JPS63178570A - Cryogenic container - Google Patents

Cryogenic container

Info

Publication number
JPS63178570A
JPS63178570A JP62009037A JP903787A JPS63178570A JP S63178570 A JPS63178570 A JP S63178570A JP 62009037 A JP62009037 A JP 62009037A JP 903787 A JP903787 A JP 903787A JP S63178570 A JPS63178570 A JP S63178570A
Authority
JP
Japan
Prior art keywords
liquid nitrogen
tank
helium
liquid
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62009037A
Other languages
Japanese (ja)
Inventor
Takahiro Matsumoto
隆博 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62009037A priority Critical patent/JPS63178570A/en
Publication of JPS63178570A publication Critical patent/JPS63178570A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a liquid nitrogen bath from becoming negative-pressured due to operation of a refrigirator by providing a cryogenic container with a means of introducing helium gas into the liquid nitrogen bath. CONSTITUTION:A tubing 17 guiding vapor helium gas of a liquid helium bath 1 into a liquid nitrogen bath 4 is provided and the tubing 17 is provided with a check valve 18. When a thermal shield 6 is cooled by the second stage of a refrigerator 14 simultaneously with cooling the nitrogen bath 4 by the first stage and when an admission calorie of the nitrogen bath 4 is smaller than refrigeration capacity of the first stage 15 of the refrigerator 14, liquid nitrogen 5 is overcooled to lower vapor pressure of liquid nitrogen 5. However, since helium gas flows from a helium bath 1 into the nitrogen bath 4, the nitrogen bath 4 does not become negative-pressured for being held at high pressure by an open pressure portion of a reverse blocking valve. In this way, the liquid nitrogen bath is prevented from being blocked.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、極低温容器に関し、さらに詳しくいうと、
磁気共鳴診断装置などに使用される超電導マグネットな
どを収容するための極低温容器に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cryogenic container, and more specifically,
This invention relates to a cryogenic container for accommodating superconducting magnets used in magnetic resonance diagnostic equipment and the like.

[従来の技術] 第2図は従来のこの種の極低温容器を示し、内部に超電
導コイル(図示せず)と液体ヘリウム(2)などを内蔵
した液体ヘリウム槽(1)、液体ヘリウム槽(1)を内
蔵するとともに内部を真空に保持し、真空断熱する真空
槽(3)、液体ヘリウム槽(1)と真空容器(3)との
間にあって、内蔵する液体窒素(5)によって冷却され
、液体ヘリウム槽(1)を熱シールドする液体窒素槽(
4)、液体ヘリウム槽(1)と液体窒素槽(4)との間
にあって、液体ヘリウム槽(1)を包囲して熱しゃへい
する熱シールド(6)、超電導コイルが常電導転位し、
大量の磁気エネルギを熱エネルギとして放出した場合に
は安全弁(9)を開いて、蒸発ヘリウムガスを放出する
ヘリウムガス排気管(7)、(8)、常時少量ずつ蒸発
したヘリウムガスを放出する排気管〈10)、大気の逆
流を防止する逆止弁(11)、液体窒素槽(4)に排気
管(12)を介して取り付けられた逆止弁(13)、第
1ステージ(15)で液体窒素槽(4)を冷却すると同
時に第2ステージ(16)で熱シールド(6)を冷却す
る冷凍機(14)等からなっている。
[Prior Art] Figure 2 shows a conventional cryogenic container of this type, which includes a liquid helium tank (1) containing a superconducting coil (not shown) and liquid helium (2), and a liquid helium tank (2). 1), a vacuum chamber (3) that maintains a vacuum inside and is vacuum insulated, and is located between the liquid helium tank (1) and the vacuum container (3) and is cooled by the built-in liquid nitrogen (5). A liquid nitrogen tank (
4), a heat shield (6) that is located between the liquid helium tank (1) and the liquid nitrogen tank (4) and surrounds the liquid helium tank (1) for heat shielding, the superconducting coil has a normal conductive dislocation,
When a large amount of magnetic energy is released as heat energy, the safety valve (9) is opened to release evaporated helium gas (7), (8), and the exhaust pipes (7) and (8) to constantly release evaporated helium gas little by little. pipe <10), a check valve (11) to prevent atmospheric backflow, a check valve (13) attached to the liquid nitrogen tank (4) via an exhaust pipe (12), and a It consists of a refrigerator (14) that cools the liquid nitrogen tank (4) and simultaneously cools the heat shield (6) in the second stage (16).

以上の構成により、冷凍機(14)を運転すると、液体
窒素槽(4)、熱シールド(6)は冷却される。
With the above configuration, when the refrigerator (14) is operated, the liquid nitrogen tank (4) and the heat shield (6) are cooled.

したがって、液体ヘリウム槽(1)に侵入する熱量は減
少され、液体ヘリウムく2)の消費量を0.4叉/Hr
程度から0.1JL/Hr程度に低減することができる
。液体窒素槽(4)は冷凍機(14)に冷却され、液体
窒素槽(4)に侵入する熱量が冷凍機(14)の第1ス
テージの冷凍容量より少なくなると、液体窒素(5)は
過冷却される。液体窒素(5)は過冷却されると蒸気圧
が低下し、その結果、液体窒素槽(4)は逆止弁(13
)が閉じられ負圧となる。このとき、逆止弁(13)に
空気のリークがあると長期間の間に継続的に空気が侵入
することになり、場かによっては空気中の水分が凍結し
て液体窒素槽(4)を閉塞するおそれがあった。
Therefore, the amount of heat entering the liquid helium tank (1) is reduced, reducing the consumption of liquid helium (2) by 0.4 k/Hr.
It can be reduced from about 0.1 JL/Hr. The liquid nitrogen tank (4) is cooled by a refrigerator (14), and when the amount of heat entering the liquid nitrogen tank (4) becomes less than the refrigeration capacity of the first stage of the refrigerator (14), the liquid nitrogen (5) becomes overheated. cooled down. When the liquid nitrogen (5) is supercooled, its vapor pressure decreases, and as a result, the liquid nitrogen tank (4) closes the check valve (13).
) is closed and negative pressure is created. At this time, if there is an air leak from the check valve (13), air will continue to enter for a long period of time, and depending on the location, moisture in the air may freeze and cause the liquid nitrogen tank (4) to leak. There was a risk of blockage.

[発明が解決しようとする問題点コ 従来の極低温容器は以上のように構成されていたので、
逆止弁の信頼性が非常に重要となり、逆止弁にリーフが
発生した場合には液体窒素槽閉塞の危険性があるという
問題点があった。
[Problems to be solved by the invention] Since the conventional cryogenic container was constructed as described above,
The reliability of the check valve is very important, and if a leaf occurs in the check valve, there is a risk of clogging the liquid nitrogen tank.

この発明は上記のような問題点を解決するためになされ
たもので、冷凍機の運転により液体窒素槽が負圧になる
ことを防止すると同時に、液体窒素槽閉塞の危険性をな
くした極低温容器を得ることを目的とする。
This invention was made to solve the above-mentioned problems.It prevents the liquid nitrogen tank from becoming negative pressure due to the operation of the refrigerator, and at the same time eliminates the risk of clogging the liquid nitrogen tank. Aim to obtain a container.

[問題点を解決するための手段] この発明に係る極低温容器は、ヘリウムガスを、液体窒
素槽に導入する手段を備えている。
[Means for Solving the Problems] The cryogenic container according to the present invention includes means for introducing helium gas into the liquid nitrogen tank.

[作用] この発明においては、冷凍機により液体窒素槽が過冷却
状態となった場合でも、ヘリウムガスがあるため液体窒
素槽が負圧になることがない。
[Function] In this invention, even if the liquid nitrogen tank is supercooled by the refrigerator, the liquid nitrogen tank will not become under negative pressure because of the presence of helium gas.

[実施例] 第1図はこの発明の一実施例で、図において、符号(1
)〜(9)、(13)〜(16)は第2図におけると同
等か、相当部分を示している。
[Embodiment] FIG. 1 shows an embodiment of this invention.
) to (9) and (13) to (16) indicate the same or equivalent portions as in FIG.

液体ヘリウム槽(1)の蒸発ヘリウムガスを液体窒素槽
(4)に導く配管(17)が設けられており、配管(1
7)には逆止弁(18)が設けられている。
A pipe (17) is provided to guide the evaporated helium gas from the liquid helium tank (1) to the liquid nitrogen tank (4).
7) is provided with a check valve (18).

以上の構成により、冷凍機(14)の第1ステージによ
って液体窒素槽(4)を冷却すると同時に第2ステージ
によって熱シールド(6)を冷却した場合、液体窒素槽
(4)の侵入熱量が冷凍機(14)の第1ステージ(1
5)の冷凍容量より小さい場合には液体窒素〈5)は沸
点77によりも低い温度にまで過冷却される。その結果
、液体窒素(5)の蒸気圧が低下する。しかしながら、
沸点が4.2にと低いヘリウムガスが液体ヘリウム槽(
1)より液体窒素槽(4)へ流入するため、液体窒素槽
(4)は負圧となることなく、逆止弁(13)の開放正
分だけ高い圧力に保持される。したがって、逆止弁(1
3)が異物等によってリークが発生する状態であっても
空気が液体窒素槽(4)内に逆流することはない。
With the above configuration, when the first stage of the refrigerator (14) cools the liquid nitrogen tank (4) and the second stage simultaneously cools the heat shield (6), the amount of heat entering the liquid nitrogen tank (4) is The first stage (1) of the machine (14)
5), the liquid nitrogen <5) is supercooled to a temperature lower than the boiling point 77. As a result, the vapor pressure of liquid nitrogen (5) decreases. however,
Helium gas, which has a low boiling point of 4.2, is used in a liquid helium tank (
1), the liquid nitrogen flows into the liquid nitrogen tank (4), so the liquid nitrogen tank (4) does not become a negative pressure and is maintained at a pressure higher by the amount equal to the opening of the check valve (13). Therefore, the check valve (1
Even if 3) is in a state where a leak occurs due to foreign matter or the like, air will not flow back into the liquid nitrogen tank (4).

また、液体ヘリウム槽〈1)についても逆止弁(18)
によって、逆止弁(18)の開放正分だけ液体窒素槽〈
4)より高い圧力に保持されており、窒素ガスが液体ヘ
リウム槽(1)へ逆流することはない。
In addition, the check valve (18) is also used for the liquid helium tank (1).
By opening the check valve (18), the liquid nitrogen tank
4) It is maintained at a higher pressure and nitrogen gas does not flow back into the liquid helium tank (1).

なお、上記実施例では、液体ヘリウム槽(1)の蒸発ガ
スを液体窒素槽(4)へ流すようにしたが、別に高圧ヘ
リウムガスボンベより圧力調整器を介して減圧したヘリ
ウムガスを液体窒素槽(4)に供給するようにしても、
同様の効果を奏する。
In the above embodiment, the evaporated gas from the liquid helium tank (1) was made to flow into the liquid nitrogen tank (4), but helium gas that was depressurized from a high-pressure helium gas cylinder via a pressure regulator was separately transferred to the liquid nitrogen tank ( 4) Even if it is supplied to
It has a similar effect.

[発明の効果コ 以上のように、この発明によれば、ヘリウムガスを液体
窒素槽へ導入するようにしたので、冷凍器により液体窒
素槽を冷却した場合にも、負圧になることがなく、液体
窒素槽が閉塞するおそれがない。
[Effects of the Invention] As described above, according to the present invention, helium gas is introduced into the liquid nitrogen tank, so even when the liquid nitrogen tank is cooled by a refrigerator, negative pressure does not occur. , there is no risk of the liquid nitrogen tank becoming clogged.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の横断面図、第2図は従来
の極低温容器の横断面図である。 (1)・・・液体ヘリウム槽、(2)・・・液体ヘリウ
ム、り3)・・・真空槽、(4)・・・液体窒素槽、(
5)・・・液体窒素、(13)・・・逆止弁、(14)
・・・冷凍機、(17)・・・配管、〈18)・・・逆
止弁。 なお、各図中、同一符号は同−又は相当部分を示す。 1   表体へリウ4憧 2 : 准譲本ヘリウム 3 : 真゛E槽 4+  :IL停!!槽 5:良停!゛惠 14:;令凛シ喰 17:  ざV 18゛  逆止争
FIG. 1 is a cross-sectional view of an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a conventional cryogenic container. (1)...liquid helium tank, (2)...liquid helium tank, (3)...vacuum tank, (4)...liquid nitrogen tank, (
5)...Liquid nitrogen, (13)...Check valve, (14)
... Refrigerator, (17) ... Piping, <18) ... Check valve. In each figure, the same reference numerals indicate the same or corresponding parts. 1 Helium 4 admiration 2: Junior helium 3: True E tank 4+: IL stop! ! Tank 5: Good stop!゛Ei 14:;Reirinshikui 17: ZaV 18゛ Reverse fight

Claims (4)

【特許請求の範囲】[Claims] (1)液体窒素を内蔵する液体窒素槽と、前記液体窒素
槽を冷却する冷凍機と、前記液体窒素槽を収納し真空断
熱する真空槽と、前記液体窒素槽内にヘリウムガスを導
入する手段とを備えてなる極低温容器。
(1) A liquid nitrogen tank that contains liquid nitrogen, a refrigerator that cools the liquid nitrogen tank, a vacuum tank that houses the liquid nitrogen tank and provides vacuum insulation, and a means for introducing helium gas into the liquid nitrogen tank. A cryogenic container comprising:
(2)液体ヘリウムを内蔵した液体ヘリウム槽を備え、
この液体ヘリウム槽の蒸発ガスを液体窒素槽内へ導入す
る手段を備えた特許請求の範囲第1項記載の極低温容器
(2) Equipped with a liquid helium tank containing liquid helium,
2. The cryogenic container according to claim 1, further comprising means for introducing evaporated gas from the liquid helium tank into the liquid nitrogen tank.
(3)液体ヘリウム槽の蒸発ヘリウムガスを液体窒素槽
内に導入する配管途中に逆止弁が設けられている特許請
求の範囲第2項記載の極低温容器。
(3) The cryogenic container according to claim 2, wherein a check valve is provided in the middle of the piping for introducing the evaporated helium gas from the liquid helium tank into the liquid nitrogen tank.
(4)高圧ヘリウムガスボンベより圧力調整器を介して
液体窒素槽にヘリウムガスを導入する手段を備えた特許
請求の範囲第1項記載の極低温容器。
(4) The cryogenic container according to claim 1, comprising means for introducing helium gas from a high-pressure helium gas cylinder into the liquid nitrogen tank via a pressure regulator.
JP62009037A 1987-01-20 1987-01-20 Cryogenic container Pending JPS63178570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62009037A JPS63178570A (en) 1987-01-20 1987-01-20 Cryogenic container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62009037A JPS63178570A (en) 1987-01-20 1987-01-20 Cryogenic container

Publications (1)

Publication Number Publication Date
JPS63178570A true JPS63178570A (en) 1988-07-22

Family

ID=11709452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62009037A Pending JPS63178570A (en) 1987-01-20 1987-01-20 Cryogenic container

Country Status (1)

Country Link
JP (1) JPS63178570A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115123695A (en) * 2021-03-29 2022-09-30 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) Vehicle-mounted refrigeration medium storage device and superconducting magnetic levitation train

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115123695A (en) * 2021-03-29 2022-09-30 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) Vehicle-mounted refrigeration medium storage device and superconducting magnetic levitation train

Similar Documents

Publication Publication Date Title
CN100467934C (en) Reduction of cryogen loss during transportation of cryostats
JP3897820B2 (en) Cryopump
JP2008109035A (en) Pressurized superfluid helium cryostat
JPS63178570A (en) Cryogenic container
CN109442798B (en) Refrigeration system, closed-loop refrigeration cycle and method for injecting refrigerant
US3635039A (en) Vapor traps
JP3320772B2 (en) Operation method of superconducting magnet device
CN209165834U (en) Refrigeration system and closed-loop refrigeration cycle circuit
JPS60219780A (en) Cryogenic container
JPH0734294Y2 (en) Cryogenic cooling device
CN212433377U (en) Cold head exhaust structure of magnetic resonance imaging equipment and magnetic resonance imaging equipment
JPH0445740B2 (en)
JPH07136181A (en) Method for supplying and discharging liquid refrigerant and apparatus therefor
JP2007088146A (en) Cryostat
JPS60104898A (en) Low temperature vessel
RU2011129C1 (en) Magnetic suspension vehicle cryostat
JPH0479123B2 (en)
JPH03248580A (en) Cooling method of oxide superconductor
JPH04286304A (en) Superconducting magnet device
JPH01149406A (en) Superconducting device
JPH0774019A (en) Cryogenic cooling system
JP2637280B2 (en) Cryostat
JPH062799A (en) Low temperature container and prevention its intrusion of outside air
JPS5843734Y2 (en) Refrigeration equipment
JPS6115566B2 (en)