WO2021005732A1 - Superconducting electromagnet - Google Patents

Superconducting electromagnet Download PDF

Info

Publication number
WO2021005732A1
WO2021005732A1 PCT/JP2019/027271 JP2019027271W WO2021005732A1 WO 2021005732 A1 WO2021005732 A1 WO 2021005732A1 JP 2019027271 W JP2019027271 W JP 2019027271W WO 2021005732 A1 WO2021005732 A1 WO 2021005732A1
Authority
WO
WIPO (PCT)
Prior art keywords
check valve
type check
pressure
spring type
set pressure
Prior art date
Application number
PCT/JP2019/027271
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 岩本
知徳 田中
井上 達也
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US17/608,151 priority Critical patent/US20220293317A1/en
Priority to CN201980097778.XA priority patent/CN114026661B/en
Priority to JP2021530413A priority patent/JP7118275B2/en
Priority to PCT/JP2019/027271 priority patent/WO2021005732A1/en
Publication of WO2021005732A1 publication Critical patent/WO2021005732A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/01Control of flow without auxiliary power
    • G05D7/0126Control of flow without auxiliary power the sensing element being a piston or plunger associated with one or more springs
    • G05D7/0133Control of flow without auxiliary power the sensing element being a piston or plunger associated with one or more springs within the flow-path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/02Quenching; Protection arrangements during quenching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Definitions

  • the present invention relates to a superconducting electromagnet.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 5-55032
  • the superconducting magnet described in Patent Document 1 includes an inner container, an outer container, an exhaust passage, a safety valve, an internal pressure holding valve, and an on-off valve.
  • the inner container houses the superconducting coil and the refrigerant.
  • the outer container holds the inner container inside.
  • the exhaust passage is branched into a first branch pipe, a second branch pipe and a third branch pipe.
  • the safety valve is provided in the first branch pipe. The safety valve will not open as long as the superconducting electromagnet maintains a normal superconducting state.
  • the internal pressure holding valve is a spring-type check valve and is provided in the second branch pipe.
  • the internal pressure holding valve opens when the superconducting electromagnet quenchs and releases the refrigerant gas.
  • the on-off valve is provided in the third branch pipe. The on-off valve is always closed except when the refrigerant is injected.
  • the spring-type check valve operates when the pressure inside the inner container becomes larger than the sum of the spring urging force and the outside air pressure of the spring-type check valve. That is, the set pressure of the spring-type check valve is the urging force of the spring when the spring-type check valve is closed.
  • the outside air pressure in the highlands is lower than the outside air pressure in the flatlands. Therefore, when the pressure inside the inner container becomes larger than the sum of the set pressure in the spring-type check valve and the outside air pressure in the high ground during air transportation or high-altitude transportation of the superconducting magnet, the spring-type check valve opens. As a result, the amount of evaporation of the refrigerant during air transportation or high altitude transportation of the superconducting magnet increases. When the set pressure of the spring-type check valve is low, the amount of refrigerant evaporated further increases.
  • the present invention has been made in view of the above problems, and provides a superconducting electromagnet capable of reducing the amount of evaporation of a refrigerant during air transportation or high altitude transportation while reducing the maximum pressure in the inner container.
  • the purpose is to do.
  • the superconducting magnet based on the present invention includes an inner container, an outer container, an exhaust pipeline, a first spring type check valve, a second spring type check valve, and a third spring type check valve.
  • the inner container contains the superconducting coil and the liquid refrigerant that cools the superconducting coil.
  • the outer container holds the inner container inside in a state of being insulated from the inner container.
  • the exhaust pipeline discharges the refrigerant gas evaporated in the inner container to the outside of the outer container.
  • Each of the first spring type check valve, the second spring type check valve, and the third spring type check valve is provided in the exhaust pipe line.
  • the exhaust line includes a first diversion line connected in parallel with each other and a second diversion line having a diameter larger than that of the first diversion line.
  • a part of the second diversion pipe is branched into at least the first branch pipe and the second branch pipe.
  • the first spring type check valve is provided in the first diversion line, and the differential pressure between the upstream side and the downstream side of the first spring type check valve in the first diversion line is higher than the atmospheric pressure. When the pressure exceeds 1 set, the operation opens.
  • the second spring type check valve is provided in the first branch pipeline, and the differential pressure between the upstream side and the downstream side of the second spring type check valve in the first branch pipeline is larger than the first set pressure. It opens when the pressure exceeds the high second set pressure.
  • the third spring type check valve is provided in the second branch pipeline, and the differential pressure between the upstream side and the downstream side of the third spring type check valve in the second branch pipeline is from the first set pressure. It opens when the pressure exceeds the high third set pressure.
  • the second branch pipeline differs from the first branch pipeline in at least one of diameter, length and internal volume.
  • a part of the second diversion pipeline is branched into the first branch pipeline and the second branch pipeline, so that the gas flows into each of the first branch pipeline and the second branch pipeline. Since the amount of increase in the flow rate of the refrigerant gas with respect to the elapsed time can be reduced, the peak pressure in the inner container can be reduced.
  • the second branch pipeline provided with the third spring type check valve has at least the diameter, length and internal volume of the second branch pipeline provided with the second spring type check valve with respect to the first branch pipeline provided with the second spring type check valve. Due to the difference in one, the operation timings of the second spring type check valve and the third spring type check valve can be made different. As a result, the generation of fluctuating pressure can be suppressed. As a result, while reducing the maximum pressure in the inner container, the set pressures of the second spring type check valve and the third spring type check valve are increased, and the amount of refrigerant evaporated during air transportation or high altitude transportation. Can be reduced.
  • FIG. 1 is a partial cross-sectional view showing the configuration of a superconducting electromagnet according to the first embodiment of the present invention.
  • the superconducting magnet 100 according to the first embodiment of the present invention includes an inner container 130, an outer container 140, an exhaust pipe line 170, a first spring type check valve 191 and a second spring type.
  • a check valve 192 and a third spring type check valve 193 are provided.
  • the superconducting electromagnet 100 further includes a burst plate 190.
  • the inner container 130 contains the superconducting coil 110 and the liquid refrigerant 120 that cools the superconducting coil 110.
  • the refrigerant 120 is helium, but the refrigerant 120 is not limited to helium and may be nitrogen.
  • the outer container 140 holds the inner container 130 inside in a state of being insulated from the inner container 130.
  • a vacuum is maintained between the outer container 140 and the inner container 130.
  • a radiation shield 150 is provided between the outer container 140 and the inner container 130 so as to cover the outside of the inner container 130.
  • a super insulation 160 is provided between the radiation shield 150 and the outer container 140.
  • the exhaust pipe 170 discharges the refrigerant gas 121 evaporated in the inner container 130 to the outside of the outer container 140.
  • one end of the exhaust pipe line 170 is connected to a lid portion that covers a connection port located inside with a connection wiring for connecting the superconducting coil 110 and an external power supply.
  • the lid portion is provided on the outer peripheral surface of the outer container 140.
  • the other end of the exhaust pipe 170 is open to the outside.
  • the exhaust pipe line 170 includes a first diversion pipe line 171 connected in parallel with each other and a second diversion pipe line 172 having a diameter larger than that of the first diversion pipe line 171.
  • the exhaust line 170 further includes a third diversion line 173.
  • the third diversion pipe 173 is connected in parallel with the first diversion pipe 171 and the second diversion pipe 172, and has a larger diameter than the first diversion pipe 171.
  • the diameter of the first diversion pipe 171 is, for example, 15 mm or less.
  • a part of the second diversion pipe 172 is branched into at least the first branch pipe 181 and the second branch pipe 182.
  • a part of the second diversion pipe 172 is branched into a first branch pipe 181 and a second branch pipe 182.
  • the second branch line 182 is different from the first branch line 181 in at least one of diameter, length and internal volume.
  • the second branch line 182 has a larger diameter, a longer length, and a larger internal volume than the first branch line 181.
  • the diameter of the rest of the second diversion line 172 is the same as the diameter of the first branch line 181.
  • the diameter of the first branch pipeline 181 is, for example, 20 mm or more and 40 mm or less.
  • the diameter of the second branch line 182 is, for example, 1.5 times the diameter of the first branch line 181.
  • the length of the second branch line 182 is, for example, 1.2 times or more the length of the first branch line 181.
  • Each of the first spring type check valve 191 and the second spring type check valve 192 and the third spring type check valve 193 is provided in the exhaust pipe line 170.
  • the first spring type check valve 191 is provided in the first diversion line 171 and has a large differential pressure between the upstream side and the downstream side of the first spring type check valve 191 in the first diversion line 171.
  • the opening operation is performed when the first set pressure P1 or higher, which is higher than the atmospheric pressure PA, is reached.
  • the first set pressure P1 is, for example, higher than the atmospheric pressure PA and 1.1 times or less the atmospheric pressure PA.
  • the second spring type check valve 192 is provided in the first branch line 181 and the pressure difference between the upstream side and the downstream side of the second spring type check valve 192 in the first branch line 181 is the second.
  • the second set pressure P2 or higher which is higher than the first set pressure P1
  • the second set pressure P2 is, for example, 1.25 times or more the atmospheric pressure PA.
  • the third spring type check valve 193 is provided in the second branch line 182, and the pressure difference between the upstream side and the downstream side of the third spring type check valve 193 in the second branch line 182 is the second.
  • the third set pressure P3 or higher which is higher than the set pressure P1
  • the opening operation is performed.
  • the second set pressure P2 and the third set pressure P3 are the same.
  • the rupture plate 190 is provided in the third divergence line 173, and ruptures when the differential pressure between the upstream side and the downstream side of the rupture plate 190 in the third divergence line 173 exceeds the threshold PS, and the third divergence flow occurs. By opening the pipeline 173, an abnormal rise in pressure inside the inner container 130 is prevented.
  • the threshold PS is larger than each of the second set pressure P2 and the third set pressure P3.
  • the pressure in the inner container 130 when the refrigerating machine of the superconducting magnet 100 is stopped is less than the second set pressure P2, and the first spring type check valve 191 and the second spring type check valve 192 and the third spring type Since only the first spring type check valve 191 of the check valves 193 is in the open state and the rupture plate 190 is not ruptured, the first diversion pipe 171 functions as an exhaust path for the refrigerant gas 121 during transportation. ..
  • the pressure in the inner container 130 at the time of quenching of the superconducting magnet 100 is higher than each of the second set pressure P2 and the third set pressure P3 and is equal to or less than the threshold PS, and the first spring type check valve 191 and the second spring type check valve All of the stop valve 192 and the third spring type check valve 193 are in the open state, and the rupture plate 190 is not ruptured. Since the diameter of the first diversion pipe 171 is smaller than that of the second diversion pipe 172, the refrigerant gas 121 mainly flows into the second diversion pipe 172. Therefore, the second diversion pipe line 172 functions as an exhaust path for the refrigerant gas 121 when quenching occurs.
  • the exhaust pipe of the superconducting magnet according to the comparative example will be described with reference to the drawings.
  • the superconducting magnet according to the comparative example differs from the superconducting magnet 100 according to the first embodiment of the present invention only in the configuration of the exhaust pipe line.
  • FIG. 2 is a partial cross-sectional view showing the configuration of the exhaust pipe line of the superconducting electromagnet according to the comparative example.
  • the exhaust pipe line 970 of the superconducting electromagnet 900 according to the comparative example has a diameter larger than that of the first diversion pipe line 171 and the first diversion pipe line 171 connected in parallel to each other, and the second diversion pipe line 972. including.
  • the exhaust line 970 further includes a third diversion line 173.
  • the third diversion pipe 173 is connected in parallel with the first diversion pipe 171 and the second diversion pipe 972, and has a larger diameter than the first diversion pipe 171.
  • the diameter of the first diversion pipe 171 is, for example, 15 mm or less.
  • the diameter of each of the second diversion pipe 972 and the third diversion pipe 173 is, for example, 20 mm or more and 40 mm or less.
  • the first spring type check valve 191 is provided in the first diversion pipe 171
  • the second spring type check valve 192 is provided in the second diversion pipe 972
  • the third diversion pipe 173 bursts.
  • a plate 190 is provided.
  • the superconducting state of the superconducting magnet 900 can be maintained by maintaining the balance between the amount of energizing current of the superconducting coil 110, the cooling temperature of the superconducting coil 110, and the generated magnetic field of the superconducting coil 110.
  • Quenching of the superconducting magnet 900 is a phenomenon in which the superconducting state disappears due to an electrical factor, a thermal factor, or the like, and the superconducting coil 110 shifts to normal conduction. When quenching of the superconducting magnet 900 occurs, the electric resistance of the superconducting coil 110 is suddenly generated and the superconducting coil 110 generates heat.
  • the superconducting coil 110 In the superconducting magnet 900 for MRI (Magnetic Resonance Imaging), the superconducting coil 110 generates heat in a short time of less than 5 seconds from the occurrence of quenching, and heat energy of about 3 MJ is generated. This heat energy is heat-transported as latent heat due to evaporation of the liquid refrigerant 120 and sensible heat due to the temperature rise of the refrigerant gas 121. Since the pressure inside the inner container 130 rises in a short time due to the generated refrigerant gas 121, it is necessary to discharge the refrigerant gas 121 to the outside while suppressing an increase in the fluid resistance of the exhaust pipe line 970. On the other hand, during normal operation of the superconducting magnet 900, it is necessary to suppress the inflow of outside air and heat into the inner container 130 in order to maintain the superconducting coil 110 in a low temperature state.
  • the second diversion pipe line 972 functions as an exhaust path for the refrigerant gas 121 when quenching occurs. Therefore, in the second diversion pipe 972, in order to reduce the fluid resistance including the pressure loss in the second spring type check valve 192 and to suppress the heat inflow from the second diversion pipe 972, the second diversion pipe The length of the passage 972 is shortened and the diameter is reduced, and the thickness of the second diversion pipe 972 is reduced to secure the flow path area of the refrigerant gas 121.
  • FIG. 3 is a graph showing the transition of the pressure in the inner container from the time of quenching in the superconducting electromagnet according to the comparative example.
  • the vertical axis shows the pressure inside the inner container 130
  • the horizontal axis shows the elapsed time from the occurrence of quenching.
  • the opening operation speed of the second spring type check valve 192 is slower than the generation speed of the refrigerant gas 121 immediately after the quenching, so that the inner container 130
  • the internal pressure reaches a peak pressure B that is 30% to 50% higher than the second set pressure A at which the second spring type check valve 192 starts the opening operation.
  • the second spring type check valve 192 opens when the pressure inside the inner container 130 becomes larger than the sum of the spring urging force and the outside air pressure in the second spring type check valve 192. That is, the second set pressure A of the second spring type check valve 192 is the urging force of the spring when the second spring type check valve 192 is closed.
  • the outside air pressure in the highlands is lower than the outside air pressure in the flatlands.
  • FIG. 4 is a graph showing the pressure at which the second spring type check valve starts the opening operation of the superconducting electromagnet according to the comparative example during flatland transportation and air transportation or high altitude transportation.
  • the vertical axis shows the pressure in the inner container 130
  • the horizontal axis shows the superconducting magnet during flatland transportation and air transportation or highland transportation.
  • the pressure inside the inner container 130 is the second set pressure A of the second spring type check valve 192 and the outside air on flat ground.
  • the second spring type check valve 192 opens.
  • the second The spring-type check valve 192 opens.
  • the second spring type check valve 192 opens at a low pressure only by the pressure difference E between the outside air pressure D and the outside air pressure D', so that the refrigerant 120 during air transportation or high altitude transportation of the superconducting magnet 900 Evaporation amount increases compared to when transported on flat ground.
  • the second set pressure A of the second spring type check valve 192 is low, the amount of evaporation of the refrigerant 120 is further increased.
  • FIG. 5 is a graph showing the transition of the pressure in the inner container from the time of quenching in the superconducting electromagnet according to the first embodiment of the present invention.
  • the vertical axis shows the pressure inside the inner container 130
  • the horizontal axis shows the elapsed time from the occurrence of quenching.
  • a part of the second diversion pipe 172 is branched into the first branch pipe 181 and the second branch pipe 182, so that the first branch is formed. It is possible to reduce the amount of increase in the flow rate of the refrigerant gas 121 flowing into each of the pipeline 181 and the second branch pipeline 182 with respect to the elapsed time. Therefore, as shown in FIG. 5, the peak pressure B'in the inner container 130 can be reduced as compared with the peak pressure B.
  • the second branch line 182 provided with the third spring type check valve 193 is different from the first branch line 181 provided with the second spring type check valve 192 in diameter, length and Since at least one of the internal volumes is different, the operation timings of the second spring type check valve 192 and the third spring type check valve 193 can be made different. As a result, the generation of the fluctuating pressure C can be suppressed.
  • each of the second set pressure P2 of the second spring type check valve 192 and the third set pressure P3 of the third spring type check valve 193 is compared.
  • the set pressure A'higher than the second set pressure A the amount of evaporation of the refrigerant 120 during air transportation or high altitude transportation can be reduced.
  • the first set pressure P1 is 1.1 times or less than the atmospheric pressure
  • the second set pressure P2 is 1.25 times or more the atmospheric pressure. ..
  • the first diversion pipe 171 can function as an exhaust path for the refrigerant gas 121 during transportation
  • the second diversion pipe 172 can effectively function as an exhaust path for the refrigerant gas 121 when quenching occurs. ..
  • the third set pressure P3 is the same as the second set pressure P2. This makes it possible to use a spring-type check valve having the same specifications as the second spring-type check valve 192 as the third spring-type check valve 193, facilitating the manufacture of the superconducting magnet 100.
  • the superconducting electromagnet according to the second embodiment of the present invention differs from the superconducting magnet 100 according to the first embodiment of the present invention only in the configuration of the third spring type check valve, and therefore relates to the first embodiment of the present invention.
  • the description of the configuration similar to that of the superconducting electromagnet 100 will not be repeated.
  • FIG. 6 is a partial cross-sectional view showing the configuration of the exhaust pipeline of the superconducting magnet according to the second embodiment of the present invention.
  • the third spring type check valve 293 is provided in the second branch pipe line 182.
  • the third spring type check valve 293 has a third set pressure P3 or higher in which the differential pressure between the upstream side and the downstream side of the third spring type check valve 293 in the second branch line 182 is higher than the first set pressure P1. It opens when it becomes.
  • the third set pressure P3 is higher than the second set pressure P2.
  • the third set pressure P3 is 1.1 times the second set pressure P2.
  • the operation timings of the second spring type check valve 192 and the third spring type check valve 193 are significantly different, and the generation of the fluctuating pressure C is effective. Can be suppressed. Further, since the third set pressure P3 can be made higher than that of the superconducting electromagnet 100 according to the first embodiment, the amount of evaporation of the refrigerant 120 during air transportation or high altitude transportation can be reduced while reducing the maximum pressure in the inner container 130. It can be further reduced.
  • the superconducting electromagnet according to the third embodiment of the present invention differs from the superconducting magnet 100 according to the first embodiment of the present invention only in that it further includes a third branch conduit and a fourth spring type check valve. The description of the configuration similar to that of the superconducting electromagnet 100 according to the first embodiment of the present invention will not be repeated.
  • FIG. 7 is a partial cross-sectional view showing the configuration of the exhaust pipe line of the superconducting magnet according to the third embodiment of the present invention.
  • the exhaust pipe line 370 has a diameter larger than that of the first diversion pipe line 171 and the first diversion pipe line 171 connected in parallel with each other. Includes a large second diversion line 372.
  • the exhaust line 370 further includes a third diversion line 173. A part of the second branch line 372 is branched into the first branch line 181 and the second branch line 182 and the third branch line 383.
  • the third branch line 383 is different from the first branch line 181 in at least one of diameter, length and internal volume.
  • the third branch line 383 has a larger diameter, a longer length, and a larger internal volume than the first branch line 181.
  • the diameter of the third branch line 383 is, for example, 1.5 times the diameter of the first branch line 181.
  • the length of the third branch line 383 is, for example, 1.2 times or more the length of the first branch line 181.
  • the superconducting magnet 300 according to the third embodiment of the present invention further includes a fourth spring type check valve 394 provided in the third branch pipeline 383.
  • the fourth spring type check valve 394 has a fourth set pressure in which the differential pressure between the upstream side and the downstream side of the fourth spring type check valve 394 in the third branch line 383 is the same as the second set pressure P2. When it reaches P4 or higher, it opens.
  • a part of the second diversion pipe line 372 is branched into three, but it may be branched into four or more.
  • each branch line is different from the first branch line 181 in at least one of diameter, length and internal volume, and each of them is different.
  • a spring-type check valve that opens when the set pressure is equal to or higher than the second set pressure P2 is provided in the branch line.
  • a part of the second diversion pipe 372 is branched into the first branch pipe 181 and the second branch pipe 182 and the third branch pipe 383.
  • the peak pressure in the inner container 130 can be reduced as compared with the peak pressure B'of the superconducting electromagnet 100 according to the first embodiment.
  • the operation timings of the second spring type check valve 192, the third spring type check valve 193, and the fourth spring type check valve 394 are different from each other. , The generation of the fluctuating pressure C can be effectively suppressed.
  • each of the fourth set pressures P4 of the check valve 394 is made higher than each of the second set pressure P2 and the third set pressure P3 of the superconducting magnet 100 according to the first embodiment, and the refrigerant 120 during air transportation or high altitude transportation. The amount of evaporation can be reduced.
  • the superconducting electromagnet according to the fourth embodiment of the present invention differs from the superconducting magnet 300 according to the third embodiment of the present invention only in the configuration of the fourth spring type check valve, and therefore relates to the third embodiment of the present invention.
  • the description of the configuration similar to that of the superconducting electromagnet 300 will not be repeated.
  • FIG. 8 is a partial cross-sectional view showing the configuration of the exhaust pipe line of the superconducting magnet according to the fourth embodiment of the present invention.
  • the fourth spring type check valve 494 is provided in the third branch pipe line 383.
  • the fourth spring type check valve 494 has a fourth set pressure P4 or higher in which the differential pressure between the upstream side and the downstream side of the fourth spring type check valve 494 in the third branch line 383 is higher than the second set pressure P2. It opens when it becomes.
  • the fourth set pressure P4 is 1.1 times the second set pressure P2.
  • the operation timings of the second spring type check valve 192, the third spring type check valve 193, and the fourth spring type check valve 494 are significantly different. Therefore, the generation of the fluctuating pressure C can be effectively suppressed. Further, since each of the third set pressure P3 and the fourth set pressure P4 can be made higher than the superconducting electromagnet 300 according to the third embodiment, the maximum pressure in the inner container 130 can be reduced and the air transportation or high altitude transportation can be performed. The amount of evaporation of the refrigerant 120 at that time can be further reduced.
  • Embodiment 5 the superconducting electromagnet according to the fifth embodiment of the present invention will be described. Since the superconducting magnet according to the fifth embodiment of the present invention is different from the superconducting magnet 100 according to the first embodiment of the present invention only in that it further includes a throttle portion, the superconducting magnet 100 according to the first embodiment of the present invention. The description is not repeated for the configuration similar to the above.
  • FIG. 9 is a partial cross-sectional view showing the configuration of the exhaust pipeline of the superconducting magnet according to the fifth embodiment of the present invention.
  • a throttle portion 590 is provided on the downstream side of the third spring type check valve 293 in the second branch pipe line 182.
  • the throttle portion 590 partially reduces the flow path area of the refrigerant gas 121 in the second branch pipe line 182.
  • the throttle portion 590 is, for example, an orifice or a ball valve.
  • the fluid resistance in the second branch line 182 is increased by the throttle portion 590 to reduce the pulsation of the opening / closing operation of the third spring type check valve 293. Therefore, the generation of the fluctuating pressure C can be effectively suppressed. Further, since the third set pressure P3 can be made higher than that of the superconducting electromagnet 100 according to the first embodiment, the amount of evaporation of the refrigerant 120 during air transportation or high altitude transportation can be reduced while reducing the maximum pressure in the inner container 130. It can be further reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

A part of a second shunt line (172) is branched into at least a first branch line (181) and a second branch line (182). A second spring check valve (192) is provided in the first branch line (181), and opens when a pressure difference between an upstream side and a downstream side of the second spring check valve (192) in the first branch line (181) is greater than or equal to a second set pressure higher than a first set pressure. A third spring check valve (193) is provided in the second branch line (182), and opens when a pressure difference between an upstream side and a downstream side of the third spring check valve (193) in the second branch line (182) is greater than or equal to a third set pressure higher than the first set pressure. The second branch line (182) differs from the first branch line (181) in at least diameter, length, and internal volume.

Description

超電導電磁石Superconducting electromagnet
 本発明は、超電導電磁石に関する。 The present invention relates to a superconducting electromagnet.
 超電導電磁石の構成を開示した先行文献として、特開平5-55032号公報(特許文献1)がある。特許文献1に記載された超電導電磁石は、内側容器と、外側容器と、排気通路と、安全弁と、内圧保持弁と、開閉バルブとを備える。内側容器は、超電導コイルおよび冷媒を収容する。外側容器は、内側容器を内部に保持する。排気通路は、第1分岐管、第2分岐管および第3分岐管に分岐されている。安全弁は、第1分岐管に設けられている。安全弁は、超電導電磁石が正常な超電導状態を維持している限り開くことはない。内圧保持弁は、ばね式逆止弁からなり、第2分岐管に設けられている。内圧保持弁は、超電導電磁石のクエンチ発生時に開いて冷媒ガスを放出する。開閉バルブは、第3分岐管に設けられている。開閉バルブは、冷媒の注入時以外は常時閉じられている。 As a prior document disclosing the configuration of a superconducting magnet, there is Japanese Patent Application Laid-Open No. 5-55032 (Patent Document 1). The superconducting magnet described in Patent Document 1 includes an inner container, an outer container, an exhaust passage, a safety valve, an internal pressure holding valve, and an on-off valve. The inner container houses the superconducting coil and the refrigerant. The outer container holds the inner container inside. The exhaust passage is branched into a first branch pipe, a second branch pipe and a third branch pipe. The safety valve is provided in the first branch pipe. The safety valve will not open as long as the superconducting electromagnet maintains a normal superconducting state. The internal pressure holding valve is a spring-type check valve and is provided in the second branch pipe. The internal pressure holding valve opens when the superconducting electromagnet quenchs and releases the refrigerant gas. The on-off valve is provided in the third branch pipe. The on-off valve is always closed except when the refrigerant is injected.
特開平5-55032号公報Japanese Unexamined Patent Publication No. 5-55032
 超電導電磁石のクエンチ発生時には、短時間に大量の冷媒ガスが発生する。特許文献1に記載の超電導電磁石のように1つのばね式逆止弁によって冷媒ガスを放出させる場合、冷媒ガスの発生速度に対してばね式逆止弁の開動作の速度が遅いため、内側容器内の圧力が瞬間的にピーク圧力に達する。ピーク圧力に達した後、内側容器内においては、ばね式逆止弁が開くことによる圧力低下と、圧力低下に伴ってばね式逆止弁が閉動作することよる圧力上昇とを、交互に繰り返す変動圧力が発生する。これらのピーク圧力および変動圧力の最大圧力を内側容器の許容圧力以下に維持する必要があるため、ばね式逆止弁が開動作を開始するときのばねの付勢力である設定圧力を高くすることができない。 When quenching of superconducting electromagnets occurs, a large amount of refrigerant gas is generated in a short time. When the refrigerant gas is discharged by one spring type check valve like the superconducting magnet described in Patent Document 1, the opening operation speed of the spring type check valve is slower than the generation speed of the refrigerant gas, so that the inner container The pressure inside reaches the peak pressure momentarily. After reaching the peak pressure, in the inner container, the pressure drop due to the opening of the spring-type check valve and the pressure rise due to the closing operation of the spring-type check valve as the pressure drops are repeated alternately. Fluctuation pressure is generated. Since it is necessary to maintain the maximum pressures of these peak pressures and fluctuating pressures below the allowable pressure of the inner container, increase the set pressure, which is the urging force of the spring when the spring-type check valve starts the opening operation. I can't.
 ばね式逆止弁は、内側容器内の圧力がばね式逆止弁におけるばねの付勢力と外気圧力との合計より大きくなることにより、開動作する。すなわち、ばね式逆止弁の設定圧力は、ばね式逆止弁が閉じているときのばねの付勢力である。高地の外気圧力は、平地の外気圧力より低い。よって、超電導電磁石の空輸時または高地輸送時に、内側容器内の圧力がばね式逆止弁における設定圧力と高地の外気圧力との合計より大きくなったとき、ばね式逆止弁が開動作する。その結果、超電導電磁石の空輸時または高地輸送時の冷媒の蒸発量が増加する。ばね式逆止弁の設定圧力が低い場合、冷媒の蒸発量がさらに増加する。 The spring-type check valve operates when the pressure inside the inner container becomes larger than the sum of the spring urging force and the outside air pressure of the spring-type check valve. That is, the set pressure of the spring-type check valve is the urging force of the spring when the spring-type check valve is closed. The outside air pressure in the highlands is lower than the outside air pressure in the flatlands. Therefore, when the pressure inside the inner container becomes larger than the sum of the set pressure in the spring-type check valve and the outside air pressure in the high ground during air transportation or high-altitude transportation of the superconducting magnet, the spring-type check valve opens. As a result, the amount of evaporation of the refrigerant during air transportation or high altitude transportation of the superconducting magnet increases. When the set pressure of the spring-type check valve is low, the amount of refrigerant evaporated further increases.
 本発明は上記の問題点に鑑みてなされたものであって、内側容器内の最大圧力を低減しつつ、空輸時または高地輸送時の冷媒の蒸発量を低減することができる、超電導電磁石を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a superconducting electromagnet capable of reducing the amount of evaporation of a refrigerant during air transportation or high altitude transportation while reducing the maximum pressure in the inner container. The purpose is to do.
 本発明に基づく超電導電磁石は、内側容器と、外側容器と、排気管路と、第1ばね式逆止弁、第2ばね式逆止弁および第3ばね式逆止弁とを備える。内側容器は、超電導コイルおよび超電導コイルを冷却する液状の冷媒を収容する。外側容器は、内側容器との間を断熱された状態で、内側容器を内部に保持する。排気管路は、内側容器内で蒸発した冷媒ガスを外側容器の外側に排出する。第1ばね式逆止弁、第2ばね式逆止弁および第3ばね式逆止弁の各々は、排気管路に設けられている。排気管路は、互いに並列に接続された第1分流管路および第1分流管路より直径の大きい第2分流管路を含む。第2分流管路の一部は、少なくとも第1分岐管路および第2分岐管路に分岐している。第1ばね式逆止弁は、第1分流管路に設けられており、第1分流管路内における第1ばね式逆止弁より上流側と下流側との差圧が大気圧より高い第1設定圧力以上になると開動作する。第2ばね式逆止弁は、第1分岐管路に設けられており、第1分岐管路内における第2ばね式逆止弁より上流側と下流側との差圧が第1設定圧力より高い第2設定圧力以上になると開動作する。第3ばね式逆止弁は、第2分岐管路に設けられており、第2分岐管路内における第3ばね式逆止弁より上流側と下流側との差圧が第1設定圧力より高い第3設定圧力以上になると開動作する。第2分岐管路は、第1分岐管路とは、直径、長さおよび内容積の少なくとも1つが異なる。 The superconducting magnet based on the present invention includes an inner container, an outer container, an exhaust pipeline, a first spring type check valve, a second spring type check valve, and a third spring type check valve. The inner container contains the superconducting coil and the liquid refrigerant that cools the superconducting coil. The outer container holds the inner container inside in a state of being insulated from the inner container. The exhaust pipeline discharges the refrigerant gas evaporated in the inner container to the outside of the outer container. Each of the first spring type check valve, the second spring type check valve, and the third spring type check valve is provided in the exhaust pipe line. The exhaust line includes a first diversion line connected in parallel with each other and a second diversion line having a diameter larger than that of the first diversion line. A part of the second diversion pipe is branched into at least the first branch pipe and the second branch pipe. The first spring type check valve is provided in the first diversion line, and the differential pressure between the upstream side and the downstream side of the first spring type check valve in the first diversion line is higher than the atmospheric pressure. When the pressure exceeds 1 set, the operation opens. The second spring type check valve is provided in the first branch pipeline, and the differential pressure between the upstream side and the downstream side of the second spring type check valve in the first branch pipeline is larger than the first set pressure. It opens when the pressure exceeds the high second set pressure. The third spring type check valve is provided in the second branch pipeline, and the differential pressure between the upstream side and the downstream side of the third spring type check valve in the second branch pipeline is from the first set pressure. It opens when the pressure exceeds the high third set pressure. The second branch pipeline differs from the first branch pipeline in at least one of diameter, length and internal volume.
 本発明によれば、第2分流管路の一部が第1分岐管路と第2分岐管路とに分岐していることにより、第1分岐管路および第2分岐管路の各々に流入する冷媒ガスの流量の経過時間に対する増加量を減少することができるため、内側容器内のピーク圧力を低減することができる。さらに、第3ばね式逆止弁が設けられている第2分岐管路は、第2ばね式逆止弁が設けられている第1分岐管路とは、直径、長さおよび内容積の少なくとも1つが異なることにより、第2ばね式逆止弁と第3ばね式逆止弁との動作タイミングを異ならせることができる。その結果、変動圧力の発生を抑制することができる。これらにより、内側容器内の最大圧力を低減しつつ、第2ばね式逆止弁および第3ばね式逆止弁の各々の設定圧力を高くして、空輸時または高地輸送時の冷媒の蒸発量を低減することができる。 According to the present invention, a part of the second diversion pipeline is branched into the first branch pipeline and the second branch pipeline, so that the gas flows into each of the first branch pipeline and the second branch pipeline. Since the amount of increase in the flow rate of the refrigerant gas with respect to the elapsed time can be reduced, the peak pressure in the inner container can be reduced. Further, the second branch pipeline provided with the third spring type check valve has at least the diameter, length and internal volume of the second branch pipeline provided with the second spring type check valve with respect to the first branch pipeline provided with the second spring type check valve. Due to the difference in one, the operation timings of the second spring type check valve and the third spring type check valve can be made different. As a result, the generation of fluctuating pressure can be suppressed. As a result, while reducing the maximum pressure in the inner container, the set pressures of the second spring type check valve and the third spring type check valve are increased, and the amount of refrigerant evaporated during air transportation or high altitude transportation. Can be reduced.
本発明の実施の形態1に係る超電導電磁石の構成を示す部分断面図である。It is a partial cross-sectional view which shows the structure of the superconducting electromagnet which concerns on Embodiment 1 of this invention. 比較例に係る超電導電磁石の排気管路の構成を示す部分断面図である。It is a partial cross-sectional view which shows the structure of the exhaust pipe line of the superconducting electromagnet which concerns on a comparative example. 比較例に係る超電導電磁石においてクエンチ発生時からの内側容器内の圧力の推移を示すグラフである。It is a graph which shows the transition of the pressure in the inner container from the time of quenching in the superconducting electromagnet which concerns on a comparative example. 比較例に係る超電導電磁石の、平地輸送時と、空輸時または高地輸送時とにおける、第2ばね式逆止弁が開動作を開始する圧力を示すグラフである。It is a graph which shows the pressure at which the 2nd spring type check valve starts the opening operation at the time of the superconducting magnet which concerns on a comparative example, and at the time of air transportation or high altitude transportation. 本発明の実施の形態1に係る超電導電磁石においてクエンチ発生時からの内側容器内の圧力の推移を示すグラフである。It is a graph which shows the transition of the pressure in the inner container from the time of quenching in the superconducting electromagnet which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る超電導電磁石の排気管路の構成を示す部分断面図である。It is a partial cross-sectional view which shows the structure of the exhaust pipe line of the superconducting magnet which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る超電導電磁石の排気管路の構成を示す部分断面図である。It is a partial cross-sectional view which shows the structure of the exhaust pipe line of the superconducting magnet which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る超電導電磁石の排気管路の構成を示す部分断面図である。It is a partial cross-sectional view which shows the structure of the exhaust pipe line of the superconducting electromagnet which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る超電導電磁石の排気管路の構成を示す部分断面図である。It is a partial cross-sectional view which shows the structure of the exhaust pipe line of the superconducting electromagnet which concerns on Embodiment 5 of this invention.
 以下、本発明の各実施の形態に係る超電導電磁石について図面を参照して説明する。以下の実施の形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。 Hereinafter, the superconducting electromagnet according to each embodiment of the present invention will be described with reference to the drawings. In the following description of the embodiment, the same or corresponding parts in the drawings are designated by the same reference numerals, and the description will not be repeated.
 実施の形態1.
 図1は、本発明の実施の形態1に係る超電導電磁石の構成を示す部分断面図である。図1に示すように、本発明の実施の形態1に係る超電導電磁石100は、内側容器130と、外側容器140と、排気管路170と、第1ばね式逆止弁191、第2ばね式逆止弁192および第3ばね式逆止弁193とを備える。本実施の形態においては、超電導電磁石100は、破裂板190をさらに備える。
Embodiment 1.
FIG. 1 is a partial cross-sectional view showing the configuration of a superconducting electromagnet according to the first embodiment of the present invention. As shown in FIG. 1, the superconducting magnet 100 according to the first embodiment of the present invention includes an inner container 130, an outer container 140, an exhaust pipe line 170, a first spring type check valve 191 and a second spring type. A check valve 192 and a third spring type check valve 193 are provided. In the present embodiment, the superconducting electromagnet 100 further includes a burst plate 190.
 内側容器130は、超電導コイル110および超電導コイル110を冷却する液状の冷媒120を収容する。本実施の形態においては、冷媒120は、ヘリウムであるが、冷媒120は、ヘリウムに限られず、窒素でもよい。 The inner container 130 contains the superconducting coil 110 and the liquid refrigerant 120 that cools the superconducting coil 110. In the present embodiment, the refrigerant 120 is helium, but the refrigerant 120 is not limited to helium and may be nitrogen.
 外側容器140は、内側容器130との間を断熱された状態で、内側容器130を内部に保持する。外側容器140と内側容器130との間は、真空状態に維持されている。外側容器140と内側容器130との間には、内側容器130の外側を覆うように輻射シールド150が設けられている。輻射シールド150と外側容器140との間には、スーパーインシュレーション160が設けられている。 The outer container 140 holds the inner container 130 inside in a state of being insulated from the inner container 130. A vacuum is maintained between the outer container 140 and the inner container 130. A radiation shield 150 is provided between the outer container 140 and the inner container 130 so as to cover the outside of the inner container 130. A super insulation 160 is provided between the radiation shield 150 and the outer container 140.
 排気管路170は、内側容器130内で蒸発した冷媒ガス121を外側容器140の外側に排出する。具体的には、排気管路170の一端は、超電導コイル110と外部電源とを接続するための接続配線が内部に位置する接続口を覆う蓋部に接続されている。蓋部は、外側容器140の外周面上に設けられている。排気管路170の他端は、外部に開放している。 The exhaust pipe 170 discharges the refrigerant gas 121 evaporated in the inner container 130 to the outside of the outer container 140. Specifically, one end of the exhaust pipe line 170 is connected to a lid portion that covers a connection port located inside with a connection wiring for connecting the superconducting coil 110 and an external power supply. The lid portion is provided on the outer peripheral surface of the outer container 140. The other end of the exhaust pipe 170 is open to the outside.
 排気管路170は、互いに並列に接続された第1分流管路171および第1分流管路171より直径の大きい第2分流管路172を含む。排気管路170は、第3分流管路173をさらに含む。第3分流管路173は、第1分流管路171および第2分流管路172と並列に接続され、第1分流管路171より直径が大きい。第1分流管路171の直径は、たとえば、15mm以下である。 The exhaust pipe line 170 includes a first diversion pipe line 171 connected in parallel with each other and a second diversion pipe line 172 having a diameter larger than that of the first diversion pipe line 171. The exhaust line 170 further includes a third diversion line 173. The third diversion pipe 173 is connected in parallel with the first diversion pipe 171 and the second diversion pipe 172, and has a larger diameter than the first diversion pipe 171. The diameter of the first diversion pipe 171 is, for example, 15 mm or less.
 第2分流管路172の一部は、少なくとも第1分岐管路181および第2分岐管路182に分岐している。本実施の形態においては、第2分流管路172の一部は、第1分岐管路181と第2分岐管路182とに分岐している。 A part of the second diversion pipe 172 is branched into at least the first branch pipe 181 and the second branch pipe 182. In the present embodiment, a part of the second diversion pipe 172 is branched into a first branch pipe 181 and a second branch pipe 182.
 第2分岐管路182は、第1分岐管路181とは、直径、長さおよび内容積の少なくとも1つが異なる。本実施の形態においては、第2分岐管路182は、第1分岐管路181に比較して、直径が大きく、長く、かつ、内容積が大きい。第2分流管路172の残部の直径は、第1分岐管路181の直径と同一である。 The second branch line 182 is different from the first branch line 181 in at least one of diameter, length and internal volume. In the present embodiment, the second branch line 182 has a larger diameter, a longer length, and a larger internal volume than the first branch line 181. The diameter of the rest of the second diversion line 172 is the same as the diameter of the first branch line 181.
 第1分岐管路181の直径は、たとえば、20mm以上40mm以下である。第2分岐管路182の直径は、第1分岐管路181の直径に対して、たとえば、1.5倍である。第2分岐管路182の長さは、第1分岐管路181の長さに対して、たとえば、1.2倍以上である。 The diameter of the first branch pipeline 181 is, for example, 20 mm or more and 40 mm or less. The diameter of the second branch line 182 is, for example, 1.5 times the diameter of the first branch line 181. The length of the second branch line 182 is, for example, 1.2 times or more the length of the first branch line 181.
 第1ばね式逆止弁191、第2ばね式逆止弁192および第3ばね式逆止弁193の各々は、排気管路170に設けられている。 Each of the first spring type check valve 191 and the second spring type check valve 192 and the third spring type check valve 193 is provided in the exhaust pipe line 170.
 第1ばね式逆止弁191は、第1分流管路171に設けられており、第1分流管路171内における第1ばね式逆止弁191より上流側と下流側との差圧が大気圧PAより高い第1設定圧力P1以上になると開動作する。第1設定圧力P1は、たとえば、大気圧PAより高く、かつ、大気圧PAの1.1倍以下である。 The first spring type check valve 191 is provided in the first diversion line 171 and has a large differential pressure between the upstream side and the downstream side of the first spring type check valve 191 in the first diversion line 171. The opening operation is performed when the first set pressure P1 or higher, which is higher than the atmospheric pressure PA, is reached. The first set pressure P1 is, for example, higher than the atmospheric pressure PA and 1.1 times or less the atmospheric pressure PA.
 第2ばね式逆止弁192は、第1分岐管路181に設けられており、第1分岐管路181内における第2ばね式逆止弁192より上流側と下流側との差圧が第1設定圧力P1より高い第2設定圧力P2以上になると開動作する。第2設定圧力P2は、たとえば、大気圧PAの1.25倍以上である。 The second spring type check valve 192 is provided in the first branch line 181 and the pressure difference between the upstream side and the downstream side of the second spring type check valve 192 in the first branch line 181 is the second. When the second set pressure P2 or higher, which is higher than the first set pressure P1, the opening operation is performed. The second set pressure P2 is, for example, 1.25 times or more the atmospheric pressure PA.
 第3ばね式逆止弁193は、第2分岐管路182に設けられており、第2分岐管路182内における第3ばね式逆止弁193より上流側と下流側との差圧が第1設定圧力P1より高い第3設定圧力P3以上になると開動作する。本実施の形態においては、第2設定圧力P2と第3設定圧力P3とは同一である。 The third spring type check valve 193 is provided in the second branch line 182, and the pressure difference between the upstream side and the downstream side of the third spring type check valve 193 in the second branch line 182 is the second. When the third set pressure P3 or higher, which is higher than the set pressure P1, the opening operation is performed. In the present embodiment, the second set pressure P2 and the third set pressure P3 are the same.
 破裂板190は、第3分流管路173に設けられており、第3分流管路173内における破裂板190より上流側と下流側との差圧が閾値PSを超えると破裂して第3分流管路173を開放することにより、内側容器130内の圧力の異常上昇を防止する。閾値PSは、第2設定圧力P2および第3設定圧力P3の各々より大きい。 The rupture plate 190 is provided in the third divergence line 173, and ruptures when the differential pressure between the upstream side and the downstream side of the rupture plate 190 in the third divergence line 173 exceeds the threshold PS, and the third divergence flow occurs. By opening the pipeline 173, an abnormal rise in pressure inside the inner container 130 is prevented. The threshold PS is larger than each of the second set pressure P2 and the third set pressure P3.
 超電導電磁石100の冷凍機が停止する輸送時における内側容器130内の圧力は第2設定圧力P2未満であり、第1ばね式逆止弁191、第2ばね式逆止弁192および第3ばね式逆止弁193のうちの第1ばね式逆止弁191のみが開状態となり、破裂板190は破裂していないため、第1分流管路171が輸送時の冷媒ガス121の排気経路として機能する。 The pressure in the inner container 130 when the refrigerating machine of the superconducting magnet 100 is stopped is less than the second set pressure P2, and the first spring type check valve 191 and the second spring type check valve 192 and the third spring type Since only the first spring type check valve 191 of the check valves 193 is in the open state and the rupture plate 190 is not ruptured, the first diversion pipe 171 functions as an exhaust path for the refrigerant gas 121 during transportation. ..
 超電導電磁石100のクエンチ発生時における内側容器130内の圧力は第2設定圧力P2および第3設定圧力P3の各々より高く閾値PS以下であり、第1ばね式逆止弁191、第2ばね式逆止弁192および第3ばね式逆止弁193の全てが開状態となり、破裂板190は破裂していない。第1分流管路171は、第2分流管路172より直径が小さいため、冷媒ガス121は主に第2分流管路172に流入する。よって、第2分流管路172がクエンチ発生時の冷媒ガス121の排気経路として機能する。 The pressure in the inner container 130 at the time of quenching of the superconducting magnet 100 is higher than each of the second set pressure P2 and the third set pressure P3 and is equal to or less than the threshold PS, and the first spring type check valve 191 and the second spring type check valve All of the stop valve 192 and the third spring type check valve 193 are in the open state, and the rupture plate 190 is not ruptured. Since the diameter of the first diversion pipe 171 is smaller than that of the second diversion pipe 172, the refrigerant gas 121 mainly flows into the second diversion pipe 172. Therefore, the second diversion pipe line 172 functions as an exhaust path for the refrigerant gas 121 when quenching occurs.
 ここで、本発明の実施の形態1に係る超電導電磁石100の排気管路170の作用効果を説明するために、比較例に係る超電導電磁石の排気管路について図を参照して説明する。比較例に係る超電導電磁石は、本発明の実施の形態1に係る超電導電磁石100とは排気管路の構成のみ異なる。 Here, in order to explain the action and effect of the exhaust pipe 170 of the superconducting magnet 100 according to the first embodiment of the present invention, the exhaust pipe of the superconducting magnet according to the comparative example will be described with reference to the drawings. The superconducting magnet according to the comparative example differs from the superconducting magnet 100 according to the first embodiment of the present invention only in the configuration of the exhaust pipe line.
 図2は、比較例に係る超電導電磁石の排気管路の構成を示す部分断面図である。図2に示すように、比較例に係る超電導電磁石900の排気管路970は、互いに並列に接続された第1分流管路171および第1分流管路171より直径の大きい第2分流管路972を含む。排気管路970は、第3分流管路173をさらに含む。第3分流管路173は、第1分流管路171および第2分流管路972と並列に接続され、第1分流管路171より直径が大きい。第1分流管路171の直径は、たとえば、15mm以下である。第2分流管路972および第3分流管路173の各々の直径は、たとえば、20mm以上40mm以下である。 FIG. 2 is a partial cross-sectional view showing the configuration of the exhaust pipe line of the superconducting electromagnet according to the comparative example. As shown in FIG. 2, the exhaust pipe line 970 of the superconducting electromagnet 900 according to the comparative example has a diameter larger than that of the first diversion pipe line 171 and the first diversion pipe line 171 connected in parallel to each other, and the second diversion pipe line 972. including. The exhaust line 970 further includes a third diversion line 173. The third diversion pipe 173 is connected in parallel with the first diversion pipe 171 and the second diversion pipe 972, and has a larger diameter than the first diversion pipe 171. The diameter of the first diversion pipe 171 is, for example, 15 mm or less. The diameter of each of the second diversion pipe 972 and the third diversion pipe 173 is, for example, 20 mm or more and 40 mm or less.
 第1分流管路171に第1ばね式逆止弁191が設けられており、第2分流管路972に第2ばね式逆止弁192が設けられており、第3分流管路173に破裂板190が設けられている。 The first spring type check valve 191 is provided in the first diversion pipe 171, the second spring type check valve 192 is provided in the second diversion pipe 972, and the third diversion pipe 173 bursts. A plate 190 is provided.
 超電導電磁石900の超電導状態は、超電導コイル110の通電電流量、超電導コイル110の冷却温度および超電導コイル110の発生磁場のバランスを保つことで維持することができる。超電導電磁石900のクエンチは、電気的要因および熱的要因などにより超電導状態が消失し、超電導コイル110が常電導に転移する現象である。超電導電磁石900のクエンチ発生時には、超電導コイル110の電気抵抗が急激に発生して超電導コイル110が発熱する。 The superconducting state of the superconducting magnet 900 can be maintained by maintaining the balance between the amount of energizing current of the superconducting coil 110, the cooling temperature of the superconducting coil 110, and the generated magnetic field of the superconducting coil 110. Quenching of the superconducting magnet 900 is a phenomenon in which the superconducting state disappears due to an electrical factor, a thermal factor, or the like, and the superconducting coil 110 shifts to normal conduction. When quenching of the superconducting magnet 900 occurs, the electric resistance of the superconducting coil 110 is suddenly generated and the superconducting coil 110 generates heat.
 MRI(Magnetic Resonance Imaging)用の超電導電磁石900においては、クエンチ発生時から5秒未満の短時間に、超電導コイル110が発熱して3MJ程度の熱エネルギが発生する。この熱エネルギは、液状の冷媒120の蒸発による潜熱と冷媒ガス121の温度上昇による顕熱として熱輸送される。発生した冷媒ガス121によって内側容器130内の圧力が短時間に上昇するため、排気管路970の流体抵抗の増加を抑制しつつ外部に冷媒ガス121を排出する必要がある。その一方で、超電導電磁石900の通常運転時には、超電導コイル110を低温状態に維持するために、内側容器130内への外気および熱の流入を抑制する必要がある。 In the superconducting magnet 900 for MRI (Magnetic Resonance Imaging), the superconducting coil 110 generates heat in a short time of less than 5 seconds from the occurrence of quenching, and heat energy of about 3 MJ is generated. This heat energy is heat-transported as latent heat due to evaporation of the liquid refrigerant 120 and sensible heat due to the temperature rise of the refrigerant gas 121. Since the pressure inside the inner container 130 rises in a short time due to the generated refrigerant gas 121, it is necessary to discharge the refrigerant gas 121 to the outside while suppressing an increase in the fluid resistance of the exhaust pipe line 970. On the other hand, during normal operation of the superconducting magnet 900, it is necessary to suppress the inflow of outside air and heat into the inner container 130 in order to maintain the superconducting coil 110 in a low temperature state.
 比較例に係る超電導電磁石900においては、第2分流管路972がクエンチ発生時の冷媒ガス121の排気経路として機能する。そのため、第2分流管路972においては、第2ばね式逆止弁192での圧力損失を含む流体抵抗の低減および第2分流管路972からの熱流入の抑制のために、第2分流管路972の長さを短くしつつ直径を小さくするとともに、第2分流管路972の厚さを薄くして、冷媒ガス121の流路面積を確保している。 In the superconducting electromagnet 900 according to the comparative example, the second diversion pipe line 972 functions as an exhaust path for the refrigerant gas 121 when quenching occurs. Therefore, in the second diversion pipe 972, in order to reduce the fluid resistance including the pressure loss in the second spring type check valve 192 and to suppress the heat inflow from the second diversion pipe 972, the second diversion pipe The length of the passage 972 is shortened and the diameter is reduced, and the thickness of the second diversion pipe 972 is reduced to secure the flow path area of the refrigerant gas 121.
 図3は、比較例に係る超電導電磁石においてクエンチ発生時からの内側容器内の圧力の推移を示すグラフである。図3においては、縦軸に内側容器130内の圧力、横軸にクエンチ発生時からの経過時間を示している。 FIG. 3 is a graph showing the transition of the pressure in the inner container from the time of quenching in the superconducting electromagnet according to the comparative example. In FIG. 3, the vertical axis shows the pressure inside the inner container 130, and the horizontal axis shows the elapsed time from the occurrence of quenching.
 図3に示すように、比較例に係る超電導電磁石900においては、クエンチ発生直後の冷媒ガス121の発生速度に対して第2ばね式逆止弁192の開動作の速度が遅いため、内側容器130内の圧力が、第2ばね式逆止弁192が開動作を開始する第2設定圧力Aより30%~50%高いピーク圧力Bに達する。 As shown in FIG. 3, in the superconducting magnet 900 according to the comparative example, the opening operation speed of the second spring type check valve 192 is slower than the generation speed of the refrigerant gas 121 immediately after the quenching, so that the inner container 130 The internal pressure reaches a peak pressure B that is 30% to 50% higher than the second set pressure A at which the second spring type check valve 192 starts the opening operation.
 ピーク圧力Bに達した後、内側容器130内においては、第2ばね式逆止弁192が開くことによる圧力低下と、圧力低下に伴って第2ばね式逆止弁192が閉動作することよる圧力上昇とを、交互に繰り返す変動圧力Cが発生する。これらのピーク圧力Bおよび変動圧力Cの最大圧力を内側容器130の許容圧力以下に維持する必要があるため、第2ばね式逆止弁192が開動作を開始するときのばねの付勢力である第2設定圧力Aを高くすることができない。 After reaching the peak pressure B, in the inner container 130, the pressure drops due to the opening of the second spring type check valve 192, and the second spring type check valve 192 closes as the pressure drops. A fluctuating pressure C is generated in which the pressure rise is repeated alternately. Since it is necessary to maintain the maximum pressures of the peak pressure B and the fluctuating pressure C below the allowable pressure of the inner container 130, it is the urging force of the spring when the second spring type check valve 192 starts the opening operation. The second set pressure A cannot be increased.
 第2ばね式逆止弁192は、内側容器130内の圧力が第2ばね式逆止弁192におけるばねの付勢力と外気圧力との合計より大きくなることにより、開動作する。すなわち、第2ばね式逆止弁192の第2設定圧力Aは、第2ばね式逆止弁192が閉じているときのばねの付勢力である。高地の外気圧力は、平地の外気圧力より低い。 The second spring type check valve 192 opens when the pressure inside the inner container 130 becomes larger than the sum of the spring urging force and the outside air pressure in the second spring type check valve 192. That is, the second set pressure A of the second spring type check valve 192 is the urging force of the spring when the second spring type check valve 192 is closed. The outside air pressure in the highlands is lower than the outside air pressure in the flatlands.
 図4は、比較例に係る超電導電磁石の、平地輸送時と、空輸時または高地輸送時とにおける、第2ばね式逆止弁が開動作を開始する圧力を示すグラフである。図4においては、縦軸に内側容器130内の圧力、横軸に超電導電磁石の、平地輸送時と、空輸時または高地輸送時とを示している。 FIG. 4 is a graph showing the pressure at which the second spring type check valve starts the opening operation of the superconducting electromagnet according to the comparative example during flatland transportation and air transportation or high altitude transportation. In FIG. 4, the vertical axis shows the pressure in the inner container 130, and the horizontal axis shows the superconducting magnet during flatland transportation and air transportation or highland transportation.
 冷凍機が停止する超電導電磁石900の輸送時において、図4に示すように、平地輸送時では、内側容器130内の圧力が第2ばね式逆止弁192の第2設定圧力Aと平地の外気圧力Dとの合計Fより大きくなったとき、第2ばね式逆止弁192が開動作する。一方、空輸時または高地輸送時では、内側容器130内の圧力が第2ばね式逆止弁192の第2設定圧力Aと高地の外気圧力D’との合計Gより大きくなったとき、第2ばね式逆止弁192が開動作する。よって、外気圧力Dと外気圧力D’との圧力差分Eだけ、第2ばね式逆止弁192が低い圧力で開動作するようになるため、超電導電磁石900の空輸時または高地輸送時の冷媒120の蒸発量が平地輸送時に比較して増加する。第2ばね式逆止弁192の第2設定圧力Aが低い場合、冷媒120の蒸発量がさらに増加する。 During transportation of the superconducting magnet 900 at which the refrigerator is stopped, as shown in FIG. 4, during transportation on flat ground, the pressure inside the inner container 130 is the second set pressure A of the second spring type check valve 192 and the outside air on flat ground. When it becomes larger than the total F with the pressure D, the second spring type check valve 192 opens. On the other hand, during air transportation or high altitude transportation, when the pressure inside the inner container 130 becomes larger than the total G of the second set pressure A of the second spring type check valve 192 and the outside air pressure D'of the high altitude, the second The spring-type check valve 192 opens. Therefore, the second spring type check valve 192 opens at a low pressure only by the pressure difference E between the outside air pressure D and the outside air pressure D', so that the refrigerant 120 during air transportation or high altitude transportation of the superconducting magnet 900 Evaporation amount increases compared to when transported on flat ground. When the second set pressure A of the second spring type check valve 192 is low, the amount of evaporation of the refrigerant 120 is further increased.
 図5は、本発明の実施の形態1に係る超電導電磁石においてクエンチ発生時からの内側容器内の圧力の推移を示すグラフである。図5においては、縦軸に内側容器130内の圧力、横軸にクエンチ発生時からの経過時間を示している。 FIG. 5 is a graph showing the transition of the pressure in the inner container from the time of quenching in the superconducting electromagnet according to the first embodiment of the present invention. In FIG. 5, the vertical axis shows the pressure inside the inner container 130, and the horizontal axis shows the elapsed time from the occurrence of quenching.
 本発明の実施の形態1に係る超電導電磁石100においては、第2分流管路172の一部が第1分岐管路181と第2分岐管路182とに分岐していることにより、第1分岐管路181および第2分岐管路182の各々に流入する冷媒ガス121の流量の経過時間に対する増加量を減少することができる。そのため、図5に示すように、内側容器130内のピーク圧力B’をピーク圧力Bに比較して低減することができる。 In the superconducting magnet 100 according to the first embodiment of the present invention, a part of the second diversion pipe 172 is branched into the first branch pipe 181 and the second branch pipe 182, so that the first branch is formed. It is possible to reduce the amount of increase in the flow rate of the refrigerant gas 121 flowing into each of the pipeline 181 and the second branch pipeline 182 with respect to the elapsed time. Therefore, as shown in FIG. 5, the peak pressure B'in the inner container 130 can be reduced as compared with the peak pressure B.
 さらに、第3ばね式逆止弁193が設けられている第2分岐管路182は、第2ばね式逆止弁192が設けられている第1分岐管路181とは、直径、長さおよび内容積の少なくとも1つが異なることにより、第2ばね式逆止弁192と第3ばね式逆止弁193との動作タイミングを異ならせることができる。その結果、変動圧力Cの発生を抑制することができる。 Further, the second branch line 182 provided with the third spring type check valve 193 is different from the first branch line 181 provided with the second spring type check valve 192 in diameter, length and Since at least one of the internal volumes is different, the operation timings of the second spring type check valve 192 and the third spring type check valve 193 can be made different. As a result, the generation of the fluctuating pressure C can be suppressed.
 これらにより、内側容器130内の最大圧力を低減しつつ、第2ばね式逆止弁192の第2設定圧力P2および第3ばね式逆止弁193の第3設定圧力P3の各々を比較例の第2設定圧力Aより高い設定圧力A’まで高くして、空輸時または高地輸送時の冷媒120の蒸発量を低減することができる。 As a result, while reducing the maximum pressure in the inner container 130, each of the second set pressure P2 of the second spring type check valve 192 and the third set pressure P3 of the third spring type check valve 193 is compared. By increasing the set pressure A'higher than the second set pressure A, the amount of evaporation of the refrigerant 120 during air transportation or high altitude transportation can be reduced.
 本発明の実施の形態1に係る超電導電磁石100においては、第1設定圧力P1は、大気圧の1.1倍以下であり、第2設定圧力P2は、大気圧の1.25倍以上である。これにより、第1分流管路171を輸送時の冷媒ガス121の排気経路として機能させつつ、第2分流管路172をクエンチ発生時の冷媒ガス121の排気経路として効果的に機能させることができる。 In the superconducting magnet 100 according to the first embodiment of the present invention, the first set pressure P1 is 1.1 times or less than the atmospheric pressure, and the second set pressure P2 is 1.25 times or more the atmospheric pressure. .. As a result, the first diversion pipe 171 can function as an exhaust path for the refrigerant gas 121 during transportation, and the second diversion pipe 172 can effectively function as an exhaust path for the refrigerant gas 121 when quenching occurs. ..
 本発明の実施の形態1に係る超電導電磁石100においては、第3設定圧力P3は、第2設定圧力P2と同一である。これにより、第3ばね式逆止弁193として第2ばね式逆止弁192と同一スペックのばね式逆止弁を用いることが可能となり、超電導電磁石100の製造が容易になる。 In the superconducting magnet 100 according to the first embodiment of the present invention, the third set pressure P3 is the same as the second set pressure P2. This makes it possible to use a spring-type check valve having the same specifications as the second spring-type check valve 192 as the third spring-type check valve 193, facilitating the manufacture of the superconducting magnet 100.
 実施の形態2.
 以下、本発明の実施の形態2に係る超電導電磁石について説明する。本発明の実施の形態2に係る超電導電磁石は、本発明の実施の形態1に係る超電導電磁石100とは、第3ばね式逆止弁の構成のみ異なるため、本発明の実施の形態1に係る超電導電磁石100と同様である構成については説明を繰り返さない。
Embodiment 2.
Hereinafter, the superconducting electromagnet according to the second embodiment of the present invention will be described. The superconducting magnet according to the second embodiment of the present invention differs from the superconducting magnet 100 according to the first embodiment of the present invention only in the configuration of the third spring type check valve, and therefore relates to the first embodiment of the present invention. The description of the configuration similar to that of the superconducting electromagnet 100 will not be repeated.
 図6は、本発明の実施の形態2に係る超電導電磁石の排気管路の構成を示す部分断面図である。図6に示すように、本発明の実施の形態2に係る超電導電磁石200においては、第2分岐管路182に第3ばね式逆止弁293が設けられている。 FIG. 6 is a partial cross-sectional view showing the configuration of the exhaust pipeline of the superconducting magnet according to the second embodiment of the present invention. As shown in FIG. 6, in the superconducting magnet 200 according to the second embodiment of the present invention, the third spring type check valve 293 is provided in the second branch pipe line 182.
 第3ばね式逆止弁293は、第2分岐管路182内における第3ばね式逆止弁293より上流側と下流側との差圧が第1設定圧力P1より高い第3設定圧力P3以上になると開動作する。本実施の形態においては、第3設定圧力P3は、第2設定圧力P2より高い。たとえば、第3設定圧力P3は、第2設定圧力P2の1.1倍である。 The third spring type check valve 293 has a third set pressure P3 or higher in which the differential pressure between the upstream side and the downstream side of the third spring type check valve 293 in the second branch line 182 is higher than the first set pressure P1. It opens when it becomes. In the present embodiment, the third set pressure P3 is higher than the second set pressure P2. For example, the third set pressure P3 is 1.1 times the second set pressure P2.
 本発明の実施の形態2に係る超電導電磁石200においては、第2ばね式逆止弁192と第3ばね式逆止弁193との動作タイミングを大きく異ならせて、変動圧力Cの発生を効果的に抑制することができる。また、第3設定圧力P3を実施の形態1に係る超電導電磁石100より高くすることができるため、内側容器130内の最大圧力を低減しつつ、空輸時または高地輸送時の冷媒120の蒸発量をさらに低減することができる。 In the superconducting magnet 200 according to the second embodiment of the present invention, the operation timings of the second spring type check valve 192 and the third spring type check valve 193 are significantly different, and the generation of the fluctuating pressure C is effective. Can be suppressed. Further, since the third set pressure P3 can be made higher than that of the superconducting electromagnet 100 according to the first embodiment, the amount of evaporation of the refrigerant 120 during air transportation or high altitude transportation can be reduced while reducing the maximum pressure in the inner container 130. It can be further reduced.
 実施の形態3.
 以下、本発明の実施の形態3に係る超電導電磁石について説明する。本発明の実施の形態3に係る超電導電磁石は、本発明の実施の形態1に係る超電導電磁石100とは、第3分岐管路および第4ばね式逆止弁をさらに備える点のみ異なるため、本発明の実施の形態1に係る超電導電磁石100と同様である構成については説明を繰り返さない。
Embodiment 3.
Hereinafter, the superconducting electromagnet according to the third embodiment of the present invention will be described. The superconducting electromagnet according to the third embodiment of the present invention differs from the superconducting magnet 100 according to the first embodiment of the present invention only in that it further includes a third branch conduit and a fourth spring type check valve. The description of the configuration similar to that of the superconducting electromagnet 100 according to the first embodiment of the present invention will not be repeated.
 図7は、本発明の実施の形態3に係る超電導電磁石の排気管路の構成を示す部分断面図である。図7に示すように、本発明の実施の形態3に係る超電導電磁石300においては、排気管路370は、互いに並列に接続された第1分流管路171および第1分流管路171より直径の大きい第2分流管路372を含む。排気管路370は、第3分流管路173をさらに含む。第2分流管路372の一部は、第1分岐管路181、第2分岐管路182および第3分岐管路383に分岐している。 FIG. 7 is a partial cross-sectional view showing the configuration of the exhaust pipe line of the superconducting magnet according to the third embodiment of the present invention. As shown in FIG. 7, in the superconducting magnet 300 according to the third embodiment of the present invention, the exhaust pipe line 370 has a diameter larger than that of the first diversion pipe line 171 and the first diversion pipe line 171 connected in parallel with each other. Includes a large second diversion line 372. The exhaust line 370 further includes a third diversion line 173. A part of the second branch line 372 is branched into the first branch line 181 and the second branch line 182 and the third branch line 383.
 第3分岐管路383は、第1分岐管路181とは、直径、長さおよび内容積の少なくとも1つが異なる。本実施の形態においては、第3分岐管路383は、第1分岐管路181に比較して、直径が大きく、長く、かつ、内容積が大きい。第3分岐管路383の直径は、第1分岐管路181の直径に対して、たとえば、1.5倍である。第3分岐管路383の長さは、第1分岐管路181の長さに対して、たとえば、1.2倍以上である。 The third branch line 383 is different from the first branch line 181 in at least one of diameter, length and internal volume. In the present embodiment, the third branch line 383 has a larger diameter, a longer length, and a larger internal volume than the first branch line 181. The diameter of the third branch line 383 is, for example, 1.5 times the diameter of the first branch line 181. The length of the third branch line 383 is, for example, 1.2 times or more the length of the first branch line 181.
 本発明の実施の形態3に係る超電導電磁石300は、第3分岐管路383に設けられた第4ばね式逆止弁394をさらに備える。第4ばね式逆止弁394は、第3分岐管路383内における第4ばね式逆止弁394より上流側と下流側との差圧が第2設定圧力P2と同一である第4設定圧力P4以上になると開動作する。 The superconducting magnet 300 according to the third embodiment of the present invention further includes a fourth spring type check valve 394 provided in the third branch pipeline 383. The fourth spring type check valve 394 has a fourth set pressure in which the differential pressure between the upstream side and the downstream side of the fourth spring type check valve 394 in the third branch line 383 is the same as the second set pressure P2. When it reaches P4 or higher, it opens.
 なお、本発明の実施の形態3に係る超電導電磁石300は、第2分流管路372の一部は、3本に分岐しているが、4本以上に分岐していてもよい。第2分流管路372の一部が4本以上に分岐している場合、各々の分岐管路は、第1分岐管路181とは、直径、長さおよび内容積の少なくとも1つが異なり、各々の分岐管路に、第2設定圧力P2と同一である設定圧力以上になると開動作するばね式逆止弁が設けられている。 In the superconducting magnet 300 according to the third embodiment of the present invention, a part of the second diversion pipe line 372 is branched into three, but it may be branched into four or more. When a part of the second branch line 372 is branched into four or more, each branch line is different from the first branch line 181 in at least one of diameter, length and internal volume, and each of them is different. A spring-type check valve that opens when the set pressure is equal to or higher than the second set pressure P2 is provided in the branch line.
 本発明の実施の形態3に係る超電導電磁石300においては、第2分流管路372の一部が第1分岐管路181と第2分岐管路182と第3分岐管路383とに分岐していることにより、第1分岐管路181、第2分岐管路182および第3分岐管路383の各々に流入する冷媒ガス121の流量の経過時間に対する増加量を減少することができる。そのため、内側容器130内のピーク圧力を実施の形態1に係る超電導電磁石100のピーク圧力B’に比較して低減することができる。 In the superconducting magnet 300 according to the third embodiment of the present invention, a part of the second diversion pipe 372 is branched into the first branch pipe 181 and the second branch pipe 182 and the third branch pipe 383. As a result, it is possible to reduce the amount of increase in the flow rate of the refrigerant gas 121 flowing into each of the first branch line 181 and the second branch line 182 and the third branch line 383 with respect to the elapsed time. Therefore, the peak pressure in the inner container 130 can be reduced as compared with the peak pressure B'of the superconducting electromagnet 100 according to the first embodiment.
 本発明の実施の形態3に係る超電導電磁石300においては、第2ばね式逆止弁192と第3ばね式逆止弁193と第4ばね式逆止弁394との動作タイミングを互いに異ならせて、変動圧力Cの発生を効果的に抑制することができる。 In the superconducting magnet 300 according to the third embodiment of the present invention, the operation timings of the second spring type check valve 192, the third spring type check valve 193, and the fourth spring type check valve 394 are different from each other. , The generation of the fluctuating pressure C can be effectively suppressed.
 これらにより、内側容器130内の最大圧力を低減しつつ、第2ばね式逆止弁192の第2設定圧力P2、第3ばね式逆止弁193の第3設定圧力P3および第4ばね式逆止弁394の第4設定圧力P4の各々を、実施の形態1に係る超電導電磁石100の第2設定圧力P2および第3設定圧力P3の各々より高くして、空輸時または高地輸送時の冷媒120の蒸発量を低減することができる。 As a result, while reducing the maximum pressure in the inner container 130, the second set pressure P2 of the second spring type check valve 192, the third set pressure P3 of the third spring type check valve 193, and the fourth spring type reverse Each of the fourth set pressures P4 of the check valve 394 is made higher than each of the second set pressure P2 and the third set pressure P3 of the superconducting magnet 100 according to the first embodiment, and the refrigerant 120 during air transportation or high altitude transportation. The amount of evaporation can be reduced.
 実施の形態4.
 以下、本発明の実施の形態4に係る超電導電磁石について説明する。本発明の実施の形態4に係る超電導電磁石は、本発明の実施の形態3に係る超電導電磁石300とは、第4ばね式逆止弁の構成のみ異なるため、本発明の実施の形態3に係る超電導電磁石300と同様である構成については説明を繰り返さない。
Embodiment 4.
Hereinafter, the superconducting electromagnet according to the fourth embodiment of the present invention will be described. The superconducting electromagnet according to the fourth embodiment of the present invention differs from the superconducting magnet 300 according to the third embodiment of the present invention only in the configuration of the fourth spring type check valve, and therefore relates to the third embodiment of the present invention. The description of the configuration similar to that of the superconducting electromagnet 300 will not be repeated.
 図8は、本発明の実施の形態4に係る超電導電磁石の排気管路の構成を示す部分断面図である。図8に示すように、本発明の実施の形態4に係る超電導電磁石400においては、第3分岐管路383に第4ばね式逆止弁494が設けられている。 FIG. 8 is a partial cross-sectional view showing the configuration of the exhaust pipe line of the superconducting magnet according to the fourth embodiment of the present invention. As shown in FIG. 8, in the superconducting magnet 400 according to the fourth embodiment of the present invention, the fourth spring type check valve 494 is provided in the third branch pipe line 383.
 第4ばね式逆止弁494は、第3分岐管路383内における第4ばね式逆止弁494より上流側と下流側との差圧が第2設定圧力P2より高い第4設定圧力P4以上になると開動作する。たとえば、第4設定圧力P4は、第2設定圧力P2の1.1倍である。 The fourth spring type check valve 494 has a fourth set pressure P4 or higher in which the differential pressure between the upstream side and the downstream side of the fourth spring type check valve 494 in the third branch line 383 is higher than the second set pressure P2. It opens when it becomes. For example, the fourth set pressure P4 is 1.1 times the second set pressure P2.
 本発明の実施の形態4に係る超電導電磁石400においては、第2ばね式逆止弁192と、第3ばね式逆止弁193および第4ばね式逆止弁494との動作タイミングを大きく異ならせて、変動圧力Cの発生を効果的に抑制することができる。また、第3設定圧力P3および第4設定圧力P4の各々を実施の形態3に係る超電導電磁石300より高くすることができるため、内側容器130内の最大圧力を低減しつつ、空輸時または高地輸送時の冷媒120の蒸発量をさらに低減することができる。 In the superconducting magnet 400 according to the fourth embodiment of the present invention, the operation timings of the second spring type check valve 192, the third spring type check valve 193, and the fourth spring type check valve 494 are significantly different. Therefore, the generation of the fluctuating pressure C can be effectively suppressed. Further, since each of the third set pressure P3 and the fourth set pressure P4 can be made higher than the superconducting electromagnet 300 according to the third embodiment, the maximum pressure in the inner container 130 can be reduced and the air transportation or high altitude transportation can be performed. The amount of evaporation of the refrigerant 120 at that time can be further reduced.
 実施の形態5.
 以下、本発明の実施の形態5に係る超電導電磁石について説明する。本発明の実施の形態5に係る超電導電磁石は、本発明の実施の形態1に係る超電導電磁石100とは、絞り部をさらに備える点のみ異なるため、本発明の実施の形態1に係る超電導電磁石100と同様である構成については説明を繰り返さない。
Embodiment 5.
Hereinafter, the superconducting electromagnet according to the fifth embodiment of the present invention will be described. Since the superconducting magnet according to the fifth embodiment of the present invention is different from the superconducting magnet 100 according to the first embodiment of the present invention only in that it further includes a throttle portion, the superconducting magnet 100 according to the first embodiment of the present invention. The description is not repeated for the configuration similar to the above.
 図9は、本発明の実施の形態5に係る超電導電磁石の排気管路の構成を示す部分断面図である。図9に示すように、本発明の実施の形態5に係る超電導電磁石500においては、第2分岐管路182における第3ばね式逆止弁293より下流側に絞り部590が設けられている。絞り部590は、第2分岐管路182内の冷媒ガス121の流路面積を部分的に小さくする。絞り部590は、たとえば、オリフィスまたはボールバルブである。 FIG. 9 is a partial cross-sectional view showing the configuration of the exhaust pipeline of the superconducting magnet according to the fifth embodiment of the present invention. As shown in FIG. 9, in the superconducting magnet 500 according to the fifth embodiment of the present invention, a throttle portion 590 is provided on the downstream side of the third spring type check valve 293 in the second branch pipe line 182. The throttle portion 590 partially reduces the flow path area of the refrigerant gas 121 in the second branch pipe line 182. The throttle portion 590 is, for example, an orifice or a ball valve.
 本発明の実施の形態5に係る超電導電磁石500においては、絞り部590によって第2分岐管路182内の流体抵抗を大きくして第3ばね式逆止弁293の開閉動作の脈動を低減することにより、変動圧力Cの発生を効果的に抑制することができる。また、第3設定圧力P3を実施の形態1に係る超電導電磁石100より高くすることができるため、内側容器130内の最大圧力を低減しつつ、空輸時または高地輸送時の冷媒120の蒸発量をさらに低減することができる。 In the superconducting electromagnet 500 according to the fifth embodiment of the present invention, the fluid resistance in the second branch line 182 is increased by the throttle portion 590 to reduce the pulsation of the opening / closing operation of the third spring type check valve 293. Therefore, the generation of the fluctuating pressure C can be effectively suppressed. Further, since the third set pressure P3 can be made higher than that of the superconducting electromagnet 100 according to the first embodiment, the amount of evaporation of the refrigerant 120 during air transportation or high altitude transportation can be reduced while reducing the maximum pressure in the inner container 130. It can be further reduced.
 上述した実施の形態の説明において、組み合わせ可能な構成を相互に組み合わせてもよい。 In the description of the above-described embodiment, the configurations that can be combined may be combined with each other.
 なお、今回開示した上記実施の形態はすべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施の形態のみによって解釈されるものではない。また、請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 Note that the above-described embodiment disclosed this time is an example in all respects and does not serve as a basis for a limited interpretation. Therefore, the technical scope of the present invention is not construed solely by the embodiments described above. It also includes all changes within the meaning and scope of the claims.
 100,200,300,400,500,900 超電導電磁石、110 超電導コイル、120 冷媒、121 冷媒ガス、130 内側容器、140 外側容器、150 輻射シールド、160 スーパーインシュレーション、170,370,970 排気管路、171 第1分流管路、172,372,972 第2分流管路、173 第3分流管路、181 第1分岐管路、182 第2分岐管路、190 破裂板、191,192,193,293,394,494 逆止弁、383 第3分岐管路、590 絞り部、B ピーク圧力、C 変動圧力、D 外気圧力、E 圧力差分、P1 第1設定圧力、P2 第2設定圧力、P3 第3設定圧力、P4 第4設定圧力、PA 大気圧、PS 閾値。
 
100,200,300,400,500,900 Superconducting magnet, 110 Superconducting coil, 120 refrigerant, 121 refrigerant gas, 130 inner container, 140 outer container, 150 radiation shield, 160 super insulation, 170, 370, 970 exhaust pipeline , 171 1st diversion line, 172,372,972 2nd diversion line, 173 3rd diversion line, 181 1st branch line, 182 2nd branch line, 190 rupture plate, 191, 192, 193 293,394,494 Check valve, 383 Third branch line, 590 Squeezer, B Peak pressure, C Fluctuation pressure, D Outside air pressure, E Pressure difference, P1 1st set pressure, P2 2nd set pressure, P3 No. 3 set pressure, P4 4th set pressure, PA atmospheric pressure, PS threshold.

Claims (7)

  1.  超電導コイルおよび該超電導コイルを冷却する液状の冷媒を収容する内側容器と、
     前記内側容器との間を断熱された状態で、前記内側容器を内部に保持する外側容器と、
     前記内側容器内で蒸発した冷媒ガスを前記外側容器の外側に排出する排気管路と、
     前記排気管路に設けられた、第1ばね式逆止弁、第2ばね式逆止弁および第3ばね式逆止弁とを備え、
     前記排気管路は、互いに並列に接続された第1分流管路および該第1分流管路より直径の大きい第2分流管路を含み、
     前記第2分流管路の一部は、少なくとも第1分岐管路および第2分岐管路に分岐しており、
     前記第1ばね式逆止弁は、前記第1分流管路に設けられており、前記第1分流管路内における前記第1ばね式逆止弁より上流側と下流側との差圧が大気圧より高い第1設定圧力以上になると開動作し、
     前記第2ばね式逆止弁は、前記第1分岐管路に設けられており、前記第1分岐管路内における前記第2ばね式逆止弁より上流側と下流側との差圧が前記第1設定圧力より高い第2設定圧力以上になると開動作し、
     前記第3ばね式逆止弁は、前記第2分岐管路に設けられており、前記第2分岐管路内における前記第3ばね式逆止弁より上流側と下流側との差圧が前記第1設定圧力より高い第3設定圧力以上になると開動作し、
     前記第2分岐管路は、前記第1分岐管路とは、直径、長さおよび内容積の少なくとも1つが異なる、超電導電磁石。
    An inner container containing the superconducting coil and a liquid refrigerant that cools the superconducting coil,
    An outer container that holds the inner container inside while being insulated from the inner container,
    An exhaust pipe that discharges the refrigerant gas evaporated in the inner container to the outside of the outer container, and
    A first spring type check valve, a second spring type check valve, and a third spring type check valve provided in the exhaust pipe line are provided.
    The exhaust line includes a first diversion line connected in parallel with each other and a second diversion line having a diameter larger than that of the first diversion line.
    A part of the second diversion pipeline is branched into at least the first branch pipeline and the second branch pipeline.
    The first spring type check valve is provided in the first diversion pipeline, and the difference pressure between the upstream side and the downstream side of the first spring type check valve in the first diversion pipeline is large. It opens when the pressure exceeds the first set pressure, which is higher than the atmospheric pressure.
    The second spring type check valve is provided in the first branch pipeline, and the pressure difference between the upstream side and the downstream side of the second spring type check valve in the first branch pipeline is the said. When the pressure is higher than the first set pressure and higher than the second set pressure, it opens and operates.
    The third spring type check valve is provided in the second branch pipeline, and the pressure difference between the upstream side and the downstream side of the third spring type check valve in the second branch pipeline is the said. When the pressure exceeds the first set pressure and exceeds the third set pressure, the operation opens.
    The second branch pipeline is a superconducting magnet that differs from the first branch pipeline in at least one of diameter, length, and internal volume.
  2.  前記第1設定圧力は、大気圧の1.1倍以下であり、
     前記第2設定圧力は、大気圧の1.25倍以上である、請求項1に記載の超電導電磁石。
    The first set pressure is 1.1 times or less the atmospheric pressure, and is
    The superconducting electromagnet according to claim 1, wherein the second set pressure is 1.25 times or more the atmospheric pressure.
  3.  前記第3設定圧力は、前記第2設定圧力と同一である、請求項1または請求項2に記載の超電導電磁石。 The superconducting electromagnet according to claim 1 or 2, wherein the third set pressure is the same as the second set pressure.
  4.  前記第3設定圧力は、前記第2設定圧力より高い、請求項1または請求項2に記載の超電導電磁石。 The superconducting electromagnet according to claim 1 or 2, wherein the third set pressure is higher than the second set pressure.
  5.  前記第2分流管路の一部は、前記第1分岐管路、前記第2分岐管路および第3分岐管路に分岐しており、
     前記第3分岐管路に設けられた第4ばね式逆止弁をさらに備え、
     前記第4ばね式逆止弁は、前記第3分岐管路内における前記第4ばね式逆止弁より上流側と下流側との差圧が前記第2設定圧力と同一である第4設定圧力以上になると開動作し、
     前記第3分岐管路は、前記第1分岐管路とは、直径、長さおよび内容積の少なくとも1つが異なる、請求項3に記載の超電導電磁石。
    A part of the second diversion pipeline is branched into the first branch pipeline, the second branch pipeline, and the third branch pipeline.
    A fourth spring type check valve provided in the third branch pipeline is further provided.
    The fourth spring type check valve has a fourth set pressure in which the differential pressure between the upstream side and the downstream side of the fourth spring type check valve in the third branch pipeline is the same as the second set pressure. When it reaches the above, it opens and operates,
    The superconducting magnet according to claim 3, wherein the third branch line is different from the first branch line in at least one of diameter, length and internal volume.
  6.  前記第2分流管路の一部は、前記第1分岐管路、前記第2分岐管路および第3分岐管路に分岐しており、
     前記第3分岐管路に設けられた第4ばね式逆止弁をさらに備え、
     前記第4ばね式逆止弁は、前記第3分岐管路内における前記第4ばね式逆止弁より上流側と下流側との差圧が前記第2設定圧力より高い第4設定圧力以上になると開動作し、
     前記第3分岐管路は、前記第1分岐管路とは、直径、長さおよび内容積の少なくとも1つが異なる、請求項4に記載の超電導電磁石。
    A part of the second diversion pipeline is branched into the first branch pipeline, the second branch pipeline, and the third branch pipeline.
    A fourth spring type check valve provided in the third branch pipeline is further provided.
    In the fourth spring type check valve, the differential pressure between the upstream side and the downstream side of the fourth spring type check valve in the third branch pipeline is higher than the fourth set pressure higher than the second set pressure. When it becomes, it opens and operates
    The superconducting magnet according to claim 4, wherein the third branch line is different from the first branch line in at least one of diameter, length and internal volume.
  7.  前記第2分岐管路における前記第3ばね式逆止弁より下流側に設けられ、前記第2分岐管路内の前記冷媒ガスの流路面積を部分的に小さくする絞り部をさらに備える、請求項3に記載の超電導電磁石。 A claim that is further provided with a throttle portion provided on the downstream side of the third spring type check valve in the second branch pipeline and partially reducing the flow path area of the refrigerant gas in the second branch pipeline. Item 3. The superconducting magnet according to Item 3.
PCT/JP2019/027271 2019-07-10 2019-07-10 Superconducting electromagnet WO2021005732A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/608,151 US20220293317A1 (en) 2019-07-10 2019-07-10 Superconducting electromagnet
CN201980097778.XA CN114026661B (en) 2019-07-10 2019-07-10 Superconducting electromagnet
JP2021530413A JP7118275B2 (en) 2019-07-10 2019-07-10 superconducting electromagnet
PCT/JP2019/027271 WO2021005732A1 (en) 2019-07-10 2019-07-10 Superconducting electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027271 WO2021005732A1 (en) 2019-07-10 2019-07-10 Superconducting electromagnet

Publications (1)

Publication Number Publication Date
WO2021005732A1 true WO2021005732A1 (en) 2021-01-14

Family

ID=74115009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027271 WO2021005732A1 (en) 2019-07-10 2019-07-10 Superconducting electromagnet

Country Status (4)

Country Link
US (1) US20220293317A1 (en)
JP (1) JP7118275B2 (en)
CN (1) CN114026661B (en)
WO (1) WO2021005732A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555032A (en) * 1991-08-27 1993-03-05 Furukawa Electric Co Ltd:The Crystal for superconducting magnet use
JPH07161522A (en) * 1993-12-08 1995-06-23 Hitachi Ltd Cryostat for superconducting magnet
JPH08181359A (en) * 1994-12-27 1996-07-12 Toshiba Corp Cryostat
JP2010262950A (en) * 2009-04-29 2010-11-18 Mitsubishi Electric Corp Superconducting electromagnet and transport method therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304271A (en) * 1998-04-20 1999-11-05 Mitsubishi Electric Corp Cold storage type refrigerating machine and superconducting magnet using it
US20050088266A1 (en) * 2003-10-28 2005-04-28 Ge Medical Systems Global Technology Company, Llc Zero backflow vent for liquid helium cooled magnets
JP6021791B2 (en) * 2013-03-28 2016-11-09 株式会社神戸製鋼所 Permanent current switch and superconducting device equipped with it
WO2016163021A1 (en) * 2015-04-10 2016-10-13 三菱電機株式会社 Superconducting magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555032A (en) * 1991-08-27 1993-03-05 Furukawa Electric Co Ltd:The Crystal for superconducting magnet use
JPH07161522A (en) * 1993-12-08 1995-06-23 Hitachi Ltd Cryostat for superconducting magnet
JPH08181359A (en) * 1994-12-27 1996-07-12 Toshiba Corp Cryostat
JP2010262950A (en) * 2009-04-29 2010-11-18 Mitsubishi Electric Corp Superconducting electromagnet and transport method therefor

Also Published As

Publication number Publication date
JPWO2021005732A1 (en) 2021-01-14
CN114026661A (en) 2022-02-08
CN114026661B (en) 2023-07-11
US20220293317A1 (en) 2022-09-15
JP7118275B2 (en) 2022-08-15

Similar Documents

Publication Publication Date Title
US9464763B2 (en) Safety valve for cryogenic insulated gas cylinder
US11365915B2 (en) Ejector and refrigeration system
US6712088B2 (en) Pilot-type channel valves providing counter-flow prevention
WO2013031591A1 (en) Supercritical cycle and heat pump hot-water supplier using same
WO2021005732A1 (en) Superconducting electromagnet
WO2018072512A1 (en) Multi-stage centrifugal compressor
EP2882386A2 (en) Closed-loop system for cryosurgery
JP2007329320A (en) Superconducting electromagnet
US8597849B2 (en) Pressure activated shut-off valve
JP5034504B2 (en) Air conditioner
JP2002310539A (en) Expansion valve
US10401065B2 (en) Expansion valve, and refrigeration cycle system using expansion valve
JP3218140U (en) Refrigerant liquid hammer impact reduction device for refrigeration cycle.
JP2012215309A (en) Cooling device, and refrigerating cycle apparatus
JP2007101043A (en) Heat cycle
JPH0814711A (en) Solenoid valve-integrated receiver and refrigerating cycle
JP2015028423A (en) Chiller and refrigerating cycle device
JP6064152B2 (en) solenoid valve
JP2005315376A (en) Shutoff valve
CN216896355U (en) Sterilizer, vacuum system and pneumatic valve water hammer prevention device
JP4985585B2 (en) Refrigeration cycle equipment
JP6984046B2 (en) Refrigeration cycle device
JP2006275329A (en) Pressure opening/closing valve integrated with check valve
JP2010265963A (en) Check valve incorporated with liquid sealing prevention mechanism
GB2544793A (en) Cryogen pumping system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530413

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937154

Country of ref document: EP

Kind code of ref document: A1