JP3734630B2 - Conduction-cooled superconducting magnet system - Google Patents

Conduction-cooled superconducting magnet system Download PDF

Info

Publication number
JP3734630B2
JP3734630B2 JP30277598A JP30277598A JP3734630B2 JP 3734630 B2 JP3734630 B2 JP 3734630B2 JP 30277598 A JP30277598 A JP 30277598A JP 30277598 A JP30277598 A JP 30277598A JP 3734630 B2 JP3734630 B2 JP 3734630B2
Authority
JP
Japan
Prior art keywords
superconducting magnet
coil winding
permanent current
power supply
ripple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30277598A
Other languages
Japanese (ja)
Other versions
JP2000133513A (en
Inventor
征治 林
和幸 渋谷
剛 神門
聡 伊藤
一功 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP30277598A priority Critical patent/JP3734630B2/en
Publication of JP2000133513A publication Critical patent/JP2000133513A/en
Application granted granted Critical
Publication of JP3734630B2 publication Critical patent/JP3734630B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば理化学用NMR(核磁気共鳴)分析装置や磁場中単結晶引上げ装置など伝導冷却型超電導磁石装置に関する。
【0002】
【従来の技術】
一般に、永久電流超電導現象は、抵抗値0で大電流を流し得るという特徴を活かして大電流送電、強磁場発生機器などの各方面での利用が広がりつつある。特に、磁界強度が高い磁場を利用するNMR(Nuclear Magnetic Resomance)、ESR(Electron Spin Resomance)、ドハースファンアルフェン効果(半導体のフェルミレベル測定など)などの測定においては、発生磁場が高ければ高いほど分解能が高まり、また、不純物濃度やサンプル量など対象試料に対する制約も緩和される。このため、近年ますます高磁場化の傾向にある。
【0003】
この磁場発生手段として、例えば、鉄ポールピースに巻き付けた銅線に通電することで、鉄ポールピース間に強磁場を発生させる常電導磁石と、NbTiやNb3Snといった超電導線材を巻線して製作されたコイルに通電することによって強磁場を発生させる超電導磁石とがある。この常電導磁石は、鉄の磁気飽和によって略2T程度が上限となるが、上述のように高磁場化の進展が著しく、従って今日では超電導磁石が主流となりつつある。
【0004】
ところが、上記超電導磁石は、液体ヘリウムに浸して冷却し、この状態で使用するため、取り扱いが非常に煩雑である。この煩雑さを解消するものとして伝導冷却方式の超電導磁石が知られている。この伝導冷却方式の超電導磁石は、液体ヘリウムなどの冷却剤は一切使用せず、4.2K冷凍機コールドヘッドに超電導磁石を直接熱的に接触させ、熱伝導によって冷却するようにしたものである。
【0005】
【発明が解決しようとする課題】
この伝導冷却方式の超電導磁石は、液体ヘリウムなどの冷却剤を使用しないために煩雑さがないなど、非常に便利である反面、システム設計と製作に多くの制約条件が伴うという問題があった。すなわち、液体ヘリウム浸漬タイプの超電導磁石であれば、コイルの発生熱は液体ヘリウムが奪い去ってくれるのに対して、伝導冷却方式の超電導磁石では、固体熱伝導での冷却のために局所的な温度上昇が起りやすく、この局所的温度上昇はクエンチなど超電導状態の破壊につながる。したがって、いかなる条件でどのような温度上昇となるのかを正確に予測して設計することが重要となる。
【0006】
ところが、従来、この伝導冷却方式の超電導磁石を安定に動作させるための条件は統一的には把握できていなかった。例えば、複数束のコイル巻線のうちある一束分のコイルに対して、元の電源では安定に運転できていたものが電源を交換するとクエンチを起して励磁できなくなったり、また、特定の電源を用いたとき一束分のコイルは異常なく励磁できるのに他は励磁できないなどといった事態が生じていた。より高級な電源ほどリップルが少ないことから、かかる事態が励磁に際して生じにくいという一般的な傾向が見られるものの、これらの関係がどのように関連しているかについては把握できていないというのが実情であった。また、特に、ヒータをオンオフさせる方式の永久電流スイッチを用いた超電導磁石において、従来の液体ヘリウム浸漬タイプ向けに製作された永久電流運転のための励磁用電源は、伝導冷却方式では永久電流スイッチをオフにすることができず殆ど用を為さない状況であった。
【0007】
本発明は、上記従来の問題を解決するもので、伝導冷却型超電導磁石を励磁運転する際に、不必要に高価な電源を用いることなく、より安定な運転を行うことができる超電導磁石装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の伝導冷却型超電導磁石装置は、超電導線材のコイル巻線を有する超電導磁石と、この超電導磁石を熱伝導によって少なくとも臨界温度以下に冷却する冷凍機と、前記コイル巻線に接続された励磁用電源と、前記コイル巻線に並列接続された容量手段とを備え、前記励磁用電源からのリップルに起因してコイル巻線を流れる電流リップルの振幅が、(数)式を満足するように構成され、かつ前記容量手段は、静電容量Cが少なくとも前記臨界温度において(数3)式を満足する絶縁体材料で構成され、この絶縁体材料が、誘電率が温度の低下に従って増大する材料であることを特徴とするものである。
【0009】
【数3】

Figure 0003734630
【0010】
Tcr: 前記冷凍機の冷却ステージ温度
d: 前記超電導磁石と前記冷凍機のセカンドステージを繋ぐ伝熱導体の長さ
κ: 前記超電導磁石から前記冷却ステージまでの熱伝達係数
ω: 前記電源リップルの周波数
Im: 前記コイル巻線を流れる電流振幅
fn(Im): 前記コイル巻線を流れる電流振幅Imに対する交流損失の式
v: 前記超電導線材の占める体積
Tc(B): 磁場Bの発生時の前記超電導線材の臨界温度
L: 前記超電導磁石のインダクタンス
A:電源リップルの振幅
この構成により、電流リップルの振幅を抑制するなどして、上記(数)式を満足するように構成したので、伝導冷却型超電導磁石を励磁運転する際に、リップル成分の少ない不必要に高価な電源を用いることなく、より安定な励磁運転が可能となる。
【0011】
また、容量部材を超電導磁石に並列に接続し、また、この容量部材の容量Cが温度低下と共に急激に大きくなることで、超電導磁石のコイル巻線を流れる交流電流の振幅Imが上記(数)式を満足するようにしたので、上記(数)式によって超電導磁石のコイル巻線に流入するリップル振幅が大幅に低減されて、(数)式の交流損失が少なくなり、リップル成分が0.1パーセント程度の通常の励磁用電源であっても、より安定な励磁運転が可能となる。
【0012】
さらに、本発明の伝導冷却型超電導磁石装置において、超電導線材のコイル巻線を有する超電導磁石と、この超電導磁石に対して並設され超電導線材のコイル巻線を有する永久電流スイッチと、前記超電導磁石および永久電流スイッチを熱伝導によって少なくとも臨界温度以下に冷却する冷凍機と、前記超電導磁石および永久電流スイッチのコイル巻線に接続された励磁用電源と、前記超電導磁石のコイル巻線に並列接続された容量手段とを備え、前記励磁用電源からのリップルに起因して永久電流スイッチ内を流れる電流リップルの振幅が、(数)式を満足するように構成され、かつ前記容量手段は、静電容量C 1 が少なくとも前記臨界温度において(数4)式を満足する絶縁体材料で構成され、この絶縁体材料が、誘電率が温度の低下に従って増大する材料であることを特徴とする。
【0013】
【数4】
Figure 0003734630
【0014】
Tcr: 前記冷凍機の冷却ステージ温度
1: 前記永久電流スイッチと前記冷凍機を結ぶ伝熱媒体の長さ
κ: 前記超電導磁石から前記冷却ステージまでの熱伝達係数
ω: 前記電源リップルの周波数
Ip: 前記永久電流スイッチのコイル巻線を流れる電流振幅
fn(Ip): 前記永久電流スイッチのコイル巻線を流れる電流振幅Ipに対する交流損失の式
1: 前記永久電流スイッチにおけるコイル巻線の超電導線材の占める体積
κ: 前記超電導磁石から前記冷却ステージまでの熱伝達係数
Tc1(B): 前記永久電流スイッチにおけるコイル巻線の臨界温度
1: 永久電流スイッチ用コイルのインダクタンス
A:電源リップルの振幅
この構成により、電流リップルの振幅が上記(数)式を満足するように構成したので、永久電流スイッチのコイル巻線の温度上昇が抑制されて、より安定な励磁運転と共に永久電流運転を行うことが可能となる。
【0015】
また、容量部材を永久電流スイッチに並列に接続し、この容量部材の容量Cが温度低下と共に急激に大きくなることで、永久電流スイッチのコイル巻線を流れる交流電流の振幅Ipが上記(数8)式を満足するようにしたので、上記(数)式によって永久電流スイッチのコイル巻線に流入するリップル振幅が大幅に低減され、(数)式の交流損失が少なくなり、より安定な励磁運転と共に永久電流運転を行うことが可能となる。
【0016】
さらに、好ましくは、本発明の伝導冷却型超電導磁石装置におけるコイル巻線のフィラメント径を、前記式、すなわち(数3)式又は(数4)式を満足するように小径化する。
【0017】
この構成により、コイル巻線のフィラメント径を小径化すれば、ヒステリシス損失がフィラメント径に比例することに基づき、同じ電流リップルであっても発生熱量が小さくなって超電導磁石の温度上昇が小さくなり、より安定な励磁運転さらに永久電流運転を行うことが可能となる。
【0018】
さらに、好ましくは、本発明の伝導冷却型超電導磁石装置における永久電流スイッチのコイル巻線に流れる電流振幅Ipを(数4)式が満足するように小さく構成する。
【0023】
この構成により、電流振幅Ipを小さくすると、交流損失が小さくなり、スイッチコイルの温度上昇が抑制されて、より安定な励磁運転さらに永久電流運転を行うことが可能となる。
【0019】
さらに、好ましくは、本発明の伝導冷却型超電導磁石装置における励磁用電源がトランジスタ電源である。
【0020】
この構成により、トランジスタ電源のように電源リップルが低リップル率であれば、交流損失が小さくなり、超電導磁石や永久電流スイッチのコイル巻線の温度上昇が小さくなって、より安定な励磁運転さらに永久電流運転を行うことが可能となる。
【0021】
【発明の実施の形態】
以下、本発明に係る伝導冷却型超電導磁石装置の実施形態について図面を参照して説明するが、本発明は以下に示す各実施形態に限定されるものではない。
【0022】
(実施形態1)
図1は本発明の実施形態1における超電導磁石装置を模式的に示す回路図である。図1において、超電導磁石装置1は、超電導線材のコイル巻線2を有する超電導磁石3と、この超電導磁石3を伝熱導体に接触させて伝熱導体を介した熱伝導によって冷却する後述する冷凍機を含む真空容器のクライオスタット4と、このコイル巻線2に電力供給する励磁用電源5とを備えている。
【0023】
図2は図1の超電導磁石装置の概略縦断面構成を示す模式図である。図2において、真空容器のクライオスタット4の外筒内側には、輻射シールド6が設けられて輻射シールド室7が配設されている。この輻射シールド室7の右上には、冷凍機72,73の冷凍機ファーストステージ71が固定されており、冷凍機のセカンドステージ77は伝熱用あみ線76に熱的接触を保つように配設されている。
【0024】
また、輻射シールド室7内には、上下方向に中空孔を有する枠体74に超電導コイル巻線2が巻回された超電導磁石3と、この超電導磁石3の枠体74の下側に一端上部が熱伝導可能なように密着した伝熱導体の伝熱用銅板75と、この伝熱用銅板75の他端部上に下端部が熱伝導可能なように密着した伝熱導体の伝熱用銅編み線部76と、この伝熱用銅編み線部76の上端部が冷凍機のセカンドステージ77に熱伝導可能なように密着固定されている。一方、励磁用電源5からの電源供給は入力端子61を介して為された後に、電流導入用リード線62により、超導電体でかつ熱遮断体の酸化物超導電体63を介して超電導磁石3のコイル巻線2に電源供給されるようになっている。
【0025】
なお、64は酸化物超導電体63を絶縁しつつ、伝熱用銅板75側に熱を逃がして冷却するためのものである。また、65は本実施形態1では短絡状態でなにもないが、次の実施形態2のコイル巻線2に並列に介設された容量部材や、さらに次の実施形態3のコイル巻線2に並列に介設された永久電流スイッチ(PCS)に該当する。
【0026】
この伝導冷却型の超電導磁石3の励磁不安定性は電源リップルに伴う超電導磁石3の交流損失(交流ロス)に起因することに着目して、交流損失の小さい超電導線材(本実施形態1では超電導磁石3のフィラメント径を小径化する)を超電導磁石3の作製に当たって採用することと、冷凍機と超電導磁石3との間の伝熱導体(銅編み線)を介した伝熱抵抗を低減する構成(本実施形態1では冷凍機のセカンドステージと超電導磁石3を熱的に接続している銅編み線の断面積を2倍にする)している。ここで、フィラメント径とは、例えば1本の超電導導体内に収容された5万本程度の直径1〜200μmの超電導細線の径である。
【0027】
このようにすることにより、超電導磁石装置1において、超電導磁石3を熱的に接触させている冷凍機の冷却ステージ温度(セカンドステージ77のステージ温度)をTcr、励磁用電源5の電流振幅xに対する交流損失の式をfn(x)、コイル巻線2の超電導線材の占める体積をv、超電導磁石3と冷凍機のセカンドステージ77をつなぐ伝熱導体(伝熱用銅板75および伝熱用銅編み線部76)の長さをd、超電導磁石3のコイル巻線2を流れる交流電流の振幅をIm、超電導磁石3から冷凍機の冷却ステージ(セカンドステージ77)までの熱伝達係数をκ、磁場Bの発生時の超電導線材の臨界温度をTc(B)、超電導磁石3のインダクタンスをL、励磁用電源5からの電源リップルの振幅をA、電源リップルの周波数をωとした場合に、励磁用電源5から超電導磁石3のコイル巻線2を流れる電流の電源リップルに起因する交流損失による発熱を抑えたり、熱伝達を良好にすることで、下記の(数)式を満足するように構成している。
【0028】
【数
Figure 0003734630
【0029】
ここで、本発明の実施形態1の意義を明確化するために、まず、比較例1,2から詳細に説明する。
【0030】
図3は従来の液体ヘリウム浸漬型超電導磁石装置をそのまま伝導冷却型に適応した場合を模式的に示す比較例1の回路図である。図3において、励磁用電源11はスイッチング電源などの安価な一般的な電源であり、その電源のリップル成分は0.1パーセント程度である。また、超電導磁石12のコイル巻線13は、自己インダクタンス4.3Hを有し、液体ヘリウム浸漬型では同励磁用電源11により安定して5.3Tの磁場を発生していたものである。超電導磁石12のコイル巻線13は真空容器のクライオスタット14内に設けられている。
【0031】
この伝導冷却型の超電導磁石12のコイル巻線13に対する励磁を1T/5分の励磁速度で試みたところ、0.3Tに達したところでクエンチした。また、この励磁速度を1T/60分程度に下げても0.33Tに達したところでクエンチした。さらに、伝導冷却型超電導磁石12にセットしている温度計で測温した結果は、伝導冷却型超電導磁石12の温度は励磁前では3.8Kであったが、クエンチを生じた時点では6.8Kに上昇していた。したがって、液体ヘリウム浸漬型超電導磁石をそのまま伝導冷却型の超電導磁石12として適応しても、安定に励磁することはできない。
【0032】
次に、励磁用電源11を電源リップル率の小さいものに交換した比較例2について説明する。
【0033】
この励磁用電源15はトランジスタ電源などの電源リップル成分が0.01パーセント程度のものである。また、このときの励磁速度を1T/5分で試みたところ5Tの磁場まで安定に励磁でき、5.1Tに達する手前でクエンチした。また、この励磁速度を1T/60分程度に下げて励磁すると、5.3Tの磁場まで安定に励磁することができた。このとき、超電導マグネツト12にセットしている温度計で測温した結果は5.2K以下に保たれていた。
【0034】
このようにして、安定に励磁ができることを確認した後に、5T、4T、3T、2T、1Tの各磁場で永久電流運転に移行することを試みた。しかし、上記全ての磁界強度の場合においても、永久電流スイッチ(図示せず)が常に熱を発生した状態となり、オンオフのコントロールが不可能であった。つまり、この電源リップル成分が0.01パーセントの高性能な励磁用電源15を採用したとしても永久電流モード運転は不可能であった。
【0035】
したがって、電源リップル成分をより低い方向にする電源性能の高いトランジスタ電源を採用することが伝導冷却型の超電導磁石12にとっては好ましい。
【0036】
次に、伝導冷却型の超電導磁石12における励磁時の不安定要因を特定するべく、まず、本実施形態1の具体例として、比較例1と同じインダクタンスを有する一方、比較例1,2のコイル巻線13と、超電導線材のフィラメント径の異なるコイル巻線を用いて比較例1,2と同様な実験を行った。なお、コイル巻線2は、超電導線材の臨界電流が比較例1,2と略等しいものの、上記比較例1,2のものでのフィラメント径は約120μmであるのに対して、本実施形態1の具体例では45μmである。また、本実施形態1の具体例の伝熱機構は比較例1の場合と全く同様である。励磁用電源11に接続する励磁前後でのマグネット温度を測定した。接続前は3.8Kで比較例1と同じであり、励磁中は励磁速度に応じて5.5K〜6.3Kであった。したがって、フィラメントが小径の超電導線材を使用することによって、超電導磁石3の温度上昇が抑制されており、このことは、フィラメント径が交流損失の大小に影響することを示している。
【0037】
すなわち、伝導冷却型超電導磁石の励磁の不安定性は、電源リップルに伴う電流がコイル巻線2に流れ、これに伴う交流損失がマグネット温度上昇を引き起こしているとの説明ができる。また、本実施形態1においては、1T/5分の励磁速度では4.1Tの磁場まで、1T/60分の励磁速度では4.4Tの磁場まで安定に励磁可能であった。さらに、冷凍機のセカンドステージと超電導磁石3を熱的に接続している銅編み線の断面積を2倍にしたところ、励磁時の超電導磁石3の温度上昇は小さくなり、1T/5分の励磁速度では4.3Tの磁場まで、1T/60分の励磁速度では4.5Tの磁場まで安定に励磁することができるようになった。これらの状況から、伝導冷却型超電導磁石3を安定に励磁できる条件として統一的に表現すると、前記(数)式のように表現される。
【0038】
この超電導磁石3に使われている超電導線材の臨界電流Ic(A)を磁場B(T)と臨界温度(K)の関数として示したのが図4である。図4から判るように、磁場B(T)が強いほど、また、臨界温度(K)が高いほど流せる超電導電流は小さくなることが判る。この超電導磁石3は例えば95Aを流したときに磁場B(T)が5.3Tの磁場を発生するように設計されているが、図4を見ると、5.3Tの磁場を発生させることができるためには、超電導磁石3に使われている超電導線材の臨界温度を5.2K以下にする必要があることが判る。したがって、上記(数)式によれば、冷却ステージ温度Tcrの項と、交流損失による発熱の式fn(Im)を含む項との加算温度値が、超電導線材の臨界温度Tc(5.3T)=5.2K未満であることが必要である。この条件を満足するときに、より安定な超電導運転を行うことができる。また、この(数)式中の電流振幅Imに対する交流損失の式fn(Im)は一般に下記の(数)式のように表現され得る。この文献は、Y.Iwasa;「Case Studies in Superconducting Magnets p.264;Plenum Press,1994」である。
【0039】
【数6】
Figure 0003734630
【0040】
ここで、上記(数)式におけるk1,k2,k3は定数であり、φは線材のフィラメ
ント径である。この(数)式の小括弧内がヒステリシス損失に対応し、Im2の項がカップリング損失の項に対応している。フィラメント径φの小さな線材を用いると、このヒステリシス損失がフィラメント径φに比例するということに基づき同じ電流リップルであっても発生熱量が小さくなり、温度上昇が抑制されるのである。また、銅編み線の断面積を2倍(または線径が同じで銅編み線の数を2倍)にすることによって、上記(数)式の、超電導磁石3から冷凍機の冷却ステージまでの熱伝達係数κが大きくなり、超電導磁石3で同じ発熱があっても熱伝達係数κが大きい方が有効に熱が奪われて温度上昇が小さく済むのである。さらに、励磁時の電流変化を周波数ωが低い大きなリップル振幅の一種とみなせば、上記(数)式の範囲で議論することができる。励磁速度を大きくすることは、上記(数)式のリップル周波数ωを大きくすることに相当するのである。
【0041】
このように、本実施形態1からは伝導冷却型の超電導磁石3の励磁不安定性は電源リップルに伴う超電導磁石3の交流損失に起因していることが判り、交流損失の小さい超電導線材を超電導磁石3の作製にあたって採用することと、冷凍機と超電導磁石3との間の熱抵抗を小さくすることが有効である。
【0042】
以上のことから伝導冷却型超電導磁石を安定に励磁運転できる条件として、上記(数)式を満足する状況を作り出すことを統一的に表現することができる。
【0043】
(実施形態2)
本実施形態2では、超電導磁石のコイル巻線に並列に容量部材を設けることで、超電導磁石に通電されるリップル振幅自体を小さくする場合である。
【0044】
図5は本発明の実施形態2における超電導磁石装置を模式的に示す回路図である。図5において、超電導磁石装置31は、超電導線材のコイル巻線32を有する超電導磁石33と、超電導磁石33のコイル巻線に並列に設けられた容量部材34と、これらの超電導磁石33および容量部材34を接触冷却する後述する冷凍機を含むクライオスタット35と、このコイル巻線32に電力供給する励磁用電源36とを備えている。この容量部材34を図2の構成に適応すれば部材65に該当し、他は同様である。
【0045】
このように、超電導磁石装置31は、超電導磁石33のコイル巻線に並列に、絶縁体の誘電率が温度低下に伴って上昇する材料の容量部材34を超電導磁石33と共に冷却する構成とすることで、より安定な励磁運転を行うべく、超電導磁石33のコイル巻線32を流れる交流電流の振幅Imが、下記の(数)式を満足するように構成している。
【0046】
【数7】
Figure 0003734630
【0047】
この容量部材34は通常のコンデンサではなく、電極間の絶縁体の材質としてSrTiO3を採用している。このSrTiO3は温度低下と共にその誘電率が急激に上昇することが知られている。典型的には、室温から4.2Kに冷却すると、その誘電率は3桁以上大きくなる。本実施形態2においては、この容量部材34も超電導磁石33のコイル巻線とともに冷却することが重要である。室温で容量Cが125μFの容量部材34を接続して超電導磁石33のコイル巻線とともに冷却した。当然、この容量Cは誘電率に比例して3桁以上増大する。
【0048】
この場合の伝熱機構は、上記実施形態1と同様にして励磁用電源36に接続する前後でのマグネット温度を測定した。その接続前は3.8Kで実施形態1の場合と同様であって、それを接続して励磁中は1T/5分の励磁速度であっても5.2K以下の温度であり、5.3Tの磁場まで安定に励磁運転することができた。また、容量部材34を超電導磁石33のコイル巻線に並列に接続し、この容量部材34の容量Cが温度低下と共に急激に大きくなるため、上記(数)式によって超電導磁石33の本体に流入するリップル振幅が大幅に低減されるため、上記(数)式の交流損失が少なくなり、電源リップルが0.1パーセント程度の例えば比較例1の励磁用電源11や実施形態1の励磁用電源5であっても、より安定な励磁運転が可能となった。
【0049】
(実施形態3)
本実施形態3では、永久電流運転が可能なように励磁用電源の電源リップル率が0.01パーセントよりもさらに低い0.004パーセントとした場合である。
【0050】
図6は本発明の実施形態3における超電導磁石装置を模式的に示す回路図である。図6おいて、超電導磁石装置41は、超電導線材のコイル巻線42を有する超電導磁石43と、超電導磁石43の本体に並列に設けられたヒータよりなり永久電流を流すための熱式永久電流スイッチ44と、これらの超電導磁石43および熱式永久電流スイッチ44を接触冷却する後述する冷凍機を含むクライオスタット45と、このコイル巻線2に電力供給する電源リップルが0.01パーセント以下の0.004パーセントの励磁用電源46とを備えている。熱式永久電流スイッチ44を図2に適応すれば部材65に該当し、他は同様である。
【0051】
ここで、以下にさらに詳しく説明する。上記実施形態2の励磁用電源34を用いて永久電流運転を試みたところやはり永久電流モードへの切替は不可能であった。永久電流スイッチ44をオンオフできる条件は、上記実施形態1と同様に、永久電流スイッチ44に流入する電源リップルに起因する交流損失が温度上昇を臨界温度以下に抑えることである。
【0052】
この永久電流スイッチ44のコイル巻線のインダクタンスは、主コイル巻線42のインダクタンスに比較して数桁小さいので、図6の回路においてはリップル電流の大部分は永久電流スイッチ44のコイル巻線の方に流れてしまい、永久電流スイッチ44のコントロールが効かなくなる。
【0053】
したがって、永久電流運転の場合には、電源リップルに対する制約は更に厳しくなる。様々な条件を加味して永久電流運転ができるための条件は、下記の(数)式で表現できる。この(数)式も(数)式と同様に解釈できる。すなわち、永久電流スイッチ44に流れる電源リップルが原因で発生する発熱によってスイッチコイルの温度が所定値(超電導臨界温度)以上に上昇しないようにするということである。
【0054】
つまり、超電導磁石43および熱式永久電流スイッチ44を熱的に接触させている冷凍機の冷却ステージ温度をTcr、超電導磁石から冷却ステージまでの熱伝達係数をκ、永久電流スイッチ用コイルのインダクタンスをL1、永久電流スイッチ44と冷凍機を結ぶ伝熱媒体の長さをd1、永久電流スイッチ44に使われているコイル巻線の超電導線材の占める体積をv1、永久電流スイッチ44に使われているコイル巻線の超電導線材の臨界温度をTc1(B)、永久電流スイッチ44の本体のコイル巻線を流れる交流電流の振幅をIp、永久電流スイッチを流れる電流振幅Ipに対する交流損失の式をfn(Ip)、超電導磁石43のインダクタンスをL、励磁用電源46からの電源リップルの振幅をA、電源リップルの周波数をωとした場合に、電源リップルが0.01パーセント以下の例えば0.004パーセント程度の低リップル率の励磁用電源46を用いることで、(数)式を満足するように構成している。
【0055】
【数8】
Figure 0003734630
【0056】
具体的には、上記実施形態1の比較例2において、電源リップルが0.01パーセントの高性能な励磁用電源15に、大きい容量成分を付加する改造を加えて電源リップルのパーセントがより低い励磁用電源46とすることで、電源リップルが0.01パーセントよりもさらに低い0.004パーセントとなったときに、永久電流スイッチ44による永久電流運転が実現した。このように、(数)式のIpを小さくしたため、上記(数)式中の交流損失が小さくなり、永久電流スイッチのコイル巻線の温度上昇が小さくなって、より安定な励磁運転さらに永久電流運転を行うことができた。このとき、上記(数)式が成立している。
【0057】
(実施形態4)
本実施形態4では、上記実施形態3に加えて、永久電流スイッチに並列に容量部材を接続することで、永久電流スイッチに流れる電源リップルの振幅自体を小さくする場合である。
【0058】
図7は本発明の実施形態4における超電導磁石装置を模式的に示す回路図である。図7において、超電導磁石装置51は、超電導線材のコイル巻線52を有する超電導磁石53と、超電導磁石53の本体に並列に設けられ永久電流を流すためのヒータを有する熱式永久電流スイッチ54と、これらの超電導磁石53の本体および熱式永久電流スイッチ54に並列に設けられた容量部材55と、これらの超電導磁石53、永久電流スイッチ54および容量部材55を接触冷却する冷凍機を含むクライオスタット56と、このコイル巻線52などに電力供給する励磁用電源57とを備えている。これらの永久電流スイッチ54および容量部材55を図2の構成に適応すれば、例えば永久電流スイッチ54を部材65に該当させると、この部材65に並列に容量部材55が介設され、これらの永久電流スイッチ54および容量部材55が伝熱用銅板75に熱伝導可能なように密着され、他は同様である。
【0059】
このように、超電導磁石53に並列に、絶縁体の誘電率が温度低下に伴って上昇する材料の容量部材55を設け、この容量部材55を超電導磁石53および永久電流スイッチ54と共に冷却することで、永久電流スイッチ54の本体のコイル巻線を流れる交流電流の振幅Ipが、下記の(数)式を満足するように構成している。
【0060】
【数9】
Figure 0003734630
【0061】
上記実施形態3では、高性能な励磁用電源15に更に改造を加えて電源リップルの少ない励磁用電源46とし、上記(数)式を満たすようにした。つまり、この励磁用電源46は、電源リップルが0.01パーセントという元々高性能である励磁用電源15に更に手を加えて電源リップルを低く抑えて改造したものであるからコスト高である。そこで、本実施形態4では、永久電流スイッチ54に流れる電源リップルの振幅自体を小さくすることを試みた。つまり、図7に示すように、永久電流スイッチ54に並列に容量部材55を接続し、上記実施形態2と同様に、この容量部材55の電極間の絶縁体の材質としてSrTiO3を採用した。この容量部材55も超電導磁石53および永久電流スイッチ54と同時に冷却され、それらと同時に急激に容量が大きくなるようになっている。典型的には、室温から4.2Kに冷却すると、容量部材55の容量C1は3桁以上大きくなる。このように、本実施形態4においては室温で容量C1が230μFの容量部材55を超電導磁石53および永久電流スイッチ54に並列に接続して、これらの超電導磁石53および永久電流スイッチ54と共に冷却した。
【0062】
この場合、伝熱機構は実施形態3と全く同様に構成して、改造前の電源リップル0.01パーセントである励磁用電源57を接続した。この状態で、永久電流運転を試みたところ任意の発生磁場で永久電流モードへの移行ができた。容量部材55を永久電流スイッチ54に並列に接続し、この容量部材55の容量C1が温度低下と共に急激に大きくなるため、上記(数)式で表現されるように、永久電流スイッチ54に流入する電流リップルの振幅が大幅に低減され、交流損失の式fn(Ip)を含む交流発熱の項が小さくなって、冷却ステージ温度Tcrの項と、発熱の式fn(Ip)を含む項との加算温度値が、超電導線材の臨界温度Tc1(B)以下となって、更に励磁用電源を改造せずとも永久電流モード運転ができた。
【0063】
なお、本発明の実施形態2,4において、容量部材に用いられる絶縁体の材質としてSrTiO3を採用したが、これに限らず、温度低下と共に誘電率が増大する材料を用いればよい。
【0064】
【発明の効果】
以上のように請求項1によれば、電源リップルの少ない不必要に高価な電源を用いることなく、電源リップルの振幅を抑制して、電源リップルの振幅が上記(数1)式を満足するように構成したため、伝導冷却型超電導磁石を励磁運転する際に、より安定な励磁運転を行うことができる。
【0065】
また、容量部材を超電導磁石に並列に接続することで、超電導磁石本体のコイル巻線を流れる交流電流の振幅Imが上記(数)式を満足するようにしたため、上記(数)式によって超電導磁石本体に流入するリップル振幅を大幅に低減し、上記(数)式の交流損失を少なくできて、電源リップル率が例えば0.1パーセント程度の通常の励磁用電源であっても、より安定な励磁運転を行うことができる。また、この容量部材の容量Cが温度低下と共に急激に大きくすれば、いっそうその効果を奏することができる。
【0066】
さらに、請求項2によれば、永久電流スイッチを流れる電流リップルが上記(数)式を満足するように構成したため、スイッチコイルの温度上昇を小さくできて、より安定な励磁運転と共に永久電流運転を行うことができる。
【0067】
さらに、容量部材を永久電流スイッチに並列に接続し、この容量部材の容量C1が温度低下と共に急激に大きくなることで、永久電流スイッチのコイル巻線を流れる交流電流の振幅Ipが上記(数)式を満足するようにしたため、上記(数)式によって永久電流スイッチのコイル巻線に流入するリップル振幅を大幅に低減でき、(数)式の交流損失を少なくできて、より安定な励磁運転と共に永久電流運転を行うことができる。また、この容量部材の容量Cが温度低下と共に急激に大きくすれば、いっそうその効果を奏することができる。
【0068】
さらに、請求項によれば、超電導磁石のコイル巻線のフィラメント径を小径化することで、発生熱量が小さくなって、超電導磁石の温度上昇が抑制され、より安定な励磁運転とすることができる。
【0069】
さらに、請求項によれば、交流電流の振幅Ipを小さくすると、交流損失が小さくなり、スイッチコイルの温度上昇が抑制され、より安定な励磁運転さらに永久電流運転を行うことができる。
【0070】
さらに、請求項によれば、トランジスタ電源のように電源リップルが低リップル率とすると、交流損失が小さくなり、超電導磁石や永久電流スイッチのコイル巻線の温度上昇が小さくなって、より安定な励磁運転さらに永久電流運転を行うことができる。
【図面の簡単な説明】
【図1】 本発明の実施形態1における超電導磁石装置を模式的に示す回路図である。
【図2】 図1の超電導磁石装置の概略縦断面構成を示す模式図である。
【図3】 従来の液体ヘリウム浸漬型超電導磁石装置をそのまま伝導冷却型に適応した場合を模式的に示す比較例1の回路図である。
【図4】 超電導線材の臨界電流Ic(A)を磁場B(T)と温度(K)の関数として示した図である。
【図5】 本発明の実施形態2における超電導磁石装置を模式的に示す回路図である。
【図6】 本発明の実施形態3における超電導磁石装置を模式的に示す回路図である。
【図7】 本発明の実施形態4における超電導磁石装置を模式的に示す回路図である。
【符号の説明】
1,31,41,51 超電導磁石装置
2,32,42,52 コイル巻線
3,33,43,53 超電導磁石
4,35,45,56 クライオスタット
5,36,46,57 励磁用電源
34,55 容量部材
44,54 永久電流スイッチ
71 冷凍機ファーストステージ
72,73 冷凍機
75 伝熱用銅板
76 伝熱用銅編み線部
77 冷凍機セカンドステージ[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a conduction-cooled superconducting magnet device such as an NMR (nuclear magnetic resonance) analyzer for physics and chemistry or a single crystal pulling device in a magnetic field.
[0002]
[Prior art]
  In general, the permanent current superconducting phenomenon is being used in various fields such as high-current power transmission and strong magnetic field generators by utilizing the feature that a large current can flow with a resistance value of 0. Especially in measurements such as NMR (Nuclear Magnetic Resomance), ESR (Electron Spin Resomance), and Dohers van Alphen effect (such as measuring the Fermi level of semiconductors) using a magnetic field with high magnetic field strength, the higher the generated magnetic field, the higher As the resolution increases, restrictions on the target sample such as the impurity concentration and the sample amount are alleviated. For this reason, in recent years, there is an increasing trend toward higher magnetic fields.
[0003]
  As this magnetic field generating means, for example, a normal conducting magnet that generates a strong magnetic field between iron pole pieces by energizing a copper wire wound around the iron pole piece, and NbTi or NbThreeThere is a superconducting magnet that generates a strong magnetic field by energizing a coil manufactured by winding a superconducting wire such as Sn. This normal conducting magnet has an upper limit of about 2T due to the magnetic saturation of iron. However, as described above, the development of a high magnetic field is remarkable, and thus superconducting magnets are becoming mainstream today.
[0004]
  However, the superconducting magnet is immersed in liquid helium, cooled, and used in this state, so that handling is very complicated. A conductive cooling superconducting magnet is known as a means for eliminating this complexity. This conduction cooling type superconducting magnet does not use any coolant such as liquid helium, and the superconducting magnet is brought into direct thermal contact with the cold head of the 4.2K refrigerator and cooled by heat conduction. .
[0005]
[Problems to be solved by the invention]
  This conduction cooling type superconducting magnet is very convenient because it does not use a coolant such as liquid helium. However, there is a problem that many restrictions are imposed on system design and production. That is, in the case of a liquid helium immersion type superconducting magnet, the heat generated by the coil is taken away by the liquid helium, whereas in the conduction cooling type superconducting magnet, a local heat conduction cooling is required. The temperature rises easily, and this local temperature rise leads to destruction of the superconducting state such as quenching. Therefore, it is important to design by predicting exactly what temperature rise will occur under what conditions.
[0006]
  However, conventionally, the conditions for stably operating the superconducting magnet of this conduction cooling method have not been grasped uniformly. For example, for a bundle of coils in a bundle of coils, a coil that was able to operate stably with the original power supply cannot be excited due to quenching when the power supply is replaced, When using a power supply, one bundle of coils could be excited without anomalies, but others could not be excited. Higher-grade power supplies have less ripple, so the general tendency is that this situation is less likely to occur during excitation, but the reality is that we do not know how these relationships are related. there were. In particular, in a superconducting magnet using a permanent current switch with a heater on / off method, the excitation power source for permanent current operation manufactured for a conventional liquid helium immersion type has a permanent current switch in the conduction cooling method. It was a situation that could not be turned off and hardly used.
[0007]
  The present invention solves the above-described conventional problems, and a superconducting magnet device that can perform more stable operation without using an unnecessarily expensive power source when exciting a conduction-cooled superconducting magnet. The purpose is to provide.
[0008]
[Means for Solving the Problems]
  The conduction cooling type superconducting magnet apparatus of the present invention includes a superconducting magnet having a coil winding of a superconducting wire, a refrigerator for cooling the superconducting magnet to at least a critical temperature by heat conduction, and an excitation connected to the coil winding. Power supply forCapacity means connected in parallel to the coil winding;And the amplitude of the current ripple flowing through the coil winding due to the ripple from the excitation power source is (several3Is configured to satisfy the formulaThe capacitance means is made of an insulating material having a capacitance C satisfying the formula (3) at least at the critical temperature, and the insulating material is a material whose dielectric constant increases as the temperature decreases.It is characterized by this.
[0009]
[Equation 3]
Figure 0003734630
[0010]
  Tcr: Cooling stage temperature of the refrigerator
  d: Length of the heat transfer conductor connecting the superconducting magnet and the second stage of the refrigerator
  κ: Heat transfer coefficient from the superconducting magnet to the cooling stage
  ω: frequency of the power supply ripple
  Im: current amplitude flowing through the coil winding
  fn (Im): Expression of AC loss with respect to current amplitude Im flowing through the coil winding
  v: Volume occupied by the superconducting wire
  Tc (B): critical temperature of the superconducting wire when the magnetic field B is generated
  L: Inductance of the superconducting magnet
  A: Power ripple amplitude
  This configuration suppresses the amplitude of the current ripple.3Therefore, when the conduction cooled superconducting magnet is excited, a more stable excitation operation can be performed without using an unnecessarily expensive power source with little ripple component.
[0011]
  Also,The capacity member is connected in parallel to the superconducting magnet, and the capacity C of the capacity member increases rapidly as the temperature decreases, so that the amplitude Im of the alternating current flowing through the coil winding of the superconducting magnet is3) Is satisfied, so the above (number3The amplitude of the ripple flowing into the coil winding of the superconducting magnet is greatly reduced by6The AC loss in equation (5) is reduced, and even a normal excitation power supply with a ripple component of about 0.1% can be used for more stable excitation operation.
[0012]
  Furthermore, in the conduction cooling type superconducting magnet apparatus of the present invention, a superconducting magnet having a coil winding of a superconducting wire, a permanent current switch having a coil winding of the superconducting wire arranged in parallel to the superconducting magnet, and the superconducting magnet And a refrigerator that cools the permanent current switch to at least a critical temperature by heat conduction, and an excitation power source connected to the superconducting magnet and the coil winding of the permanent current switch;Capacity means connected in parallel to the coil winding of the superconducting magnet;And the amplitude of the current ripple flowing in the permanent current switch due to the ripple from the excitation power source is (several4Is configured to satisfy the formulaAnd the capacitance means includes a capacitance C 1 Is made of an insulator material that satisfies the formula (4) at least at the critical temperature, and the insulator material is a material whose dielectric constant increases as the temperature decreases.It is characterized by being.
[0013]
[Expression 4]
Figure 0003734630
[0014]
  Tcr: Cooling stage temperature of the refrigerator
  d1: Length of heat transfer medium connecting the permanent current switch and the refrigerator
  κ: Heat transfer coefficient from the superconducting magnet to the cooling stage
  ω: frequency of the power supply ripple
  Ip: current amplitude flowing through the coil winding of the permanent current switch
  fn (Ip): AC loss equation for current amplitude Ip flowing through the coil winding of the permanent current switch
  v1: Volume occupied by superconducting wire of coil winding in permanent current switch
  κ: Heat transfer coefficient from the superconducting magnet to the cooling stage
  Tc1(B): critical temperature of coil winding in the permanent current switch
  L1: Inductance of permanent current switch coil
  A: Power ripple amplitude
  With this configuration, the amplitude of the current ripple is4), The temperature rise of the coil winding of the permanent current switch is suppressed, and the permanent current operation can be performed together with the more stable excitation operation.
[0015]
  AlsoThe capacity member is connected in parallel to the permanent current switch, and the capacity C of the capacity member increases rapidly with a decrease in temperature, so that the amplitude Ip of the alternating current flowing through the coil winding of the permanent current switch is the above (Equation 8). Since the expression is satisfied, the above (number4The ripple amplitude flowing into the coil winding of the permanent current switch is greatly reduced by4The AC loss of the formula (1) is reduced, and the permanent current operation can be performed together with the more stable excitation operation.
[0016]
  Furthermore, preferably, the filament diameter of the coil winding in the conduction-cooling superconducting magnet apparatus of the present invention,The above formula, that is, the formula (3) or(Equation 4)The expressionReduce the diameter to satisfy.
[0017]
  With this configuration, if the filament diameter of the coil winding is reduced, based on the fact that the hysteresis loss is proportional to the filament diameter, the amount of generated heat is reduced even with the same current ripple, and the temperature rise of the superconducting magnet is reduced, More stable excitation operation and permanent current operation can be performed.
[0018]
  Further preferably, the current amplitude Ip flowing in the coil winding of the permanent current switch in the conduction-cooling superconducting magnet apparatus of the present invention is preferable.(The size is made small so that the equation (4) is satisfied.
[0023]
  With this configuration, when the current amplitude Ip is reduced, the AC loss is reduced, the temperature rise of the switch coil is suppressed, and more stable excitation operation and permanent current operation can be performed.
[0019]
  Further preferably, the excitation power supply in the conduction cooling superconducting magnet apparatus of the present invention is a transistor power supply.
[0020]
  With this configuration, if the power supply ripple is a low ripple ratio like a transistor power supply, the AC loss is reduced, the temperature rise of the coil of the superconducting magnet and the permanent current switch is reduced, and more stable excitation operation and more permanent operation. Current operation can be performed.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, although the embodiment of the conduction cooling superconducting magnet device according to the present invention will be described with reference to the drawings, the present invention is not limited to the following embodiments.
[0022]
  (Embodiment 1)
  FIG. 1 is a circuit diagram schematically showing a superconducting magnet apparatus according to Embodiment 1 of the present invention. In FIG. 1, a superconducting magnet device 1 includes a superconducting magnet 3 having a coil winding 2 of a superconducting wire, and a refrigeration described later that cools the superconducting magnet 3 by contacting the heat conducting conductor and conducting heat through the heat conducting conductor. A cryostat 4 of a vacuum vessel including a machine and an excitation power source 5 for supplying power to the coil winding 2 are provided.
[0023]
  FIG. 2 is a schematic diagram showing a schematic vertical cross-sectional configuration of the superconducting magnet apparatus of FIG. In FIG. 2, a radiation shield 6 is provided and a radiation shield chamber 7 is provided inside the outer cylinder of the cryostat 4 of the vacuum vessel. The refrigerator first stage 71 of the refrigerators 72 and 73 is fixed to the upper right of the radiation shield chamber 7, and the second stage 77 of the refrigerator is arranged so as to keep thermal contact with the heat transfer wire 76. Has been.
[0024]
  Further, in the radiation shield chamber 7, a superconducting magnet 3 in which the superconducting coil winding 2 is wound around a frame body 74 having a hollow hole in the vertical direction, and an upper end on the lower side of the frame body 74 of the superconducting magnet 3. Heat transfer copper plate 75 of the heat transfer conductor closely attached so that heat conduction is possible, and heat transfer of the heat transfer conductor closely attached to the other end of heat transfer copper plate 75 so that the lower end portion can conduct heat The copper braided wire portion 76 and the upper end portion of the heat transfer copper braided wire portion 76 are closely fixed to the second stage 77 of the refrigerator so as to conduct heat. On the other hand, after the power supply from the excitation power source 5 is made via the input terminal 61, the superconducting magnet is made by the current introduction lead wire 62 via the oxide superconductor 63 which is a superconductor and a heat shield. 3 is supplied to the coil winding 2.
[0025]
  Reference numeral 64 is for insulating the oxide superconductor 63 and releasing the heat to the heat transfer copper plate 75 side for cooling. Further, 65 is nothing in the short-circuit state in the first embodiment, but a capacitive member interposed in parallel with the coil winding 2 of the second embodiment or the coil winding 2 of the next third embodiment. This corresponds to a permanent current switch (PCS) interposed in parallel.
[0026]
  Focusing on the fact that the excitation instability of the conduction-cooled superconducting magnet 3 is caused by the AC loss (AC loss) of the superconducting magnet 3 due to the power supply ripple, a superconducting wire having a small AC loss (the superconducting magnet in the first embodiment). 3 is used in the production of the superconducting magnet 3, and the heat transfer resistance through the heat conducting conductor (copper braided wire) between the refrigerator and the superconducting magnet 3 is reduced ( In the first embodiment, the cross-sectional area of the copper braided wire that thermally connects the second stage of the refrigerator and the superconducting magnet 3 is doubled). Here, the filament diameter is, for example, the diameter of a superconducting thin wire having a diameter of about 50,000 accommodated in one superconducting conductor and having a diameter of 1 to 200 μm.
[0027]
  In this way, in the superconducting magnet device 1, the cooling stage temperature (stage temperature of the second stage 77) of the refrigerator that is in thermal contact with the superconducting magnet 3 is Tcr, and the current amplitude x of the excitation power source 5 is The equation of AC loss is fn (x), the volume occupied by the superconducting wire of the coil winding 2 is v, the heat transfer conductor (the heat transfer copper plate 75 and the heat transfer copper braid) connecting the superconducting magnet 3 and the second stage 77 of the refrigerator. The length of the line portion 76) is d, the amplitude of the alternating current flowing through the coil winding 2 of the superconducting magnet 3 is Im, the heat transfer coefficient from the superconducting magnet 3 to the cooling stage (second stage 77) of the refrigerator is κ, and the magnetic field When the critical temperature of the superconducting wire when B is generated is Tc (B), the inductance of the superconducting magnet 3 is L, the amplitude of the power supply ripple from the excitation power supply 5 is A, and the frequency of the power supply ripple is ω In addition, by suppressing heat generation due to AC loss caused by power supply ripple of the current flowing from the coil power supply 2 of the superconducting magnet 3 from the excitation power supply 5 and improving heat transfer, the following (several5) Is satisfied.
[0028]
【number5]
Figure 0003734630
[0029]
  Here, in order to clarify the significance of Embodiment 1 of the present invention, first, Comparative Examples 1 and 2 will be described in detail.
[0030]
  FIG. 3 is a circuit diagram of Comparative Example 1 schematically showing a case where a conventional liquid helium immersion type superconducting magnet apparatus is applied to a conduction cooling type as it is. In FIG. 3, the excitation power supply 11 is an inexpensive general power supply such as a switching power supply, and the ripple component of the power supply is about 0.1%. Further, the coil winding 13 of the superconducting magnet 12 has a self-inductance of 4.3H, and in the liquid helium immersion type, a magnetic field of 5.3 T is stably generated by the same excitation power source 11. The coil winding 13 of the superconducting magnet 12 is provided in a cryostat 14 of a vacuum vessel.
[0031]
  When the excitation of the coil-winding 13 of the conduction-cooling superconducting magnet 12 was attempted at an excitation speed of 1T / 5 minutes, it was quenched when it reached 0.3T. Further, even when this excitation speed was lowered to about 1T / 60 minutes, it was quenched when it reached 0.33T. Furthermore, the temperature measured by the thermometer set in the conduction-cooling superconducting magnet 12 showed that the temperature of the conduction-cooling superconducting magnet 12 was 3.8 K before excitation, but at the time when quenching occurred, the temperature was 6. It had risen to 8K. Therefore, even if the liquid helium immersion type superconducting magnet is applied as it is as the conduction cooling type superconducting magnet 12, it cannot be excited stably.
[0032]
  Next, Comparative Example 2 in which the excitation power supply 11 is replaced with one having a small power supply ripple rate will be described.
[0033]
  The excitation power supply 15 has a power supply ripple component such as a transistor power supply of about 0.01%. In addition, when the excitation speed at this time was tried at 1T / 5 minutes, it was possible to excite stably up to a magnetic field of 5T, and quenching before reaching 5.1T. Further, when the excitation speed was lowered to about 1T / 60 minutes, the magnetic field of 5.3T could be stably excited. At this time, the temperature measured with a thermometer set in the superconducting magnet 12 was kept at 5.2K or lower.
[0034]
  In this way, after confirming that excitation could be performed stably, an attempt was made to shift to permanent current operation in each magnetic field of 5T, 4T, 3T, 2T, and 1T. However, even in the case of all the above magnetic field strengths, the permanent current switch (not shown) always generates heat, and it is impossible to control on / off. In other words, even if a high-performance excitation power supply 15 having a power supply ripple component of 0.01% is employed, permanent current mode operation is impossible.
[0035]
  Therefore, it is preferable for the conduction-cooling superconducting magnet 12 to employ a transistor power supply with high power supply performance that lowers the power supply ripple component.
[0036]
  Next, in order to specify the instability factor at the time of excitation in the conduction cooling type superconducting magnet 12, first, as a specific example of the first embodiment, the coil of the first and second comparative examples has the same inductance as the first comparative example. An experiment similar to Comparative Examples 1 and 2 was performed using the winding 13 and a coil winding having a different filament diameter of the superconducting wire. In the coil winding 2, although the critical current of the superconducting wire is substantially equal to that of the first and second comparative examples, the filament diameter in the first and second comparative examples is about 120 μm. In the specific example, it is 45 μm. The heat transfer mechanism of the specific example of the first embodiment is exactly the same as that of the comparative example 1. The magnet temperature before and after excitation connected to the excitation power supply 11 was measured. Before connection, it was 3.8K, which was the same as Comparative Example 1, and during excitation, it was 5.5K to 6.3K depending on the excitation speed. Therefore, the use of the superconducting wire having a small diameter filament suppresses the temperature rise of the superconducting magnet 3, which indicates that the filament diameter affects the magnitude of the AC loss.
[0037]
  That is, the instability of excitation of the conduction-cooled superconducting magnet can be explained by the fact that the current accompanying the power supply ripple flows through the coil winding 2 and the accompanying AC loss causes the magnet temperature to rise. In the first embodiment, it was possible to stably excite up to a magnetic field of 4.1 T at an excitation speed of 1 T / 5 and up to a magnetic field of 4.4 T at an excitation speed of 1 T / 60. Furthermore, when the cross-sectional area of the copper braided wire that thermally connects the second stage of the refrigerator and the superconducting magnet 3 is doubled, the temperature rise of the superconducting magnet 3 during excitation is reduced, and 1T / 5 min. It was possible to stably excite up to a magnetic field of 4.3 T at an excitation speed up to a magnetic field of 4.5 T at an excitation speed of 1 T / 60 minutes. From these situations, when expressed uniformly as a condition that the conduction cooling type superconducting magnet 3 can be stably excited,5) Is expressed as
[0038]
  FIG. 4 shows the critical current Ic (A) of the superconducting wire used in the superconducting magnet 3 as a function of the magnetic field B (T) and the critical temperature (K). As can be seen from FIG. 4, the stronger the magnetic field B (T) and the higher the critical temperature (K), the smaller the superconducting current that can flow. The superconducting magnet 3 is designed to generate a magnetic field with a magnetic field B (T) of 5.3 T when a current of 95 A is applied, for example. It can be seen that the critical temperature of the superconducting wire used in the superconducting magnet 3 needs to be 5.2K or lower in order to be able to do so. Therefore, the above (number5), The sum temperature value of the term of the cooling stage temperature Tcr and the term including the expression fn (Im) of heat generation due to AC loss is less than the critical temperature Tc (5.3T) of the superconducting wire = 5.2K. It is necessary to be. When this condition is satisfied, a more stable superconducting operation can be performed. Also this (number5In general, the equation (n) of the AC loss with respect to the current amplitude Im in the equation6) Can be expressed as: This document is Y. Iwasa; “Case Studies in Superconducting Magnets p. 264; Plenum Press, 1994”.
[0039]
[Formula 6]
Figure 0003734630
[0040]
  Where (number6K)1, K2, KThreeIs a constant and φ is the filament of the wire
Diameter. This (number6) In parentheses corresponds to hysteresis loss, Im2Corresponds to the coupling loss term. When a wire having a small filament diameter φ is used, the amount of generated heat is reduced even if the current ripple is the same based on the fact that this hysteresis loss is proportional to the filament diameter φ, and the temperature rise is suppressed. In addition, by doubling the cross-sectional area of the copper braided wire (or double the number of copper braided wires with the same wire diameter)5), The heat transfer coefficient κ from the superconducting magnet 3 to the cooling stage of the refrigerator increases, and even if the same heat is generated in the superconducting magnet 3, the heat transfer is effectively deprived when the heat transfer coefficient κ is large. Is small. Further, if the current change during excitation is regarded as a kind of large ripple amplitude with a low frequency ω,5) Can be discussed within the scope of the formula. Increasing the excitation speed is5This is equivalent to increasing the ripple frequency ω in equation (1).
[0041]
  As described above, it can be seen from the first embodiment that the excitation instability of the conduction-cooled superconducting magnet 3 is caused by the AC loss of the superconducting magnet 3 due to the power supply ripple. It is effective to adopt this in the production of 3 and to reduce the thermal resistance between the refrigerator and the superconducting magnet 3.
[0042]
  From the above, as a condition for stable excitation operation of the conduction cooled superconducting magnet, the above (several5) Can create a unified expression to create a situation that satisfies the expression.
[0043]
  (Embodiment 2)
  In the second embodiment, a capacitor member is provided in parallel with the coil winding of the superconducting magnet, thereby reducing the ripple amplitude itself supplied to the superconducting magnet.
[0044]
  FIG. 5 is a circuit diagram schematically showing a superconducting magnet device according to Embodiment 2 of the present invention. In FIG. 5, a superconducting magnet device 31 includes a superconducting magnet 33 having a coil winding 32 of a superconducting wire, a capacitive member 34 provided in parallel with the coil winding of the superconducting magnet 33, and the superconducting magnet 33 and the capacitive member. A cryostat 35 including a refrigerator, which will be described later, that cools the contact 34 is provided, and an excitation power source 36 that supplies power to the coil winding 32. If this capacity member 34 is adapted to the configuration of FIG. 2, it corresponds to the member 65, and the others are the same.
[0045]
  As described above, the superconducting magnet device 31 is configured to cool the capacitor member 34 of the material whose dielectric constant increases as the temperature decreases in parallel with the coil winding of the superconducting magnet 33 together with the superconducting magnet 33. In order to perform more stable excitation operation, the amplitude Im of the alternating current flowing through the coil winding 32 of the superconducting magnet 33 is expressed by the following (several7) Is satisfied.
[0046]
[Expression 7]
Figure 0003734630
[0047]
  The capacitor member 34 is not a normal capacitor, but is an SrTiO as a material of an insulator between electrodes.ThreeIs adopted. This SrTiOThreeIt is known that the dielectric constant increases rapidly with decreasing temperature. Typically, when cooled from room temperature to 4.2K, its dielectric constant increases by more than three orders of magnitude. In the second embodiment, it is important to cool the capacitive member 34 together with the coil winding of the superconducting magnet 33. A capacitance member 34 having a capacitance C of 125 μF was connected at room temperature and cooled together with the coil winding of the superconducting magnet 33. Naturally, the capacitance C increases by 3 digits or more in proportion to the dielectric constant.
[0048]
  As for the heat transfer mechanism in this case, the magnet temperature before and after being connected to the excitation power source 36 was measured in the same manner as in the first embodiment. Before the connection, the temperature is 3.8K, which is the same as in the case of the first embodiment. During the excitation with the connection, the temperature is 5.2K or less even at an excitation speed of 1T / 5 minutes. It was possible to perform excitation operation stably up to the magnetic field of. In addition, since the capacity member 34 is connected in parallel to the coil winding of the superconducting magnet 33, the capacity C of the capacity member 34 increases rapidly with a decrease in temperature.7The amplitude of the ripple flowing into the main body of the superconducting magnet 33 is greatly reduced by the equation (1).6) Equation is reduced, and even with the excitation power supply 11 of Comparative Example 1 or the excitation power supply 5 of Embodiment 1 having a power supply ripple of about 0.1%, more stable excitation operation is possible. It was.
[0049]
  (Embodiment 3)
  In Embodiment 3, the power supply ripple rate of the exciting power supply is set to 0.004%, which is lower than 0.01%, so that the permanent current operation is possible.
[0050]
  FIG. 6 is a circuit diagram schematically showing a superconducting magnet device according to Embodiment 3 of the present invention. In FIG. 6, a superconducting magnet device 41 includes a superconducting magnet 43 having a coil winding 42 of a superconducting wire, and a heater provided in parallel with the main body of the superconducting magnet 43 to allow a permanent current to flow. 44, a cryostat 45 including a later-described refrigerator that contacts and cools the superconducting magnet 43 and the thermal-type permanent current switch 44, and a power supply ripple that supplies power to the coil winding 2 is 0.004 that is 0.01% or less. Power supply 46 for the excitation. If the thermal permanent current switch 44 is adapted to FIG. 2, it corresponds to the member 65, and the others are the same.
[0051]
  Here, it explains in more detail below. When permanent current operation was attempted using the excitation power supply 34 of the second embodiment, it was impossible to switch to the permanent current mode. The condition under which the permanent current switch 44 can be turned on / off is that the AC loss caused by the power supply ripple flowing into the permanent current switch 44 suppresses the temperature rise below the critical temperature, as in the first embodiment.
[0052]
  Since the inductance of the coil winding of the permanent current switch 44 is several orders of magnitude smaller than the inductance of the main coil winding 42, most of the ripple current in the circuit of FIG. The control of the permanent current switch 44 becomes ineffective.
[0053]
  Therefore, in the case of permanent current operation, the restrictions on the power supply ripple become more severe. The conditions for permanent current operation with various conditions taken into consideration are as follows8) Expression. This (number8) Expression (number5) Can be interpreted in the same way as the formula. That is, the temperature of the switch coil is prevented from rising above a predetermined value (superconducting critical temperature) due to heat generated due to the power supply ripple flowing in the permanent current switch 44.
[0054]
  That is, the cooling stage temperature of the refrigerator in which the superconducting magnet 43 and the thermal permanent current switch 44 are in thermal contact is Tcr, the heat transfer coefficient from the superconducting magnet to the cooling stage is κ, and the inductance of the coil for the permanent current switch is L1The length of the heat transfer medium connecting the permanent current switch 44 and the refrigerator is d1The volume occupied by the superconducting wire of the coil winding used in the permanent current switch 44 is v1Tc is the critical temperature of the coil winding superconducting wire used in the permanent current switch 44.1(B), Ip is the amplitude of the alternating current flowing through the coil winding of the main body of the permanent current switch 44, fn (Ip) is the expression of the AC loss with respect to the current amplitude Ip flowing through the permanent current switch, and L is the inductance of the superconducting magnet 43. When the amplitude of the power supply ripple from the excitation power supply 46 is A and the frequency of the power supply ripple is ω, the excitation power supply 46 having a low ripple rate of about 0.004%, for example, about 0.014% or less is used. (Number8) Is satisfied.
[0055]
[Equation 8]
Figure 0003734630
[0056]
  Specifically, in the comparative example 2 of the first embodiment, the excitation with a lower percentage of power supply ripple is added to the high-performance excitation power supply 15 with a power supply ripple of 0.01% by remodeling to add a large capacitance component. By using the power source 46, the permanent current operation by the permanent current switch 44 was realized when the power source ripple was 0.004%, which was lower than 0.01%. Thus, (number8) Because Ip in the formula is reduced,8The AC loss in the formula is reduced, the temperature rise of the coil winding of the permanent current switch is reduced, and more stable excitation operation and permanent current operation can be performed. At this time, the above (number8) Is satisfied.
[0057]
  (Embodiment 4)
  In the fourth embodiment, in addition to the third embodiment, a capacitor member is connected in parallel to the permanent current switch to reduce the amplitude of the power supply ripple flowing in the permanent current switch.
[0058]
  FIG. 7 is a circuit diagram schematically showing a superconducting magnet device according to Embodiment 4 of the present invention. In FIG. 7, a superconducting magnet device 51 includes a superconducting magnet 53 having a coil winding 52 of a superconducting wire, and a thermal permanent current switch 54 provided in parallel with the main body of the superconducting magnet 53 and having a heater for passing a permanent current. A cryostat 56 including a capacity member 55 provided in parallel to the main body of the superconducting magnet 53 and the thermal permanent current switch 54, and a refrigerator that cools the superconducting magnet 53, the permanent current switch 54, and the capacity member 55 in contact with each other. And an excitation power source 57 for supplying power to the coil winding 52 and the like. If the permanent current switch 54 and the capacity member 55 are adapted to the configuration of FIG. 2, for example, when the permanent current switch 54 corresponds to the member 65, the capacity member 55 is interposed in parallel with the member 65. The current switch 54 and the capacitor member 55 are in close contact with the heat transfer copper plate 75 so as to conduct heat, and the others are the same.
[0059]
  In this manner, the capacitor member 55 made of a material whose dielectric constant increases as the temperature decreases is provided in parallel with the superconducting magnet 53, and the capacitor member 55 is cooled together with the superconducting magnet 53 and the permanent current switch 54. The amplitude Ip of the alternating current flowing through the coil winding of the main body of the permanent current switch 54 is expressed by the following (number9) Is satisfied.
[0060]
[Equation 9]
Figure 0003734630
[0061]
  In the third embodiment, the high-performance excitation power supply 15 is further modified to obtain an excitation power supply 46 with less power ripple, and the above (several9) Formula was satisfied. In other words, the excitation power supply 46 is costly because it is a modification of the excitation power supply 15 that originally has high performance with a power supply ripple of 0.01% and is modified by keeping the power supply ripple low. Therefore, in the fourth embodiment, an attempt was made to reduce the amplitude of the power supply ripple flowing in the permanent current switch 54 itself. That is, as shown in FIG. 7, a capacitor member 55 is connected in parallel to the permanent current switch 54, and SrTiO is used as an insulator material between the electrodes of the capacitor member 55 as in the second embodiment.ThreeIt was adopted. This capacity member 55 is also cooled at the same time as the superconducting magnet 53 and the permanent current switch 54, and at the same time, the capacity rapidly increases. Typically, when cooling from room temperature to 4.2 K, the capacity C of the capacity member 551Becomes more than 3 digits larger. Thus, in the fourth embodiment, the capacity C at room temperature.1A capacitor member 55 of 230 μF was connected in parallel to the superconducting magnet 53 and the permanent current switch 54 and cooled together with the superconducting magnet 53 and the permanent current switch 54.
[0062]
  In this case, the heat transfer mechanism was configured in exactly the same way as in the third embodiment, and the excitation power supply 57 having a power supply ripple of 0.01% before remodeling was connected. In this state, when a permanent current operation was attempted, a transition to the permanent current mode was possible with an arbitrary generated magnetic field. A capacity member 55 is connected in parallel to the permanent current switch 54, and the capacity C of the capacity member 55 is1Increases rapidly as the temperature decreases.9), The amplitude of the current ripple flowing into the permanent current switch 54 is greatly reduced, the AC heat generation term including the AC loss equation fn (Ip) is reduced, and the cooling stage temperature Tcr The added temperature value of the term and the term including the exothermic formula fn (Ip) is the critical temperature Tc of the superconducting wire.1(B) In the following, the permanent current mode operation could be performed without further modifying the excitation power source.
[0063]
  In Embodiments 2 and 4 of the present invention, SrTiO is used as the material of the insulator used for the capacitor member.ThreeHowever, the present invention is not limited to this, and a material whose dielectric constant increases with a decrease in temperature may be used.
[0064]
【The invention's effect】
  As described above, according to the first aspect, the amplitude of the power supply ripple is suppressed without using an unnecessarily expensive power supply with a small power supply ripple so that the amplitude of the power supply ripple satisfies the above equation (1). Therefore, more stable excitation operation can be performed when the conduction cooling type superconducting magnet is excited.
[0065]
  Further, by connecting the capacitor member in parallel to the superconducting magnet, the amplitude Im of the alternating current flowing through the coil winding of the superconducting magnet body is1) Expression is satisfied, so the above (number1The amplitude of the ripple flowing into the superconducting magnet body is greatly reduced by1) Can be reduced, and a more stable excitation operation can be performed even with a normal excitation power supply having a power supply ripple rate of about 0.1%, for example. Further, if the capacity C of the capacity member is rapidly increased with a decrease in temperature, the effect can be further enhanced.
[0066]
  Furthermore, according to claim 2, the current ripple flowing through the permanent current switch is2Therefore, the temperature rise of the switch coil can be reduced, and the permanent current operation can be performed together with the more stable excitation operation.
[0067]
  Further, the capacity member is connected in parallel to the permanent current switch, and the capacity C1 of the capacity member increases rapidly with a decrease in temperature, so that the amplitude Ip of the alternating current flowing through the coil winding of the permanent current switch is the above (several2) Expression is satisfied, so the above (number2The ripple amplitude flowing into the coil winding of the permanent current switch can be greatly reduced by2) Equation AC loss can be reduced, and permanent current operation can be performed together with more stable excitation operation.Further, if the capacity C of the capacity member is rapidly increased with a decrease in temperature, the effect can be further enhanced.
[0068]
  And claims3Accordingly, by reducing the filament diameter of the coil winding of the superconducting magnet, the amount of generated heat is reduced, the temperature rise of the superconducting magnet is suppressed, and a more stable excitation operation can be achieved.
[0069]
  And claims4Accordingly, when the amplitude Ip of the alternating current is reduced, the alternating current loss is reduced, the temperature rise of the switch coil is suppressed, and more stable excitation operation and permanent current operation can be performed.
[0070]
  And claims5Therefore, if the power supply ripple has a low ripple ratio like a transistor power supply, the AC loss is reduced, the temperature rise in the coil winding of the superconducting magnet and the permanent current switch is reduced, and more stable excitation operation and permanent current are achieved. You can drive.
[Brief description of the drawings]
FIG. 1 is a circuit diagram schematically showing a superconducting magnet device according to Embodiment 1 of the present invention.
2 is a schematic diagram showing a schematic longitudinal cross-sectional configuration of the superconducting magnet device of FIG. 1; FIG.
FIG. 3 is a circuit diagram of Comparative Example 1 schematically showing a case where a conventional liquid helium immersion type superconducting magnet apparatus is applied to a conduction cooling type as it is.
FIG. 4 is a diagram showing a critical current Ic (A) of a superconducting wire as a function of a magnetic field B (T) and a temperature (K).
FIG. 5 is a circuit diagram schematically showing a superconducting magnet device according to Embodiment 2 of the present invention.
FIG. 6 is a circuit diagram schematically showing a superconducting magnet device according to Embodiment 3 of the present invention.
FIG. 7 is a circuit diagram schematically showing a superconducting magnet device according to Embodiment 4 of the present invention.
[Explanation of symbols]
  1,31,41,51 Superconducting magnet device
  2, 32, 42, 52 Coil winding
  3, 33, 43, 53 Superconducting magnet
  4,35,45,56 Cryostat
  5, 36, 46, 57 Power supply for excitation
  34,55 capacity member
  44, 54 Permanent current switch
  71 Refrigerator First Stage
  72,73 refrigerator
  75 Copper plate for heat transfer
  76 Copper braided wire for heat transfer
  77 Refrigerator second stage

Claims (5)

超電導線材のコイル巻線を有する超電導磁石と、この超電導磁石を熱伝導によって少なくとも臨界温度以下に冷却する冷凍機と、前記コイル巻線に接続された励磁用電源と、前記コイル巻線に並列接続された容量手段とを備え、前記励磁用電源からのリップルに起因してコイル巻線を流れる電流リップルの振幅が、(数1)式を満足するように構成され、かつ前記容量手段は、静電容量Cが少なくとも前記臨界温度において(数1)式を満足する絶縁体材料で構成され、この絶縁体材料が、誘電率が温度の低下に従って増大する材料であることを特徴とする伝導冷却型超電導磁石装置。
Figure 0003734630
Tcr: 前記冷凍機の冷却ステージ温度
d: 前記超電導磁石と前記冷凍機のセカンドステージを繋ぐ伝熱導体の長さ
κ: 前記超電導磁石から前記冷却ステージまでの熱伝達係数
ω: 前記電源リップルの周波数
Im: 前記コイル巻線を流れる電流振幅
fn(Im): 前記コイル巻線を流れる電流振幅Imに対する交流損失の式
v: 前記超電導線材の占める体積
Tc(B): 磁場Bの発生時の前記超電導線材の臨界温度
L: 前記超電導磁石のインダクタンス
A: 電源リップルの振幅
A superconducting magnet having a coil winding of a superconducting wire, a refrigerator for cooling the superconducting magnet to at least a critical temperature by heat conduction, an excitation power source connected to the coil winding, and a parallel connection to the coil winding And the capacitance means is configured such that the amplitude of the current ripple flowing through the coil winding due to the ripple from the excitation power supply satisfies the formula (1) , and the capacitance means A conduction cooling type wherein the capacitance C is made of an insulator material satisfying the formula (1) at least at the critical temperature, and the insulator material is a material whose dielectric constant increases as the temperature decreases. Superconducting magnet device.
Figure 0003734630
Tcr: Cooling stage temperature of the refrigerator d: Length of the heat transfer conductor connecting the superconducting magnet and the second stage of the refrigerator κ: Heat transfer coefficient from the superconducting magnet to the cooling stage ω: Frequency of the power supply ripple Im: current amplitude flowing through the coil winding fn (Im): formula of AC loss with respect to current amplitude Im flowing through the coil winding v: volume occupied by the superconducting wire Tc (B): the superconductivity when the magnetic field B is generated Critical temperature of wire L: Inductance of superconducting magnet A: Amplitude of power supply ripple
超電導線材のコイル巻線を有する超電導磁石と、この超電導磁石に対して並設され超電導線材のコイル巻線を有する永久電流スイッチと、前記超電導磁石および永久電流スイッチを熱伝導によって少なくとも臨界温度以下に冷却する冷凍機と、前記超電導磁石および永久電流スイッチのコイル巻線に接続された励磁用電源と、前記超電導磁石のコイル巻線に並列接続された容量手段とを備え、前記励磁用電源からのリップルに起因して永久電流スイッチ内を流れる電流リップルの振幅が、(数)式を満足するように構成され、かつ前記容量手段は、静電容量C 1 が少なくとも前記臨界温度において(数2)式を満足する絶縁体材料で構成され、この絶縁体材料が、誘電率が温度の低下に従って増大する材料であることを特徴とする伝導冷却型超電導磁石装置。
Figure 0003734630
Tcr: 前記冷凍機の冷却ステージ温度
1: 前記永久電流スイッチと前記冷凍機を結ぶ伝熱媒体の長さ
κ: 前記超電導磁石から前記冷却ステージまでの熱伝達係数
ω: 前記電源リップルの周波数
Ip: 前記永久電流スイッチ本体のコイル巻線を流れる電流振幅
fn(Ip): 前記永久電流スイッチのコイル巻線を流れる電流振幅Ipに対する交流損失の式
1: 前記永久電流スイッチにおけるコイル巻線の超電導線材の占める体積
Tc1(B): 前記永久電流スイッチにおけるコイル巻線の臨界温度
1: 永久電流スイッチ用コイルのインダクタンス
A: 電源リップルの振幅
A superconducting magnet having a coil winding of a superconducting wire, a permanent current switch having a coil winding of the superconducting wire arranged in parallel with the superconducting magnet, and the superconducting magnet and the permanent current switch are at least below the critical temperature by heat conduction. A refrigerator for cooling, an excitation power source connected to the coil winding of the superconducting magnet and the permanent current switch, and a capacity means connected in parallel to the coil winding of the superconducting magnet, from the excitation power source The amplitude of the current ripple flowing in the permanent current switch due to the ripple is configured to satisfy the formula ( 2 ) , and the capacitance means has a capacitance C 1 at least at the critical temperature (number 2). ) made of an insulating material which satisfies the equation, conduction cooling the insulator material, which is a material having a dielectric constant increases with decrease in temperature Superconducting magnet apparatus.
Figure 0003734630
Tcr: Cooling stage temperature of the refrigerator d 1 : Length of heat transfer medium connecting the permanent current switch and the refrigerator κ: Heat transfer coefficient from the superconducting magnet to the cooling stage ω: Frequency of the power supply ripple Ip : Current amplitude flowing through the coil winding of the permanent current switch body fn (Ip): Formula of AC loss with respect to current amplitude Ip flowing through the coil winding of the permanent current switch v 1 : Superconductivity of the coil winding in the permanent current switch Volume occupied by wire Tc 1 (B): Critical temperature of coil winding in permanent current switch L 1 : Inductance of permanent current switch coil A: Amplitude of power supply ripple
前記コイル巻線のフィラメント径を、前記式を満足するように小径化したことを特徴とする請求項1又は2に記載の伝導冷却型超電導磁石装置。Conduction cooling type superconducting magnet apparatus according to claim 1 or 2, characterized in that the diameter of such a filament diameter of the coil winding, thereby satisfying the pre above formula. 前記永久電流スイッチのコイル巻線に流れるリップル電流振幅を前記(数)式が満足するように小さく構成したことを特徴とする請求項に記載の伝導冷却型超電導磁石装置。The conduction-cooling type superconducting magnet apparatus according to claim 2 , wherein the amplitude of a ripple current flowing in the coil winding of the permanent current switch is configured to be small so that the formula ( 2 ) is satisfied. 前記励磁用電源がトランジスタ電源であることを特徴とする請求項1〜の何れかに記載の伝導冷却型超電導磁石装置。Conduction cooling type superconducting magnet apparatus according to any one of claims 1-4, wherein the excitation power supply is characterized by a transistor power.
JP30277598A 1998-10-23 1998-10-23 Conduction-cooled superconducting magnet system Expired - Lifetime JP3734630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30277598A JP3734630B2 (en) 1998-10-23 1998-10-23 Conduction-cooled superconducting magnet system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30277598A JP3734630B2 (en) 1998-10-23 1998-10-23 Conduction-cooled superconducting magnet system

Publications (2)

Publication Number Publication Date
JP2000133513A JP2000133513A (en) 2000-05-12
JP3734630B2 true JP3734630B2 (en) 2006-01-11

Family

ID=17912985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30277598A Expired - Lifetime JP3734630B2 (en) 1998-10-23 1998-10-23 Conduction-cooled superconducting magnet system

Country Status (1)

Country Link
JP (1) JP3734630B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2752263C2 (en) * 2017-02-09 2021-07-26 Токемек Энерджи Лтд Power supply of a cryogenic magnet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015111201A1 (en) * 2014-01-27 2017-03-23 株式会社日立製作所 Superconducting magnet device
CN116206845B (en) * 2023-02-16 2023-09-26 苏州八匹马超导科技有限公司 Implementation method of superconducting switch system for conduction cooling superconducting magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2752263C2 (en) * 2017-02-09 2021-07-26 Токемек Энерджи Лтд Power supply of a cryogenic magnet

Also Published As

Publication number Publication date
JP2000133513A (en) 2000-05-12

Similar Documents

Publication Publication Date Title
US20120094840A1 (en) Refrigerator cooling-type superconducting magnet
JP5276542B2 (en) Superconducting circuit, superconducting connection manufacturing method, superconducting magnet, and superconducting magnet manufacturing method
EP0470762A1 (en) Superconductive switch
US4688132A (en) Superconducting magnet system for operation at 13k
JP6047341B2 (en) Conductive cooling type permanent current switch and superconducting wire manufacturing method
US6809618B2 (en) Switching device for superconducting technology
JP3734630B2 (en) Conduction-cooled superconducting magnet system
JP6983629B2 (en) How to operate the superconducting magnet device and the superconducting magnet device
JP2010272745A (en) Superconducting coil and superconducting magnet device
JP2003037303A (en) Superconducting coil with permanent current switch using magnesium diboride superconducting wire material and its manufacturing method
JP4477859B2 (en) Permanent current switch, superconducting magnet, and magnetic resonance imaging apparatus
JP3667954B2 (en) Quench protection circuit for superconducting magnet
Morita et al. 10 T conduction cooled Bi-2212/Ag HTS solenoid magnet system
JP3358958B2 (en) Thermal control type permanent current switch
JP2018159637A (en) Magnetic field generating device, nmr analysis device, and mri device
Wang et al. Conduction-cooled superconducting magnet with persistent current switch for gyrotron application
US6094333A (en) Operation control method for superconducting coil
JPH11340533A (en) High-temperature superconducting coil persistent current switch
JP4095742B2 (en) Conduction cooled superconducting magnet
JP2022157696A (en) Superconducting wire, superconducting magnet, and superconducting equipment
JPH09102413A (en) Superconductive magnetic device
JP7370307B2 (en) Superconducting magnet device
JP2000150224A (en) Excitation control method of superconducting coil
JP3677166B2 (en) Permanent current magnet device for high magnetic field generation
JPH0745420A (en) Current lead of superconducting apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

EXPY Cancellation because of completion of term