JPH0370914B2 - - Google Patents

Info

Publication number
JPH0370914B2
JPH0370914B2 JP58095626A JP9562683A JPH0370914B2 JP H0370914 B2 JPH0370914 B2 JP H0370914B2 JP 58095626 A JP58095626 A JP 58095626A JP 9562683 A JP9562683 A JP 9562683A JP H0370914 B2 JPH0370914 B2 JP H0370914B2
Authority
JP
Japan
Prior art keywords
valve
temperature
gas
branch point
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58095626A
Other languages
Japanese (ja)
Other versions
JPS59222976A (en
Inventor
Yoshitoshi Hotsuta
Hiroshi Kimura
Kunishige Kuroda
Nobuhiro Hara
Ryukichi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58095626A priority Critical patent/JPS59222976A/en
Publication of JPS59222976A publication Critical patent/JPS59222976A/en
Publication of JPH0370914B2 publication Critical patent/JPH0370914B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、超臨界圧ヘリウムを冷媒とし、この
冷媒を強制的に循環して冷却する超電導冷却装置
に係り、特に、被冷却体からの戻りガスを制御す
る極低温冷却装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a superconducting cooling device that uses supercritical pressure helium as a refrigerant and forcibly circulates this refrigerant for cooling. This invention relates to a cryogenic cooling device that controls gas.

〔発明の背景〕[Background of the invention]

ヘリウムの強制流により超電導マグネツトを冷
却することは、浸漬冷却に比べ、冷却設備や、特
殊な導体を用いることなどから、その開発がやゝ
遅れていた。しかし、近年冷却技術が向上し、核
融合大型マグネツト、加速器用マグネツトなど大
型のもの、特殊形状のものへの超電導マグネツト
の適用が考えられるようになつて、各方面で開発
がなされるようになつた。
Compared to immersion cooling, cooling superconducting magnets using a forced flow of helium requires cooling equipment and special conductors, so its development has been somewhat delayed. However, as cooling technology has improved in recent years, it has become possible to consider the application of superconducting magnets to large items such as large fusion magnets and magnets for accelerators, as well as items with special shapes, and development is being carried out in various fields. Ta.

一般に、超臨界圧ヘリウムを用いた強制冷却の
利点は、 (1) 第1図a及びbに示すように導体自身が冷媒
通路となるため、クーリングチヤンネルが不要
となり、機械的強度が大となる。
In general, the advantages of forced cooling using supercritical helium are: (1) As shown in Figure 1 a and b, the conductor itself becomes the coolant passage, eliminating the need for a cooling channel and increasing mechanical strength. .

(2) コイルの絶縁が容易にできる。(2) The coil can be easily insulated.

(3) 電気絶縁1が容易となり形状の複雑なコイル
をつくることができる。
(3) Electrical insulation 1 becomes easy and coils with complex shapes can be made.

(4) 超電導コイル2の収納クライオスタツトは単
に真空容器であれば良い。
(4) The cryostat housing the superconducting coil 2 may simply be a vacuum container.

(5) 交流損失などによる発熱を強制的流によつて
除去できる。
(5) Heat generated by AC loss can be removed by forced flow.

などがあげられる。etc.

第2図は強制冷却方式の一例として、冷媒に超
臨界圧ヘリウムを、又液体ヘリウム槽には、外部
から液体ヘリウムを供給する方式を用いた概略図
を示す。
FIG. 2 is a schematic diagram showing an example of a forced cooling system in which supercritical pressure helium is used as a refrigerant and liquid helium is supplied from outside to a liquid helium tank.

図において、冷媒となるヘリウムガスは循環圧
縮機4により圧縮されてコールドボツクス5に導
びかれ、熱交換器6内で戻りガスと熱交換して温
度を下げ、4.2〓液体ヘリウム槽7の中に入つて
冷却される。
In the figure, helium gas, which serves as a refrigerant, is compressed by a circulation compressor 4 and led to a cold box 5, where it exchanges heat with return gas in a heat exchanger 6 to lower its temperature. into which it is cooled.

冷却されたガスは、トランスフアチユーブ8a
を介してクライオスタツト9内にある超電導コイ
ルを冷却し、戻りガスはトランスフアチユーブ8
bを介して、コールドボツクス5に入り、ジユー
ルトムソン(以下JT)弁11でJT膨張して液と
なり、液体ヘリウム槽に溜る。こゝで蒸発したガ
スは戻り配管12、熱交換器6を介して循環圧縮
機4に戻り、これをくり返しながら冷却する。
The cooled gas is transferred to the transfer tube 8a.
The superconducting coil in the cryostat 9 is cooled through the transfer tube 8, and the return gas is transferred to the transfer tube 8.
B, enters the cold box 5, expands JT at the Joel-Thomson (JT) valve 11, becomes liquid, and accumulates in a liquid helium tank. The gas evaporated here returns to the circulation compressor 4 via the return pipe 12 and the heat exchanger 6, and is cooled while repeating this process.

従来のこのような利点をもつ強制冷却方式にも
次のような欠点がある。
Although the conventional forced cooling system has these advantages, it also has the following drawbacks.

まず、第1は、第2図で示すようにクライオス
タツト9内の超電導コイル10からの戻りガス
は、トランスフアチユーブ8bを介してコールド
ボツクスに戻る構造になつているが、運転中、し
ばしば、クライオスタツト内の超電導コイルを含
め配管部で熱振動が生じ、超電導コイルで測定し
ている冷媒温度を急激に上昇させ、超電導コイル
を常電導転移させる。
First, as shown in FIG. 2, the return gas from the superconducting coil 10 in the cryostat 9 is returned to the cold box via the transfer tube 8b, but during operation, often Thermal vibrations occur in the piping, including the superconducting coil, in the cryostat, causing the refrigerant temperature measured by the superconducting coil to rise rapidly, causing the superconducting coil to transition to normal conductivity.

また、別の欠点は、この戻りガスはトランスフ
アチユーブ8bを介してコールドボツクス5に入
り、液体ヘリウム貯槽7に入る前、JT弁11に
よつてJT膨張する構造になつているが、どんな
条件の戻りガスでも液体ヘリウム貯槽に入る構造
であるため、温度の高いガスが入つた場合、液体
ヘリウムを蒸発させ、液体ヘリウムの消費量を増
大させる欠点がある。なお、図中3は金属管、
3′は冷媒通路、13は液体ヘリウムデユア、1
4はトランスフアチユーブ、15はJT弁、16
は安定化電源である。
Another drawback is that the return gas enters the cold box 5 via the transfer tube 8b and is expanded by the JT valve 11 before entering the liquid helium storage tank 7. Since the structure is such that even the return gas of the liquid helium enters the liquid helium storage tank, if high temperature gas enters, the liquid helium will evaporate, increasing the amount of liquid helium consumed. In addition, 3 in the figure is a metal pipe,
3' is a refrigerant passage, 13 is a liquid helium pipe, 1
4 is transfer tube, 15 is JT valve, 16
is a stabilized power supply.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、被冷却体からの戻りガスを制
御し、熱振動がなく、液体ヘリウム消費量の少な
い、高性能な極低温冷却装置を提供するにある。
An object of the present invention is to provide a high-performance cryogenic cooling device that controls return gas from an object to be cooled, has no thermal vibrations, and consumes little liquid helium.

〔発明の概要〕[Summary of the invention]

本発明は、超臨界ヘリウムを冷媒とし、これを
強制冷却導体からなる超電導コイルに強制的に循
環して冷却する超電導冷却装置において、超電導
コイルが収納されているクライオスタツト内の戻
りガス配管に逆止弁を設け、この超電導コイルか
らの戻りガス配管をコールドボツクス内で分岐
し、この分岐点に温度検知器を設置し、戻りガス
の温度を検知して作動する複数個の弁を分岐点下
流に設けることにある。
The present invention is a superconducting cooling device that uses supercritical helium as a refrigerant and forcibly circulates it through a superconducting coil made of a forced cooling conductor to cool the superconducting coil. A stop valve is provided, the return gas piping from this superconducting coil is branched inside the cold box, a temperature sensor is installed at this branch point, and multiple valves that are activated by detecting the temperature of the return gas are connected downstream of the branch point. It is to be established in

〔発明の実施例〕[Embodiments of the invention]

本発明を実施する装置を第3図で説明する。 An apparatus for carrying out the invention will be explained with reference to FIG.

第2図との相異点は、クライオスタツト5内の
戻りガス配管に第4図に拡大して示すようなテフ
ロン球17による逆止弁19を設置したこと、コ
ールドボツクス5内の戻りガス配管を三方向に分
岐し、分岐点20に温度検知器21を設置し、分
岐点より下流の液体ヘリウム貯槽入口配管22、
熱交換器への戻り配管22′、及び熱交換器バイ
パス配管23には、分岐点での温度を検知して作
動する。ジユールトムソン弁11′及び自動弁2
5,26を設置したことにある。
The difference from FIG. 2 is that a check valve 19 made of a Teflon bulb 17, as shown enlarged in FIG. is branched into three directions, a temperature sensor 21 is installed at the branch point 20, and a liquid helium storage tank inlet pipe 22 downstream from the branch point,
The return pipe 22' to the heat exchanger and the heat exchanger bypass pipe 23 are activated by sensing the temperature at the branch point. Joel Thomson valve 11' and automatic valve 2
5,26 was installed.

運転は、まず、コールドボツクス5、及びクラ
イオスタツト9の内部を真空引きし、系内配管内
のパージを行なう。次に、液体窒素槽6′及び液
体ヘリウム槽7にそれぞれの液を注入し、循環圧
縮機4をスタートさせ、ゆつくり吐出弁24を開
いて圧縮されたヘリウムガスを強制的に循環す
る。
In operation, first, the inside of the cold box 5 and the cryostat 9 are evacuated, and the inside of the system piping is purged. Next, the respective liquids are injected into the liquid nitrogen tank 6' and the liquid helium tank 7, the circulation compressor 4 is started, and the discharge valve 24 is slowly opened to forcefully circulate the compressed helium gas.

尚、分岐点での温度検知器の設定は、戻りガス
の温度によつて、ジユールトムソン弁11′及び
自動弁25及び26の開閉が任意に設定できるよ
うにした。
The temperature detector at the branch point was set so that the Joel-Thomson valve 11' and the automatic valves 25 and 26 could be opened or closed as desired depending on the temperature of the return gas.

実施例 1 まず、逆止弁の効果をみるため、従来から行な
つている方法と同一にするように、検知器の設定
をはずし、ジユールトムソン弁11′は全開、他
の2ケの自動弁25及び26は閉じ、循環ガスを
圧力5Kg/cm2G、流量を3g/s〜5g/sの範
囲で流した。
Example 1 First, in order to see the effect of the check valve, the detector settings were removed in the same way as the conventional method, the Joel-Thomson valve 11' was fully opened, and the other two automatic Valves 25 and 26 were closed, and the circulating gas was allowed to flow at a pressure of 5 kg/cm 2 G and a flow rate of 3 g/s to 5 g/s.

その結果、逆止弁がない時にはクライオスタツ
ト出口の温度が、10〓以下になつた時、振巾20〓
程度の熱振動が生じ、6〓以下の温度を得ること
は出来なかつたが、本実施例では、熱振動はおこ
らずクライオスタツト出口温度も47〓まで安定に
下げることができた。
As a result, when there is no check valve, when the temperature at the cryostat outlet falls below 10〓, the swing width is 20〓.
Some degree of thermal oscillation occurred and it was not possible to obtain a temperature below 6〓, but in this example, no thermal oscillation occurred and the temperature at the cryostat outlet could be stably lowered to 47〓.

実施例 2 次に、逆止弁は設置したまゝ、分岐点での温度
検知器の設定を次のようにして実施した。
Example 2 Next, while leaving the check valve in place, the temperature detector at the branch point was set as follows.

設定は、まず、戻りガスの温度が4.3゜〜7〓で
あるときは、ジユールトムソン弁を約30%開くよ
うにし、この時、自動弁25及び26は閉じるよ
うにした。
The settings were such that when the temperature of the return gas was between 4.3° and 7°, the Joel-Thomson valve was opened by about 30%, and at this time automatic valves 25 and 26 were closed.

又、温度が7〓を越え30〓までの時はジユール
トムソン弁11′及び自動弁26を閉じ、もう1
つの自動弁25を開くようにした。
Also, when the temperature exceeds 7〓 and reaches 30〓, the Joel-Thomson valve 11' and the automatic valve 26 are closed, and the other one is closed.
Two automatic valves 25 are opened.

又、温度が30〓を越えた時は、ジユールトムソ
ン弁11′、及び自動弁25を閉じ、自動弁26
を開くように設定した。
Also, when the temperature exceeds 30°, the Joel-Thompson valve 11' and the automatic valve 25 are closed, and the automatic valve 26 is closed.
I set it to open.

運転は、実施例1と同じように循環ガスの圧力
5Kg/cm2G、流量を5g/sとした。
The operation was carried out in the same manner as in Example 1, at a circulating gas pressure of 5 kg/cm 2 G and a flow rate of 5 g/s.

その結果、戻りガスの温度が高い時は自動弁に
流れ、液体ヘリウム槽に入らず、低い時には、
JT膨張により液化が行なわれ、液体ヘリウム槽
における消費量は25/hで、検知器を用いない
従来の方法で行なつた時と比べ約50%少なくなつ
た。
As a result, when the return gas temperature is high, it flows to the automatic valve and does not enter the liquid helium tank, and when the temperature is low, it flows to the automatic valve.
The liquefaction was carried out by JT expansion, and the consumption in the liquid helium tank was 25/h, about 50% less than when using the conventional method without a detector.

以上の実施例では、温度検知器の設定を限定し
たが、この設定は任意に変えることが出来、実験
負荷により最適値を選べることは云うまでもな
い。
In the above embodiments, the settings of the temperature sensor are limited, but it goes without saying that these settings can be changed arbitrarily, and the optimum value can be selected depending on the experimental load.

又、逆止弁も今回はテフロン球を用いたが、こ
れに限定するものではない。
Also, although a Teflon bulb was used for the check valve this time, it is not limited to this.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、逆止弁を用いているため、熱
振動がなく、極めて低温まで安定に冷却でき、戻
りガスの温度を検知して自動的に弁の開閉を行な
つているため、液体ヘリウムの消費の少なく、極
めて効率の良い冷却の管理が出来る。
According to the present invention, since a check valve is used, there is no thermal vibration and it is possible to stably cool the gas to an extremely low temperature.Since the temperature of the return gas is detected and the valve is automatically opened and closed, the liquid Low helium consumption and extremely efficient cooling management.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは強制冷却超電導導体の断面図、
第2図は、従来の強制冷却方式の系統図、第3図
は、本発明の一実施例の強制冷却方式の系統図、
第4図は、第3図の逆止弁の拡大図である。 20…分岐点、21…温度検知器、22,2
2′,23…配管、25…自動弁、26…自動弁。
Figures 1a and 1b are cross-sectional views of a forcedly cooled superconducting conductor;
FIG. 2 is a system diagram of a conventional forced cooling system, and FIG. 3 is a system diagram of a forced cooling system according to an embodiment of the present invention.
FIG. 4 is an enlarged view of the check valve of FIG. 3. 20... Branch point, 21... Temperature detector, 22,2
2', 23...Piping, 25...Automatic valve, 26...Automatic valve.

Claims (1)

【特許請求の範囲】 1 超臨界圧ヘリウムを冷媒とし、この冷媒を強
制的に循環して冷却される超電導コイルを含む極
低温冷却装置において、 前記超電導コイルが収納されているクライオス
タツト内の戻りガス配管に逆止弁を設け、コール
ドボツクス内で戻りガス配管を分岐し、この分岐
点に温度検知器を設置し、前記戻りガスの温度を
検知して作動する弁を分岐点下流に設けることを
特徴とする極低温冷却装置。
[Scope of Claims] 1. In a cryogenic cooling device including a superconducting coil using supercritical pressure helium as a refrigerant and cooled by forcibly circulating the refrigerant, a return in a cryostat in which the superconducting coil is housed is provided. A check valve is provided in the gas pipe, the return gas pipe is branched within the cold box, a temperature detector is installed at this branch point, and a valve that is activated by detecting the temperature of the return gas is provided downstream of the branch point. A cryogenic cooling device featuring:
JP58095626A 1983-06-01 1983-06-01 Cryogenic cooling device Granted JPS59222976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58095626A JPS59222976A (en) 1983-06-01 1983-06-01 Cryogenic cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58095626A JPS59222976A (en) 1983-06-01 1983-06-01 Cryogenic cooling device

Publications (2)

Publication Number Publication Date
JPS59222976A JPS59222976A (en) 1984-12-14
JPH0370914B2 true JPH0370914B2 (en) 1991-11-11

Family

ID=14142730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58095626A Granted JPS59222976A (en) 1983-06-01 1983-06-01 Cryogenic cooling device

Country Status (1)

Country Link
JP (1) JPS59222976A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE33691E (en) * 1984-12-21 1991-09-17 General Electric Company Piezoelectric ceramic switching devices and systems and method of making the same
JPH02240977A (en) * 1989-03-14 1990-09-25 Toshiba Corp Displacement generating device
JP2006128465A (en) * 2004-10-29 2006-05-18 Toshiba Corp Cooling device of superconducting coil

Also Published As

Publication number Publication date
JPS59222976A (en) 1984-12-14

Similar Documents

Publication Publication Date Title
CN105324601B (en) Device for cooling a consumer with a super-cooled liquid in a cooling circuit
US5461873A (en) Means and apparatus for convectively cooling a superconducting magnet
US5848532A (en) Cooling system for superconducting magnet
CN110617650B (en) Cryogenic cooling system
US3878691A (en) Method and apparatus for the cooling of an object
US11506424B2 (en) Single-stage ejector-based cryogenic refrigeration system for cold energy recovery
US5443548A (en) Cryogenic refrigeration system and refrigeration method therefor
JPH08222429A (en) Device for cooling to extremely low temperature
US20110120147A1 (en) Pressurized Superfluid Helium Cryostat
JPH0370914B2 (en)
CN115096013B (en) Device and method for realizing quick cooling of helium cryogenic refrigerator
Augueres et al. 700mm diameter cryostat operating at 1.8 K and atmospheric pressure
JPH09113052A (en) Freezer
JPH10246524A (en) Freezing device
JP3725305B2 (en) Superconducting magnet cooling system
JPH07142234A (en) Apparatus for cooling cryogenic-temperature superconducting coil
Gravil et al. Experience with a large scale He II refrigeration system at TORE SUPRA
JPS617675A (en) Cryogenic cooling device
JPH09106906A (en) Conductive cooling superconducting magnet
JPH09106909A (en) Conductive cooling superconducting magnet
JP2005003308A (en) Cryogenic cooling device
Yayama et al. Installation of a superconducting magnet in a cryogen-free dilution refrigerator
JP2007088146A (en) Cryostat
Richardson et al. Neon liquefaction system for high Tc experiments
RU2011129C1 (en) Magnetic suspension vehicle cryostat