JPH05175034A - Superconductor magnet - Google Patents

Superconductor magnet

Info

Publication number
JPH05175034A
JPH05175034A JP8063392A JP8063392A JPH05175034A JP H05175034 A JPH05175034 A JP H05175034A JP 8063392 A JP8063392 A JP 8063392A JP 8063392 A JP8063392 A JP 8063392A JP H05175034 A JPH05175034 A JP H05175034A
Authority
JP
Japan
Prior art keywords
magnet
current
superconducting
coil
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8063392A
Other languages
Japanese (ja)
Other versions
JPH0812820B2 (en
Inventor
Mitsuru Morita
充 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4080633A priority Critical patent/JPH0812820B2/en
Publication of JPH05175034A publication Critical patent/JPH05175034A/en
Publication of JPH0812820B2 publication Critical patent/JPH0812820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide a superconductor magnet by opening the center of a single crystal cylindrical superconductor bulk material in which fine RE2BaCuO5 is dispersed, conducting the cutting to form a coil having a closed circuit to a part thereof and arranging current applying terminals at the upper and lower ends of the coil. CONSTITUTION:A cylindrical bulk superconductor material 1 consisting of a single crystal RE (rare earth element including Y and combination thereof) Ba2Cu3O7-y wherein fine 211 phase is dispered into the 123 phase undergoes opening of hole 3 and the cutting process 2. In this case, three slits are provided with an equal interval and moreover a 4-turn magnet is manufactured in such a manner as forming a circular loop of the current path 4. Next, two current application terminals 4a, 4b are formed after evaporation of silver and are connected with a constant current power supply. Thereby, an oxide superconductor magnet can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶融(QMG)法により
得られたRE(Yを含む希土類元素およびそれらの組み
合わせ)、Ba、Cuの酸化物からなる大型の単結晶状
のバルク材料から作製した超電導マグネットに関する。
INDUSTRIAL APPLICABILITY The present invention is manufactured from a large single crystal bulk material composed of RE (Y-containing rare earth elements and combinations thereof), Ba and Cu oxides obtained by a melting (QMG) method. Regarding superconducting magnets.

【0002】[0002]

【従来の技術】酸化物超電導体を用いた超電導マグネッ
トの作製は、現在ビスマス系の銀シース線材によるマグ
ネット化が最も有望とされており、多くの機関で研究さ
れている。しかしながら、ビスマス系超電導体は液体窒
素温度(77K)では極めて低い電流密度しか有してお
らず、液体窒素を冷媒として用いる超電導マグネットの
見通しはたっていない。一方、Y系超電導材料では、溶
融法の一種であるQMG法により、一方向結晶成長を行
わせることで大型の単結晶状のバルク材料の作製方法が
研究されている。このQMG材料は77K,1Tの磁場
中においても104 A/cm2 を越える臨界電流密度を有し
ており、液体窒素を冷媒としてマグネット化できる特性
を有している。
2. Description of the Related Art At present, the most promising method for producing a superconducting magnet using an oxide superconductor is to use a bismuth-based silver sheath wire as a magnet, which has been studied by many institutions. However, the bismuth-based superconductor has an extremely low current density at the liquid nitrogen temperature (77K), and there is no prospect of a superconducting magnet using liquid nitrogen as a refrigerant. On the other hand, for the Y-based superconducting material, a method for producing a large single crystal bulk material by conducting unidirectional crystal growth by the QMG method, which is a kind of melting method, has been studied. This QMG material has a critical current density exceeding 10 4 A / cm 2 even in a magnetic field of 77 K and 1 T, and has a property that liquid nitrogen can be magnetized as a refrigerant.

【0003】[0003]

【発明が解決しようとする課題】一方向成長させて大型
化したQMG材料は、上記のように優れた超電導特性を
有しているが、これを一旦線材にした後マグネットに巻
くことはその難加工性から極めて困難である。QMG材
料をマグネットに応用するには、線材化を経ない方法で
マグネットにする必要がある。本発明は、上記課題に鑑
み、超電導バルク材から直接製作した超電導マグネット
を提供することを目的とする。
The QMG material, which is grown in one direction and has a large size, has excellent superconducting characteristics as described above, but it is difficult to wind it into a wire and then wind it around a magnet. Extremely difficult due to workability. In order to apply the QMG material to the magnet, it is necessary to make the magnet by a method that does not go through the wire forming process. The present invention has been made in view of the above problems, and an object thereof is to provide a superconducting magnet directly manufactured from a superconducting bulk material.

【0004】[0004]

【課題を解決するための手段】本発明は、RE(Yを含
む希土類元素およびそれらの組み合わせ)、Ba、Cu
の酸化物からなる超電導マグネットにおいて、RE2
aCuO5 が微細に分散した単結晶状のREBa2 Cu
3 7-y からなる円筒形の超電導バルク材料の中心部が
開孔されており、かつコイルを形成するように切れ込み
加工が施されており、前記コイルの上下端に電流導入端
子が設置されていることを特徴とする超電導マグネット
であり、更に、RE(Yを含む希土類元素およびそれら
の組み合わせ)、Ba、Cuの酸化物からなる超電導マ
グネットにおいて、RE2 BaCuO5 が微細に分散し
た単結晶状のREBa2 Cu3 7-y からなる円筒形の
超電導バルク材料の中心部が開孔されており、かつ一部
に閉回路を有するコイルを形成するように切れ込み加工
が施されており、前記コイルの上下端に電流導入端子が
設置されていることを特徴とする超電導マグネットであ
ることを要旨とする。
The present invention provides RE (rare earth elements including Y and combinations thereof), Ba, Cu.
RE 2 B in superconducting magnets made of oxides of
Single crystal REBa 2 Cu in which aCuO 5 is finely dispersed
A cylindrical superconducting bulk material made of 3 O 7-y has an opening at its center and is cut so as to form a coil. Current introducing terminals are installed at the upper and lower ends of the coil. A superconducting magnet comprising RE (a rare earth element including Y and a combination thereof), Ba, and Cu oxide, wherein a single crystal in which RE 2 BaCuO 5 is finely dispersed is provided. The central portion of the cylindrical superconducting bulk material made of REBa 2 Cu 3 O 7-y has a hole, and is cut to form a coil having a closed circuit in part, A gist of the present invention is a superconducting magnet, wherein current introducing terminals are installed at upper and lower ends of the coil.

【0005】[0005]

【作用】一つの単結晶状のバルクをマグネット化するに
は、超電導電流がループをえがきながら流れるように円
筒状の超電導体のバルク結晶に開孔しおよび切れ込みを
入れソレノイド状の電流パスを作ればよい。このように
して作製した超電導マグネットは電流回路の点から大別
して二種類考えられる。一つは、2ケ所の電流の導入端
を有しその間の超電導電流のパスが一つしかなく、ソレ
ノイド状にループをえがきながら連続しているマグネッ
ト、もう一つは超電導材料中の電流パスが閉回路を有し
連続しており、その中に電流導入端子を有するマグネッ
トが考えられる。
[Operation] To magnetize one single crystal bulk, make a hole in the bulk crystal of the cylindrical superconductor so that the superconducting current flows while drawing the loop, and make a notch to make a solenoid current path. Good. There are roughly two types of superconducting magnets produced in this way in terms of current circuits. One is a magnet that has two current-introducing ends and has only one path for superconducting current between them, and a magnet that is continuous while marking a loop like a solenoid. The other is a current path in the superconducting material. A magnet that has a closed circuit and is continuous and that has a current introduction terminal therein is conceivable.

【0006】以下図面を用いて具体的に説明する。図1
は中心部に穴3を開けた円筒状のバルク体1に切れ込み
2を入れ、2つの電流導入端子4a,4bを保ち、ソレ
ノイド状の電流パス5を有する超電導マグネットを示
す。また、図2は図1に示すマグネットの等価回路を示
す。図2のような回路を持つマグネットは外部の電源か
ら電流を供給することによってマグネットを励磁するこ
とができる。
A detailed description will be given below with reference to the drawings. Figure 1
Is a superconducting magnet having a solenoid-shaped current path 5 in which a slit 2 is formed in a cylindrical bulk body 1 having a hole 3 in the center thereof and two current introducing terminals 4a and 4b are retained. 2 shows an equivalent circuit of the magnet shown in FIG. A magnet having a circuit as shown in FIG. 2 can excite the magnet by supplying a current from an external power source.

【0007】図3は中心部に穴13を開けた円筒状のバ
ルク体11に切れ込み12を入れ、閉じた電流パスを保
ち、その途中にソレノイド状の電流パスと二つの電流端
子14c,14bを有する超電導マグネットを示し、一
点破線で示す面で切った時の図を示す。ソレノイドを有
する部分を(a)に示す。(b)はソレノイドを持たず
発熱体17を巻いた部分を示す。(a)に示す部分は図
1と同様の電流パスを有する。また黒塗りの部分16は
(a)と(b)に示す部分の超電導体が連続していた面
を示す。また(c)は、元のマグネットの状態、すなわ
ち(a)(b)に示す超電導体を(a)のc−c′で切
ったときの断面図を示す。このような切り込み加工によ
りソレノイドを有する閉回路を作ることができる。
In FIG. 3, a notch 12 is made in a cylindrical bulk body 11 having a hole 13 in the center to keep a closed current path, and a solenoid current path and two current terminals 14c and 14b are provided in the middle thereof. The superconducting magnet which it has is shown, and the figure when it cut | disconnects by the surface shown by a dashed-dotted line is shown. The portion having the solenoid is shown in (a). (B) shows a portion in which the heating element 17 is wound without a solenoid. The portion shown in (a) has a current path similar to that shown in FIG. Further, the black-painted portion 16 shows the surface where the superconductors in the portions shown in (a) and (b) were continuous. Further, (c) shows a cross-sectional view of the original state of the magnet, that is, the superconductor shown in (a) and (b) taken along the line cc 'in (a). By such a cutting process, a closed circuit having a solenoid can be made.

【0008】図4は図3に示すマグネットの等価回路を
示す。図4のような閉回路を持つマグネットは、ソレノ
イド部を持つ電流導入端子間を超電導状態にし、ソレノ
イドを持たない電流導入端子間を発熱体17に電流を流
すことによって常電動状態にした後、電流を導入するこ
とによってソレノイドの部分に超電導電流を流し励磁す
ることができる。その後、ソレノイド部を持たない電極
間の回路を発熱体への電流を切ることにより、超電導状
態に転移させることによって永久電流をマグネットに流
しつづけることができる。
FIG. 4 shows an equivalent circuit of the magnet shown in FIG. A magnet having a closed circuit as shown in FIG. 4 is in a superconducting state between current introducing terminals having a solenoid portion, and is in a normal electric state by passing a current between the current introducing terminals having no solenoid to the heating element 17, By introducing an electric current, a superconducting current can be made to flow and excited in the solenoid portion. After that, by cutting off the current to the heating element in the circuit between the electrodes having no solenoid part, the state is changed to the superconducting state, so that the permanent current can be continuously supplied to the magnet.

【0009】[0009]

【実施例】【Example】

(実施例1)直径約2.8cm高さ約4cmの微細な211
相が123相中に分散した単結晶状のバルク超電導材料
を、図5に示すような孔開けおよび切れ込み加工を施し
た。このとき内径は約1cm、1cm間隔に3本のスリット
を入れ、さらに電流パス4回ループをえがくよう4ター
ンのマグネットを作製した。次に二つの電流導入端子を
銀蒸着の後作製し定電流電源を接続した。マグネットを
液体窒素中で冷却した後、最高60Aの電流を流した。
この励磁によって中心部において0.7Kgauss磁束密度
の磁界を得ることができた。
(Example 1) Fine 211 having a diameter of about 2.8 cm and a height of about 4 cm
The single crystal bulk superconducting material in which the phases were dispersed in the 123 phase was perforated and cut as shown in FIG. At this time, the inner diameter was about 1 cm, and three slits were provided at 1 cm intervals, and a magnet with four turns was produced so that the loop of the current path was selected four times. Next, two current introduction terminals were produced after vapor deposition of silver, and a constant current power source was connected. After cooling the magnet in liquid nitrogen, a maximum current of 60 A was passed.
By this excitation, a magnetic field of 0.7 Kgauss magnetic flux density could be obtained in the central part.

【0010】(実施例2)直径約2.8cm高さ約4cmの
微細な211相が123相中に分散した単結晶状のバル
ク超電導材料を、図6に示すような孔開けおよび切れ込
み加工を施した。このとき内径は約1cm、1cm間隔に3
本のスリットを入れ、さらに電流パス4回ループをえが
くよう切れ込み加工し、電流導入端子間の超電導体の幅
を約2.3cmになるように切れ込み加工し閉回路を持つ
4ターンのマグネットを作製した。次に二つの電流導入
端子を銀蒸着の後作製し定電流電源を接続した。さらに
端子間の超電導体に発熱体を巻き付けた。マグネットを
液体窒素中で冷却した後、発熱体に通電し、発熱体近傍
の超電導部を常電導に転移させた。その後最高60Aの
電流を流した。この励磁によって中心部において0.6
Kgauss磁束密度の磁界を得ることができた。次に発熱体
への通電をやめ、マグネット全体を超電導状態に定電流
電源からの電流をゼロにした。前記操作により閉回路に
永久電流を流すことができ、中心部に0.4Kgaussの磁
束密度の磁場を得ることができた。
Example 2 A single crystal bulk superconducting material having a diameter of about 2.8 cm and a height of about 4 cm in which fine 211 phases were dispersed in 123 phases was subjected to punching and notching as shown in FIG. gave. At this time, the inner diameter is about 1 cm and 3 at 1 cm intervals.
Make a slit with a book and further cut it so that the loop of the current path can be marked 4 times, and cut it so that the width of the superconductor between the current introducing terminals is about 2.3 cm, and make a 4-turn magnet with a closed circuit. did. Next, two current introduction terminals were produced after vapor deposition of silver, and a constant current power source was connected. Furthermore, a heating element was wound around the superconductor between the terminals. After the magnet was cooled in liquid nitrogen, the heating element was energized to transfer the superconducting portion near the heating element to normal conduction. After that, a maximum current of 60 A was passed. 0.6 at the center due to this excitation
A magnetic field of Kgauss magnetic flux density could be obtained. Next, the power supply to the heating element was stopped, and the entire magnet was put into a superconducting state so that the current from the constant current power supply was reduced to zero. By the above operation, a permanent current could be passed through the closed circuit, and a magnetic field having a magnetic flux density of 0.4 Kgauss could be obtained at the center.

【0011】[0011]

【発明の効果】上述したごとく、本発明はこれまで不可
能であった酸化物超電導マグネットの製造を可能とする
もので、しかも成形品として各分野での応用が可能であ
り極めて工業的効果が大きい。具体例としては、モータ
ー用、加速器用、シリコン引き上げ用、核磁気共鳴用、
など広い応用が可能である。
As described above, the present invention enables the production of oxide superconducting magnets, which has heretofore been impossible, and can be applied as a molded article in various fields, and has an extremely industrial effect. large. Specific examples include motors, accelerators, silicon lifting, nuclear magnetic resonance,
Wide application is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るソレノイド状の超電導マグネット
である。
FIG. 1 is a solenoidal superconducting magnet according to the present invention.

【図2】図1に示すマグネットの等価回路である。FIG. 2 is an equivalent circuit of the magnet shown in FIG.

【図3】本発明に係る閉回路を有する超電導マグネット
の展開図である。
FIG. 3 is a development view of a superconducting magnet having a closed circuit according to the present invention.

【図4】図3に示すマグネットの等価回路である。FIG. 4 is an equivalent circuit of the magnet shown in FIG.

【図5】試作したソレノイド状超電導マグネットであ
る。
FIG. 5 is a prototype solenoidal superconducting magnet.

【図6】試作した閉回路を有する超電導マグネットの展
開図である。 1,11 バルク材 2,12 切れ込み 3,13 穴 4,14 電流導入端子
FIG. 6 is a development view of a prototype superconducting magnet having a closed circuit. 1,11 Bulk material 2,12 Cut 3,13 Hole 4,14 Current introduction terminal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 RE(Yを含む希土類元素およびそれら
の組み合わせ)、Ba、Cuの酸化物からなる超電導マ
グネットにおいて、RE2 BaCuO5 が微細に分散し
た単結晶状のREBa2 Cu3 7-y からなる円筒形の
超電導バルク材料の中心部が開孔されており、かつコイ
ルを形成するように切れ込み加工が施されており、前記
コイルの上下端に電流導入端子が設置されていることを
特徴とする超電導マグネット。
1. In a superconducting magnet made of RE (rare earth elements including Y and combinations thereof), Ba and Cu oxides, RE 2 BaCuO 5 is finely dispersed in single crystal form REBa 2 Cu 3 O 7-. The central part of the cylindrical superconducting bulk material consisting of y is opened, and the slitting process is performed so as to form a coil, and the current introduction terminals are installed at the upper and lower ends of the coil. Characteristic superconducting magnet.
【請求項2】 RE(Yを含む希土類元素およびそれら
の組み合わせ)、Ba、Cuの酸化物からなる超電導マ
グネットにおいて、RE2 BaCuO5 が微細に分散し
た単結晶状のREBa2 Cu3 7-y からなる円筒形の
超電導バルク材料の中心部が開孔されており、かつ一部
に閉回路を有するコイルを形成するように切れ込み加工
が施されており、前記コイルの上下端に電流導入端子が
設置されていることを特徴とする超電導マグネット。
2. In a superconducting magnet made of RE (rare earth elements including Y and combinations thereof), Ba and Cu oxides, single crystal REBa 2 Cu 3 O 7- in which RE 2 BaCuO 5 is finely dispersed. A cylindrical superconducting bulk material consisting of y has a hole in the center, and a slit is formed so as to form a coil having a closed circuit in part, and the current introducing terminals are provided at the upper and lower ends of the coil. Is a superconducting magnet.
JP4080633A 1992-04-02 1992-04-02 Superconducting magnet Expired - Fee Related JPH0812820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4080633A JPH0812820B2 (en) 1992-04-02 1992-04-02 Superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4080633A JPH0812820B2 (en) 1992-04-02 1992-04-02 Superconducting magnet

Publications (2)

Publication Number Publication Date
JPH05175034A true JPH05175034A (en) 1993-07-13
JPH0812820B2 JPH0812820B2 (en) 1996-02-07

Family

ID=13723771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4080633A Expired - Fee Related JPH0812820B2 (en) 1992-04-02 1992-04-02 Superconducting magnet

Country Status (1)

Country Link
JP (1) JPH0812820B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024047A1 (en) * 1994-03-04 1995-09-08 Nippon Steel Corporation Superconducting magnet and production method thereof
US6111490A (en) * 1996-06-19 2000-08-29 Aisin Seiki Kabushiki Kaisha Superconducting magnet apparatus and method for magnetizing superconductor
US6646528B2 (en) * 1997-10-13 2003-11-11 Aventis Research & Technologies Process for the production of a coil made of a high temperature superconductor material, and a high-temperature superconducting coils having low AC loss
JP2006332577A (en) * 2005-04-28 2006-12-07 Nippon Steel Corp Oxide superconductor coil, its manufacturing method, its exciting method, its cooling method and magnet system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411306A (en) * 1987-07-03 1989-01-13 Sumitomo Electric Industries Manufacture of superconducting coil
JPH0281405A (en) * 1988-09-16 1990-03-22 Sanyo Electric Co Ltd Manufacture of coil-like superconductor material and manufacture of superconducting coil using the material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411306A (en) * 1987-07-03 1989-01-13 Sumitomo Electric Industries Manufacture of superconducting coil
JPH0281405A (en) * 1988-09-16 1990-03-22 Sanyo Electric Co Ltd Manufacture of coil-like superconductor material and manufacture of superconducting coil using the material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024047A1 (en) * 1994-03-04 1995-09-08 Nippon Steel Corporation Superconducting magnet and production method thereof
US6111490A (en) * 1996-06-19 2000-08-29 Aisin Seiki Kabushiki Kaisha Superconducting magnet apparatus and method for magnetizing superconductor
US6441710B1 (en) 1996-06-19 2002-08-27 Aisin Seiki Kabushiki Kaisha Superconducting magnet apparatus and method for magnetizing superconductor
US7026901B2 (en) 1996-06-19 2006-04-11 Aisin Seiki Kabushiki Kaisha Superconducting magnet apparatus and method for magnetizing superconductor
US6646528B2 (en) * 1997-10-13 2003-11-11 Aventis Research & Technologies Process for the production of a coil made of a high temperature superconductor material, and a high-temperature superconducting coils having low AC loss
JP2006332577A (en) * 2005-04-28 2006-12-07 Nippon Steel Corp Oxide superconductor coil, its manufacturing method, its exciting method, its cooling method and magnet system

Also Published As

Publication number Publication date
JPH0812820B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
US6362718B1 (en) Motionless electromagnetic generator
US5015622A (en) Multidirectional/rotational superconductor motor
JP5562556B2 (en) Superconducting system
KR20070005834A (en) Superconduction magnet and manufacturing method for persistent current
US6020803A (en) Hybrid high field superconducting assembly and fabrication method
JP3794591B2 (en) Manufacturing method of superconducting magnet
US8736407B2 (en) Superconducting systems
US2938183A (en) Single crystal inductor core of magnetizable garnet
US4190817A (en) Persistent current superconducting method and apparatus
US6573818B1 (en) Planar magnetic frame inductors having open cores
Okada Development of Bi-2212/Ag round-shaped wire and magnet application
Van Beelen et al. Flux pumps and superconducting solenoids
Benz Superconducting properties of diffusion processed niobium-Tin tape
US6621395B1 (en) Methods of charging superconducting materials
JPH05175034A (en) Superconductor magnet
EP1446862B1 (en) Motionless electromagnetic generator
JP3727122B2 (en) Superconducting bulk magnet
JP2510650B2 (en) Superconducting switch element
US3239725A (en) Superconducting device
US4135127A (en) Direct current transformer
JP3025104B2 (en) Magnetization method of superconducting bulk magnet
JPH09298320A (en) Perpetual current switch for oxide superconductive coil and switching device using it as well as switching method
CA1115792A (en) Direct current transformer
JP3100151B2 (en) AC conduction method for HTS conductor
JPH05145128A (en) Superconductive current limiting device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees