JP2012023160A - Strong magnetic field small superconducting magnet - Google Patents

Strong magnetic field small superconducting magnet Download PDF

Info

Publication number
JP2012023160A
JP2012023160A JP2010159226A JP2010159226A JP2012023160A JP 2012023160 A JP2012023160 A JP 2012023160A JP 2010159226 A JP2010159226 A JP 2010159226A JP 2010159226 A JP2010159226 A JP 2010159226A JP 2012023160 A JP2012023160 A JP 2012023160A
Authority
JP
Japan
Prior art keywords
magnetic field
temperature superconducting
superconducting bulk
bulk body
gadolinium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010159226A
Other languages
Japanese (ja)
Other versions
JP5583502B2 (en
Inventor
Masaru Tomita
優 富田
Yusuke Fukumoto
祐介 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2010159226A priority Critical patent/JP5583502B2/en
Publication of JP2012023160A publication Critical patent/JP2012023160A/en
Application granted granted Critical
Publication of JP5583502B2 publication Critical patent/JP5583502B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a strong magnetic field small superconducting magnet which can enhance a generated magnetic field significantly by determining both the JcB (characteristic critical magnetic field characteristics under magnetic field) of each superconducting material and the arrangement thereof.SOLUTION: The strong magnetic field small superconducting magnet comprises a first high temperature superconducting bulk body 31, a gadolinium based second high temperature superconducting bulk body 32 laminated on the first high temperature superconducting bulk body 31, a gadolinium based third high temperature superconducting bulk body 33 laminated on the gadolinium based second high temperature superconducting bulk body 32, and a fourth high temperature superconducting bulk body 34 laminated on the gadolinium based third high temperature superconducting bulk body 33.

Description

本発明は、強磁場小型超電導マグネットに係り、特に、直線的で均一な強い磁場を発生できる強磁場小型超電導マグネットに関するものである。   The present invention relates to a strong magnetic field small superconducting magnet, and more particularly to a strong magnetic field small superconducting magnet capable of generating a linear and uniform strong magnetic field.

従来、高温超電導バルク体の機械的特性向上の研究が行われており、樹脂含侵により発生磁場の安定化を図るようにしている(下記特許文献1参照)。
また、高磁場における発熱除去対策の研究が行われており、金属含侵により高温超電導で世界最高記録を達成している(下記特許文献2参照)。
また、本発明者らにより、「環状YBCOの永久モードマグネット」(下記非特許文献1参照)について開示され、マイクロNMR用永久マグネットとしての適用が行われている。
Conventionally, studies have been made on improving the mechanical properties of a high-temperature superconducting bulk body, and the generated magnetic field is stabilized by resin impregnation (see Patent Document 1 below).
Also, research on heat removal measures in a high magnetic field has been conducted, and the world's highest record has been achieved in high-temperature superconductivity due to metal impregnation (see Patent Document 2 below).
In addition, the present inventors have disclosed a “cyclic YBCO permanent mode magnet” (see Non-Patent Document 1 below), which is applied as a permanent magnet for micro NMR.

特許第3144675号公報Japanese Patent No. 3144675 特許第3858221号公報Japanese Patent No. 3858221

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY,VOL.15,NO.2 JUNE 2005,pp.2352〜2355IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 15, NO. 2 JUNE 2005, pp. 2352-2355

これまで、高温超電導バルク体やプレート状の高温超電導マグネットからなる薄い層状の環状マグネットを使うことによって、磁場の捕捉は積層数に応じて変わると考えられていた。
本発明は、個々の超電導材料のJcB(磁場下における特性臨界磁場特性)とその配置の双方を決定することによって、発生磁場を飛躍的に向上させることができる強磁場小型超電導マグネットを提供することを目的とする。
Until now, it was thought that the capture of a magnetic field changed according to the number of layers by using a thin layered annular magnet made of a high-temperature superconducting bulk material or a plate-like high-temperature superconducting magnet.
The present invention provides a high magnetic field small superconducting magnet capable of dramatically improving the generated magnetic field by determining both the JcB (characteristic critical magnetic field characteristics under magnetic field) of each superconducting material and its arrangement. With the goal.

本発明は、上記目的を達成するために、
〔1〕強磁場小型超電導マグネットにおいて、第1の高温超電導バルク体と、この第1の高温超電導バルク体上に積層されるガドリニウム系の第2の高温超電導バルク体と、このガドリニウム系の第2の高温超電導バルク体上に積層されるガドリニウム系の第3の高温超電導バルク体と、このガドリニウム系の第3の高温超電導バルク体上に積層される第4の高温超電導バルク体とを具備することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In a high magnetic field small superconducting magnet, a first high-temperature superconducting bulk body, a gadolinium-based second high-temperature superconducting body stacked on the first high-temperature superconducting bulk body, and a second gadolinium-based superconducting magnet. A gadolinium-based third high-temperature superconducting bulk body laminated on the high-temperature superconducting bulk body, and a fourth high-temperature superconducting bulk body laminated on the gadolinium-based third high-temperature superconducting bulk body. It is characterized by.

〔2〕上記〔1〕記載の強磁場小型超電導マグネットにおいて、前記第1乃至第4の高温超電導バルク体は、積層後の寸法が外径87mm、内径48mm、高さ22mmである、樹脂含浸を施した環状の高温超電導バルク体であることを特徴とする。
〔3〕上記〔1〕又は〔2〕記載の強磁場小型超電導マグネットにおいて、前記積層した高温超電導バルク体を大気圧下で液体窒素冷却することにより、直線的で均一な2テスラレベルの磁場空間を発生させる永久マグネットとすることを特徴とする。
[2] In the strong magnetic field small superconducting magnet according to [1], the first to fourth high-temperature superconducting bulk bodies are impregnated with a resin having dimensions of an outer diameter of 87 mm, an inner diameter of 48 mm, and a height of 22 mm. It is characterized by being an annular high temperature superconducting bulk body.
[3] In the strong magnetic field small superconducting magnet according to the above [1] or [2], the laminated high-temperature superconducting bulk body is cooled with liquid nitrogen under atmospheric pressure, whereby a linear and uniform magnetic field space of 2 Tesla level is obtained. It is characterized by making it a permanent magnet which generates.

〔4〕上記〔3〕記載の強磁場小型超電導マグネットにおいて、前記永久マグネットをマイクロNMR用永久マグネットとして用いることを特徴とする。   [4] The strong magnetic field small superconducting magnet according to [3], wherein the permanent magnet is used as a permanent magnet for micro NMR.

本発明によれば、少ない個数の積層された高温超電導バルク体で空間に高品質の磁場、つまり、直線的で均一な磁場を発生することができる。また、小型で簡易輸送が可能であり、低温下での使用に適した、強い磁場を発生させることができる。   According to the present invention, a high-quality magnetic field, that is, a linear and uniform magnetic field can be generated in a space with a small number of stacked high-temperature superconducting bulk bodies. In addition, it is small and can be easily transported, and can generate a strong magnetic field suitable for use at low temperatures.

本発明にかかる樹脂含浸を施した高温超電導バルク体の磁場測定の様子を示す模式図である。It is a schematic diagram which shows the mode of the magnetic field measurement of the high-temperature superconducting bulk body which gave resin impregnation concerning this invention. 本発明に係る高温超電導バルク体の積層数(1〜3)と半径方向距離に対する磁場値を示す図である。It is a figure which shows the magnetic field value with respect to the lamination | stacking number (1-3) and radial direction distance of the high-temperature superconducting bulk body which concerns on this invention. 本発明に係る高温超電導バルク体の積層数(1〜10)と高さ方向距離に対する磁場値を示す図である。It is a figure which shows the magnetic field value with respect to the lamination | stacking number (1-10) and height direction distance of the high-temperature superconducting bulk body which concerns on this invention. 本発明の4個積層された高温超電導バルク体による強磁場小型超電導マグネットを示す図である。It is a figure which shows the strong magnetic field small-sized superconducting magnet by the four high-temperature superconducting bulk body of this invention laminated | stacked. 本発明の4個積層された高温超電導バルク体による強磁場小型超電導マグネットの高さ方向距離に対する磁場値を示す図である。It is a figure which shows the magnetic field value with respect to the height direction distance of the strong magnetic field small superconducting magnet by the four-layered high-temperature superconducting bulk body of this invention. 本発明の4個積層された高温超電導バルク体による強磁場小型超電導マグネットの半径方向距離に対する磁場値を示す図である。It is a figure which shows the magnetic field value with respect to the radial direction distance of the strong magnetic field small superconducting magnet by the four-layered high-temperature superconducting bulk body of this invention.

本発明の強磁場小型超電導マグネットは、第1の高温超電導バルク体と、この第1の高温超電導バルク体上に積層されるガドリニウム系の第2の高温超電導バルク体と、このガドリニウム系の第2の高温超電導バルク体上に積層されるガドリニウム系の第3の高温超電導バルク体と、このガドリニウム系の第3の高温超電導バルク体上に積層される第4の高温超電導バルク体とを具備する。   The high magnetic field small superconducting magnet of the present invention includes a first high-temperature superconducting bulk body, a gadolinium-based second high-temperature superconducting bulk laminated on the first high-temperature superconducting bulk body, and a second gadolinium-based superconducting magnet. A gadolinium-based third high-temperature superconducting bulk body laminated on the high-temperature superconducting bulk body, and a fourth high-temperature superconducting bulk body laminated on the gadolinium-based third high-temperature superconducting bulk body.

以下、本発明の実施の形態について詳細に説明する。
図1は本発明にかかる樹脂含浸を施した高温超電導バルク体の磁場測定の様子を示す模式図である。
複数個の樹脂含浸を施した高温超電導バルク体1(ここでは2個)を積層し、その内径rの中心位置にホール素子2を配置して、磁場の測定を行うようにしている。なお、この測定では、内径rの中心位置を0として半径方向の距離を示し、高温超電導バルク体を積層した高さの1/2の位置を0として高さ方向の距離を示している。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a schematic diagram showing a state of magnetic field measurement of a high-temperature superconducting bulk body impregnated with resin according to the present invention.
A plurality of high-temperature superconducting bulk bodies 1 (two in this case) subjected to resin impregnation are stacked, and a Hall element 2 is arranged at the center position of the inner diameter r to measure the magnetic field. In this measurement, the distance in the radial direction is shown with the center position of the inner diameter r being 0, and the distance in the height direction is shown with 0 being the position of half the height at which the high-temperature superconducting bulk material 1 is stacked.

図2は本発明に係る高温超電導バルク体の積層数(1〜3)と半径方向距離に対する磁場値を示す図、図3は高温超電導バルク体の積層数(1〜10)と高さ方向距離に対する磁場値を示す図である。
図2に示すように、高温超電導バルク体を複数個積層することによって、より均一な磁場を得られることがわかる。
FIG. 2 is a diagram showing the number of stacked high-temperature superconducting bodies (1-3) and the magnetic field value with respect to the radial distance according to the present invention, and FIG. 3 is the number of stacked high-temperature superconducting bodies (1-10) and the distance in the height direction. It is a figure which shows the magnetic field value with respect to.
As shown in FIG. 2, it can be seen that a more uniform magnetic field can be obtained by stacking a plurality of high-temperature superconducting bulk bodies.

また、図3において、11〜20は高さ方向の磁場分布の解析値を示しており、11は環状の高温超電導バルク体が1層の場合、以下、環状の高温超電導バルク体がそれぞれ、12は2層の場合、13は3層の場合、14は4層の場合、15は5層の場合、16は6層の場合、17は7層の場合、18は8層の場合、19は9層の場合、20は10層の場合を示している。また、21〜23は1層〜3層の場合の実測値である。図3に示すように、高温超電導バルク体の積層数を増やすことによって、より強い磁場を発生させることできることがわかる。   In addition, in FIG. 3, 11 to 20 indicate analytical values of the magnetic field distribution in the height direction, and 11 is an annular high-temperature superconducting bulk body having one layer. Is 2 layers, 13 is 3 layers, 14 is 4 layers, 15 is 5 layers, 16 is 6 layers, 17 is 7 layers, 18 is 8 layers, 19 is In the case of 9 layers, 20 indicates the case of 10 layers. 21 to 23 are actually measured values in the case of 1 to 3 layers. As shown in FIG. 3, it can be seen that a stronger magnetic field can be generated by increasing the number of stacked high-temperature superconducting bulk bodies.

このように、高温超電導バルク体を複数個積層することによって、均一で強い磁場を得られることがわかった。
図4は本発明の4個積層された高温超電導バルク体による強磁場小型超電導マグネットを示す図、図5はその強磁場小型超電導マグネットの高さ方向距離に対する磁場値を示す図、図6はその強磁場小型超電導マグネットの半径方向距離に対する磁場値を示す図である。
Thus, it was found that a uniform and strong magnetic field can be obtained by stacking a plurality of high-temperature superconducting bulk bodies.
FIG. 4 is a diagram showing a high magnetic field small superconducting magnet using four stacked high-temperature superconducting bulk bodies according to the present invention, FIG. 5 is a diagram showing magnetic field values with respect to the height direction distance of the strong magnetic field small superconducting magnet, and FIG. It is a figure which shows the magnetic field value with respect to the radial direction distance of a strong magnetic field small superconducting magnet.

図4に示すように、第1の高温超電導バルク体31、ガドリニウム系(Ga−B−Cu−O)の第2の高温超電導バルク体32、ガドリニウム系(Ga−B−Cu−O)の第3の高温超電導バルク体33、第4の高温超電導バルク体34を積層した。ここでは、内径は48mm(樹脂層を除くと50mm)、外径は87mm(80mm)、高さは22mm(20mm)である。   As shown in FIG. 4, the first high-temperature superconducting bulk body 31, the gadolinium-based (Ga—B—Cu—O) second high-temperature superconducting bulk body 32, and the gadolinium-based (Ga—B—Cu—O) second 3 high temperature superconducting bulk body 33 and a fourth high temperature superconducting bulk body 34 were laminated. Here, the inner diameter is 48 mm (50 mm excluding the resin layer), the outer diameter is 87 mm (80 mm), and the height is 22 mm (20 mm).

図5及び図6から明らかなように、中心の2個にガドリニウム系高温超電導バルク体を用いた本発明の強磁場小型超電導マグネットによって、直線的で均一な強い磁場空間35を少数の高温超電導バルク体で発生させることができる。
上記したように、環状に加工した外径87mmの超電導バルク体を積層し、大気圧下で液体窒素冷却することによって、48mm径の空間に2.02テスラの安定した磁場空間が得られることを実証した。なお、本発明によれば、少数の高温超電導バルク体の積層により、ボア径40mm以上で発生磁場強度が2テスラ以上の小口径の強磁場小型超電導マグネットが実現できた。
As apparent from FIG. 5 and FIG. 6, the strong and small magnetic field superconducting magnet of the present invention using the gadolinium-based high temperature superconducting bulk body at the two centers makes a linear and uniform strong magnetic field space 35 a small number of high temperature superconducting bulks. Can be generated in the body.
As described above, a superconducting bulk body with an outer diameter of 87 mm processed into an annular shape is stacked and cooled with liquid nitrogen under atmospheric pressure, so that a stable magnetic field space of 2.02 Tesla can be obtained in a 48 mm diameter space. Demonstrated. According to the present invention, by stacking a small number of high-temperature superconducting bulk bodies, a small magnetic field superconducting magnet with a bore diameter of 40 mm or more and a generated magnetic field strength of 2 Tesla or more can be realized.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の強磁場小型超電導マグネットは、少数の高温超電導バルク体により、直線的で均一な磁場を発生させることができるので、マイクロNMRなどに利用可能である。   The strong magnetic field small superconducting magnet of the present invention can generate a linear and uniform magnetic field with a small number of high-temperature superconducting bulk bodies, and thus can be used for micro NMR and the like.

1 高温超電導バルク体
2 ホール素子
11〜20 環状の高温超電導バルク体の積層数1〜10の場合の磁場分布の解析値
21〜23 環状の高温超電導バルク体の積層数1〜3の場合の磁場分布の実測値
31 第1の高温超電導バルク体
32 ガドリニウム系(Ga−B−Cu−O)の第2の高温超電導バルク体
33 ガドリニウム系(Ga−B−Cu−O)の第3の高温超電導バルク体
34 第4の高温超電導バルク体
35 磁場空間
DESCRIPTION OF SYMBOLS 1 High-temperature superconducting bulk body 2 Hall element 11-20 Analytical value of magnetic field distribution in the case of the number of stacks of the annular high-temperature superconducting bulk body 1-10 21-23 Measured value of distribution 31 First high-temperature superconducting bulk material 32 Gadolinium-based (Ga—B—Cu—O) second high-temperature superconducting bulk material 33 Gadolinium-based (Ga—B—Cu—O) third high-temperature superconducting material Bulk body 34 Fourth high-temperature superconducting bulk body 35 Magnetic field space

Claims (4)

(a)第1の高温超電導バルク体と、
(b)該第1の高温超電導バルク体上に積層されるガドリニウム系の第2の高温超電導バルク体と、
(c)該ガドリニウム系の第2の高温超電導バルク体上に積層されるガドリニウム系の第3の高温超電導バルク体と、
(d)該ガドリニウム系の第3の高温超電導バルク体上に積層される第4の高温超電導バルク体とを具備することを特徴とする強磁場小型超電導マグネット。
(A) a first high-temperature superconducting bulk body;
(B) a gadolinium-based second high-temperature superconducting bulk body laminated on the first high-temperature superconducting bulk body;
(C) a gadolinium-based third high-temperature superconducting bulk body laminated on the gadolinium-based second high-temperature superconducting bulk body;
(D) A high-field small-sized superconducting magnet comprising a fourth high-temperature superconducting bulk body laminated on the gadolinium-based third high-temperature superconducting bulk body.
請求項1記載の強磁場小型超電導マグネットにおいて、前記第1乃至第4の高温超電導バルク体は、積層後の寸法が外径87mm、内径48mm、高さ22mmである、樹脂含浸を施した環状の高温超電導バルク体であることを特徴とする強磁場小型超電導マグネット。   2. The high-field small superconducting magnet according to claim 1, wherein the first to fourth high-temperature superconducting bulk bodies are annularly impregnated with a resin having dimensions of an outer diameter of 87 mm, an inner diameter of 48 mm, and a height of 22 mm after lamination. A high magnetic field small superconducting magnet characterized by being a high-temperature superconducting bulk material. 請求項1又は2記載の強磁場小型超電導マグネットにおいて、前記積層した高温超電導バルク体を大気圧下で液体窒素冷却することにより、直線的で均一な2テスラレベルの磁場空間を発生させる永久マグネットとすることを特徴とする強磁場小型超電導マグネット。   3. A high-field small superconducting magnet according to claim 1 or 2, wherein the laminated high-temperature superconducting bulk body is cooled with liquid nitrogen under atmospheric pressure, thereby generating a linear and uniform 2-Tesla level magnetic field space. A strong magnetic field compact superconducting magnet. 請求項3記載の強磁場小型超電導マグネットにおいて、前記永久マグネットをマイクロNMR用永久マグネットとして用いることを特徴とする強磁場小型超電導マグネット。   4. The strong magnetic field small superconducting magnet according to claim 3, wherein the permanent magnet is used as a permanent magnet for micro NMR.
JP2010159226A 2010-07-14 2010-07-14 High magnetic field small superconducting magnet Expired - Fee Related JP5583502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010159226A JP5583502B2 (en) 2010-07-14 2010-07-14 High magnetic field small superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010159226A JP5583502B2 (en) 2010-07-14 2010-07-14 High magnetic field small superconducting magnet

Publications (2)

Publication Number Publication Date
JP2012023160A true JP2012023160A (en) 2012-02-02
JP5583502B2 JP5583502B2 (en) 2014-09-03

Family

ID=45777199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010159226A Expired - Fee Related JP5583502B2 (en) 2010-07-14 2010-07-14 High magnetic field small superconducting magnet

Country Status (1)

Country Link
JP (1) JP5583502B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820116A (en) * 2012-05-04 2012-12-12 清华大学 High-temperature superconducting film magnet
WO2018021507A1 (en) * 2016-07-27 2018-02-01 新日鐵住金株式会社 Bulk magnet structure, magnet system for nmr using said bulk magnet structure, and magnetization method for bulk magnet structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07211538A (en) * 1994-01-20 1995-08-11 Hitachi Ltd Superconductive bulk magnet
JPH09232640A (en) * 1996-02-09 1997-09-05 Massachusetts Inst Of Technol <Mit> Permanent magnet system
JP2002006021A (en) * 2000-06-26 2002-01-09 Inst Of Physical & Chemical Res Nuclear magnetic resonance apparatus
JP2004022576A (en) * 2002-06-12 2004-01-22 Internatl Superconductivity Technology Center Super-conductive magnet made of high-temperature superconductive bulk material, and its manufacturing method
JP2005294471A (en) * 2004-03-31 2005-10-20 Japan Science & Technology Agency Method for magnetizing bulk super-conductor
JP2007129158A (en) * 2005-11-07 2007-05-24 Aisin Seiki Co Ltd Magnetic field generator and nuclear magnetic resonance unit
JP2008034692A (en) * 2006-07-31 2008-02-14 Aisin Seiki Co Ltd Superconductor, superconductive magnetic field generating element, superconductive magnetic field generating apparatus, and nuclear magnetic resonance apparatus
JP2009510477A (en) * 2005-10-03 2009-03-12 マサチューセッツ・インスティチュート・オブ・テクノロジー A system using ring magnets to obtain magnetic resonance spectra.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07211538A (en) * 1994-01-20 1995-08-11 Hitachi Ltd Superconductive bulk magnet
JPH09232640A (en) * 1996-02-09 1997-09-05 Massachusetts Inst Of Technol <Mit> Permanent magnet system
JP2002006021A (en) * 2000-06-26 2002-01-09 Inst Of Physical & Chemical Res Nuclear magnetic resonance apparatus
JP2004022576A (en) * 2002-06-12 2004-01-22 Internatl Superconductivity Technology Center Super-conductive magnet made of high-temperature superconductive bulk material, and its manufacturing method
JP2005294471A (en) * 2004-03-31 2005-10-20 Japan Science & Technology Agency Method for magnetizing bulk super-conductor
JP2009510477A (en) * 2005-10-03 2009-03-12 マサチューセッツ・インスティチュート・オブ・テクノロジー A system using ring magnets to obtain magnetic resonance spectra.
JP2007129158A (en) * 2005-11-07 2007-05-24 Aisin Seiki Co Ltd Magnetic field generator and nuclear magnetic resonance unit
JP2008034692A (en) * 2006-07-31 2008-02-14 Aisin Seiki Co Ltd Superconductor, superconductive magnetic field generating element, superconductive magnetic field generating apparatus, and nuclear magnetic resonance apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820116A (en) * 2012-05-04 2012-12-12 清华大学 High-temperature superconducting film magnet
WO2018021507A1 (en) * 2016-07-27 2018-02-01 新日鐵住金株式会社 Bulk magnet structure, magnet system for nmr using said bulk magnet structure, and magnetization method for bulk magnet structure
CN109477876A (en) * 2016-07-27 2019-03-15 新日铁住金株式会社 Block magnetic structure, using its NMR magnet system and block magnetic structure Magnitizing method
JPWO2018021507A1 (en) * 2016-07-27 2019-06-27 日本製鉄株式会社 Bulk magnet structure, NMR magnet system using the same, and magnetizing method of bulk magnet structure

Also Published As

Publication number Publication date
JP5583502B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
Leung et al. Ring-type electric current sensor based on ring-shaped magnetoelectric laminate of epoxy-bonded Tb0. 3Dy0. 7Fe1. 92 short-fiber/NdFeB magnet magnetostrictive composite and Pb (Zr, Ti) O3 piezoelectric ceramic
Zhang et al. Alternating current loss of superconductors applied to superconducting electrical machines
Cullen et al. Anisotropy of crystalline ferromagnets with defects
Zhang et al. Giant self-biased magnetoelectric response with obvious hysteresis in layered homogeneous composites of negative magnetostrictive material Samfenol and piezoelectric ceramics
Kitaguchi et al. Development of a Bi-2223 HTS magnet for 3T MRI system for human brains
Patel et al. Magnetic levitation between a slab of soldered HTS tape and a cylindrical permanent magnet
Dogruer et al. A study on magnetoresistivity, activation energy, irreversibility and upper critical field of slightly Mn added Bi-2223 superconductor ceramics
Bora et al. Bipolar switching of magnetization and tunable exchange bias in NdCr1− xMnxO3 (x= 0.0–0.30)
Wen et al. High temperature superconducting flux pumps for contactless energization
Morandi et al. Numerical Analysis and Experimental Measurements of Magnetic Bearings Based on ${\rm MgB} _ {2} $ Hollow Cylinders
Stearrett et al. Magnetic noise evolution in CoFeB/MgO/CoFeB tunnel junctions during annealing
Yang et al. Structural design and performance evaluation of FeCo/epoxy magnetostrictive composites
Feng et al. A compact bellows-driven diamond anvil cell for high-pressure, low-temperature magnetic measurements
JP5583502B2 (en) High magnetic field small superconducting magnet
Yang et al. Self-biased Metglas/PVDF/Ni magnetoelectric laminate for AC magnetic sensors with a wide frequency range
Kim et al. Persistent current mode of a 1-T-class HTS pancake coil for NMR/MRI applications
Yang et al. Viscous flux flow velocity and stress distribution in the Kim model of a long rectangular slab superconductor
Pošković et al. Effect of the Insulating Layer on the Properties of SMC Inductors
Ming Leung et al. High current sensitivity and large magnetoelectric effect in magnetostrictive–piezoelectric concentric ring
Jang et al. Development of a cryogen-free compact 3 T superconducting magnet for an electromagnetic property measurement system
JP5583501B2 (en) Simple superconducting magnet and manufacturing method thereof
Tateiwa et al. Magnetic measurements at pressures above 10 GPa in a miniature ceramic anvil cell for a superconducting quantum interference device magnetometer
Hardy et al. Two magnetic Grüneisen parameters in the ferromagnetic superconductor UGe 2
JP2015505957A (en) Usage of flexible thin film magnetic sensor element
Kim et al. Study on optimized configuration of stacked HTS bulk annuli for compact NMR application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140516

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140716

R150 Certificate of patent or registration of utility model

Ref document number: 5583502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees