JPH0555032A - Crystal for superconducting magnet use - Google Patents

Crystal for superconducting magnet use

Info

Publication number
JPH0555032A
JPH0555032A JP23884291A JP23884291A JPH0555032A JP H0555032 A JPH0555032 A JP H0555032A JP 23884291 A JP23884291 A JP 23884291A JP 23884291 A JP23884291 A JP 23884291A JP H0555032 A JPH0555032 A JP H0555032A
Authority
JP
Japan
Prior art keywords
pressure
inner container
superconducting magnet
valve
cryogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23884291A
Other languages
Japanese (ja)
Inventor
Shinichi Mukoyama
晋一 向山
Hirokazu Tsubouchi
宏和 坪内
Yoshio Furuto
義雄 古戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHODENDO MAGNET KK
Furukawa Electric Co Ltd
Original Assignee
CHODENDO MAGNET KK
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHODENDO MAGNET KK, Furukawa Electric Co Ltd filed Critical CHODENDO MAGNET KK
Priority to JP23884291A priority Critical patent/JPH0555032A/en
Publication of JPH0555032A publication Critical patent/JPH0555032A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title crystal wherein the vibration of the pressure of an evaporated gas is restrained, the quantity of heat creeping to a refrigerant due to a change in the pressure is reduced and the amount consumed of the refrigerant is reduced by a method wherein a fluid resistance which restrains the vibration of the pressure of the evaporated gas is installed, so as to be in parallel with a safety value, in the evaporation passage of the evaporated gas. CONSTITUTION:The crystal is provided with an inner container 15 which houses a superconducting magnet 11 and a refrigerant 3; an outer container 17 which holds the inner container 15 at the inside in a heat-insulating state; and an evacuation passage 25 which discharges, to the outside, the evaporated gas, of the refrigerant 13, generated inside the inner container 15. In addition, a fluid resistance 35 which restrains the vibration of the pressure of an evaporated gas is installed in the evacuation passage 25 so as to be in parallel with a safety valve 19 which is opened automatically when the pressure inside the inner container 15 becomes a first set pressure or higher which is higher than atmospheric pressure. In addition, for example, the following inner-pressure holding valve 31 is installed in the evacuation passage 25 so as to be in parallel with the fluid resistance 35: it is opened automatically when the pressure inside the inner container 15 becomes a second set pressure or higher which is lower than the first set pressure and higher than atmospheric pressure; and it is shut automatically when the pressure inside the inner container becomes the second set pressure or lower.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導マグネットの冷
却に用いられるクライオスタットに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cryostat used for cooling a superconducting magnet.

【0002】[0002]

【従来の技術】従来の超電導マグネット用クライオスタ
ットの一般的な構造を図4に示す。符号11はコイル状に
巻かれた超電導マグネット、13は超電導マグネット11を
冷却する液体ヘリウムなどの寒剤、15は超電導マグネッ
ト11および寒剤13を収容する内容器、17は内容器15を断
熱的に包囲し、内容器15との間に真空層を形成する外容
器、19は内容器15と外容器17の間に設けられた断熱シー
ルド層、21は断熱シールド層19と外容器17の間に設けら
れた多層断熱材層、23は外容器17に対して内容器15およ
び断熱シールド層19を所定の位置に支持するための支持
材、25は内容器15内と外容器17外を連通する排気通路、
27は内容器15に寒剤を注入する注入管である。
2. Description of the Related Art A general structure of a conventional cryostat for a superconducting magnet is shown in FIG. Reference numeral 11 is a superconducting magnet wound in a coil shape, 13 is a cryogen such as liquid helium that cools the superconducting magnet 11, 15 is an inner container for containing the superconducting magnet 11 and the cryogen 13, and 17 is an adiabatic enclosure for the inner container 15. Then, the outer container forming a vacuum layer between the inner container 15 and 19, the heat insulating shield layer provided between the inner container 15 and the outer container 17, 21 is provided between the heat insulating shield layer 19 and the outer container 17. A multi-layered heat insulating material layer, 23 is a support material for supporting the inner container 15 and the heat insulating shield layer 19 at a predetermined position with respect to the outer container 17, and 25 is an exhaust gas that connects the inner container 15 and the outer container 17 to each other. aisle,
27 is an injection pipe for injecting a cryogen into the inner container 15.

【0003】排気通路25は外容器17外で3分岐してお
り、第一の分岐管25aには、内容器15内の圧力が大気圧
より高い第一の設定圧力以上になると薄板の破壊または
変形によって内容器15内の蒸発ガスを放出する破壊式安
全弁29が接続され、第二の分岐管25bには、内容器15内
の圧力が前記第一の設定圧力より低く大気圧より高い第
二の設定圧力以上になると自動的に開き、第二の設定圧
力以下になると自動的に閉じる内圧保持弁31が接続さ
れ、第三の分岐管25cには、開閉式のバルブ33が接続さ
れている。
The exhaust passage 25 is divided into three branches outside the outer container 17, and the first branch pipe 25a breaks or breaks the thin plate when the pressure in the inner container 15 exceeds a first set pressure higher than atmospheric pressure. A destructive safety valve 29 that releases the vaporized gas in the inner container 15 by deformation is connected, and the second branch pipe 25b has a second pressure in the inner container 15 lower than the first set pressure and higher than atmospheric pressure. The internal pressure holding valve 31 is automatically opened when the pressure becomes equal to or higher than the set pressure of, and the valve is automatically closed when the pressure becomes equal to or lower than the second set pressure. The opening / closing valve 33 is connected to the third branch pipe 25c. ..

【0004】開閉バルブ33は寒剤の注入時以外は常時閉
じられており、また安全弁29も超電導マグネット11が正
常な超電導状態を維持している限り開くことはない。し
たがって通常の運転状態のときに作動するのは内圧保持
弁31のみである。
The on-off valve 33 is always closed except when the cryogen is injected, and the safety valve 29 does not open as long as the superconducting magnet 11 maintains a normal superconducting state. Therefore, only the internal pressure holding valve 31 operates in the normal operating state.

【0005】内圧保持弁31は例えばバネ式逆止弁よりな
り、内容器15内が寒剤の蒸発ガスにより加圧状態となっ
たときに開いて、内容器15内の圧力を一定に保つべく蒸
発ガスを放出するものである。これにより内容器15内は
大気圧より少し高い圧力に保持され、大気圧の変動によ
り外気が内容器15内へ流入するのを防止している。
The internal pressure holding valve 31 is composed of, for example, a spring type check valve, which opens when the inside of the inner container 15 is pressurized by the evaporation gas of the cryogen and evaporates to keep the pressure inside the inner container 15 constant. It releases gas. As a result, the inside of the inner container 15 is maintained at a pressure slightly higher than the atmospheric pressure, and the outside air is prevented from flowing into the inner container 15 due to the fluctuation of the atmospheric pressure.

【0006】安全弁29は超電導マグネット11が超電導破
壊を起こしたときに作動する。すなわち超電導マグネッ
ト11が超電導破壊を起こすと、保有していた電気エネル
ギーが熱エネルギーとなって短時間に放出されるため、
超電導マグネット11を冷却していた寒剤13が急激にガス
化し、内容器15の内圧が急上昇する。内容器15の内圧が
高くなりすぎると内容器15が破壊されるおそれがあるの
で、内容器15の内圧が規定値(第一の設定圧力)以上に
上昇したときには、安全弁31の薄板が破壊され、蒸発ガ
スを内容器15から大気中に放出して、内容器15を圧力破
壊から保護する。
The safety valve 29 is activated when the superconducting magnet 11 causes a superconducting breakdown. That is, when the superconducting magnet 11 causes a superconducting breakdown, the electric energy that it possesses becomes thermal energy and is released in a short time.
The cryogen 13 that has cooled the superconducting magnet 11 is rapidly gasified, and the internal pressure of the inner container 15 is rapidly increased. If the inner pressure of the inner container 15 becomes too high, the inner container 15 may be destroyed. Therefore, when the inner pressure of the inner container 15 rises above a specified value (first set pressure), the thin plate of the safety valve 31 is destroyed. The evaporative gas is released from the inner container 15 to the atmosphere to protect the inner container 15 from pressure breakdown.

【0007】また開閉バルブ33は、内容器15に寒剤を注
入するときに、これを開いて、蒸発ガスを放出するもの
である。すなわち寒剤を注入するときには、初期の段階
で、注入管27での寒剤の蒸発およびフラッシュロスによ
り、大量の寒剤の蒸発が生じて内容器15内の圧力が上昇
するので、開閉バルブ33を開いて、注入の際に発生する
蒸発ガスを放出し、内容器15内の圧力上昇を防止する。
Further, the opening / closing valve 33 is for opening the cryogen when injecting the cryogen into the inner container 15 to release the vaporized gas. That is, when injecting the cryogen, in the initial stage, evaporation of the cryogen in the injection pipe 27 and flash loss cause evaporation of a large amount of the cryogen and increase the pressure in the inner container 15, so open the on-off valve 33. The vaporized gas generated at the time of injection is released to prevent the pressure in the inner container 15 from rising.

【0008】[0008]

【発明が解決しようとする課題】本発明者等の測定によ
ると、従来のクライオスタットは定常運転状態におい
て、蒸発ガス圧力の自励振動が発生していることが判明
した。この自励振動は寒剤液面より上の30K以下、特に
10K以下の低温領域が発生源とみられ、振動周波数は数
Hzから数十Hz程度である。このような自励振動が発生す
ると、大量の熱が寒剤に入り、寒剤の蒸発量を増大させ
る。液体ヘリウム等の寒剤はきわめて高価であるため、
その蒸発量を極力少なくすることが望ましく、定常運転
状態で蒸発ガス圧力の自励振動が発生しているというこ
とは、それによる寒剤の蒸発があることを示しており、
この自励振動をいかに抑制するかが問題となる。
According to the measurements made by the present inventors, it has been found that the conventional cryostat causes self-excited oscillation of the vaporized gas pressure in a steady operation state. This self-excited vibration is below 30K above the cryogen level, especially
The low temperature region below 10K is considered to be the generation source, and the vibration frequency is several
It is from Hz to several tens of Hz. When such self-excited vibration occurs, a large amount of heat enters the cryogen and increases the evaporation amount of the cryogen. Since cryogens such as liquid helium are extremely expensive,
It is desirable to minimize the amount of evaporation, and the fact that self-excited oscillation of the evaporative gas pressure occurs in the steady operation state indicates that there is evaporation of the cryogen due to it,
The problem is how to suppress this self-excited vibration.

【0009】本発明は、上記の問題点を解決するために
なされたもので、蒸発ガス圧力の振動を抑制し、圧力変
動により寒剤に侵入する熱量を少なくし、寒剤消費量が
少なくて済む超電導マグネット用クライオスタットを提
供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and suppresses the vibration of the evaporative gas pressure, reduces the amount of heat entering the cryogen due to pressure fluctuation, and consumes less cryogen. It is intended to provide a cryostat for a magnet.

【0010】[0010]

【課題を解決するための手段】この目的を達成するため
本発明は、超電導マグネットおよび寒剤を収容する内容
器と、この内容器を断熱状態で内部に保持する外容器
と、内容器内で発生した寒剤の蒸発ガスを外部に排出す
る排気通路とを備え、排気通路に、内容器内の圧力が大
気圧より高い第一の設定圧力以上になると自動的に開く
安全弁と並列に、蒸発ガス圧力の振動を抑制する流体抵
抗器を設けたことを特徴とする。流体抵抗器としては、
ニードルバルブなどの流量調節弁や、オリフィスなどが
使用される。
To achieve this object, the present invention is carried out in an inner container for containing a superconducting magnet and a cryogen, an outer container for holding the inner container in a heat-insulated state, and an inner container. Equipped with an exhaust passage for discharging the cryogen's evaporative gas to the outside, and the evaporative gas pressure in parallel with the safety valve that automatically opens when the pressure inside the inner container becomes higher than the first set pressure higher than atmospheric pressure. Is provided with a fluid resistor for suppressing the vibration of the. As a fluid resistor,
Flow control valves such as needle valves and orifices are used.

【0011】[0011]

【作用】このクライオスタットでは、超電導マグネット
が超電導状態を維持しているときに、内容器内で発生す
る蒸発ガスは、流体抵抗器を通って外部に放出される。
このとき安全弁はもちろん閉じた状態にある。内容器か
ら排気通路を通って外部に放出される蒸発ガスの圧力に
自励振動が発生した場合、流体抵抗器は蒸発ガスの流動
に対し抵抗として作用するため、自励振動の振幅が流体
抵抗器がない場合より小さくなり、自励振動に伴う寒剤
への熱流入を少なくすることができる。
In this cryostat, when the superconducting magnet maintains the superconducting state, the vaporized gas generated in the inner container is discharged to the outside through the fluid resistor.
At this time, the safety valve is of course closed. When self-excited vibration occurs in the pressure of evaporative gas discharged from the inner container to the outside through the exhaust passage, the fluid resistor acts as a resistance to the flow of evaporative gas, so the amplitude of self-excited oscillation is the fluid resistance. It is smaller than the case without a vessel, and the heat flow into the cryogen due to self-excited vibration can be reduced.

【0012】[0012]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。図1は本発明の一実施例を示す。この超電
導マグネット用クライオスタットは従来同様、超電導マ
グネット11および寒剤13を収容する内容器15、外容器1
7、断熱シールド層19、多層断熱材層21、支持材23、排
気通路25、第一ないし第三の分岐管25a〜25c、寒剤注
入管27、安全弁29、内圧保持弁31、開閉バルブ33を備え
ている。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 shows an embodiment of the present invention. This conventional cryostat for a superconducting magnet has an inner container 15 and an outer container 1 for accommodating the superconducting magnet 11 and the cryogen 13, as in the conventional case.
7, the heat insulating shield layer 19, the multilayer heat insulating material layer 21, the support material 23, the exhaust passage 25, the first to third branch pipes 25a to 25c, the cryogen injection pipe 27, the safety valve 29, the internal pressure holding valve 31, the open / close valve 33. I have it.

【0013】このクライオスタットの特徴は、排気通路
25の第二の分岐管25bに、内圧保持弁31と直列にニード
ルバルブ等からなる流量調節弁35を設けたことである。
この流量調節弁35は、超電導マグネット11が超電導状態
を維持する正常状態で内容器15内の圧力が異常に上昇し
ない程度に開度を絞って、蒸発ガス圧力の自励振動を抑
制する流体抵抗器として機能するものである。
The feature of this cryostat is that the exhaust passage is
The second branch pipe 25b of 25 is provided with a flow control valve 35 including a needle valve or the like in series with the internal pressure holding valve 31.
This flow rate control valve 35 is a fluid resistance that suppresses self-excited oscillation of evaporative gas pressure by narrowing the opening to such an extent that the pressure inside the inner container 15 does not rise abnormally when the superconducting magnet 11 maintains the superconducting state. It functions as a container.

【0014】本実施例では、流量調節弁35を内圧保持弁
31の下流側に接続したが、流量調節弁35と内圧保持弁31
の位置を入れ換えても機能的には何ら変わりはない。
In this embodiment, the flow control valve 35 is replaced with the internal pressure holding valve.
Although it was connected to the downstream side of 31, the flow control valve 35 and the internal pressure holding valve 31
Even if the positions of are replaced, there is no functional change.

【0015】次に動作について説明する。超電導マグネ
ット11が正常に超電導状態を維持する場合、内容器15内
の寒剤13は断熱シールド層19等からの熱輻射や、支持材
23を通しての熱伝導により侵入する熱により常時蒸発し
ている。この蒸発ガスにより内容器15内の圧力は上昇
し、それが一定限度以上になると内圧保持弁31が開くか
ら、蒸発ガスは内圧保持弁31、流量調節弁35を通って大
気中に放出される。
Next, the operation will be described. When the superconducting magnet 11 normally maintains the superconducting state, the cryogen 13 in the inner container 15 is radiated by heat from the heat insulating shield layer 19 or the like, or the supporting material.
It always evaporates due to the heat that enters through the heat conduction through 23. The pressure in the inner container 15 rises due to this vaporized gas, and when it rises above a certain limit, the internal pressure holding valve 31 opens, so the vaporized gas is released into the atmosphere through the internal pressure holding valve 31 and the flow rate control valve 35. ..

【0016】流量調節弁35を全開にしておいて、高精度
圧力計で内容器15内の圧力を観察すると、圧力振動がみ
られ、排気通路25内で蒸発ガス圧力の自励振動が起きて
いることが確認できる。流量調節弁35の開度を徐々に絞
り、流量を少なくしていくと、やがて圧力振動は収ま
り、自励振動の振幅が小さくなることが分かる。流量調
節弁35は、排気通路25内での自励振動の振幅が小さくな
り、かつ内容器15内の圧力が上昇することのない開度に
調節し、その状態で開度を固定する。これによって蒸発
ガス圧力の自励振動による熱の流入の少ない、したがっ
て寒剤消費量の少ないクライオスタットを構成できる。
When the flow control valve 35 is fully opened and the pressure in the inner container 15 is observed with a high-precision pressure gauge, pressure oscillation is observed, and self-excited oscillation of the vaporized gas pressure occurs in the exhaust passage 25. Can be confirmed. It can be seen that when the opening degree of the flow rate control valve 35 is gradually reduced and the flow rate is reduced, the pressure vibration eventually subsides and the amplitude of the self-excited vibration decreases. The flow rate control valve 35 adjusts the opening so that the amplitude of the self-excited vibration in the exhaust passage 25 becomes small and the pressure in the inner container 15 does not rise, and the opening is fixed in that state. This makes it possible to construct a cryostat in which less heat flows due to self-excited oscillation of the pressure of the evaporative gas, and thus less cryogen consumption.

【0017】なお測定等により、自励振動の振幅が小さ
くなり、かつ内容器15内の圧力が異常に上昇することの
ない流量調節弁35の開度が判明している場合には、流量
調節弁35の代わりに、その開度と同じ流体抵抗を持つオ
リフィス等を使用することも可能である。
If the amplitude of the self-excited vibration becomes small and the opening of the flow control valve 35 at which the pressure in the inner container 15 does not rise abnormally is known by measurement, etc., the flow control is performed. Instead of the valve 35, an orifice or the like having the same fluid resistance as the opening can be used.

【0018】安全弁29および開閉バルブ33の機能は従来
と同じであるので、説明を省略する。ただし開閉バルブ
33は、寒剤注入時に例えば安全弁29の上流側を開放でき
るようにしておけば、省略することも可能である。また
安全弁29は必ずしも破壊式開放弁である必要はなく、例
えば内圧保持弁31の設定圧力より高い第一の設定圧力以
上になると自動的に開き、かつ超電導マグネットの超電
導破壊時に発生する蒸発ガスを放出するのに十分な開度
を確保できる圧力式開閉弁を用いることも可能である。
Since the functions of the safety valve 29 and the opening / closing valve 33 are the same as those of the conventional one, the description thereof will be omitted. Open / close valve
33 can be omitted if, for example, the upstream side of the safety valve 29 can be opened when the cryogen is injected. Further, the safety valve 29 does not necessarily have to be a destructive-type opening valve. It is also possible to use a pressure type on-off valve that can secure a sufficient opening degree for releasing.

【0019】次に図2を参照して本発明の他の実施例を
説明する。このクライオスタットが図1のクライオスタ
ットと異なる点は、図1における内圧保持弁31が省略さ
れ、第二の分岐管25bに流体抵抗器としての流量調節弁
35のみが接続されていることである。実験によると、流
量調節弁35の開度を振動抑制用の流体抵抗器としての機
能を発揮する程度に絞っておくと、内圧保持弁を開放し
たままでも、内容器15内が大気圧より高い圧力に保持さ
れ、外気の流入が起こらないことが確認された。したが
って内圧保持弁は省略することも可能である。上記以外
の構成は図1のクライオスタットと同じであるので、同
一部分には同一符号を付して説明を省略する。
Next, another embodiment of the present invention will be described with reference to FIG. This cryostat is different from the cryostat in FIG. 1 in that the internal pressure holding valve 31 in FIG. 1 is omitted, and the second branch pipe 25b has a flow rate control valve as a fluid resistor.
Only 35 are connected. According to the experiment, if the opening degree of the flow rate control valve 35 is narrowed down to the extent that it functions as a fluid resistor for vibration suppression, the inside of the inner container 15 is higher than atmospheric pressure even if the inner pressure holding valve is opened. It was confirmed that the pressure was maintained and no inflow of outside air occurred. Therefore, the internal pressure holding valve can be omitted. Since the configuration other than the above is the same as that of the cryostat in FIG. 1, the same portions are denoted by the same reference numerals and the description thereof will be omitted.

【0020】次に図3を参照して本発明のさらに他の実
施例を説明する。図3では蒸発ガスの排気系のみを示
し、他の部分は図1と同じであるので図示を省略してあ
る。このクライオスタットが図1のクライオスタットと
異なる点は、蒸発ガス圧力の自励振動を抑制する流体抵
抗器としての流量調節弁35の下流側にさらに、大気圧の
変動に基づく蒸発ガスの圧力変動を吸収する他の流量調
節弁37とガス容器39の組を直列接続したことである。ガ
ス容器39は二つの流量調節弁35と37の間に位置させてあ
る。
Next, another embodiment of the present invention will be described with reference to FIG. In FIG. 3, only the evacuation system for evaporating gas is shown, and the other parts are the same as in FIG. This cryostat is different from the cryostat shown in FIG. 1 in that the pressure fluctuation of the evaporative gas due to the fluctuation of the atmospheric pressure is further absorbed on the downstream side of the flow rate control valve 35 as a fluid resistor for suppressing the self-excited oscillation of the evaporative gas pressure. That is, another set of the flow rate control valve 37 and the gas container 39 is connected in series. The gas container 39 is located between the two flow control valves 35 and 37.

【0021】内容器内の蒸発ガスの圧力は、大気圧の変
化(気象による変化、空調による変化、ドアの開閉によ
る変化など)によっても変動し、それにより寒剤の蒸発
量が増加するという問題がある。大気圧の変動周期は蒸
発ガスの自励振動周期に比べ、はるかに長いので、自励
振動抑制用の流量調節弁35で大気圧変動の影響を吸収す
ることは困難である。
The pressure of the evaporative gas in the inner container also fluctuates due to changes in atmospheric pressure (changes due to weather, changes due to air conditioning, changes due to opening and closing of doors, etc.), which increases the evaporation amount of the cryogen. is there. Since the fluctuation cycle of atmospheric pressure is much longer than the self-excited vibration cycle of the evaporative gas, it is difficult for the flow control valve 35 for suppressing self-excited vibration to absorb the influence of the fluctuation of atmospheric pressure.

【0022】そこで本実施例では、大気圧変動に対して
流体抵抗器として機能する流量調節弁37とバッファー用
のガス容器39を、流量調節弁35の下流側に接続して、大
気圧の変動に基づく蒸発ガスの圧力変動を吸収するよう
にしたものである。それ以外の構成は図1の実施例と同
じである。
Therefore, in this embodiment, a flow rate control valve 37 functioning as a fluid resistor against atmospheric pressure fluctuations and a gas container 39 for a buffer are connected to the downstream side of the flow rate control valve 35 to change the atmospheric pressure fluctuations. The pressure fluctuation of the evaporative gas based on the above is absorbed. The other structure is the same as that of the embodiment of FIG.

【0023】この構成によると、蒸発ガス圧力の自励振
動と、大気圧の変動に基づく蒸発ガスの圧力変動が両方
とも抑制されるため、寒剤の蒸発量は図1の実施例の場
合よりさらに少なくなる。なお流量調節弁37の代わり
に、それと同じ流体抵抗をもつオリフィス等を使用する
ことも可能である。
According to this structure, both the self-excited oscillation of the pressure of the evaporative gas and the pressure fluctuation of the evaporative gas due to the fluctuation of the atmospheric pressure are suppressed, so that the evaporation amount of the cryogen is more than that in the embodiment of FIG. Less. Instead of the flow rate control valve 37, an orifice or the like having the same fluid resistance as the flow rate control valve 37 can be used.

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、蒸
発ガス圧力の振動を抑制できるので、蒸発ガス圧力の振
動により内容器内に侵入する熱量を少なくすることがで
き、寒剤消費量の少ない経済的なクライオスタットを得
ることができる。
As described above, according to the present invention, the vibration of the evaporative gas pressure can be suppressed, so that the heat quantity penetrating into the inner container due to the vibration of the evaporative gas pressure can be reduced and the cryogen consumption can be reduced. You can get less economical cryostats.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る超電導マグネット用
クライオスタットの断面図。
FIG. 1 is a sectional view of a cryostat for a superconducting magnet according to an embodiment of the present invention.

【図2】 本発明の他の実施例に係る超電導マグネット
用クライオスタットの断面図。
FIG. 2 is a sectional view of a cryostat for a superconducting magnet according to another embodiment of the present invention.

【図3】 本発明のさらに他の実施例に係る超電導マグ
ネット用クライオスタットの要部の説明図。
FIG. 3 is an explanatory diagram of a main part of a cryostat for a superconducting magnet according to still another embodiment of the present invention.

【図4】 従来の超電導マグネット用クライオスタット
の断面図。
FIG. 4 is a sectional view of a conventional cryostat for a superconducting magnet.

【符号の説明】[Explanation of symbols]

11:超電導マグネット 13:寒剤 15:内容器
17:外容器 19:断熱シールド層 21:多層断熱材層 23:支持
材 25:排気通路 27:寒剤注入管 29:安全弁 31:内圧保持弁
33:開閉バルブ 35:流量調節弁 (自励振動抑制用の流体抵抗器) 37:流量調節弁 (大気圧変動吸収用の流体抵抗器)
39:ガス容器
11: Superconducting magnet 13: Cryogen 15: Inner container
17: Outer container 19: Insulation shield layer 21: Multi-layer insulation layer 23: Support material 25: Exhaust passage 27: Cold agent injection pipe 29: Safety valve 31: Internal pressure holding valve
33: Open / close valve 35: Flow rate control valve (fluid resistor for suppressing self-excited vibration) 37: Flow rate control valve (fluid resistor for absorbing atmospheric pressure fluctuation)
39: Gas container

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古戸 義雄 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshio Furuto 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】超電導マグネットおよび寒剤を収容する内
容器と、この内容器を断熱状態で内部に保持する外容器
と、内容器内で発生した寒剤の蒸発ガスを外部に排出す
る排気通路とを備え、排気通路に、内容器内の圧力が大
気圧より高い第一の設定圧力以上になると自動的に開く
安全弁と並列に、蒸発ガス圧力の振動を抑制する流体抵
抗器を設けたことを特徴とする超電導マグネット用クラ
イオスタット。
1. An inner container for accommodating a superconducting magnet and a cryogen, an outer container for holding the inner container in a heat-insulated state therein, and an exhaust passage for discharging evaporative gas of the cryogen generated in the inner container to the outside. It is equipped with a fluid resistor in the exhaust passage in parallel with a safety valve that opens automatically when the pressure inside the inner container rises above a first set pressure, which is higher than atmospheric pressure. Cryostat for superconducting magnet.
【請求項2】排気通路に、流体抵抗器と直列に、内容器
内の圧力が第一の設定圧力より低く大気圧より高い第二
の設定圧力以上になると自動的に開き、第二の設定圧力
以下になると自動的に閉じる内圧保持弁を設けたことを
特徴とする請求項1記載の超電導マグネット用クライオ
スタット。
2. An exhaust passage, in series with a fluid resistor, automatically opens when the pressure in the inner container becomes equal to or higher than a second set pressure lower than the first set pressure and higher than atmospheric pressure, and then set to the second set. The cryostat for a superconducting magnet according to claim 1, further comprising an internal pressure holding valve that automatically closes when the pressure falls below a pressure.
【請求項3】流体抵抗器の下流側に、大気圧の変動に基
づく蒸発ガスの圧力変動を吸収する流体抵抗器とガス容
器の組を、ガス容器が二つの流体抵抗器の間に位置する
ように直列に設けたことを特徴とする請求項1または2
記載の超電導マグネット用クライオスタット。
3. A set of a fluid resistor and a gas container, which absorbs the pressure fluctuation of the evaporative gas due to the fluctuation of the atmospheric pressure, is provided downstream of the fluid resistor, and the gas container is located between the two fluid resistors. 1 or 2 is provided in series as described above.
Cryostat for the superconducting magnet described.
JP23884291A 1991-08-27 1991-08-27 Crystal for superconducting magnet use Pending JPH0555032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23884291A JPH0555032A (en) 1991-08-27 1991-08-27 Crystal for superconducting magnet use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23884291A JPH0555032A (en) 1991-08-27 1991-08-27 Crystal for superconducting magnet use

Publications (1)

Publication Number Publication Date
JPH0555032A true JPH0555032A (en) 1993-03-05

Family

ID=17036085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23884291A Pending JPH0555032A (en) 1991-08-27 1991-08-27 Crystal for superconducting magnet use

Country Status (1)

Country Link
JP (1) JPH0555032A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140158915A1 (en) * 2011-06-28 2014-06-12 Sumitomo Heavy Industries, Ltd. Charged particle beam irradiation device
WO2021005732A1 (en) * 2019-07-10 2021-01-14 三菱電機株式会社 Superconducting electromagnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140158915A1 (en) * 2011-06-28 2014-06-12 Sumitomo Heavy Industries, Ltd. Charged particle beam irradiation device
US8835885B2 (en) 2011-06-28 2014-09-16 Sumitomo Heavy Industries, Ltd. Charged particle beam irradiation device
WO2021005732A1 (en) * 2019-07-10 2021-01-14 三菱電機株式会社 Superconducting electromagnet
JPWO2021005732A1 (en) * 2019-07-10 2021-01-14

Similar Documents

Publication Publication Date Title
JPH04303470A (en) Extinguisher with storage apparatus for liquefied gas with low boiling point to be used as extinguishing agent
US3457730A (en) Throttling valve employing the joule-thomson effect
KR101939983B1 (en) Fuel Storage Tank For Vehicle Using Cryogenic Liquid
JPH0555032A (en) Crystal for superconducting magnet use
Cavallari et al. Pressure protection against vacuum failures on the cryostats for LEP SC cavities
JP2000146095A (en) Storage tank for cryogenic liquid
JP3320772B2 (en) Operation method of superconducting magnet device
JPH09113052A (en) Freezer
JP5175595B2 (en) Cooling device and superconducting device
CN217213104U (en) High-field superconducting magnet low-temperature vertical test system
US4030900A (en) Cooling device
JPH08181359A (en) Cryostat
JP7118275B2 (en) superconducting electromagnet
JPH0656807B2 (en) Cryogenic container for superconducting electromagnet device
JPH0459505B2 (en)
JPS6191978A (en) Cryostat for superconductive electromagnetic coil
JP2000269022A (en) Superconducting magnet
CN114325514A (en) High-field superconducting magnet low-temperature vertical test system
JPS591992A (en) Heat pipe for extreme low temperature
JPH06283769A (en) Superconducting magnet refrigerating system
JPS61116250A (en) Superconductive device and cooling method thereof
JPH01155605A (en) Very low temperature container for superconducting electromagnet coil
JP2007088146A (en) Cryostat
JPH03291981A (en) Low temperature vessel
JP2637280B2 (en) Cryostat