved.

更に、様相の発明のように、超電導体は、Ag,Au,Pt,Rh,Ceのうちの少なくとも1種類を含むことが望ましい。Ag,Auは超電導相と反応せずに超電導母相内に析出し、超電導遷移温度等の超電導特性を損なうことなく、セラミックスであるRE−Ba−Cu−O系の超電導体の機械的強度を向上させる。従って、磁場発生装置としての信頼性が向上する。また、Pt,Rh,Ceを含有したRE−Ba−Cu−O系の超電導体は、母相である超電導相に絶縁相がより微細に分散しており、より強いピン止め力を示す。従って、超電導体の捕捉磁場が増加し磁場発生装置としての性能が向上する。 Furthermore, as in the invention of aspect 6 , it is desirable that the superconductor includes at least one of Ag, Au, Pt, Rh, and Ce. Ag and Au do not react with the superconducting phase and precipitate in the superconducting parent phase, and the mechanical strength of the RE-Ba-Cu-O superconductor, which is a ceramic, is reduced without impairing superconducting properties such as the superconducting transition temperature. Improve. Therefore, the reliability as a magnetic field generator is improved. In addition, the RE-Ba-Cu-O-based superconductor containing Pt, Rh, and Ce has a finer dispersion of the insulating phase in the superconducting phase that is the parent phase, and exhibits a stronger pinning force. Accordingly, the trapping magnetic field of the superconductor is increased and the performance as a magnetic field generator is improved.

次に、様相の発明は、薄膜原料を含むターゲットを保持するためのターゲットホルダと、成膜対象物を保持するための成膜対象物ホルダとを有する減圧チャンバと、減圧チャンバに保持され磁場の作用でターゲットの表面付近にプラズマを集中させるためのスパッタガンとを具備しており、
スパッタガンから発せられる磁場の作用でターゲットの表面近傍にプラズマを集中させてスパッタリングを行い、ターゲットから放出される薄膜原料を成膜対象物の表面に被着させて成膜対象物に薄膜を形成するスパッタリング成膜装置において、スパッタガンは、各様相のうちのいずれかからなる超電導磁場発生装置が組み込まれていることを特徴とするスパッタリング成膜装置である。
Next, the invention of aspect 7 includes a decompression chamber having a target holder for holding a target containing a thin film raw material, a film formation target holder for holding a film formation target, and a magnetic field held in the pressure reduction chamber. And a sputter gun for concentrating plasma near the surface of the target by the action of
Sputtering is performed by concentrating plasma near the surface of the target by the action of a magnetic field emitted from the sputtering gun, and a thin film material emitted from the target is deposited on the surface of the film formation target to form a thin film on the film formation target. In the sputtering film forming apparatus, the sputtering gun is a sputtering film forming apparatus in which a superconducting magnetic field generation device having any one of the various aspects is incorporated.

上述したように、各様相の発明による超電導磁場発生装置は磁極から発せられる磁場が極めて強いという特徴を有している。これをスパッタガンに組み込むことによりターゲット表面の磁場が強化され、高性能な成膜用のスパッタリング成膜装置を実現することができる。スパッタリング成膜装置に取付けられるスパッタガンの台数は1台に限るものではなく、複数の種類のターゲットを具備する、いわゆる多元スパッタリング成膜装置にも適用でき、複数台取付けることができる。また、複数のターゲットが対向して構成される対向型スパッタリング成膜装置にも適用できる。   As described above, the superconducting magnetic field generator according to each aspect of the invention has a feature that the magnetic field generated from the magnetic pole is extremely strong. By incorporating this into the sputtering gun, the magnetic field on the target surface is strengthened, and a high-performance sputtering film forming apparatus can be realized. The number of sputter guns attached to the sputtering film forming apparatus is not limited to one, but can be applied to a so-called multi-source sputtering film forming apparatus having a plurality of types of targets, and a plurality of sputter guns can be attached. Further, the present invention can also be applied to an opposed sputtering film forming apparatus configured such that a plurality of targets are opposed to each other.

本発明によれば、冷却取付部材は、超電導体の側面を外側から固定する側面固定部を備えているため、超電導体をこれの側面からも効果的に冷却でき、更に、着磁に必要な機器(超電導マグネット、着磁コイル、パルス電源等)が小型で済み、強力な磁場を発生できるコンパクトな磁極を持った高性能な超電導磁石装置とそれによるスパッタリング成膜装置を提供することができる。   According to the present invention, since the cooling mounting member includes the side surface fixing portion that fixes the side surface of the superconductor from the outside, the superconductor can be effectively cooled from the side surface, and is further necessary for magnetization. Equipment (superconducting magnet, magnetizing coil, pulse power supply, etc.) can be small, and a high-performance superconducting magnet device having a compact magnetic pole capable of generating a strong magnetic field and a sputtering film forming apparatus using the same can be provided.

以下、発明を実施するための最良の形態を実施例に基づいて説明する。   Hereinafter, the best mode for carrying out the invention will be described based on examples.

本発明の実施例1に係る超電導磁場発生装置1を図1に示す。複雑化を避けるため、ハッチングを省略している部分がある。この超電導磁場発生装置1は、超電導遷移温度以下に冷却されると磁場を捕捉することにより外部に磁場を発するバルク状の超電導体2と、超電導体2を冷却する冷却装置3と、超電導体2を冷却装置3の冷却部33に保持される冷却取付部材4と、超電導体2、冷却取付部材4及び冷却部33を収容すると共に真空断熱室50を有する断熱容器5とを有する。本実施例によれば、超電導体2は断熱容器5内に同軸的に配置されるため、断熱容器5の中心軸芯PAは超電導体2の中心軸芯Pと整合する。超電導体2は、溶融凝固法により作製されており、その主成分がREーBaーCuーO(REは、Y,La,Nd,Sm,Eu,Gd,Er,Yb,Dy,Hoのうちの1種以上)で表される。超電導体2は、Ag,Au,Pt,Rh,Ceのうちの少なくとも1種類を含む。   FIG. 1 shows a superconducting magnetic field generator 1 according to Embodiment 1 of the present invention. In order to avoid complications, there are parts where hatching is omitted. The superconducting magnetic field generator 1 includes a bulk superconductor 2 that emits a magnetic field by capturing a magnetic field when cooled to a superconducting transition temperature or lower, a cooling device 3 that cools the superconductor 2, and a superconductor 2. The cooling attachment member 4 held in the cooling part 33 of the cooling device 3, and the heat insulating container 5 that accommodates the superconductor 2, the cooling attachment member 4, and the cooling part 33 and has a vacuum heat insulating chamber 50. According to the present embodiment, since the superconductor 2 is coaxially arranged in the heat insulating container 5, the center axis PA of the heat insulating container 5 is aligned with the center axis P of the superconductor 2. The superconductor 2 is manufactured by a melt solidification method, and its main component is RE-Ba-Cu-O (RE is Y, La, Nd, Sm, Eu, Gd, Er, Yb, Dy, Ho. 1 type or more). The superconductor 2 includes at least one of Ag, Au, Pt, Rh, and Ce.

超電導体2は、所要の肉厚をもつ円柱形状をなしており、先端面である平坦な磁場発生面21及び平坦な裏面23をもつ。超電導体2の磁場発生面21は、真空となる微小な隙間53を介して断熱容器5の先端部52の内壁面に対面すると共に、冷却部33の冷却面34に背向する。超電導体2の裏面23は冷却部33の冷却面34に対面するので、超電導体2の裏面23は冷却される。図1に示すように、超電導体2の側面25は、超電導体2の中心軸芯Pを通る断面で、超電導体2の中心軸芯Pに対して直線的に傾斜してテーパ状となっている。即ち、超電導体2のテーパ状の側面25は、超電導体2の磁場発生面21に向かうにつれて外径が次第に小さくなるように、円錐状の傾斜面とされている。超電導体2の側面25は、超電導体2の磁場発生面21に垂直の中心軸芯Pに対して平行にまたは非平行に沿って並走している面と定義できる。   The superconductor 2 has a cylindrical shape with a required thickness, and has a flat magnetic field generating surface 21 and a flat back surface 23 which are front end surfaces. The magnetic field generating surface 21 of the superconductor 2 faces the inner wall surface of the distal end portion 52 of the heat insulating container 5 through a minute gap 53 that becomes a vacuum, and faces away from the cooling surface 34 of the cooling unit 33. Since the back surface 23 of the superconductor 2 faces the cooling surface 34 of the cooling unit 33, the back surface 23 of the superconductor 2 is cooled. As shown in FIG. 1, the side surface 25 of the superconductor 2 is a cross section passing through the central axis P of the superconductor 2 and is linearly inclined with respect to the central axis P of the superconductor 2 and becomes tapered. Yes. That is, the tapered side surface 25 of the superconductor 2 is formed as a conical inclined surface so that the outer diameter gradually decreases toward the magnetic field generating surface 21 of the superconductor 2. The side surface 25 of the superconductor 2 can be defined as a surface parallel to or parallel to the central axis P perpendicular to the magnetic field generating surface 21 of the superconductor 2.

図1に示すように、冷却装置3は、冷凍機30と、冷凍機30により低温に冷却されるコールドヘッドとも呼ばれる寒冷発生部31と、寒冷発生部31に延長部32を介して連結された冷却部33とを有する。冷凍機30はGM冷凍機、パルス管冷凍機、スターリング冷凍機等を用いることができる。断熱容器5は、円筒形状をなす筒壁部51と、真空となる隙間53を介して超電導体2の磁場発生面21に対面する先端部52とを有する。断熱容器5の真空断熱室50は図略の真空排気系により排気されて高真空状態に維持され、外部に対して断熱性が確保される。   As shown in FIG. 1, the cooling device 3 is connected to the cold generator 30, a cold generator 31 called a cold head cooled to a low temperature by the refrigerator 30, and the cold generator 31 via an extension 32. And a cooling unit 33. As the refrigerator 30, a GM refrigerator, a pulse tube refrigerator, a Stirling refrigerator, or the like can be used. The heat insulating container 5 includes a cylindrical wall portion 51 having a cylindrical shape, and a distal end portion 52 that faces the magnetic field generating surface 21 of the superconductor 2 through a gap 53 that becomes a vacuum. The vacuum heat insulation chamber 50 of the heat insulation container 5 is evacuated by a vacuum exhaust system (not shown) and maintained in a high vacuum state, and heat insulation is ensured with respect to the outside.

冷却取付部材4は、超電導体2の側面25をこれの外側から固定するように、超電導体2の中心軸芯Pの回りを1周するリング形状の側面固定部40を有する。冷却取付部材4は、冷却部33の冷却面34に背向するリング形状をなす平坦な先端面41と、冷却部33の冷却面34に対面するリング形状をなす平坦な対向面42とを有する。冷却取付部材4は、セラミックスである超電導体2よりも冷却による熱収縮が大きい材料、一般的には金属材料(ステンレス鋼等)で形成されている。この金属材料は、超電導体2による良好な磁路を形成するように非磁性とされている。   The cooling attachment member 4 has a ring-shaped side surface fixing portion 40 that goes around the central axis P of the superconductor 2 so as to fix the side surface 25 of the superconductor 2 from the outside thereof. The cooling attachment member 4 has a flat tip surface 41 that forms a ring shape facing the cooling surface 34 of the cooling unit 33, and a flat facing surface 42 that forms a ring shape that faces the cooling surface 34 of the cooling unit 33. . The cooling attachment member 4 is formed of a material that is larger in thermal contraction due to cooling than the superconductor 2 that is ceramic, generally a metal material (stainless steel or the like). This metal material is non-magnetic so as to form a good magnetic path by the superconductor 2.

ここで、セラミックス製の超電導体2の熱収縮量よりも金属製の冷却取付部材4の熱収縮量が大きい。故に、冷却時に冷却取付部材4と超電導体2との熱収縮量の差に基づいて、冷却取付部材4の側面固定部40により超電導体2をこれの側面25から拘束して固定することができる。なお、冷却取付部材4の外壁面49は、超電導体2の中心軸芯P及び断熱容器5の筒壁部51に沿っているため、断熱容器5の径の増加を抑えることができる。   Here, the heat shrinkage amount of the metal cooling attachment member 4 is larger than the heat shrinkage amount of the ceramic superconductor 2. Therefore, based on the difference in heat shrinkage between the cooling mounting member 4 and the superconductor 2 during cooling, the superconductor 2 can be restrained and fixed from the side surface 25 by the side surface fixing portion 40 of the cooling mounting member 4. . In addition, since the outer wall surface 49 of the cooling attachment member 4 is along the central axis P of the superconductor 2 and the cylindrical wall part 51 of the heat insulation container 5, the increase in the diameter of the heat insulation container 5 can be suppressed.

図1に示すように、冷却取付部材4は、超電導体2の磁場発生面21を覆う部分を有していない。即ち、冷却取付部材4の先端面41と超電導体2の磁場発生面21とは、同一面状またはほぼ同一面状とされており、冷却取付部材4は超電導体2の磁場発生面21よりも前方(矢印Y2方向)に突き出ていないか、あるいは、実質的に突き出ていない。この点、図14に示す従来技術とは異なる。ここで、前方とは、超電導体2の磁場発生面21からの磁場放散方向を意味する。   As shown in FIG. 1, the cooling attachment member 4 does not have a portion that covers the magnetic field generating surface 21 of the superconductor 2. That is, the front end surface 41 of the cooling attachment member 4 and the magnetic field generation surface 21 of the superconductor 2 are the same or substantially the same surface, and the cooling attachment member 4 is more than the magnetic field generation surface 21 of the superconductor 2. It does not protrude forward (arrow Y2 direction) or does not substantially protrude. This is different from the prior art shown in FIG. Here, the front means the direction of magnetic field dissipation from the magnetic field generation surface 21 of the superconductor 2.

図1に示すように、冷却取付部材4の側面固定部40は、内周面を形成する円錐テーパ形状の拘束面43を有する。拘束面43は、超電導体2の中心軸芯Pを通る断面で直線的なテーパ状をなす。冷却取付部材4の拘束面43のテーパ角と超電導体2のテーパ状の側面25のテーパ角とは、同一またはほぼ同一に設定されている。従って、冷却取付部材4のテーパ状の拘束面43は、超電導体2のテーパ状の側面25と係合して良好に密着することができ、熱接触性を高めることができる。なお側面25と拘束面43との間に、インジウム等の熱接触部材を介在させても良い。   As shown in FIG. 1, the side surface fixing portion 40 of the cooling attachment member 4 has a conical tapered constraining surface 43 that forms an inner peripheral surface. The constraining surface 43 is linearly tapered in a cross section passing through the central axis P of the superconductor 2. The taper angle of the constraining surface 43 of the cooling attachment member 4 and the taper angle of the tapered side surface 25 of the superconductor 2 are set to be the same or substantially the same. Therefore, the taper-shaped restraining surface 43 of the cooling mounting member 4 can be brought into close contact with the taper-shaped side surface 25 of the superconductor 2 and can be brought into close contact with each other, thereby improving the thermal contact property. A thermal contact member such as indium may be interposed between the side surface 25 and the constraining surface 43.

冷却取付部材4は、冷却取付部材4を冷却装置3の冷却部33の側に向けて矢印Y1方向に引っ張って固定する固定機構45を有する。固定機構45は、冷却取付部材4に一体的に設けられた取付部46と、冷却取付部材4に対して別体をなす締結部材としてのナット部材47とで形成されている。図1に示すように、取付部46は、冷却取付部材4のうち冷却部33の冷却面34に対向する対向面42(例えば下面)から冷却部33に向けて、超電導体2の中心軸芯Pに沿って複数本突出して設けられている。取付部46は雄ねじ部をもつ。例えば、取付部46は、雄ねじ部をもつボルト部材を冷却取付部材4の対向面42に溶接等により固定して形成できる。   The cooling attachment member 4 includes a fixing mechanism 45 that pulls and fixes the cooling attachment member 4 toward the cooling unit 33 of the cooling device 3 in the arrow Y1 direction. The fixing mechanism 45 is formed by an attachment portion 46 provided integrally with the cooling attachment member 4 and a nut member 47 as a fastening member that is a separate member from the cooling attachment member 4. As shown in FIG. 1, the mounting portion 46 is a central axis of the superconductor 2 from the facing surface 42 (for example, the lower surface) facing the cooling surface 34 of the cooling portion 33 of the cooling mounting member 4 toward the cooling portion 33. A plurality of protrusions are provided along P. The attachment portion 46 has a male screw portion. For example, the mounting portion 46 can be formed by fixing a bolt member having a male screw portion to the facing surface 42 of the cooling mounting member 4 by welding or the like.

超電導体2を冷却部33の冷却面34に保持するときには、まず、冷却取付部材4の取付部46を冷却部33の挿通孔33aに挿通する。次に、挿通孔33aから露出した取付部46の雄ねじ部にワッシャ部材48を介してナット部材47を挿入し、ナット部材47を回して取付部46に締結する。これにより冷却取付部材4は冷却部33に着脱可能に固定される。ここで、ナット部材47の回転操作量を増加させてナット部材47を冷却取付部材4の取付部46に締結する締結力を増加させると、冷却取付部材4を冷却部33に接近させる方向(矢印Y1方向)に付勢することができる。この結果、冷却取付部材4のテーパ状の拘束面43と超電導体2のテーパ状の側面25との熱接触性を高めつつ係合させることができる。ひいては、この係合を介して超電導体2の冷却性を高めることができ、更に、超電導体2をこれの側面25から冷却取付部材4により固定することができる。   When the superconductor 2 is held on the cooling surface 34 of the cooling portion 33, first, the attachment portion 46 of the cooling attachment member 4 is inserted into the insertion hole 33 a of the cooling portion 33. Next, the nut member 47 is inserted into the male thread portion of the attachment portion 46 exposed from the insertion hole 33 a via the washer member 48, and the nut member 47 is rotated and fastened to the attachment portion 46. Thereby, the cooling attachment member 4 is detachably fixed to the cooling part 33. Here, when the amount of rotational operation of the nut member 47 is increased to increase the fastening force for fastening the nut member 47 to the attachment portion 46 of the cooling attachment member 4, the direction in which the cooling attachment member 4 approaches the cooling portion 33 (arrow) Y1 direction). As a result, the tapered restraining surface 43 of the cooling mounting member 4 and the tapered side surface 25 of the superconductor 2 can be engaged with each other while enhancing the thermal contact property. As a result, the cooling property of the superconductor 2 can be enhanced through this engagement, and the superconductor 2 can be fixed by the cooling attachment member 4 from the side surface 25 thereof.

上記のように超電導体2を冷却部33に固定した状態では、図1に示すように、ナット部材47のうち内端47i、取付部46は、超電導体2の径方向(矢印R方向)において冷却取付部材4の外壁面49よりも径内側に位置している。これにより磁極の径サイズの小型化に有利となる。しかもナット部材47は冷却取付部材4の外周側に位置せず、冷却取付部材4の下側に位置するので、この意味においても磁極の径サイズの小型化に有利である。   In the state where the superconductor 2 is fixed to the cooling portion 33 as described above, as shown in FIG. 1, the inner end 47 i and the attachment portion 46 of the nut member 47 are in the radial direction (arrow R direction) of the superconductor 2. The cooling attachment member 4 is located on the inner side in diameter than the outer wall surface 49. This is advantageous in reducing the diameter of the magnetic pole. In addition, since the nut member 47 is not located on the outer peripheral side of the cooling attachment member 4 but is located on the lower side of the cooling attachment member 4, this is also advantageous in reducing the diameter of the magnetic pole.

図1に示すように、超電導体2の裏面23と冷却部33の冷却面34との間には、シート状の熱接触部材29が介在し、両者の熱接触性を高め、超電導体2の冷却を促進させている。熱接触部材29は冷却部33の冷却面34と冷却取付部材4の対向面42との間にも延設されている。熱接触部材29は、超電導体2よりも熱伝導性が高く、軟質な材料(例えばインジウム)で形成されている。   As shown in FIG. 1, a sheet-like thermal contact member 29 is interposed between the back surface 23 of the superconductor 2 and the cooling surface 34 of the cooling unit 33, thereby improving the thermal contact property between the two. Cooling is promoted. The thermal contact member 29 also extends between the cooling surface 34 of the cooling unit 33 and the opposing surface 42 of the cooling attachment member 4. The thermal contact member 29 has higher thermal conductivity than the superconductor 2 and is made of a soft material (for example, indium).

超電導体2から磁場を発生させるためには、超電導体2を予め着磁する必要がある。着磁の方法としては、前述したように、超電導体2を収容した断熱容器5をリング状の超電導マグネット100のボアに挿入して静磁場を印加する方法、超電導体2を収容した断熱容器5の周囲にリング状の着磁コイルを配置し、コンデンサ等で構成されるパルス電源からパルス電流を通電して発生するパルス磁場により超電導体2を着磁する方法等がある。この点本実施例によれば、図1に示す冷却取付部材4は、上記した図14に示す超電導磁石装置1Xとは異なり、外鍔部42Xを有しない外鍔レス構造であるため、磁極の径を小さくでき、ひいては断熱容器5の径を小さくできる。このため着磁に必要な超電導マグネット100の径や着磁コイルの径、更には、パルス電源等を小型化できるという利点が得られる。また、磁極の小型化を図れることで、複数の磁極を組合わせたり、装置に組み込んだりする場合に取付けの方法や場所が制約されにくい等の利点が得られる。   In order to generate a magnetic field from the superconductor 2, it is necessary to magnetize the superconductor 2 in advance. As described above, as described above, as described above, the heat insulating container 5 containing the superconductor 2 is inserted into the bore of the ring-shaped superconducting magnet 100 and a static magnetic field is applied. The heat insulating container 5 containing the superconductor 2 is used. There is a method of magnetizing the superconductor 2 with a pulse magnetic field generated by supplying a pulse current from a pulse power source constituted by a capacitor or the like by arranging a ring-shaped magnetizing coil around the coil. In this regard, according to the present embodiment, the cooling mounting member 4 shown in FIG. 1 is different from the above-described superconducting magnet device 1X shown in FIG. The diameter can be reduced, and consequently the diameter of the heat insulating container 5 can be reduced. Therefore, there is an advantage that the diameter of the superconducting magnet 100 necessary for magnetization, the diameter of the magnetizing coil, and the pulse power source can be reduced. In addition, since the magnetic poles can be reduced in size, there can be obtained an advantage that the mounting method and location are not easily restricted when a plurality of magnetic poles are combined or incorporated in an apparatus.

本実施例によれば、前記した冷却取付部材4は、超電導体2を取付ける機能と超電導体2を冷却する機能とを併有する。従って、超電導体2はこれの裏面23から冷却部33の冷却面34により冷却されるだけでなく、超電導体2の側面25からも冷却取付部材4を介して冷却部33の冷却面34により積極的に冷却され、超電導体2を効率良く迅速に冷却できる。しかも固定機構45を構成するナット部材47をこれの螺進方向に回転操作して超電導体2の固定力を高めるほど、冷却取付部材4及び超電導体2を冷却部33の方向(矢印Y1方向)へ引張って付勢することができ、超電導体2の冷却能を高めるのに有利となる利点が得られる。   According to the present embodiment, the cooling attachment member 4 described above has both a function of attaching the superconductor 2 and a function of cooling the superconductor 2. Accordingly, the superconductor 2 is not only cooled from the back surface 23 by the cooling surface 34 of the cooling unit 33 but also from the side surface 25 of the superconductor 2 via the cooling attachment member 4 to the cooling surface 34 of the cooling unit 33. The superconductor 2 can be cooled efficiently and quickly. In addition, as the fixing force of the superconductor 2 is increased by rotating the nut member 47 constituting the fixing mechanism 45 in the screwing direction, the cooling mounting member 4 and the superconductor 2 are moved in the direction of the cooling unit 33 (the direction of the arrow Y1). Therefore, it is possible to obtain a merit that is advantageous in increasing the cooling ability of the superconductor 2.

また、超電導体2がREーBaーCuーO系である場合には、強力な磁場を発生できるのがc軸にあるのに対し、熱伝導率、熱拡散係数はa軸,b軸の方が大きい。本実施例によれば図1に示すように、冷却取付部材4の拘束面43が超電導体2のa,b軸に対向しているため、超電導体2を効率よく冷却できる。故に超電導体2の磁場変化等で発生した熱を、超電導体2の側面25から冷却取付部材4を介して早く取り除くことができ、超電導体2を効率良く冷却することができる。但し場合によっては、冷却取付部材4の拘束面43がa軸,b軸方向に対向しないようにしても良い。   Also, when the superconductor 2 is a RE-Ba-Cu-O system, a strong magnetic field can be generated on the c-axis, whereas the thermal conductivity and thermal diffusion coefficient are on the a-axis and b-axis. Is bigger. According to the present embodiment, as shown in FIG. 1, since the restraining surface 43 of the cooling mounting member 4 faces the a and b axes of the superconductor 2, the superconductor 2 can be efficiently cooled. Therefore, the heat generated by the magnetic field change of the superconductor 2 can be quickly removed from the side surface 25 of the superconductor 2 through the cooling attachment member 4, and the superconductor 2 can be efficiently cooled. However, in some cases, the constraining surface 43 of the cooling attachment member 4 may not be opposed to the a-axis and b-axis directions.

更に本実施例によれば、冷却取付部材4を冷却装置3の冷却部33の側に向けて矢印Y1方向に引っ張って固定する固定機構45を有するため、固定機構45のナット部材47を回転操作すれば、冷却取付部材4のテーパ状の拘束面43と超電導体2のテーパ状の側面25との熱接触性を高めることができ、超電導体2の側面25の冷却に有利である。   Further, according to the present embodiment, since the cooling attachment member 4 has the fixing mechanism 45 that fixes the cooling attachment member 4 toward the cooling portion 33 side of the cooling device 3 in the arrow Y1 direction, the nut member 47 of the fixing mechanism 45 is rotated. By doing so, the thermal contact property between the tapered constraining surface 43 of the cooling mounting member 4 and the tapered side surface 25 of the superconductor 2 can be enhanced, which is advantageous for cooling the side surface 25 of the superconductor 2.

加えて本実施例によれば、取付部46が冷却取付部材4の対向面42(下面)に連結されているため、取付部46をナット部材47と共に冷却取付部材4のうちできるだけ内側に配置するのに有利となる。結果として、超電導体2及び冷却取付部材4を収容する断熱容器5の筒壁部51の径を小さくすることができる。   In addition, according to the present embodiment, since the mounting portion 46 is connected to the opposing surface 42 (lower surface) of the cooling mounting member 4, the mounting portion 46 is arranged as much as possible inside the cooling mounting member 4 together with the nut member 47. This is advantageous. As a result, the diameter of the cylindrical wall portion 51 of the heat insulating container 5 that accommodates the superconductor 2 and the cooling attachment member 4 can be reduced.

また本実施例によれば、図1に示すように、冷却取付部材4が超電導体2の磁場発生面21よりも前方(矢印Y2方向)に突き出していないので、超電導体2の磁場発生面21と断熱容器5の先端部52との間に生成される隙間53をできるだけ狭くすることができ、超電導体2から断熱容器5の外部に出る磁場を強くすることができる。   Further, according to this embodiment, as shown in FIG. 1, the cooling mounting member 4 does not protrude forward (in the direction of the arrow Y <b> 2) from the magnetic field generation surface 21 of the superconductor 2, so the magnetic field generation surface 21 of the superconductor 2. And the tip 53 of the heat insulating container 5 can be made as narrow as possible, and the magnetic field emitted from the superconductor 2 to the outside of the heat insulating container 5 can be strengthened.

更に本実施例によれば、ナット部材47を回転操作して冷却取付部材4の取付部46に締結する締結力を増加させると、冷却取付部材4を冷却部33に接近させる方向(矢印Y1方向)に一層付勢することができる。この結果、冷却取付部材4のテーパ状の拘束面43と超電導体2のテーパ状の側面25との熱接触性を高め得るばかりか、冷却取付部材4から超電導体2側に向かって径内方向(矢印R1方向)に向かう圧縮力が超電導体2の側面25に働く。故に、磁場を捕捉することにより超電導体2に働く膨張を抑えるのに有利となる。ひいては、超電導体2の亀裂発生を抑制でき、超電導体2においてより高い磁場を信頼性良く発生することができる。殊に、図1に示すように、冷却取付部材4のうち磁場発生面21側を覆う先端面41が厚肉であり、大きな圧縮力を発揮できるため、亀裂の起点となり易い磁場発生面21における圧縮力を増加させるのに貢献できる。   Furthermore, according to the present embodiment, when the fastening force for fastening the cooling member to the attachment part 46 of the cooling attachment member 4 is increased by rotating the nut member 47, the direction in which the cooling attachment member 4 approaches the cooling part 33 (arrow Y1 direction). ). As a result, not only can the thermal contact between the tapered constraining surface 43 of the cooling mounting member 4 and the tapered side surface 25 of the superconductor 2 be improved, but also in the radially inward direction from the cooling mounting member 4 toward the superconductor 2 side. A compressive force toward (in the direction of arrow R1) acts on the side surface 25 of the superconductor 2. Therefore, it is advantageous to suppress the expansion acting on the superconductor 2 by capturing the magnetic field. As a result, generation of cracks in the superconductor 2 can be suppressed, and a higher magnetic field can be generated in the superconductor 2 with high reliability. In particular, as shown in FIG. 1, the tip end surface 41 that covers the magnetic field generation surface 21 side of the cooling attachment member 4 is thick and can exert a large compressive force. Therefore, in the magnetic field generation surface 21 that is likely to start a crack. Contributes to increasing the compression force.

加えて本実施例によれば、冷却取付部材4は超電導体2よりも冷却による熱収縮が大きい材料で形成されているため、超電導体2の超電導体2の臨界温度以下に冷却したとき、冷却時における冷却取付部材4と超電導体2との熱収縮量の差に基づいて、冷却取付部材4の側面固定部40は超電導体2の側面25を締めることができ、冷却取付部材4の側面固定部40により超電導体2の側面25を固定する度合を高めるのに有利となると共に、磁場を捕捉することにより超電導体2に働く膨張を抑えるのにも有利となる。   In addition, according to the present embodiment, since the cooling attachment member 4 is formed of a material that has a larger thermal contraction due to cooling than that of the superconductor 2, when the superconductor 2 is cooled below the critical temperature of the superconductor 2, the cooling attachment member 4 is cooled. Based on the difference in heat shrinkage between the cooling mounting member 4 and the superconductor 2 at the time, the side fixing part 40 of the cooling mounting member 4 can tighten the side surface 25 of the superconductor 2 and the side fixing of the cooling mounting member 4 It is advantageous to increase the degree of fixing the side surface 25 of the superconductor 2 by the portion 40, and also to suppress the expansion acting on the superconductor 2 by capturing the magnetic field.

本発明の実施例2に係る超電導磁場発生装置1を図2,図3に示す。本実施例は実施例1と基本的には同様の構成、作用効果を有する。共通する機能を奏する部位には共通の符号を付する。以下、相違する部分を中心として説明する。本実施例によれば、超電導体2の側面25、冷却取付部材4の拘束面43は中心軸芯Pに沿っている。図2に示すように、冷却取付部材4は、切れ目状の間隙40pを有するC形のリング状の側面固定部40と、側面固定部40の一端に径外方向に突出するように形成された舌状の第1取付片71と、側面固定部40の他端に径外方向に突出するように形成された舌状の第2取付片72と、第1取付片71の挿通孔に挿通された締結部材として機能する雄ねじ部材73と、雄ねじ部材73を螺合するように第2取付片72に形成された取付孔としての雌ねじ孔74とを有する。冷却取付部材4の側面固定部40の外壁面49にはこれの周方向に分散した突部49sが複数個形成されている。突部49sに取付部46が溶接等で連結されている。   A superconducting magnetic field generator 1 according to Embodiment 2 of the present invention is shown in FIGS. The present embodiment basically has the same configuration and operational effects as the first embodiment. Parts having common functions are denoted by common reference numerals. Hereinafter, the description will focus on the different parts. According to this embodiment, the side surface 25 of the superconductor 2 and the restraining surface 43 of the cooling mounting member 4 are along the central axis P. As shown in FIG. 2, the cooling attachment member 4 is formed so as to protrude radially outward at one end of the C-shaped ring-shaped side surface fixing portion 40 having a slit-like gap 40 p and the side surface fixing portion 40. The tongue-shaped first attachment piece 71, the tongue-shaped second attachment piece 72 formed so as to protrude radially outward from the other end of the side surface fixing portion 40, and the insertion hole of the first attachment piece 71 are inserted. A male screw member 73 that functions as a fastening member, and a female screw hole 74 as an attachment hole formed in the second attachment piece 72 so as to screw the male screw member 73 together. A plurality of protrusions 49s distributed in the circumferential direction are formed on the outer wall surface 49 of the side surface fixing portion 40 of the cooling attachment member 4. A mounting portion 46 is connected to the protrusion 49s by welding or the like.

雄ねじ部材73を雌ねじ孔74にねじ込むことにより、冷却取付部材4の側面固定部40はこれの径内方向(矢印R1方向)に収縮するため、冷却取付部材4の側面固定部40の拘束面43により超電導体2の側面25は締められ、超電導体2は固定される。なお、超電導体2の側面25、冷却取付部材4の内周面である拘束面43は、超電導体2の中心軸芯Pに沿っている。   By screwing the male screw member 73 into the female screw hole 74, the side surface fixing portion 40 of the cooling mounting member 4 contracts in the radially inward direction (arrow R1 direction). Thus, the side surface 25 of the superconductor 2 is tightened, and the superconductor 2 is fixed. The side surface 25 of the superconductor 2 and the constraining surface 43 that is the inner peripheral surface of the cooling attachment member 4 are along the central axis P of the superconductor 2.

冷却取付部材4は、冷却取付部材4を冷却装置3の冷却部33の側に向けて矢印Y1方向に引っ張って固定する固定機構45を有する。固定機構45は、冷却取付部材4に一体的に設けられたボルト部材で形成された取付部46と、冷却取付部材4に対して別体をなすナット部材47とで形成されている。取付部46は冷却取付部材4の突部49sに溶接等で連結されている。   The cooling attachment member 4 includes a fixing mechanism 45 that pulls and fixes the cooling attachment member 4 toward the cooling unit 33 of the cooling device 3 in the arrow Y1 direction. The fixing mechanism 45 is formed by a mounting portion 46 formed of a bolt member provided integrally with the cooling mounting member 4 and a nut member 47 that is a separate body from the cooling mounting member 4. The mounting portion 46 is connected to the protrusion 49s of the cooling mounting member 4 by welding or the like.

本実施例によれば、超電導体2の側面25と冷却取付部材4の側面固定部40との間には、全周域にわたり、インジウム等の軟質な熱伝導性が高い熱接触部材29Bが配置されている。このため図2に示す締結用の雄ねじ部材73を冷却取付部材4の雌ねじ孔74に締結したとき、超電導体2と冷却取付部材4との間における熱接触性の向上が図られている他に、機械的な締め付けによる超電導体2の破損防止を図ることができる。   According to this embodiment, between the side surface 25 of the superconductor 2 and the side surface fixing portion 40 of the cooling mounting member 4, the thermal contact member 29B having a soft and high thermal conductivity such as indium is disposed over the entire circumference. Has been. For this reason, when the male screw member 73 for fastening shown in FIG. 2 is fastened to the female screw hole 74 of the cooling attachment member 4, the thermal contact between the superconductor 2 and the cooling attachment member 4 is improved. Further, it is possible to prevent the superconductor 2 from being damaged by mechanical tightening.

本実施例によれば、雄ねじ部材73の締結力を調整すれば、超電導体2をこれの側面25から固定する力を調整することができる。また、取付部46は、超電導体2の裏面23を冷却部33の冷却面34に密着させて固定する力を発生させる。取付部46と雄ねじ部材73とは互いに独立しているため、雄ねじ部材73を用いて超電導体2をこれの側面25から固定する力と、取付部46を用いて超電導体2の裏面23を冷却部33の冷却面34に密着させて固定する力とを独立して制御することができる。   According to the present embodiment, if the fastening force of the male screw member 73 is adjusted, the force for fixing the superconductor 2 from the side surface 25 can be adjusted. In addition, the attachment portion 46 generates a force for fixing the back surface 23 of the superconductor 2 in close contact with the cooling surface 34 of the cooling portion 33. Since the mounting portion 46 and the male screw member 73 are independent of each other, the force for fixing the superconductor 2 from the side surface 25 using the male screw member 73 and the back surface 23 of the superconductor 2 are cooled using the mounting portion 46. It is possible to independently control the force to be brought into close contact with the cooling surface 34 of the portion 33 and fix.

本実施例においても、冷却取付部材4は超電導体2の磁場発生面21よりも前方(矢印Y2方向)に突き出ていない。このため、超電導体2の磁場発生面21と断熱容器5の先端部52との間に形成されている真空に維持される隙間53をできるだけ狭くすることができ、断熱容器5の外部に出る磁場を強くすることができる。   Also in the present embodiment, the cooling attachment member 4 does not protrude forward (in the direction of the arrow Y2) from the magnetic field generation surface 21 of the superconductor 2. For this reason, the clearance gap 53 maintained between the magnetic field generating surface 21 of the superconductor 2 and the front-end | tip part 52 of the heat insulation container 5 maintained by the vacuum can be made as narrow as possible, and the magnetic field which comes out of the heat insulation container 5 is shown. Can be strengthened.

本発明の実施例3に係る超電導磁場発生装置1を図4に示す。本実施例は実施例1と基本的には同様の構成、作用効果を有する。共通する機能を奏する部位には共通の符号を付する。以下、相違する部分を中心として説明する。超電導体2よりも熱収縮率の大きな材料で形成されたリング形状の冷却取付部材4が設けられている。冷却取付部材4は超電導体2の側面25の外側に嵌められている。冷却取付部材4の内周面である拘束面43と超電導体2の側面25との間には、熱伝導性の良い熱接触部材29Bが配置されている。冷却取付部材4及び超電導体2は、それらの境界に熱接触部材29Bを介在させた状態で一体化されている。即ち、冷却取付部材4は、セラミックス製の超電導体2を外側から補強する補強部材として超電導体2と一体化され、単一部品として取り扱うことができる。なお、超電導体2の側面25、冷却取付部材4の拘束面43は、超電導体2の中心軸芯Pに沿っている。   FIG. 4 shows a superconducting magnetic field generator 1 according to Embodiment 3 of the present invention. The present embodiment basically has the same configuration and operational effects as the first embodiment. Parts having common functions are denoted by common reference numerals. Hereinafter, the description will focus on the different parts. A ring-shaped cooling attachment member 4 made of a material having a thermal contraction rate larger than that of the superconductor 2 is provided. The cooling attachment member 4 is fitted to the outside of the side surface 25 of the superconductor 2. A thermal contact member 29 </ b> B having good thermal conductivity is disposed between the restraining surface 43 that is the inner peripheral surface of the cooling attachment member 4 and the side surface 25 of the superconductor 2. The cooling attachment member 4 and the superconductor 2 are integrated with a thermal contact member 29 </ b> B interposed therebetween. That is, the cooling attachment member 4 is integrated with the superconductor 2 as a reinforcing member for reinforcing the ceramic superconductor 2 from the outside, and can be handled as a single component. The side surface 25 of the superconductor 2 and the constraining surface 43 of the cooling attachment member 4 are along the central axis P of the superconductor 2.

冷却取付部材4は、超電導体2よりも冷却による熱収縮が大きい材料(例えばステンレス鋼)で形成されている。冷却取付部材4は、冷却取付部材4を冷却装置3の冷却部33の側に向けて矢印Y1方向に引っ張って固定する固定機構45を有する。固定機構45は、冷却取付部材4のうち冷却部33に対向する対向面42に形成され冷却取付部材4の周方向に間隔を隔てて形成された取付孔としての雌ねじ孔77と、雌ねじ孔77に螺合される雄ねじ部をもつボルト部材で形成された頭部46aをもつ取付部46とで形成されている。取付部46は冷却取付部材4と分離可能とされている。超電導体2を冷却部33に保持するときには、冷却取付部材4の雌ねじ孔77に取付部46の雄ねじ部をワッシャ部材48を介して螺合し、取付部46の頭部46aを回して取付部46の雄ねじ部を雌ねじ孔77に着脱可能に締結する。   The cooling attachment member 4 is formed of a material (for example, stainless steel) that has a larger thermal contraction due to cooling than the superconductor 2. The cooling attachment member 4 includes a fixing mechanism 45 that pulls and fixes the cooling attachment member 4 toward the cooling unit 33 of the cooling device 3 in the arrow Y1 direction. The fixing mechanism 45 includes a female screw hole 77 as a mounting hole formed on the opposing surface 42 of the cooling mounting member 4 that faces the cooling portion 33 and spaced in the circumferential direction of the cooling mounting member 4, and a female screw hole 77. And a mounting portion 46 having a head portion 46a formed of a bolt member having a male screw portion to be screwed together. The mounting portion 46 is separable from the cooling mounting member 4. When the superconductor 2 is held by the cooling portion 33, the male screw portion of the attachment portion 46 is screwed into the female screw hole 77 of the cooling attachment member 4 via the washer member 48, and the head portion 46 a of the attachment portion 46 is turned to attach the attachment portion. 46 male screw portions are detachably fastened to the female screw hole 77.

この状態で、冷却装置3の冷却部33により超電導体2及び冷却取付部材4を低温に冷却すれば、冷却取付部材4はこれの径内方向(矢印R1方向)に熱収縮するため、冷却取付部材4と超電導体2との熱収縮量の差に基づいて、冷却取付部材4の側面固定部40の拘束面43により超電導体2の側面25を拘束して固定することができる。このように冷却取付部材4を冷却すると、冷却取付部材4から超電導体2側に向かって径内方向(矢印R1方向)に向かう圧縮力が超電導体2の側面25に作用する。故に、磁場を捕捉することにより超電導体2に働く膨張力をキャンセルするのに有利となり、より超電導体2においてより高い磁場を信頼性良く発生することができる。   In this state, if the superconductor 2 and the cooling mounting member 4 are cooled to a low temperature by the cooling unit 33 of the cooling device 3, the cooling mounting member 4 is thermally contracted in the radial direction (arrow R1 direction). Based on the difference in thermal shrinkage between the member 4 and the superconductor 2, the side surface 25 of the superconductor 2 can be restrained and fixed by the restraining surface 43 of the side surface fixing portion 40 of the cooling attachment member 4. When the cooling attachment member 4 is cooled in this way, a compressive force directed from the cooling attachment member 4 toward the superconductor 2 in the radially inward direction (arrow R1 direction) acts on the side surface 25 of the superconductor 2. Therefore, it becomes advantageous to cancel the expansion force acting on the superconductor 2 by capturing the magnetic field, and a higher magnetic field can be generated more reliably in the superconductor 2.

なお、取付部46及び冷却取付部材4の熱収縮率を近づける等のため、取付部46の材質は冷却取付部材4の材質と同一または同系とすることができるが、これに限定されるものではない。   Note that the material of the mounting portion 46 can be the same as or similar to the material of the cooling mounting member 4 in order to make the thermal contraction rate of the mounting portion 46 and the cooling mounting member 4 close to each other. Absent.

上記したように超電導体2を冷却取付部材4により固定した状態では、図4に示すように、取付部46、更には取付部46の頭部46aの内端46iは、超電導体2の径方向(矢印R方向)において、冷却取付部材4の外壁面49よりも径内側に位置しており、磁極の径サイズの小型化が図られ、ひいては断熱容器5の筒壁部51の径の小型化が図られている。   In the state where the superconductor 2 is fixed by the cooling mounting member 4 as described above, as shown in FIG. 4, the inner end 46 i of the head portion 46 a of the mounting portion 46 is further in the radial direction of the superconductor 2. In the (arrow R direction), the cooling mounting member 4 is located on the inner side of the outer wall surface 49, and the magnetic pole diameter size can be reduced. As a result, the diameter of the cylindrical wall portion 51 of the heat insulating container 5 can be reduced. Is planned.

本実施例においても、取付部46の頭部46aを回せば、冷却部33側から冷却取付部材4を矢印Y1方向に引張って付勢することができ、これにより熱接触部材29を介しての冷却部33の冷却面34と冷却取付部材4との密着力を高めることができる。同様に、熱接触部材29を介しての冷却部33の冷却面34と超電導体2の裏面23との密着力を高めることができる。   Also in the present embodiment, if the head portion 46a of the attachment portion 46 is turned, the cooling attachment member 4 can be pulled and urged from the cooling portion 33 side in the direction of the arrow Y1, whereby the heat contact member 29 can be urged. The adhesion between the cooling surface 34 of the cooling unit 33 and the cooling attachment member 4 can be increased. Similarly, the adhesion between the cooling surface 34 of the cooling unit 33 and the back surface 23 of the superconductor 2 through the thermal contact member 29 can be increased.

また、冷却取付部材4は、セラミックス製の超電導体2を外側から補強する補強部材として超電導体2と一体になっている。このため超電導体2の取扱いが楽になり、超電導体2の冷却部33への取付も簡単である。更に冷却取付部材4はリング形状であり、その形状が単純なので、製造コストが安くすみ、費用対策効果が大きい利点が得られる。   The cooling attachment member 4 is integrated with the superconductor 2 as a reinforcing member that reinforces the ceramic superconductor 2 from the outside. For this reason, handling of the superconductor 2 becomes easy, and attachment of the superconductor 2 to the cooling part 33 is also easy. Further, the cooling mounting member 4 has a ring shape, and since the shape thereof is simple, the manufacturing cost can be reduced and the advantage of a large cost countermeasure effect can be obtained.

本実施例においても、図4に示すように、冷却取付部材4は、超電導体2の先端面である磁場発生面21を覆う部分を有していない。即ち、冷却取付部材4は、超電導体2の磁場発生面21よりも前方(矢印Y2方向)に突き出ていない。このため、超電導体2の磁場発生面21と断熱容器5の先端部52との隙間53をできるだけ狭くすることができ、断熱容器5の外部に出る磁場を強くすることができる。   Also in the present embodiment, as shown in FIG. 4, the cooling attachment member 4 does not have a portion that covers the magnetic field generation surface 21 that is the tip surface of the superconductor 2. That is, the cooling attachment member 4 does not protrude forward (in the direction of the arrow Y2) from the magnetic field generation surface 21 of the superconductor 2. For this reason, the gap 53 between the magnetic field generating surface 21 of the superconductor 2 and the distal end portion 52 of the heat insulating container 5 can be made as narrow as possible, and the magnetic field emitted to the outside of the heat insulating container 5 can be strengthened.

さて、磁場をかなり強くする等のような使用条件が厳しいとき、超電導体2の磁場発生面21において亀裂が生成することが間々ある。この点本実施例によれば、図4に示すように、冷却取付部材4に形成されている取付孔として機能する雌ねじ孔77は、冷却取付部材4の対向面42に開口しているものの、冷却取付部材4の先端面41には到達していない未貫通孔である。このため冷却取付部材4を冷却した際、熱収縮に基づいて冷却取付部材4が超電導体2を締める圧縮力を発揮するとき、冷却取付部材4の先端面41付近の圧縮力を確保するのに有利である。このため超電導体2のうち亀裂の起点となり易い磁場発生面21における亀裂を抑制するのに有利である。   When the use conditions such as making the magnetic field considerably strong are severe, cracks are often generated on the magnetic field generating surface 21 of the superconductor 2. In this regard, according to the present embodiment, as shown in FIG. 4, the female screw hole 77 that functions as a mounting hole formed in the cooling mounting member 4 is open to the facing surface 42 of the cooling mounting member 4. This is a non-through hole that does not reach the front end surface 41 of the cooling mounting member 4. For this reason, when the cooling mounting member 4 is cooled, when the cooling mounting member 4 exerts a compressive force for tightening the superconductor 2 based on thermal contraction, a compressive force in the vicinity of the front end surface 41 of the cooling mounting member 4 is secured. It is advantageous. For this reason, it is advantageous in suppressing cracks in the magnetic field generating surface 21 that tends to be the starting point of cracks in the superconductor 2.

また、雌ねじ孔77は冷却取付部材4の対向面42において開口しているものの、空洞状の雌ねじ孔77には取付部46が進入して装填されている。故に、冷却取付部材4を冷却した際、熱収縮に基づいて冷却取付部材4の側面固定部40が超電導体2を径内方向へ締める圧縮力を発揮するとき、冷却取付部材4の対向面42付近における当該圧縮力を確保するのにも有利である。故に超電導体2の側面25に作用する当該圧縮力を超電導体2の軸長方向にわたりできるだけ均一に作用させるのに貢献でき、超電導体2の耐久性の向上に有利である。   Further, although the female screw hole 77 opens at the facing surface 42 of the cooling mounting member 4, the mounting portion 46 enters and is loaded into the hollow female screw hole 77. Therefore, when the cooling mounting member 4 is cooled, when the side surface fixing portion 40 of the cooling mounting member 4 exerts a compressive force that tightens the superconductor 2 inward in the radial direction based on the thermal contraction, the opposing surface 42 of the cooling mounting member 4. It is also advantageous to secure the compression force in the vicinity. Therefore, the compressive force acting on the side surface 25 of the superconductor 2 can contribute to making it act as uniformly as possible in the axial length direction of the superconductor 2, which is advantageous for improving the durability of the superconductor 2.

本発明の実施例4に係る超電導磁場発生装置1の要部を図5に示す。本実施例は実施例3と基本的には同様の構成、作用効果を有する。共通する機能を奏する部位には共通の符号を付する。以下、実施例3と相違する部分を中心として説明する。冷却取付部材4は、冷却取付部材4を冷却装置3の冷却部33の側に向けて矢印Y1方向に引っ張って固定する固定機構45を有する。固定機構45は、冷却取付部材4のうち冷却部33に対向する対向面42に形成され冷却取付部材4の周方向に間隔を隔てて形成された雌ねじ孔77と、雌ねじ孔77に螺合される雄ねじ部をもつボルト部材で形成された取付部46とで形成されている。   The principal part of the superconducting magnetic field generator 1 according to Embodiment 4 of the present invention is shown in FIG. The present embodiment basically has the same configuration and effect as the third embodiment. Parts having common functions are denoted by common reference numerals. Hereinafter, a description will be given centering on portions different from the third embodiment. The cooling attachment member 4 includes a fixing mechanism 45 that pulls and fixes the cooling attachment member 4 toward the cooling unit 33 of the cooling device 3 in the arrow Y1 direction. The fixing mechanism 45 is screwed into the female screw hole 77 and a female screw hole 77 formed on the opposing surface 42 of the cooling mounting member 4 facing the cooling portion 33 and spaced in the circumferential direction of the cooling mounting member 4. And a mounting portion 46 formed of a bolt member having a male screw portion.

本実施例によれば、雌ねじ孔77は、冷却取付部材4の対向面42から先端面41に向けて貫通しており、先端面41において開口77mをもつ。このため断熱容器5の真空断熱室50を図略の真空排気装置により排気させるとき、冷却取付部材4の雌ねじ孔77と取付部46との境界域に空気が残留したとしても、その空気を排出させるのに有利である。ひいては断熱容器5の真空断熱室50の真空度、真空断熱性を高く維持するのに有利である。   According to the present embodiment, the female screw hole 77 penetrates from the facing surface 42 of the cooling attachment member 4 toward the distal end surface 41, and has an opening 77 m in the distal end surface 41. Therefore, when the vacuum heat insulating chamber 50 of the heat insulating container 5 is exhausted by a vacuum exhaust device (not shown), even if air remains in the boundary area between the female screw hole 77 and the mounting portion 46 of the cooling mounting member 4, the air is discharged. It is advantageous to make it. As a result, it is advantageous for maintaining the degree of vacuum and the vacuum heat insulating property of the vacuum heat insulating chamber 50 of the heat insulating container 5 high.

更に図5に示すように、取付部46の先端46uは雌ねじ孔77の開口77mまで到達している。即ち、取付孔としての空洞状の雌ねじ孔77の長さ方向の全域にわたり取付部46が進入して装填されている。故に冷却取付部材4を冷却した際、熱収縮に基づいて冷却取付部材4の側面固定部40が超電導体2を径内方向へ締める圧縮力を発揮するとき、当該圧縮力を超電導体2の軸長方向にわたりできるだけ均一に作用させるのに貢献でき、超電導体2の耐久性の向上に有利である。   Further, as shown in FIG. 5, the tip 46 u of the attachment portion 46 reaches the opening 77 m of the female screw hole 77. That is, the mounting portion 46 enters and is loaded throughout the entire length direction of the hollow female screw hole 77 as the mounting hole. Therefore, when the cooling mounting member 4 is cooled, when the side surface fixing portion 40 of the cooling mounting member 4 exerts a compressive force that tightens the superconductor 2 inwardly based on the thermal contraction, the compressive force is applied to the axis of the superconductor 2. It is possible to contribute to making it work as uniformly as possible in the long direction, which is advantageous for improving the durability of the superconductor 2.

本発明の実施例5に係る超電導磁場発生装置1の要部を図6,図7に示す。本実施例は実施例1と基本的には同様の構成、作用効果を有する。以下、実施例1と相違する部分を中心として説明する。共通する機能を奏する部位には共通の符号を付する。冷却取付部材4は、冷却部33に向けてのびるコールドヘッド延長部を兼ねる延長部4eと、延長部4eの先端(上端)に一体的に成形されたリング形状をなす側面固定部40と、延長部4eの他端に一体的に形成された鍔状の固定部4fとで形成されている。冷却取付部材4の側面固定部40の外径は、延長部4eの外径よりも大きくされている。冷却取付部材4の固定部4fは固定具4hにより冷却部33に固定されている。冷却取付部材4は超電導体2よりも熱収縮率の大きな材料で形成されており、超電導体2に対応する形状の保持穴80を有する。保持穴80は断熱容器5の先端部52に向けて開口し、底壁面80bと円形状の内壁面80fとを有する。   The principal part of the superconducting magnetic field generator 1 according to Embodiment 5 of the present invention is shown in FIGS. The present embodiment basically has the same configuration and operational effects as the first embodiment. Hereinafter, a description will be given centering on portions different from the first embodiment. Parts having common functions are denoted by common reference numerals. The cooling attachment member 4 includes an extension portion 4e that also serves as a cold head extension portion that extends toward the cooling portion 33, a side surface fixing portion 40 that forms a ring shape that is integrally formed at the tip (upper end) of the extension portion 4e, and an extension. It is formed with a hook-shaped fixing portion 4f formed integrally with the other end of the portion 4e. The outer diameter of the side surface fixing portion 40 of the cooling attachment member 4 is larger than the outer diameter of the extension portion 4e. The fixing part 4f of the cooling attachment member 4 is fixed to the cooling part 33 by a fixing tool 4h. The cooling attachment member 4 is made of a material having a larger thermal contraction rate than the superconductor 2 and has a holding hole 80 having a shape corresponding to the superconductor 2. The holding hole 80 opens toward the tip 52 of the heat insulating container 5 and has a bottom wall surface 80b and a circular inner wall surface 80f.

超電導体2の取付時には、超電導体2を冷却取付部材4の側面固定部40の保持穴80に嵌合する。この場合、超電導体2の嵌合性を考慮すると、保持穴80の内壁面80fと超電導体2の側面25との間には微小な隙間80kが形成されている方が好ましい。取付時には、保持穴80に超電導体2を嵌合した状態で、冷却装置3により冷却取付部材4及び超電導体2を冷却すると、冷却取付部材4の側面固定部40が径内方向(矢印R1方向)に収縮し、側面固定部40の拘束面43により超電導体2をこれの側面25から固定することができる。なお、超電導体2は中心線M1,M2の交点に中心軸芯Pをもつ。   When the superconductor 2 is attached, the superconductor 2 is fitted into the holding hole 80 of the side surface fixing portion 40 of the cooling attachment member 4. In this case, in consideration of the fitting property of the superconductor 2, it is preferable that a minute gap 80 k is formed between the inner wall surface 80 f of the holding hole 80 and the side surface 25 of the superconductor 2. At the time of mounting, when the cooling mounting member 4 and the superconductor 2 are cooled by the cooling device 3 with the superconductor 2 fitted in the holding hole 80, the side surface fixing portion 40 of the cooling mounting member 4 is in the radial direction (the direction of the arrow R1). And the superconductor 2 can be fixed from the side surface 25 by the restraining surface 43 of the side surface fixing portion 40. The superconductor 2 has a center axis P at the intersection of the center lines M1 and M2.

超電導体2を冷却取付部材4から取り外すときには、冷却取付部材4を常温域等に昇温させれば、冷却取付部材4の側面固定部40が径外方向(矢印R2方向)に膨張する。金属製の冷却取付部材4の熱膨張量はセラミックス製の超電導体2の熱膨張量よりも大きいため、超電導体2を冷却取付部材4の側面固定部40から取り外すことができる。   When the superconductor 2 is removed from the cooling attachment member 4, if the cooling attachment member 4 is heated to a normal temperature region or the like, the side surface fixing portion 40 of the cooling attachment member 4 expands in the radially outward direction (arrow R2 direction). Since the thermal expansion amount of the metal cooling attachment member 4 is larger than the thermal expansion amount of the ceramic superconductor 2, the superconductor 2 can be removed from the side surface fixing portion 40 of the cooling attachment member 4.

更に図7に示すように、冷却取付部材4の保持孔80の内部と外部とを連通させる連通孔81が冷却取付部材4に形成されているため、保持孔80の内外の連通性が確保され、冷却取付部材4の保持孔80から冷却取付部材4を取り外す操作が容易となる。また、冷却取付部材4の保持孔80に超電導体2を嵌合するとき、保持孔80内に残留する空気を連通孔81を介して保持孔80の外に排出でき、断熱容器5の真空断熱室50の真空度、真空断熱性を高く維持するのに有利である。また連通孔81の内径を所要量とすれば、針状等の治具を保持孔80の外部から連通孔81に挿入し、保持孔80内の超電導体2の裏面23を治具により押圧すれば、超電導体2の取り外し作業を一層容易化することができる。   Furthermore, as shown in FIG. 7, since the cooling attachment member 4 is formed with a communication hole 81 that allows the inside and outside of the holding hole 80 of the cooling attachment member 4 to communicate with each other, the inside / outside communication of the holding hole 80 is ensured. The operation of removing the cooling attachment member 4 from the holding hole 80 of the cooling attachment member 4 becomes easy. Further, when the superconductor 2 is fitted into the holding hole 80 of the cooling attachment member 4, the air remaining in the holding hole 80 can be discharged out of the holding hole 80 through the communication hole 81, and the vacuum insulation of the heat insulating container 5 is achieved. This is advantageous for maintaining the degree of vacuum and the vacuum heat insulation of the chamber 50 high. If the inner diameter of the communication hole 81 is a required amount, a needle-like jig is inserted into the communication hole 81 from the outside of the holding hole 80, and the back surface 23 of the superconductor 2 in the holding hole 80 is pressed by the jig. In this case, the work of removing the superconductor 2 can be further facilitated.

本実施例においても、図7に示すように、冷却取付部材4は、超電導体2の磁場発生面21を覆う部分を有していない。即ち、冷却取付部材4は、超電導体2の磁場発生面21よりも前方(矢印Y2方向)に突き出ていない。このため、超電導体2の磁場発生面21と断熱容器5の先端部52との隙間53をできるだけ狭くすることができ、断熱容器5の外部に出る磁場を強くすることができる。   Also in the present embodiment, as shown in FIG. 7, the cooling attachment member 4 does not have a portion that covers the magnetic field generation surface 21 of the superconductor 2. That is, the cooling attachment member 4 does not protrude forward (in the direction of the arrow Y2) from the magnetic field generation surface 21 of the superconductor 2. For this reason, the gap 53 between the magnetic field generating surface 21 of the superconductor 2 and the distal end portion 52 of the heat insulating container 5 can be made as narrow as possible, and the magnetic field emitted to the outside of the heat insulating container 5 can be strengthened.

本発明の実施例6に係る超電導磁場発生装置1の要部を図8〜図10に示す。本実施例は実施例1と基本的には同様の構成、作用効果を有する。共通する機能を奏する部位には共通の符号を付する。以下、実施例1と相違する部分を中心として説明する。本実施例によれば、断熱容器5の中心軸芯PAを通る断面において、超電導体2の磁場発生面21は断熱容器5の中心軸芯PAと交差する方向(例えば直交する方向)に指向している。即ち図8に示すように、超電導体2の中心軸芯Pと断熱容器5の中心軸芯PAとは交差している。   The principal part of the superconducting magnetic field generator 1 according to Embodiment 6 of the present invention is shown in FIGS. The present embodiment basically has the same configuration and operational effects as the first embodiment. Parts having common functions are denoted by common reference numerals. Hereinafter, a description will be given centering on portions different from the first embodiment. According to the present embodiment, in the cross section passing through the central axis PA of the heat insulating container 5, the magnetic field generating surface 21 of the superconductor 2 is directed in a direction intersecting with the central axis PA of the heat insulating container 5 (for example, an orthogonal direction). ing. That is, as shown in FIG. 8, the central axis P of the superconductor 2 and the central axis PA of the heat insulating container 5 intersect each other.

冷却取付部材4は、冷却部33に向けてのびるコールドヘッド延長部を兼ねる延長部4eと、延長部4eの一端(上端)に一体的に成形されたリング形状をなす側面固定部40と、延長部4eの他端(下端)に一体的に成形された鍔形状をなす固定部4fとで形成されている。図9に示すように側面固定部40は二股状をなしており、周方向の一部に間隙40pを形成する第1片部40aと第2片部40bとを有する。第1片部40aの拘束面43、第2片部40bの拘束面43はそれぞれ半円形状をなしている。第1片部40aの挿通孔40cに挿通したボルト部材である取付部46を、第2片部40bの雌ねじ孔40dにねじ込み、間隙40pを縮めて第1片部40a及び第2片部40bを互いに接近させることにより、円柱状の超電導体2をこれの側面25から固定している。図8に示すように、超電導体2はこれの側面25のみで固定されており、冷却取付部材4の表面は超電導体2の磁場発生面21よりも外側に突き出していない。   The cooling attachment member 4 includes an extension portion 4e that also serves as a cold head extension portion that extends toward the cooling portion 33, a side surface fixing portion 40 that forms a ring shape integrally formed with one end (upper end) of the extension portion 4e, and an extension. It is formed with a fixing portion 4f having a hook shape formed integrally with the other end (lower end) of the portion 4e. As shown in FIG. 9, the side surface fixing part 40 has a bifurcated shape, and has a first piece part 40a and a second piece part 40b that form a gap 40p in a part in the circumferential direction. The constraining surface 43 of the first piece 40a and the constraining surface 43 of the second piece 40b each have a semicircular shape. The mounting portion 46, which is a bolt member inserted through the insertion hole 40c of the first piece portion 40a, is screwed into the female screw hole 40d of the second piece portion 40b, and the gap 40p is shortened to connect the first piece portion 40a and the second piece portion 40b. By bringing them close to each other, the cylindrical superconductor 2 is fixed from the side surface 25 thereof. As shown in FIG. 8, the superconductor 2 is fixed only by the side surface 25 thereof, and the surface of the cooling mounting member 4 does not protrude outward from the magnetic field generating surface 21 of the superconductor 2.

図8に示すように、断熱容器5は、相対的に径が大きい筒形状の第1筒壁部51aと、先端部52をもち相対的にサイズが小さい第2筒壁部51bとを有する。本実施例によれば、超電導体2の磁場発生面21は、断熱容器5の中心軸芯PAと交差する方向(例えば直交する方向)に指向しているため、断熱容器5の第2筒壁部51bの両側に強磁場を発生させることができる。図8に示すように、第2筒壁部51bは偏平筒形状をなしており、超電導体2の磁場発生面21に対面する壁51sと、超電導体2の裏面23に対面する壁51tとを有する。   As shown in FIG. 8, the heat insulating container 5 includes a cylindrical first cylindrical wall portion 51 a having a relatively large diameter and a second cylindrical wall portion 51 b having a distal end portion 52 and a relatively small size. According to the present embodiment, the magnetic field generating surface 21 of the superconductor 2 is oriented in a direction intersecting with the central axis PA of the heat insulating container 5 (for example, a direction orthogonal thereto). A strong magnetic field can be generated on both sides of the portion 51b. As shown in FIG. 8, the second cylindrical wall portion 51 b has a flat cylindrical shape, and includes a wall 51 s facing the magnetic field generating surface 21 of the superconductor 2 and a wall 51 t facing the back surface 23 of the superconductor 2. Have.

上記した実施例では、図9に示すように第1片部40aの根元部と第1片部40bの根元部とは一体化されているが、図11に示す他の形態のように、第1片部40a及び第2片部40bを互いに別体とし、分離可能構造としても良い。この場合、図11に示すように、第1片部40aの挿通孔40cに挿通したボルト部材である取付部46を第2片部40bの雌ねじ孔40dにねじ込み、且つ、第1片部40aの挿通孔40mに挿通したボルト部材である別の取付部46Bを第2片部40bの雌ねじ孔40nにねじ込む。これにより第1片部40a及び第2片部40bを互いに接近させ、超電導体2をこれの側面25から固定している。この状態では、超電導体2の磁場発生面21及び裏面23の双方は真空断熱室50に対面する。   In the embodiment described above, the root portion of the first piece portion 40a and the root portion of the first piece portion 40b are integrated as shown in FIG. 9, but as in the other embodiment shown in FIG. The one piece portion 40a and the second piece portion 40b may be separated from each other to have a separable structure. In this case, as shown in FIG. 11, the mounting portion 46, which is a bolt member inserted into the insertion hole 40c of the first piece 40a, is screwed into the female screw hole 40d of the second piece 40b, and the first piece 40a Another mounting portion 46B, which is a bolt member inserted through the insertion hole 40m, is screwed into the female screw hole 40n of the second piece 40b. Thus, the first piece portion 40a and the second piece portion 40b are brought close to each other, and the superconductor 2 is fixed from the side surface 25 thereof. In this state, both the magnetic field generating surface 21 and the back surface 23 of the superconductor 2 face the vacuum heat insulating chamber 50.

本発明の実施例7を図12に示す。本実施例はマグネトロンスパッタリング成膜装置に適用した例である。本実施例は実施例1と基本的には同様の構成、作用効果を有する。共通する機能を奏する部位には共通の符号を付する。以下、実施例1と相違する部分を中心として説明する。図12に示すように、スパッタリング成膜装置200は、基台202と、基台202の上側に設置され図略のポンプにより減圧状態に維持される成膜室203をもつ減圧チャンバ204と、磁場の作用でターゲット206の表面の近傍にプラズマ310を集中させるスパッタガンとなる超電導磁場発生装置1を具備する。減圧チャンバ204は、薄膜原料を含むターゲット206を保持するように成膜室203の下部に設けられたターゲットホルダ207と、成膜対象物208を保持するように成膜室203の上部に設けられた成膜対象物ホルダ209とを有する。ターゲット206の下方には挿入空間212が形成されている。   Embodiment 7 of the present invention is shown in FIG. This embodiment is an example applied to a magnetron sputtering film forming apparatus. The present embodiment basically has the same configuration and operational effects as the first embodiment. Parts having common functions are denoted by common reference numerals. Hereinafter, a description will be given centering on portions different from the first embodiment. As shown in FIG. 12, the sputtering film forming apparatus 200 includes a base 202, a decompression chamber 204 having a film forming chamber 203 installed on the upper side of the base 202 and maintained in a decompressed state by a pump (not shown), and a magnetic field. Thus, the superconducting magnetic field generator 1 serving as a sputter gun for concentrating the plasma 310 near the surface of the target 206 is provided. The decompression chamber 204 is provided at the upper part of the film forming chamber 203 so as to hold the target holder 207 provided at the lower part of the film forming chamber 203 so as to hold the target 206 containing the thin film raw material and the film forming object 208. A film formation object holder 209. An insertion space 212 is formed below the target 206.

超電導磁場発生装置1は、超電導遷移温度以下で磁場を補足することにより外部に磁場を発する超電導体2と、超電導体2を収容する真空断熱室50をもつ断熱容器5と、超電導体2を冷却する冷却部33をもつ冷却装置3と、超電導体2から発せられる磁場の分布形状を補正する強磁性体9とを有する。冷却装置3は断熱容器5の下部に設けられており、走行車輪か38xをもつ昇降部38が冷却装置3の下部に設けられている。昇降部38は、超電導体2を収容する断熱容器5を矢印Y1,Y2方向に昇降させるものであり、ジャッキで構成されている。   The superconducting magnetic field generator 1 cools the superconductor 2 with a superconductor 2 that generates a magnetic field outside by supplementing the magnetic field below the superconducting transition temperature, a heat insulating container 5 having a vacuum heat insulating chamber 50 that accommodates the superconductor 2. A cooling device 3 having a cooling unit 33 for performing the above operation, and a ferromagnetic body 9 for correcting the distribution shape of the magnetic field emitted from the superconductor 2. The cooling device 3 is provided in the lower part of the heat insulating container 5, and an elevating part 38 having a traveling wheel or 38 x is provided in the lower part of the cooling device 3. The raising / lowering part 38 raises / lowers the heat insulation container 5 which accommodates the superconductor 2 in the arrow Y1, Y2 direction, and is comprised with the jack.

図12に示すように、強磁性体9は、超電導体2の外周側に配置されたリングヨーク91と、超電導体2の裏面23側に配置されたバックヨーク92とで形成されている。リングヨーク91は減圧チャンバ204に保持されている。バックヨーク92は超電導磁場発生装置1において超電導体2の裏面23側に取り付けられている。リングヨーク91及びバックヨーク92の材料は、パーメンジュール(Fe−Co−V系)、電磁軟鉄(Fe)、珪素鋼板(Fe−Si系)、センダスト(Fe−Si−Al)等を例示できる。   As shown in FIG. 12, the ferromagnetic body 9 is formed by a ring yoke 91 disposed on the outer peripheral side of the superconductor 2 and a back yoke 92 disposed on the back surface 23 side of the superconductor 2. The ring yoke 91 is held in the decompression chamber 204. The back yoke 92 is attached to the back surface 23 side of the superconductor 2 in the superconducting magnetic field generator 1. Examples of the material of the ring yoke 91 and the back yoke 92 include permendur (Fe—Co—V system), electromagnetic soft iron (Fe), silicon steel sheet (Fe—Si system), sendust (Fe—Si—Al), and the like. .

図12に示すように、リングヨーク91の内周面と超電導体2の外周面との間には、断熱容器5の壁部分が存在するものの、着磁コイル等の他の部材が介在していない。このため、リングヨーク91の内周面をこれの径方向において超電導体2の外周面に接近させたり、あるいは、リングヨーク91の内周面をこれの径方向において超電導体2の外周面から離間させたりすることができ、超電導体2に対してリングヨーク91を配置する自由度を高めることができる。   As shown in FIG. 12, although the wall portion of the heat insulating container 5 exists between the inner peripheral surface of the ring yoke 91 and the outer peripheral surface of the superconductor 2, other members such as magnetized coils are interposed. Absent. For this reason, the inner peripheral surface of the ring yoke 91 is brought close to the outer peripheral surface of the superconductor 2 in the radial direction thereof, or the inner peripheral surface of the ring yoke 91 is separated from the outer peripheral surface of the superconductor 2 in the radial direction thereof. The degree of freedom of arranging the ring yoke 91 with respect to the superconductor 2 can be increased.

上記した超電導磁場発生装置1をスパッタリング成膜装置200に着脱可能に組み付けるときには、図12に示すように、超電導バルク磁石とされた超電導体2をもつ超電導磁場発生装置1を、減圧チャンバ204の挿入空間212の下方に配置する。次に昇降部38を上昇作動させて断熱容器5を超電導体2と共に矢印Y2方向に上昇させ、断熱容器5の先端部52を挿入空間212に挿入し、断熱容器5の先端部52をターゲットホルダ207に接近または接触させる。このようにすれば、超電導体2の磁場による磁気回路300が成膜室203のうちターゲット206の付近に形成される。   When the above-described superconducting magnetic field generator 1 is detachably assembled to the sputtering film forming apparatus 200, the superconducting magnetic field generator 1 having the superconductor 2 made of a superconducting bulk magnet is inserted into the decompression chamber 204 as shown in FIG. It is arranged below the space 212. Next, the elevating part 38 is moved up to raise the heat insulating container 5 together with the superconductor 2 in the direction of the arrow Y2, the distal end 52 of the heat insulating container 5 is inserted into the insertion space 212, and the front end 52 of the heat insulating container 5 is moved to the target holder. Approach or contact 207. In this way, the magnetic circuit 300 by the magnetic field of the superconductor 2 is formed in the vicinity of the target 206 in the film forming chamber 203.

成膜時には、先ず、図略の真空排気系により、成膜室203を不純物ガスが残留しないように高真空(例えば10-6Torr台)に排気する。次に、真空排気をしながら図略のガス導入ポートからスパッタガスを導入し、例えば数ミリTorrのスパッタガスの雰囲気にする。この状態で、ターゲット206と成膜対象物208との間に所定の電圧(例えば数KV)を印加する。この場合、一般的には、ターゲット206をマイナスとし、成膜対象物208をプラスとなるように電圧を印加させる。これにより成膜室203内においてプラズマ放電を発生させる。プラズマ310中の電子は磁場によって運動をしながら、スパッタガス分子(一般的にはアルゴンであるが、これに限定されるものではない)をイオン化する。このプラズマ状のスパッタガスイオンは、磁場の影響を受けて、ターゲット206の表面において集束されるため、加速されてターゲット206の表面に衝突する。これによりターゲット206の表面よりターゲット物質をスパッタさせて、成膜対象物208の表面に堆積させ、大きな成膜速度で薄膜を成膜対象物208に形成することができる。この場合、超電導体22の強磁場によりプラズマ310をターゲット206付近に集中させることができる利点が得られる。このため成膜室203において高真空での放電が可能となり、成膜速度の向上を図ることができ、薄膜中の不純物が低減し、薄膜の成膜品質の向上、生産性の向上を図ることができる。 At the time of film formation, first, the film formation chamber 203 is evacuated to a high vacuum (for example, 10 −6 Torr level) by an unillustrated vacuum exhaust system so that no impurity gas remains. Next, while evacuating, a sputtering gas is introduced from a gas introduction port (not shown) to make an atmosphere of a sputtering gas of, for example, several millitorr. In this state, a predetermined voltage (for example, several KV) is applied between the target 206 and the film formation target 208. In this case, generally, a voltage is applied so that the target 206 is negative and the film formation target 208 is positive. Thereby, plasma discharge is generated in the film forming chamber 203. Electrons in the plasma 310 move by a magnetic field and ionize sputter gas molecules (generally, but not limited to argon). Since the plasma-like sputter gas ions are focused on the surface of the target 206 under the influence of the magnetic field, they are accelerated and collide with the surface of the target 206. Thus, the target material is sputtered from the surface of the target 206 and deposited on the surface of the film formation target 208, and a thin film can be formed on the film formation target 208 at a high film formation rate. In this case, there is an advantage that the plasma 310 can be concentrated near the target 206 by the strong magnetic field of the superconductor 22. Therefore, high-vacuum discharge is possible in the film formation chamber 203, the film formation speed can be improved, impurities in the thin film are reduced, the film formation quality of the thin film is improved, and the productivity is improved. Can do.

図12に示すように、本実施例においても、冷却取付部材4は、超電導体2の磁場発生面21よりも前方(矢印Y2方向)に向けて実質的に突き出ていない。このため、超電導体2の磁場発生面21と断熱容器5の先端部52との隙間53をできるだけ狭くすることができ、断熱容器5の外部に出る磁場を強くすることができ、プラズマ状のスパッタガスイオンをターゲット206の表面付近に集束させるのに有利となる。なおターゲット206をマイナスとし、成膜対象物208をプラスとなるように電圧を印加させるとしているが、これに限らず、ターゲット206と成膜対象物208との間に交流電圧を印加することにしても良い。   As shown in FIG. 12, also in the present embodiment, the cooling attachment member 4 does not substantially protrude forward (in the direction of the arrow Y <b> 2) from the magnetic field generation surface 21 of the superconductor 2. For this reason, the gap 53 between the magnetic field generating surface 21 of the superconductor 2 and the tip 52 of the heat insulating container 5 can be made as small as possible, the magnetic field emitted to the outside of the heat insulating container 5 can be strengthened, and plasma-like sputtering is performed. It is advantageous to focus the gas ions near the surface of the target 206. Note that the voltage is applied so that the target 206 is negative and the film formation target 208 is positive. However, the present invention is not limited to this, and an AC voltage is applied between the target 206 and the film formation target 208. May be.

図13は、上記したスパッタリング成膜装置200に搭載されている超電導体2を一体化した冷却取付部材4を示す。図13に示すように、超電導体2の側面25と冷却取付部材4との隙間には、熱伝導性部材65(商品名:スタイキャスト)を充填し、超電導体2をこれの側面25から固定し、超電導体2及び冷却取付部材4は一体化されている。熱伝導性部材65は、熱伝導性が良いアルミナ等のセラミックスまたは金属の微小物を樹脂に混在させたものである。場合によっては熱伝導性部材65はインジウムで形成しても良い。   FIG. 13 shows a cooling attachment member 4 in which the superconductor 2 mounted on the sputtering film forming apparatus 200 is integrated. As shown in FIG. 13, the gap between the side surface 25 of the superconductor 2 and the cooling mounting member 4 is filled with a heat conductive member 65 (trade name: stycast), and the superconductor 2 is fixed from the side surface 25 thereof. The superconductor 2 and the cooling attachment member 4 are integrated. The heat conductive member 65 is made by mixing a ceramic or a fine metal such as alumina having a good heat conductivity in a resin. In some cases, the heat conductive member 65 may be formed of indium.

冷却時には、金属製の冷却取付部材4の熱収縮量はセラミックス製の超電導体2の熱収縮量よりも大きいため、冷却取付部材4が径内方向(矢印R1方向)に熱収縮すると、熱収縮に伴う圧縮力が超電導体2の側面25から作用する。冷却取付部材4には雌ねじ孔77が形成されている。雌ねじ孔77は、冷却取付部材4の側面固定部40の対向面42から先端面41にかけて貫通している。   At the time of cooling, the amount of heat shrinkage of the metal cooling attachment member 4 is larger than the amount of heat shrinkage of the ceramic superconductor 2, so that when the cooling attachment member 4 heat shrinks in the radial direction (arrow R1 direction), the heat shrinkage occurs. The compressive force accompanying the above acts from the side surface 25 of the superconductor 2. A female screw hole 77 is formed in the cooling attachment member 4. The female screw hole 77 penetrates from the facing surface 42 to the front end surface 41 of the side surface fixing portion 40 of the cooling attachment member 4.

本実施例によれば、図12に示すように、ボルト部材で形成された取付部46を冷却部33の挿通孔及びバックヨーク92の取付孔92mに挿通し、取付部46の雄ねじ部を冷却取付部材4の雌ねじ孔77に螺合することにより、冷却部33側から取付部46のねじ込み操作により冷却取付部材4を矢印Y1方向に引張って超電導体2と共に固定する構成になっている。   According to the present embodiment, as shown in FIG. 12, the mounting portion 46 formed of a bolt member is inserted into the insertion hole of the cooling portion 33 and the mounting hole 92m of the back yoke 92, and the male screw portion of the mounting portion 46 is cooled. By screwing into the female screw hole 77 of the mounting member 4, the cooling mounting member 4 is pulled in the direction of the arrow Y <b> 1 by the screwing operation of the mounting portion 46 from the cooling unit 33 side and fixed together with the superconductor 2.

このマグネトロンスパッタリング成膜装置は、磁場の作用でターゲット206の表面近傍にプラズマ310を集中させてスパッタリングを行い、薄膜を形成する装置である。磁場が強いほど、ターゲット206の近傍にプラズマが強く集中し、その結果、成膜速度の向上、高真空での成膜、成膜対象物に形成される薄膜のプラズマによるダメージの減少等のメリットが得られる。   This magnetron sputtering film forming apparatus is an apparatus that forms a thin film by performing sputtering by concentrating the plasma 310 near the surface of the target 206 by the action of a magnetic field. The stronger the magnetic field, the more concentrated the plasma in the vicinity of the target 206. As a result, the film deposition speed is improved, the film is formed at a high vacuum, and the damage of the thin film formed on the film formation object is reduced. Is obtained.

ターゲット206の表面近傍における磁力線の分布は図12に示すようであり、ターゲット206の表面にできるだけ強い磁場を出すことが、スパッタリング成膜装置としての性能向上につながる。そのため、ターゲット206の上にできるだけ多くの磁束が出るように、磁場を発する磁極やヨークはできるだけターゲット206に近付けて配置される。   The distribution of magnetic lines of force in the vicinity of the surface of the target 206 is as shown in FIG. 12, and applying as strong a magnetic field as possible to the surface of the target 206 leads to improved performance as a sputtering film forming apparatus. For this reason, the magnetic poles and yokes that generate the magnetic field are arranged as close to the target 206 as possible so that as much magnetic flux as possible is generated on the target 206.

図14に示す従来の超電導磁場発生装置1Xを用いたスパッタリング成膜装置の問題点は次のようである。リングヨーク91は断熱容器5の外方に配置されているため、ターゲット206を取付けるターゲットホルダ207の裏面に当たるまでリングヨーク91を近付けることができる。これに対して超電導体2は断熱容器5に収容されているため、断熱容器5の厚みと隙間53分だけターゲットホルダ207の裏面に近付けることができない。図14に示した従来の超電導磁場発生装置1によれば、超電導体2の磁場発生面21と断熱容器5と先端部52との隙間53が広いので、超電導体2から発生した磁場のうち、ターゲット206の表面に出ないで、リングヨーク91に吸収される割合が多くなる。よって超電導体2には大きな磁場が捕捉されているにもかかわらず、ターゲット206の表面の磁場としてはあまり強くならないという問題が生じる。故に、超電導体2に捕捉させた磁場をプラズマの集中に有効に利用できなかった。   Problems of the sputtering film forming apparatus using the conventional superconducting magnetic field generator 1X shown in FIG. 14 are as follows. Since the ring yoke 91 is disposed outside the heat insulating container 5, the ring yoke 91 can be brought close to the back surface of the target holder 207 to which the target 206 is attached. On the other hand, since the superconductor 2 is accommodated in the heat insulating container 5, it cannot approach the back surface of the target holder 207 by the thickness of the heat insulating container 5 and the gap 53. According to the conventional superconducting magnetic field generator 1 shown in FIG. 14, the gap 53 between the magnetic field generating surface 21 of the superconductor 2, the heat insulating container 5, and the tip 52 is wide, so that of the magnetic field generated from the superconductor 2, The ratio of being absorbed by the ring yoke 91 without increasing on the surface of the target 206 increases. Therefore, there is a problem that the magnetic field on the surface of the target 206 is not so strong although a large magnetic field is captured in the superconductor 2. Therefore, the magnetic field trapped by the superconductor 2 cannot be used effectively for plasma concentration.

この点本実施例によれば、前述したように超電導体2の磁場発生面21と断熱容器5の先端部52との隙間53を狭くすることができるので、ターゲット206の表面の磁場をより強くすることができる。即ち、超電導体2に捕捉させた磁場をプラズマ310の集中に有効に利用できるようになり、スパッタリング成膜装置の性能を向上させることができる。   In this respect, according to the present embodiment, as described above, the gap 53 between the magnetic field generating surface 21 of the superconductor 2 and the tip 52 of the heat insulating container 5 can be narrowed, so that the magnetic field on the surface of the target 206 is made stronger. can do. That is, the magnetic field captured by the superconductor 2 can be effectively used for the concentration of the plasma 310, and the performance of the sputtering film forming apparatus can be improved.

(確認実験)
直径60mmのSm系の超電導体2を用い、同じ条件で着磁して、図14に示す従来例に係る超電導磁場発生装置を搭載したスパッタリング成膜装置と、図12に示すスパッタリング成膜装置とについて、ターゲット206の表面の水平磁場強度を比較した。従来例では0.9T(テスラ)であったが、本実施例では1.0T(テスラ)に向上した。これにより超電導体2に捕捉させた磁場をプラズマの集中に有効に利用できるようになり、スパッタリング成膜装置の性能を向上させることができる。
(Confirmation experiment)
A sputtering film forming apparatus equipped with a superconducting magnetic field generator according to a conventional example shown in FIG. 14 using an Sm-based superconductor 2 having a diameter of 60 mm and magnetized under the same conditions, and a sputtering film forming apparatus shown in FIG. The horizontal magnetic field strength of the surface of the target 206 was compared. Although it was 0.9T (Tesla) in the conventional example, it improved to 1.0T (Tesla) in this example. As a result, the magnetic field captured by the superconductor 2 can be effectively used for plasma concentration, and the performance of the sputtering film forming apparatus can be improved.

(他の例)
上記した実施例1によれば、冷却取付部材4は超電導体2の磁場発生面21よりも前方(矢印Y2方向)に突き出ていないか、あるいは、実質的に突き出ていないが、冷却取付部材の先端面が超電導体の磁場発生面より前方に突き出ていないことは請求項2に相当するため、請求項1の発明としては、冷却取付部材4の側面固定部40が超電導体2の側面25に接触してこれを固定する限り、冷却取付部材4は超電導体2の磁場発生面21よりも前方(矢印Y2方向)に微小量であれば、突き出ていても良いものである。その他、本発明は上記し且つ図面に示した実施例のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施できるものである。
(Other examples)
According to the first embodiment described above, the cooling attachment member 4 does not protrude forward (in the direction of the arrow Y2) from the magnetic field generation surface 21 of the superconductor 2 or does not substantially protrude, but the cooling attachment member Since the fact that the front end surface does not protrude forward from the magnetic field generating surface of the superconductor corresponds to claim 2, the side fixing portion 40 of the cooling mounting member 4 is provided on the side surface 25 of the superconductor 2 as the invention of claim 1. As long as it contacts and fixes this, the cooling attachment member 4 may protrude from the magnetic field generating surface 21 of the superconductor 2 as long as it is a minute amount (in the direction of the arrow Y2). In addition, the present invention is not limited to the embodiments described above and shown in the drawings, and can be implemented with appropriate modifications within a range not departing from the gist.

本発明の超電導磁場発生装置は、スパッタリング成膜装置に限らず、磁気分離装置、磁場プレス機、核磁気共鳴装置、発電機、モータ等の強磁場利用装置にも利用することができる。   The superconducting magnetic field generator of the present invention is not limited to a sputtering film forming apparatus, but can also be used for a strong magnetic field utilization apparatus such as a magnetic separation apparatus, a magnetic field press machine, a nuclear magnetic resonance apparatus, a generator, and a motor.

実施例1に係り、超電導磁場発生装置を模式的に示す断面図である。1 is a cross-sectional view schematically showing a superconducting magnetic field generator according to Example 1. FIG. 実施例2に係り、超電導体を取り付けた状態の冷却取付部材を模式的に示す平面図である。It is a top view which shows typically the cooling attachment member of the state which concerns on Example 2 and attached the superconductor. 実施例2に係り、超電導磁場発生装置の断面図であり、図2の矢視W3−W3に沿う断面図である。FIG. 4 is a cross-sectional view of the superconducting magnetic field generation device according to the second embodiment and is a cross-sectional view taken along arrows W3-W3 in FIG. 実施例3に係り、超電導磁場発生装置を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing a superconducting magnetic field generator according to Example 3. 実施例4に係り、超電導磁場発生装置の要部を模式的に示す断面図である。It is sectional drawing which concerns on Example 4 and shows typically the principal part of a superconducting magnetic field generator. 実施例5に係り、超電導体を取り付けた状態の冷却取付部材の平面図である。It is a top view of the cooling attachment member in the state which concerns on Example 5 and attached the superconductor. 実施例5に係り、超電導磁場発生装置を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing a superconducting magnetic field generator according to Example 5. 実施例6に係り、超電導磁場発生装置を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing a superconducting magnetic field generator according to Example 6. 実施例6に係り、超電導磁場発生装置の要部の異なる方向の断面図である。It is sectional drawing of a different direction concerning the Example 6 in the principal part of a superconducting magnetic field generator. 実施例6に係り、図9の矢印W10方向から視認した超電導磁場発生装置の要部を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing the main part of a superconducting magnetic field generator viewed from the direction of arrow W10 in FIG. 9 according to Example 6. 実施例6の他の形態に係る超電導磁場発生装置の要部を模式的に示す断面図である。It is sectional drawing which shows typically the principal part of the superconducting magnetic field generator which concerns on the other form of Example 6. FIG. 実施例7に係り、超電導磁場発生装置を着脱可能にスパッタリング成膜装置に組み付けた状態を模式的に示す断面図である。It is sectional drawing which shows typically the state which concerns on Example 7 and was assembled | attached to the sputtering film-forming apparatus so that attachment or detachment of the superconducting magnetic field generator was possible. 超電導体を取り付けた状態の冷却取付部材の斜視図である。It is a perspective view of the cooling attachment member of the state which attached the superconductor. 従来例に係る超電導磁場発生装置を模式的に示す断面図である。It is sectional drawing which shows typically the superconducting magnetic field generator which concerns on a prior art example.

符号の説明Explanation of symbols

図中、1は超電導磁場発生装置、2は超電導体、21は磁場発生面、23は裏面、25は側面、3は冷却装置、33は冷却部、4は冷却取付部材、40は側面固定部、41は先端面、42は対向面、45は固定機構、5は断熱容器、50は真空断熱室、51は筒壁部、52は先端部、200はスパッタリング成膜装置、202は基台、203は成膜室、204は減圧チャンバ、206はターゲット206、207はターゲットホルダ、208は成膜対象物、209は成膜対象物ホルダを示す。   In the figure, 1 is a superconducting magnetic field generator, 2 is a superconductor, 21 is a magnetic field generating surface, 23 is a back surface, 25 is a side surface, 3 is a cooling device, 33 is a cooling unit, 4 is a cooling mounting member, and 40 is a side fixing unit. , 41 is a front end surface, 42 is an opposing surface, 45 is a fixing mechanism, 5 is a heat insulating container, 50 is a vacuum heat insulating chamber, 51 is a cylindrical wall portion, 52 is a front end portion, 200 is a sputtering film forming apparatus, 202 is a base, Reference numeral 203 denotes a film formation chamber, 204 denotes a decompression chamber, 206 denotes a target 206, 207 denotes a target holder, 208 denotes a film formation target, and 209 denotes a film formation target holder.

Claims (7)

超電導遷移温度以下に冷却され外部に磁場を発する超電導体と、
前記超電導体を冷却する冷却部を有する冷却装置と、
前記超電導体を前記冷却装置の前記冷却部に保持する冷却取付部材と、
前記超電導体及び前記冷却取付部材を収容する断熱容器とを具備する超電導磁場発生装置において、
前記冷却取付部材は、
前記超電導体を側面から固定する側面固定部を具備し、前記冷却取付部材を前記冷却装置の前記冷却部の側に向けて引っ張って固定する固定機構を有することを特徴とする超電導磁場発生装置。
A superconductor that cools below the superconducting transition temperature and emits a magnetic field to the outside;
A cooling device having a cooling unit for cooling the superconductor;
A cooling attachment member for holding the superconductor in the cooling part of the cooling device;
In a superconducting magnetic field generator comprising a heat-insulating container that houses the superconductor and the cooling mounting member,
The cooling mounting member is
A superconducting magnetic field generation device comprising a side fixing portion for fixing the superconductor from a side surface, and having a fixing mechanism for fixing the cooling attachment member by pulling it toward the cooling portion of the cooling device.
請求項1において、前記冷却取付部材の先端面は、前記超電導体の磁場発生面より前方に突き出ていないことを特徴とする超電導磁場発生装置。2. The superconducting magnetic field generation device according to claim 1, wherein the front end surface of the cooling attachment member does not protrude forward from the magnetic field generation surface of the superconductor. 請求項1または請求項2において、前記超電導体の側面の少なくとも一部は断面でテーパ状となっており、且つ、In claim 1 or claim 2, at least a part of the side surface of the superconductor is tapered in cross section, and
前記冷却取付部材の前記側面固定部は前記超電導体のテーパ部分と係合すると共に断面でテーパ状の拘束面を有しており、  The side fixing portion of the cooling mounting member engages with a tapered portion of the superconductor and has a constraining surface tapered in cross section,
上記冷却取付部材を上記冷却部に接近させることにより、前記冷却取付部材の前記テーパ状の拘束面及び前記超電導体のテーパ部分の係合を介して前記超電導体をこれの側面から固定することを特徴とする超電導磁場発生装置。  Fixing the superconductor from the side surface of the cooling attachment member by engaging the tapered constraining surface and the tapered portion of the superconductor by bringing the cooling attachment member closer to the cooling portion. A superconducting magnetic field generator.
請求項1〜請求項3のうちのいずれか一項において、前記冷却取付部材の前記側面固定部は、前記超電導体よりも熱伝導性が高い材料を介して、前記超電導体をこれの側面から固定することを特徴とする超電導磁場発生装置。In any one of Claims 1-3, the said side surface fixing | fixed part of the said cooling attachment member is the said superconductor from this side via the material whose heat conductivity is higher than the said superconductor. A superconducting magnetic field generator characterized by being fixed. 請求項1〜請求項4のうちのいずれか一項において、前記超電導体は、溶融凝固法により作製され、その主成分がRE−Ba−Cu−O(REは、Y,La,Nd,Sm,Eu,Gd,Er,Yb,Dy,Hoのうちの1種以上)で表されることを特徴とする超電導磁場発生装置。5. The superconductor according to claim 1, wherein the superconductor is manufactured by a melt solidification method, and a main component thereof is RE-Ba-Cu-O (RE is Y, La, Nd, Sm). , Eu, Gd, Er, Yb, Dy, and Ho)). 請求項5において、前記超電導体は、Ag,Au,Pt,Rh,Ceのうちの少なくとも1種類を含むことを特徴とする超電導磁場発生装置。6. The superconducting magnetic field generator according to claim 5, wherein the superconductor includes at least one of Ag, Au, Pt, Rh, and Ce. 薄膜原料を含むターゲットを保持するためのターゲットホルダと、成膜対象物を保持するための成膜対象物ホルダとを有する減圧チャンバと、A decompression chamber having a target holder for holding a target containing a thin film material, and a film formation target holder for holding a film formation target;
前記減圧チャンバに保持され磁場の作用で前記ターゲットの表面付近にプラズマを集中させるためのスパッタガンとを具備しており、  A sputtering gun for concentrating the plasma near the surface of the target by the action of a magnetic field held in the decompression chamber;
前記スパッタガンから発せられる磁場の作用で前記ターゲットの表面近傍にプラズマを集中させてスパッタリングを行い、前記ターゲットから放出される薄膜原料を前記成膜対象物の表面に被着させて前記成膜対象物に薄膜を形成するスパッタリング成膜装置において、  Sputtering is performed by concentrating plasma in the vicinity of the surface of the target by the action of a magnetic field emitted from the sputter gun, and a thin film material released from the target is deposited on the surface of the film formation target to form the film formation target. In a sputtering film forming apparatus for forming a thin film on an object,
前記スパッタガンは、請求項1〜請求項6のうちのいずれか一項からなる超電導磁場発生装置が組み込まれていることを特徴とするスパッタリング成膜装置。  A sputtering film forming apparatus, wherein the sputter gun incorporates a superconducting magnetic field generating apparatus according to any one of claims 1 to 6.
JP2003304668A 2003-08-28 2003-08-28 Superconducting magnetic field generator and sputtering film forming apparatus using the same Expired - Fee Related JP4366636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003304668A JP4366636B2 (en) 2003-08-28 2003-08-28 Superconducting magnetic field generator and sputtering film forming apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003304668A JP4366636B2 (en) 2003-08-28 2003-08-28 Superconducting magnetic field generator and sputtering film forming apparatus using the same

Publications (2)

Publication Number Publication Date
JP2005079158A JP2005079158A (en) 2005-03-24
JP4366636B2 true JP4366636B2 (en) 2009-11-18

Family

ID=34408300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304668A Expired - Fee Related JP4366636B2 (en) 2003-08-28 2003-08-28 Superconducting magnetic field generator and sputtering film forming apparatus using the same

Country Status (1)

Country Link
JP (1) JP4366636B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4552051B2 (en) * 2005-03-25 2010-09-29 アイシン精機株式会社 Multilayer film manufacturing method and multilayer film
JP4852678B2 (en) * 2005-11-18 2012-01-11 独立行政法人物質・材料研究機構 Superconducting magnet device with room temperature working plane
JP5443155B2 (en) * 2009-12-25 2014-03-19 学校法人 芝浦工業大学 Bulk superconductor
JP6318811B2 (en) * 2014-04-21 2018-05-09 新日鐵住金株式会社 Superconducting bulk magnet
JP6435927B2 (en) * 2015-03-04 2018-12-12 新日鐵住金株式会社 Superconducting bulk magnet and method of magnetizing superconducting bulk magnet
JP6955192B2 (en) * 2017-05-23 2021-10-27 株式会社アイシン Superconducting magnetic field generator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494483Y1 (en) * 1970-12-25 1974-02-02
JPS522079U (en) * 1975-06-24 1977-01-08
JP3172611B2 (en) * 1992-11-30 2001-06-04 株式会社イムラ材料開発研究所 Superconductor magnetizer
JP3695010B2 (en) * 1996-08-30 2005-09-14 アイシン精機株式会社 Superconducting magnetron sputtering system
JPH11283822A (en) * 1998-03-27 1999-10-15 Imura Zairyo Kaihatsu Kenkyusho:Kk Superconducting magnet
JP3389094B2 (en) * 1998-03-27 2003-03-24 株式会社イムラ材料開発研究所 Superconducting magnetic field generator
JP4226157B2 (en) * 1999-07-27 2009-02-18 財団法人鉄道総合技術研究所 Superconducting magnetic levitation type high temperature superconducting bulk magnet for railway
JP3598237B2 (en) * 1999-08-30 2004-12-08 株式会社イムラ材料開発研究所 Superconducting magnet device and method of magnetizing superconductor

Also Published As

Publication number Publication date
JP2005079158A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
US4385979A (en) Target assemblies of special materials for use in sputter coating apparatus
JP4012311B2 (en) Bulk superconducting member and magnet, and method of manufacturing the same
GB2486156A (en) Substrate cooling device, sputtering device, and method for producing an electronic device
JP4366636B2 (en) Superconducting magnetic field generator and sputtering film forming apparatus using the same
JP4411512B2 (en) Superconducting magnetic field generator, its excitation method, sputtering film forming apparatus using superconducting magnetic field generator, ferromagnetic attachment / detachment jig
JP2006319000A (en) Material and system for oxide super conductive magnet
US4868531A (en) Superconducting magnetic apparatus
JP5997212B2 (en) Coating source and its production method
US6596138B2 (en) Sputtering apparatus
JP4678481B2 (en) Superconducting magnetic field generator, sputter gun, and sputtering film forming apparatus
JP4559176B2 (en) Method and apparatus for magnetizing a permanent magnet
JP4807120B2 (en) Superconducting magnetic field generator and sputtering film forming apparatus
JP3695010B2 (en) Superconducting magnetron sputtering system
JP4888683B2 (en) Sputtering apparatus and sputter gun
JP3258224B2 (en) Gyrotron magnetic field generator
JPH10116725A (en) Superconducting magnet device
JPH09102413A (en) Superconductive magnetic device
EP3358581B1 (en) Oxide superconducting bulk magnet
JPH0332006A (en) Cryogenic supporting body
JP2017034198A (en) Lamination-and-fixing structure of superconducting bulk body and magnetic field generating device
JP4353323B2 (en) Ferromagnetic target backing plate and ferromagnetic target / backing plate assembly
JPH11111499A (en) High freequency accelerating cavity and magnetron sputtering used for manufacturing the cavity
JPH11265816A (en) Superconducting device
JPS6311665A (en) Target for thin film forming device
Lengeler Modern technologies in rf superconductivity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090812

R151 Written notification of patent or utility model registration

Ref document number: 4366636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees