JPS6191978A - Cryostat for superconductive electromagnetic coil - Google Patents

Cryostat for superconductive electromagnetic coil

Info

Publication number
JPS6191978A
JPS6191978A JP59212569A JP21256984A JPS6191978A JP S6191978 A JPS6191978 A JP S6191978A JP 59212569 A JP59212569 A JP 59212569A JP 21256984 A JP21256984 A JP 21256984A JP S6191978 A JPS6191978 A JP S6191978A
Authority
JP
Japan
Prior art keywords
valve
temperature
pipe
inner tank
liquid injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59212569A
Other languages
Japanese (ja)
Other versions
JPH0554685B2 (en
Inventor
Hiroyuki Nakao
裕行 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59212569A priority Critical patent/JPS6191978A/en
Publication of JPS6191978A publication Critical patent/JPS6191978A/en
Publication of JPH0554685B2 publication Critical patent/JPH0554685B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Abstract

PURPOSE:To enable to directly feed the vapor gas of a coolant warmed in the piping into the internal tank by a method wherein the by-pass system piping and the cut-off valve are installed at the normal temperature-side low-temperature part of the low- temperature valve on the liquid injection side and the low-temperature valve is formed into a cross valve-type structure. CONSTITUTION:This cryostat is made in the constitution, wherein a by-pass pipe 11 is provided at the normal temperature-side low-temperature part of the liquid injection-side low-temperature valve 6 of a liquid injecting pipe 4, the by-pass pipe 11 is connected with the normal temperature-side low-temperature part of the recovery- side low-temperature valve 7 of a recovery pipe 5 and a cut-off valve 12 is provided in the middle of the by-pass pipe. The cut-off valve 12 is formed in the structure of the same major-axis valve as the low-temperature valve 7 for making thermal intrusion into the piping reduce, whereby a safety valve 10 for a protection of the piping is limited to one piece, as the liquid injection system and the recovery system are commonly connected by the by-pass system. Furthermore, the liquid injection-side low-temperature valve is formed into the structure of a valve 13 in a cross valve type and is connected with the by-pass pipe 11, which is connected with the recovery pipe. As a result, this cryostat can be made in a constitution, wherein the cut-off valve 2 is not needed.

Description

【発明の詳細な説明】 (1)  技術分野の説明 本発明は超電導電磁石コイルを収納、冷却するための極
低温冷媒を蓄える内槽とその内槽eh熱的に包囲する外
槽、および外槽と内槽とを貫いて設けられる注液管と回
収管に内槽を締め切る低温弁などよりなる極低温容器の
構造に関するものである。
Detailed Description of the Invention (1) Description of the Technical Field The present invention relates to an inner tank for storing a cryogenic refrigerant for housing and cooling a superconducting electromagnetic coil, an outer tank for thermally surrounding the inner tank, and an outer tank. The present invention relates to the structure of a cryogenic container that includes a liquid injection pipe and a recovery pipe that are provided through an inner tank and a cryogenic valve that closes off the inner tank.

(2)従来技術とその問題点 従来の極低温容器について、超電導磁石装置等に付属さ
れる液体ヘリウムを貯液する極低温容器を例にして説明
する。液体ヘリウムは資源に乏しく高価でありかつ蒸発
浩然が小さいため、液体ヘリウムを貯液する極低温容器
の内槽への熱侵入量を極力小さくし液体ヘリウムの蒸発
を押えて効果的に利用することが望ましい。よって、極
低温容器は熱侵入量を減らすために、内槽全内部ビー1
¥F窒にした外槽に収納する二重構造にするとか内・外
槽間に中間冷却層をもうけるとか、そこに超flit 
kS材を併用するとか、内槽2支持するために外槽と同
定される支持装置に熱絶縁性の良いものを使用するなど
の工夫が行なわれている。また、内槽へ液体ヘリウムを
送液する注液系統配管と蒸発したヘリウムガス−を回収
する回収系統配管においても、外槽側の常温部端で内槽
を締め切ると、液体ヘリウムの振$bvC,よる液の配
管内への飛び込みや、配管内のヘリウムガスの対流等に
より内槽への熱侵入を生じているので、低温部で締切り
のできる低温弁を上記配管に取付けて、内槽への熱侵入
量を極力押えるようにしている。特に、浮上式鉄道にお
ける車載超電導磁石の様に、小型冷凍機を取付は超電導
磁石の連続運転を行う場合には、上述の構造が重要とな
る。
(2) Prior art and its problems A conventional cryogenic container will be explained using as an example a cryogenic container for storing liquid helium attached to a superconducting magnet device or the like. Since liquid helium is a scarce resource, expensive, and has low evaporation rate, it is important to minimize the amount of heat that enters the inner tank of the cryogenic container that stores liquid helium to suppress evaporation of liquid helium and use it effectively. is desirable. Therefore, in order to reduce the amount of heat intrusion in cryogenic containers, the entire inner tank must be
¥ F It is possible to have a double structure in which it is stored in an outer tank made of nitrogen, or to create an intermediate cooling layer between the inner and outer tanks, or to create a super-flit structure.
Efforts have been made to use kS material in combination, or to use a support device identified as the outer tank to support the inner tank 2 with a material having good thermal insulation properties. In addition, in the injection system piping that sends liquid helium to the inner tank and the recovery system piping that collects evaporated helium gas, if the inner tank is closed at the normal temperature end of the outer tank side, the liquid helium shakes out. , heat intrusion into the inner tank due to liquid jumping into the piping and convection of helium gas in the piping, etc. Therefore, a low temperature valve that can be shut off at the low temperature section is installed on the above piping to prevent the flow of heat into the inner tank. The amount of heat intrusion is suppressed as much as possible. In particular, the above-mentioned structure is important when a small refrigerator is installed and the superconducting magnet is operated continuously, such as an on-board superconducting magnet in a floating railway.

第2図に上記の構造を持った極低温容器の構成を示す。FIG. 2 shows the configuration of a cryogenic container having the above structure.

内槽1は外槽2の内部に断熱保持されており、冷媒でろ
る液体ヘリウム3を貯液できる。
The inner tank 1 is insulated and held inside the outer tank 2, and can store liquid helium 3, which is filtered by a refrigerant.

液体ヘリウムは注液管4を通って内槽1に貯液され、内
槽l内で蒸発したヘリウムガスは回収管5より回収され
る。6.7は低温弁で内槽の締め切りを低温部で行なう
。弁8.9は注液、回収の出入口弁で常温部での各系統
の締切りを行う。なお弁8.9は直接装置に取付けずに
、他の場所に設置してもよい。10は安全弁で配管系統
の保安のため、に設けられている。その他、超電等磁石
装置等に接続される配管類、熱7−ルド板、各種ボート
、センサー類等も設置しているが、説明の煩雑ざを避け
るために省略している。
Liquid helium passes through the liquid injection pipe 4 and is stored in the inner tank 1, and the helium gas evaporated in the inner tank 1 is recovered through the recovery pipe 5. 6.7 is a low temperature valve that closes off the inner tank in the low temperature section. Valve 8.9 is an inlet/outlet valve for liquid injection and collection, and shuts off each system in the normal temperature section. Note that the valves 8.9 may not be directly attached to the device, but may be installed at other locations. A safety valve 10 is provided for the safety of the piping system. In addition, piping connected to superelectric magnet devices, etc., heat shield plates, various boats, sensors, etc. are also installed, but they are omitted to avoid complication of explanation.

上記の様な極低温容器において、内槽を低温弁で締め切
った場合、注液管4は低温弁6により内槽側としゃ断さ
れるため、冷却が充分ではなく外槽側からの熱侵入によ
シ管4Fi温度上昇を起こし、外槽から内槽の間である
温度勾配をもって安定する。たとえ、注液入口弁8と低
温弁6との間の管4を真空に引いて、ヘリウムガスの伝
熱による熱侵入を減らしたとしても、締め切り時間が長
くなると熱伝導によシ管4は上記の様な温度勾配をもつ
ようになる。
In the cryogenic container described above, when the inner tank is closed off with a cryogenic valve, the liquid injection pipe 4 is cut off from the inner tank by the cryogenic valve 6, so cooling is not sufficient and heat may enter from the outer tank. The temperature of the 4-fi pipe rises and becomes stable with a certain temperature gradient between the outer tank and the inner tank. Even if the pipe 4 between the liquid injection inlet valve 8 and the low-temperature valve 6 is evacuated to reduce heat intrusion due to heat transfer of helium gas, if the cut-off time becomes longer, the pipe 4 will become weaker due to heat conduction. It will have a temperature gradient like the one above.

よって、内槽を締め切り保冷後、液体ヘリウムの追加注
液をする場合、注液管4は上で述べた様な温度上昇をし
ているため、送液される液体ヘリウムは性紙の初期には
管4を冷却しながら内槽へ送られる。ところで、液体ヘ
リウムは蒸発潜熱が低いため注液初期の管4が冷却され
るまでは、温度の高いヘリウムガスとなって1.内槽内
に直接送り込まれることになる。内槽内に送シ込まれた
ヘリウムガスはIA度が高いため、内槽に貯液されてい
た液体ヘリウムを蒸発させてムダにさせる。また、注液
の最初は温度の高いヘリウムガスが大量に内4Ilに送
り込まれるため、貯液されて、いる液体ヘリウムが急激
に蒸発してカスヘリウムになり、内槽内の過大な圧力上
昇を引き起こす危険性がめった。そのため、内圧上昇を
起こさせないように追〃口庄液時には弁を調整する必要
があった。
Therefore, when additional liquid helium is injected after the inner tank is closed and kept cold, the temperature of the liquid injection pipe 4 has increased as described above, so the liquid helium that is delivered will not be able to reach the initial stage of the paper. is sent to the inner tank while cooling the tube 4. By the way, since liquid helium has a low latent heat of vaporization, it becomes a high-temperature helium gas until the tube 4 is cooled at the initial stage of injection. It will be sent directly into the inner tank. Since the helium gas sent into the inner tank has a high degree of IA, the liquid helium stored in the inner tank is evaporated and wasted. In addition, at the beginning of injection, a large amount of high-temperature helium gas is sent into the inner tank, so the stored liquid helium rapidly evaporates and becomes cass helium, causing an excessive pressure rise in the inner tank. There is little danger of it posing a problem. Therefore, it was necessary to adjust the valve during refilling to prevent internal pressure from increasing.

(3)発明の目的 低温弁にて内槽を締め切る・腸抵温容器において、加注
液時に注fPi、管内でbたためられて蒸発ガスとなっ
た冷媒を直接内槽内に送9込まない極低温容器構造を提
供する。
(3) Purpose of the invention Closing off the inner tank with a low-temperature valve - In a low-temperature container, when adding liquid, the refrigerant that accumulates in the pipe and becomes evaporative gas is not directly sent into the inner tank. Provide cryogenic container construction.

(4)  発明の直装 本発明の険低温容詣では低温弁の常温側低温部にバイパ
ス系統配管と締切弁とを段高、する構造とし、追加注液
時に低温弁部よシ常温側の配管を予冷した後、内槽へ注
液するようにして、配管内でろたためられた冷媒の蒸発
ガスを直接内槽へ送らないようにできる。また、注液側
の低温、弁を3万弁の構造にして、バイパス系統配管を
回−収系統配管に接続することにより、弁の数量を増加
させることなく上記の効果が期待できる。
(4) Direct mounting of the invention In the cryogenic capacity of the present invention, the bypass system piping and the shutoff valve are stepped to the low temperature part on the room temperature side of the low temperature valve, so that when additional liquid is injected, After pre-cooling the pipe, the liquid is injected into the inner tank, so that the evaporated gas of the refrigerant filtered in the pipe is not sent directly to the inner tank. Furthermore, by using a structure with 30,000 low-temperature valves on the liquid injection side and connecting the bypass system piping to the recovery system piping, the above effects can be expected without increasing the number of valves.

(5)  発明の実施例 (実施例の構成) 本発明の極、低温容器は、低温弁の常温側低温部に注液
管と回収管とを結ぶバイパス管とそのバイパス管會開閉
する締切り升を設ける構成とするものでめる。すなわち
、第1図に示す様に、注液管4の注液側低温弁6の常温
側低温部よりバイパス管11を設け、回収管5の回収側
低温弁7の常温側低温部と接続し、バイパス管の途中に
締切弁12テ設ける構成とする。締切弁12は配管への
熱侵入を低減させるため、低温弁と同様な*軸弁とする
(5) Embodiments of the Invention (Structure of the Embodiments) The extremely low temperature container of the present invention includes a bypass pipe that connects a liquid injection pipe and a recovery pipe to the low temperature section on the room temperature side of a low temperature valve, and a cut-off box for opening and closing the bypass pipe. shall be of a configuration in which the That is, as shown in FIG. 1, a bypass pipe 11 is provided from the room temperature side low temperature part of the liquid injection side low temperature valve 6 of the liquid injection pipe 4, and is connected to the room temperature side low temperature part of the recovery side low temperature valve 7 of the recovery pipe 5. , a shutoff valve 12 is provided in the middle of the bypass pipe. The shutoff valve 12 is a *shaft valve similar to a low temperature valve in order to reduce heat intrusion into the piping.

また、内槽締め切シ時は、締切弁12を開とすることに
より、注液系統と回収系統がバイパス系代で共通に結ば
れることになるので、配管の保安のための安全弁10を
1個にしている。
In addition, when the inner tank is closed, by opening the shutoff valve 12, the liquid injection system and the collection system are commonly connected by the bypass system, so one safety valve 10 is installed for piping security. I have to.

ざらに、本発明では弁の数量を増加させないため、第3
図に示す様に注液側低温弁を3方弁形式の弁13とし、
回収管と結ぶバイパス管11と接続することにより、締
切弁12を必要としない構成にすることができる。注液
側低温弁の3方弁13としては、第4図に示す構造とす
る。すなわち、内槽への低温弁の弁座13bと挿入式の
バイパス系弁座13Cとの間?弁体13aが上下するこ
とにより、流路を分岐できる構造になっている。また、
シール材14により常温側への締切りを行っている。
Generally, in the present invention, since the number of valves is not increased, the third
As shown in the figure, the liquid injection side low temperature valve is a three-way valve type valve 13,
By connecting to the bypass pipe 11 that connects to the recovery pipe, a configuration that does not require the shutoff valve 12 can be achieved. The three-way valve 13 of the low-temperature valve on the liquid injection side has a structure shown in FIG. 4. That is, between the valve seat 13b of the low temperature valve to the inner tank and the insertion type bypass system valve seat 13C? The structure is such that the flow path can be branched by moving the valve body 13a up and down. Also,
A sealing material 14 closes off the temperature to the normal temperature side.

(実施例の作用効果) 第3図に示す本発明による駕低温容器において、内槽締
め切り後の追7JO注液は、まず締切弁12を開いて、
バイパス管11に液体ヘリウムを送液管4を冷却した後
、注液側低温弁6を開けることにより、内槽1へは液体
ヘリウムが直接注入され、内槽内に貯欣されていた成体
ヘリウムを蒸発させることなく追加注液が行なわれる。
(Operation and effect of the embodiment) In the low-temperature container according to the present invention shown in FIG. 3, additional 7JO liquid injection after closing the inner tank is performed by first opening the shut-off valve 12,
After cooling liquid helium to the bypass pipe 11 and cooling the liquid supply pipe 4, by opening the low temperature valve 6 on the liquid injection side, liquid helium is directly injected into the inner tank 1, and the adult helium stored in the inner tank is Additional injection is performed without evaporating the liquid.

また、貯tf、されている液体ヘリウムを蒸発させない
ため、蒸発ガスによる内槽内の急激な圧力上昇も引き起
こさない。
Further, since the liquid helium stored in the tf is not evaporated, a sudden pressure increase in the inner tank due to evaporated gas is not caused.

(6)他の実施例 さらに、第4図に示す様に注液(Pす低温弁を3方弁1
3にすれば、弁の数量を増加させることなく上記で述べ
た作用を実施できる。また、第5回に示す様Vc3方弁
の動作は、弁体13aの位置が実線の場合は内槽へ注液
中の状態を示し、実線の矢印の糸路で内槽内へ注液され
る。バイパス系統との締切りは弁体13aが挿入式のバ
イパス系弁座13c’C押付けることにより行う。弁体
13aの位置が点線の場合はバイパス系統の予冷状態も
17<は内槽締め切り状態を示し、点線の矢印の糸路で
予冷が行なわれる。内槽1との締切りは弁体13aを弁
座13bに押付けることにより行う。
(6) Other embodiments Furthermore, as shown in FIG.
3, the above-mentioned effect can be achieved without increasing the number of valves. Furthermore, as shown in Part 5, the operation of the Vc 3-way valve is such that when the position of the valve body 13a is indicated by a solid line, it indicates that liquid is being injected into the inner tank, and the liquid is injected into the inner tank along the thread path indicated by the solid line arrow. Ru. The valve element 13a is shut off from the bypass system by pressing the insertable bypass system valve seat 13c'C. When the position of the valve body 13a is indicated by the dotted line, the precooling state of the bypass system is also 17<, which indicates the inner tank closed state, and precooling is performed along the path indicated by the dotted arrow. Closing with the inner tank 1 is performed by pressing the valve body 13a against the valve seat 13b.

(7)発明の効果 上で述べてきた様に、バイパス系統を低温弁の常温側低
温部に設置し、配管の予冷を行ってから注液することに
より、内槽締め切シ後の追加注液を貯液している液体ヘ
リウムを蒸発きせることなく行なえる。また、貯液され
ている液体ヘリウムが急激な蒸発を起こさないため、内
槽内の急激な圧力上昇を防止できる。また、内槽締め切
り時にバイパス系統の締切弁を開けておけば注液系統と
回収系統とがバイパス系統を通して共通につながるため
、配管の保護の安全弁の数を1個に減らすことができる
(7) As described above in the effect of the invention, by installing the bypass system in the low temperature part on the room temperature side of the low temperature valve and pre-cooling the piping before injecting liquid, additional liquid injection after the inner tank is closed is possible. This can be done without evaporating the stored liquid helium. Furthermore, since the stored liquid helium does not cause rapid evaporation, a sudden pressure increase in the inner tank can be prevented. Furthermore, if the shutoff valve of the bypass system is opened when the inner tank is closed, the liquid injection system and the recovery system are commonly connected through the bypass system, so the number of safety valves for protecting the piping can be reduced to one.

さらに注液側低温弁を3方弁にすることにより、弁の数
量を増加させることなく、上記と同様の効果が得られる
。また、弁の数が増加しないので、井部からの熱侵入量
の増加もなく、より大きい効果が期待できる。
Furthermore, by using a three-way valve as the low-temperature valve on the liquid injection side, the same effects as described above can be obtained without increasing the number of valves. Furthermore, since the number of valves does not increase, there is no increase in the amount of heat entering from the well, and a greater effect can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による極低温容器の構成図、
第2図は従来の極低温容器の構成図、第3図は他の実施
例による極低温容器の構成図、第4図は本発明に使われ
る3方弁の構造図、第5図は3方弁の他の構造図である
。 l・・内槽      2・・・外槽 3・・・液体ヘリウム  4・・・注液系統配管5・・
・回収系統配管 ′6′・・・注液側低温弁7・・・回
収側低温弁  8・・・注液入口弁9・・回収出口弁 
  10・・・安全弁11 ・・バイパス系統配管 1
2・・・締切弁13・・3方弁    13a・・・弁
体13b・・・弁座     13c・・・バイパス系
弁座14・・シール材15・・・コイルバネ16・・・
弁棒 (7317)代理人弁理士 則 近 憲 佑 (ほか1
名)第1図 、第2図 第3図 第4図
FIG. 1 is a configuration diagram of a cryogenic container according to an embodiment of the present invention;
Fig. 2 is a block diagram of a conventional cryogenic container, Fig. 3 is a block diagram of a cryogenic vessel according to another embodiment, Fig. 4 is a structural diagram of a three-way valve used in the present invention, and Fig. 5 is a structural diagram of a three-way valve used in the present invention. FIG. 7 is another structural diagram of the side valve. l... Inner tank 2... Outer tank 3... Liquid helium 4... Liquid injection system piping 5...
・Recovery system piping '6'... Liquid injection side low temperature valve 7... Recovery side low temperature valve 8... Liquid injection inlet valve 9... Recovery outlet valve
10...Safety valve 11...Bypass system piping 1
2... Shutoff valve 13... Three-way valve 13a... Valve body 13b... Valve seat 13c... Bypass system valve seat 14... Seal material 15... Coil spring 16...
Benbo (7317) Representative Patent Attorney Noriyuki Chika (and 1 others)
Figure 1, Figure 2, Figure 3, Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)超電導電磁石コイルを冷却する極低温冷媒液を蓄
えた内槽と、これを断熱的に包囲して収納する常温の外
槽とからなり、前記内、外槽を貫いて前記冷媒液を注入
する注液管と前記冷媒液の蒸発ガスを回収する回収管と
を備え、前記各管の内槽外側部分に低温締切弁を外槽の
外側部分に出、入口弁を設けたものにおいて、低温弁の
常温側にある各管を直接連結するバイパス管を設けこの
バイパス管の途中に締切弁を設けて内槽外の注液管を予
冷するようにしたことを特徴とする超電導電磁石コイル
用極低温容器。
(1) Consisting of an inner tank that stores cryogenic refrigerant liquid to cool the superconducting electromagnetic coil, and an outer tank at room temperature that adiabatically surrounds and stores this, the refrigerant liquid is passed through the inner and outer tanks. A liquid injection pipe for injecting liquid and a recovery pipe for recovering evaporated gas of the refrigerant liquid, each pipe having a low-temperature shutoff valve extending to the outer side of the outer tank and an inlet valve provided at the outer side of the inner tank, A superconducting electromagnetic coil characterized in that a bypass pipe is provided to directly connect the pipes on the normal temperature side of the low temperature valve, and a shutoff valve is provided in the middle of the bypass pipe to pre-cool the liquid injection pipe outside the inner tank. Cryogenic container.
(2)バイパス管に設けた締切弁と注液管に設けた低温
弁の代りに三方弁を設けてなる特許請求の範囲第1項記
載の超電導電磁石コイル用極低温容器。
(2) A cryogenic container for a superconducting electromagnet coil according to claim 1, wherein a three-way valve is provided in place of the shutoff valve provided in the bypass pipe and the low temperature valve provided in the liquid injection pipe.
JP59212569A 1984-10-12 1984-10-12 Cryostat for superconductive electromagnetic coil Granted JPS6191978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59212569A JPS6191978A (en) 1984-10-12 1984-10-12 Cryostat for superconductive electromagnetic coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59212569A JPS6191978A (en) 1984-10-12 1984-10-12 Cryostat for superconductive electromagnetic coil

Publications (2)

Publication Number Publication Date
JPS6191978A true JPS6191978A (en) 1986-05-10
JPH0554685B2 JPH0554685B2 (en) 1993-08-13

Family

ID=16624865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59212569A Granted JPS6191978A (en) 1984-10-12 1984-10-12 Cryostat for superconductive electromagnetic coil

Country Status (1)

Country Link
JP (1) JPS6191978A (en)

Also Published As

Publication number Publication date
JPH0554685B2 (en) 1993-08-13

Similar Documents

Publication Publication Date Title
CN100467934C (en) Reduction of cryogen loss during transportation of cryostats
KR100843389B1 (en) Undercooled horizontal cryostat configuration
JPS6191978A (en) Cryostat for superconductive electromagnetic coil
JPH01120500A (en) Method for holding lng receiving piping in precooling
JP2977168B2 (en) Superconducting magnet device
JPH02136687A (en) Utilization of cold heat effected by accumulating coil heat of low-temperature liquefied gas
US4030900A (en) Cooling device
JPH09113052A (en) Freezer
JPH01155605A (en) Very low temperature container for superconducting electromagnet coil
JPS60178260A (en) Cryogenic refrigerator
JPH0774019A (en) Cryogenic cooling system
RU2057653C1 (en) Cryostat for magnetic suspension vehicle
RU2011129C1 (en) Magnetic suspension vehicle cryostat
JPH0445740B2 (en)
JPH0492197A (en) Storage tank for extremely low temperature liquid and gas blowing precooling method of pipeline
JPH0555032A (en) Crystal for superconducting magnet use
JPH0513824A (en) Cooling device for cryostat
US11749435B2 (en) Pre-cooling and removing ice build-up from cryogenic cooling arrangements
JPH08240353A (en) Cryostat and its operating method
JPH06283769A (en) Superconducting magnet refrigerating system
JPS6310567B2 (en)
JPS60104898A (en) Low temperature vessel
JPS6265389A (en) Cryogenic container
JPS63178570A (en) Cryogenic container
JPS611962A (en) Superfluid helium generator