JPH0479123B2 - - Google Patents

Info

Publication number
JPH0479123B2
JPH0479123B2 JP58179164A JP17916483A JPH0479123B2 JP H0479123 B2 JPH0479123 B2 JP H0479123B2 JP 58179164 A JP58179164 A JP 58179164A JP 17916483 A JP17916483 A JP 17916483A JP H0479123 B2 JPH0479123 B2 JP H0479123B2
Authority
JP
Japan
Prior art keywords
coil
superconducting
container
space
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58179164A
Other languages
Japanese (ja)
Other versions
JPS6074407A (en
Inventor
Yoshihiro Chichi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58179164A priority Critical patent/JPS6074407A/en
Publication of JPS6074407A publication Critical patent/JPS6074407A/en
Publication of JPH0479123B2 publication Critical patent/JPH0479123B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、コイル導体内に極低温流体の流路を
有する強制冷却式の超電導マグネツト装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a forced cooling type superconducting magnet device having a flow path for cryogenic fluid within a coil conductor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

超電導マグネツト装置はその冷却方式により浸
漬冷式と強制冷却式の2方式に大別される。両冷
却方式の超電導マグネツト装置ともその構成は、
主に超電導コイルと、それを収納しかつその発生
電磁力を支持する為のコイル容器とから成つてい
る。強制冷却式は高電流密度をとることができ
る、機械的に強固な構造にすることができるなど
浸漬冷却式にない利点を有する反面、コイル導体
内に有する冷媒流路を流れる冷媒により、コイル
容器を冷却する必要があつた。近年の超電導マグ
ネツト装置大型化に伴うコイル容器の重構造は、
超電導コイルの冷却に要する時間を大幅に増加さ
せる結果となつている。この為コイル容器は、例
えばコイル容器表面に蛇管をはわせるなど別系統
の冷却系を設けることにより、冷却する方式が考
えられているが、冷却面積が限られてしまう為、
冷却に要する時間は多大なものとなる。又冷却系
が蛇管等で構成される場合、配管の圧力損失など
で冷媒流量が制限される等の欠点があつた。
Superconducting magnet devices are roughly divided into two types depending on their cooling method: immersion cooling type and forced cooling type. The configuration of the superconducting magnet device with both cooling methods is as follows.
It mainly consists of a superconducting coil and a coil container to house it and support the electromagnetic force it generates. The forced cooling type has advantages that the immersion cooling type does not have, such as being able to take a high current density and having a mechanically strong structure. It was necessary to cool it down. The heavy structure of the coil container due to the recent increase in the size of superconducting magnet devices,
This results in a significant increase in the time required to cool the superconducting coil. For this reason, methods have been considered to cool the coil container by providing a separate cooling system, such as installing a coiled pipe on the surface of the coil container, but the cooling area is limited.
The time required for cooling becomes enormous. Furthermore, when the cooling system is composed of coiled pipes or the like, there are drawbacks such as the flow rate of the refrigerant being restricted due to pressure loss in the pipes.

〔発明の目的〕[Purpose of the invention]

本発明は、以上のような欠点に鑑みなされたも
ので、超電導コイル及びコイル容器の冷却および
加温に要する時間を大幅に短縮する超電導マグネ
ツト装置を提供することを目的とする。
The present invention was made in view of the above-mentioned drawbacks, and an object of the present invention is to provide a superconducting magnet device that significantly reduces the time required for cooling and heating a superconducting coil and a coil container.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するため本発明は、コイル導
体内に極低温流体の流路を有する超電導コイルと
この超電導コイルを収容するコイル容器とを備
え、超電導コイルとコイル容器とのあいだに空間
を設け、この空間に冷媒を流して超電導コイルと
コイル容器を予冷したのち真空引きして断熱空間
とするようにした構成とする。
In order to achieve the above object, the present invention includes a superconducting coil having a flow path for cryogenic fluid inside the coil conductor and a coil container that houses the superconducting coil, and a space is provided between the superconducting coil and the coil container. The structure is such that a refrigerant is flowed through this space to pre-cool the superconducting coil and the coil container, and then the space is evacuated to create an adiabatic space.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を第1図に示す一実施例について
説明する。1は超電導コイル、2,3,4は各々
つめ物で、その一部に冷媒が流れる流路を設けて
おりコイル容器5と超電導コイル1及び電流リー
ド6を空間14を有して固定もしくは支持する。
電流リード6は、その内部を冷媒が強制的に流れ
超電導コイル1を冷却するとともに超電導コイル
1への電流供給に供される。コイル容器5の底部
及び上部にはポート7が設けられており図示され
ていない配管と接続される。配管には、やはりこ
れも図示されていないパルプが設けてある。
Hereinafter, one embodiment of the present invention shown in FIG. 1 will be described. Reference numeral 1 denotes a superconducting coil, and 2, 3, and 4 are fillers, each of which has a passage through which a refrigerant flows, and fixes or supports the coil container 5, the superconducting coil 1, and the current lead 6 with a space 14 therebetween. do.
A refrigerant is forced to flow through the current lead 6 to cool the superconducting coil 1 and supply current to the superconducting coil 1 . Ports 7 are provided at the bottom and top of the coil container 5 and are connected to piping (not shown). The pipe is provided with pulp, which is also not shown.

次に上記のように構成した本発明の超電導マグ
ネツト装置の動作を第2図に示す系統図にて説明
する。本発明の超電導マグネツト装置8は、図示
されていないふく射シールドをその内面に施した
真空容器9に収納される。真空容器9は、一種の
クライオスタツトの役目をなすもので、超電導マ
グネツト装置8はポート7、断熱配管10及びバ
ルブ11a,11b,11cを介して、真空ポン
プ12及びガスボンベ13に接続される。超電導
コイル1の冷却は、バルブ11eを介して電流リ
ード6から行なわれる。この際超電導コイル1を
冷却する冷媒は、バルブ11gを介してバイパス
され、超電導コイル1とコイル容器5の間につめ
物2,3,4で構成された空間を通つて超電導コ
イル1の外側からコイルとコイル容器を冷却し、
バルブ11dを介して回収系へと導びかれる。こ
こでつめ物2,3,4は、コイルの発生電磁力に
対して十分強度を有する構造で、なおかつコイル
容器へ力を伝播するものを使用する。これによ
り、コイル1及びコイル容器5の温度が高い状態
では、コイル内の冷媒流路の圧力損失が大きい
為、バルブ11gを介してバイパスされる冷却系
のほうに冷媒が多く供給される。一方コイル1及
びコイル容器5の温度が低くなつていればバルブ
11gを絞つていつてコイル内の冷媒流量を増す
ことによりコイル本体の本冷却を行なう。コイル
1とコイル容器5が十分冷却されればバルブ11
d,11gを閉じて、バルブ11a,11cを介
して真空ポンプ12にてコイル容器5とコイル1
の空間を真空に引き、断熱にする。
Next, the operation of the superconducting magnet device of the present invention constructed as described above will be explained with reference to the system diagram shown in FIG. The superconducting magnet device 8 of the present invention is housed in a vacuum container 9 whose inner surface is provided with a radiation shield (not shown). The vacuum container 9 serves as a type of cryostat, and the superconducting magnet device 8 is connected to a vacuum pump 12 and a gas cylinder 13 via a port 7, an insulated pipe 10, and valves 11a, 11b, and 11c. Superconducting coil 1 is cooled from current lead 6 via valve 11e. At this time, the refrigerant that cools the superconducting coil 1 is bypassed via the valve 11g, and is passed from the outside of the superconducting coil 1 through the space between the superconducting coil 1 and the coil container 5, which is made up of the plugs 2, 3, and 4. Cool the coil and coil container,
It is led to a recovery system via a valve 11d. Here, the claws 2, 3, and 4 are constructed to have sufficient strength against the electromagnetic force generated by the coil, and to propagate the force to the coil container. As a result, when the temperature of the coil 1 and the coil container 5 is high, the pressure loss in the refrigerant flow path in the coil is large, so more refrigerant is supplied to the cooling system bypassed via the valve 11g. On the other hand, if the temperatures of the coil 1 and coil container 5 are low, the main cooling of the coil body is performed by closing the valve 11g and increasing the flow rate of refrigerant in the coil. When the coil 1 and coil container 5 are sufficiently cooled, the valve 11
d and 11g are closed, and the coil container 5 and the coil 1 are removed by the vacuum pump 12 via the valves 11a and 11c.
evacuate the space and insulate it.

以上の作業により、コイル1及びコイル容器5
の冷却に要する時間は格段に短縮されるとともに
外部からのコイルへの侵入熱も極力おさえること
ができる。一方バルブ11c及びガスボンベ13
を設けることにより、コイル1とコイル容器5と
の空間にガスを充満させコイル内に冷媒を流すこ
とにより対流を利用して冷却することもできる。
これは、又コイルを加温する際にも利用でき加温
時間の大幅な短縮をはかることができる。
By the above operations, coil 1 and coil container 5
The time required for cooling the coil is significantly shortened, and heat intrusion into the coil from the outside can be suppressed as much as possible. On the other hand, the valve 11c and the gas cylinder 13
By providing this, it is also possible to perform cooling using convection by filling the space between the coil 1 and the coil container 5 with gas and flowing a refrigerant into the coil.
This can also be used when heating the coil, and the heating time can be significantly shortened.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、超電導
コイル及びコイル容器の冷却、加温に要する時間
を大幅に短縮する超電導マグネツト装置を得るこ
とができる。
As described above, according to the present invention, it is possible to obtain a superconducting magnet device that significantly reduces the time required for cooling and heating a superconducting coil and a coil container.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による超電導マグネツト装置
の一実施例を示す断面図、第2図は、本発明の動
作を説明する全体系統図である。 1……超電導コイル、2,3,4……つめ物、
5……コイル容器、7……ポート、11……バル
ブ、14……空間。
FIG. 1 is a sectional view showing an embodiment of a superconducting magnet device according to the present invention, and FIG. 2 is an overall system diagram illustrating the operation of the present invention. 1... superconducting coil, 2, 3, 4... stuffing,
5...Coil container, 7...Port, 11...Valve, 14...Space.

Claims (1)

【特許請求の範囲】[Claims] 1 コイル導体内に極低温流体の流路を有する超
電導コイルとこの超電導コイルを収容するコイル
容器とを備え、超電導コイルとコイル容器とのあ
いだに空間を設け、この空間に冷媒を流して超電
導コイルとコイル容器を予冷したのち真空引きし
て断熱空間とするようにしたことを特徴とする超
電導マグネツト装置。
1.Equipped with a superconducting coil having a flow path for cryogenic fluid inside the coil conductor and a coil container that houses the superconducting coil, a space is provided between the superconducting coil and the coil container, and a refrigerant is flowed into this space to form the superconducting coil. A superconducting magnet device characterized in that a coil container is pre-cooled and then evacuated to create an adiabatic space.
JP58179164A 1983-09-29 1983-09-29 Ultra-conductive magnet device Granted JPS6074407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58179164A JPS6074407A (en) 1983-09-29 1983-09-29 Ultra-conductive magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58179164A JPS6074407A (en) 1983-09-29 1983-09-29 Ultra-conductive magnet device

Publications (2)

Publication Number Publication Date
JPS6074407A JPS6074407A (en) 1985-04-26
JPH0479123B2 true JPH0479123B2 (en) 1992-12-15

Family

ID=16061055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58179164A Granted JPS6074407A (en) 1983-09-29 1983-09-29 Ultra-conductive magnet device

Country Status (1)

Country Link
JP (1) JPS6074407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4617866B2 (en) * 2004-03-30 2011-01-26 東洋製罐株式会社 Branch type standing pouch

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2631155B1 (en) * 1988-05-05 1991-02-15 Comp Generale Electricite TORIC HYBRID TRANSFORMER
FR2652959B1 (en) * 1989-10-09 1993-12-17 Gec Alsthom Sa ELECTROMAGNETIC STORAGE DEVICE IN SUPERCONDUCTING WINDINGS IN THE FORM OF A TORE.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5796508A (en) * 1980-12-08 1982-06-15 Hitachi Ltd Superconductive coil
JPS57211208A (en) * 1981-06-23 1982-12-25 Toshiba Corp Cooling structure of superconductive magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5796508A (en) * 1980-12-08 1982-06-15 Hitachi Ltd Superconductive coil
JPS57211208A (en) * 1981-06-23 1982-12-25 Toshiba Corp Cooling structure of superconductive magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4617866B2 (en) * 2004-03-30 2011-01-26 東洋製罐株式会社 Branch type standing pouch

Also Published As

Publication number Publication date
JPS6074407A (en) 1985-04-26

Similar Documents

Publication Publication Date Title
EP0392771B1 (en) Cryogenic precooler for superconductive magnet
JP2003533616A (en) Thermal protection method for submarine equipment and its execution device
US3714796A (en) Cryogenic refrigeration system with dual circuit heat exchanger
JPH0479123B2 (en)
JP2005344991A (en) Cryogenic cryostat
JPH0429376B2 (en)
Warren A pressurized helium II-cooled magnet test facility
JPH0730963B2 (en) Helium cooling system
US4926646A (en) Cryogenic precooler for superconductive magnets
US5117640A (en) System for venting cryogen from a cryostat
CN212362481U (en) Low-vibration low-temperature magnetic field measuring device based on cooling of GM refrigerator
JP7208914B2 (en) Thermal bath heat exchanger for superconducting magnets
JPH0734294Y2 (en) Cryogenic cooling device
US7482808B2 (en) Superconductive magnet apparatus and magnetic resonance imaging apparatus
JPS61116250A (en) Superconductive device and cooling method thereof
JP4079101B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus using the same
JP4917291B2 (en) Cryostat
JPS60196561A (en) Superfluid helium generator
CN113053614B (en) Device system for indirectly cooling superconducting magnet and method for indirectly cooling superconducting magnet
JPH01183104A (en) Superconducting device
US3069143A (en) Deep cooling apparatus
JPS6289305A (en) Superconducting magnet
JPH0599580A (en) Looped heat pipe
JPS63178570A (en) Cryogenic container
JPH0370914B2 (en)