JPS6074407A - Ultra-conductive magnet device - Google Patents
Ultra-conductive magnet deviceInfo
- Publication number
- JPS6074407A JPS6074407A JP58179164A JP17916483A JPS6074407A JP S6074407 A JPS6074407 A JP S6074407A JP 58179164 A JP58179164 A JP 58179164A JP 17916483 A JP17916483 A JP 17916483A JP S6074407 A JPS6074407 A JP S6074407A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- ultra
- superconducting
- container
- conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 claims abstract description 17
- 239000002826 coolant Substances 0.000 claims abstract 4
- 239000012530 fluid Substances 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 239000000945 filler Substances 0.000 abstract 2
- 239000003507 refrigerant Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 2
- 235000008597 Diospyros kaki Nutrition 0.000 description 1
- 244000236655 Diospyros kaki Species 0.000 description 1
- 241000270295 Serpentes Species 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/04—Cooling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、例えば核融合炉用超電導コイルのよう(二極
低温流5休(−よって冷却される超電導マグネット装置
に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a superconducting magnet device, such as a superconducting coil for a nuclear fusion reactor, which is cooled by a double cryogenic current.
従来、超電導マダイ・ント装置に関する技術・装置につ
いては、その冷却方式により、浸漬冷却式・強制冷却式
の二連りに大別される超電導マグネット装置があった。Conventionally, there have been two types of superconducting magnet devices: immersion cooling type and forced cooling type, depending on the cooling method.
両冷却方式の超電導マグネット装置ともその構成は、主
に超電導フィルと、それを収納しかつ七の発生電磁力を
支持する為のコイル容器とから成っている。強制冷却式
はIB:Bj電流密度をとることができる、機械的に強
固な構ス(5にすることができるなど浸漬冷却式(二な
い利点をイjする反面、コイル導体内に4する冷媒流路
を流れる冷媒により、コイル容器を冷却する必要があっ
た。近年の超電導マダイ・ット装置大型化に伴うコイル
容器の重構造は、超電導コイルの冷却に要する時間を大
幅に増加させる結果となっている。この為コイル容器は
、例えばコイル容器表面に蛇9nをはわせるなど別系統
の冷却系を設けろことにより、冷却する方式が考えられ
ているが、冷却■■I積が限られてしまう為、冷却に要
する時間は多大なものとなる。又冷却系が蛇管等で構成
される場合、配管の圧力損失などで冷媒流量が制限され
る等の問題点、欠点があった。Both cooling type superconducting magnet devices mainly consist of a superconducting film and a coil container for housing it and supporting the generated electromagnetic force. The forced cooling type has the advantage of having a mechanically strong structure that can take a current density of IB:Bj (IB:Bj). It was necessary to cool the coil container with the refrigerant flowing through the flow path.The heavy structure of the coil container accompanying the increase in the size of superconducting Madai-T equipment in recent years has resulted in a significant increase in the time required to cool the superconducting coil. For this reason, methods have been considered to cool the coil container by installing a separate cooling system, such as by installing a snake 9n on the surface of the coil container, but the cooling product is limited. As a result, a large amount of time is required for cooling.Furthermore, when the cooling system is composed of coiled pipes, there are problems and drawbacks such as the flow rate of the refrigerant being restricted due to pressure loss in the pipes.
本発明は、以上のような欠点に鑑みなされたもので、超
電導コイル及びコイル容器の冷却および加温に要する時
間を大幅に短縮する超電導マグネット装置を提供するこ
とを目的とする。The present invention was made in view of the above drawbacks, and an object of the present invention is to provide a superconducting magnet device that significantly reduces the time required for cooling and heating a superconducting coil and a coil container.
上記の目的を達成するため本発明は、コイル容器内に収
納された超電コイルを極低温流体を強制的に循環するこ
とにより冷却する超電導マグネット装置において、超電
導コイルとコイル容器との間に冷媒を循環させる所定の
空間を設けたことを特徴としている。In order to achieve the above object, the present invention provides a superconducting magnet device in which a superconducting coil housed in a coil container is cooled by forcibly circulating cryogenic fluid. It is characterized by providing a predetermined space in which the water is circulated.
以下、本発明を第1図に示す一実施例について説明する
。(1)は、超電導コイル、(2) 、 (3) 、
(4)は、各々つめ物で、その一部に冷媒が流れる流路
を設けておりコイル容器(5)と超電導コイル(1)及
び電流リード(6)を空間(l/8を有して固定もしく
は支持する。Hereinafter, one embodiment of the present invention shown in FIG. 1 will be described. (1) is a superconducting coil, (2), (3),
(4) are each filled with a passage through which the refrigerant flows, and the coil container (5), the superconducting coil (1), and the current lead (6) are separated by a space (l/8). to fix or support.
電流リード(6)は、その内部を冷媒が強制的に流れ超
電導コイル(1)を冷却するとともに超電非コイル(1
)への電流供給に供される。フィル容器(!’i)の底
部及び上部にはポート(7)が設けられており図示され
ていない配管と接続される。配〒1(二は、やはりこれ
も図示されていないバルブが設けである。The current lead (6) has a refrigerant forced to flow inside it to cool the superconducting coil (1) and to cool the superconducting non-coil (1).
). Ports (7) are provided at the bottom and top of the fill container (!'i) and are connected to piping (not shown). Arrangement 1 (2) is provided with a valve, which is also not shown.
次に上記のように構成した本発明の超゛t1(、y2マ
ダイ・ント装置の動作を第2図に示す系統図にて説明す
る。本発明の超電導マダイ、ット装置(8)は、図/l
<されていないふく射シールドをその内面に施した真空
容器(9)に収納される。頁望容2郭9)は、−柿のク
ライオスタツトの役U1をなすもので、超電導マグネッ
ト装置(8)はポート(7)、断熱間引’ (It)
j支びバルブ(lla)、(’1lb)、(lic:)
を介して、真空ポンプ(12)及びガスボンベ(131
に接続される。超′Q1.導コイル(1)の冷却は、バ
ルブ(]、 1 c )を介して電流リード(6)がら
イラなわれる。この際超電導コインb(11を冷却する
冷媒は、バルブ(Ilg)を介してバイパスされ、超?
1:を導コイル(1)とコイル容器(5)の間につめ物
(2) 、 (3) 。Next, the operation of the superconducting t1(, y2) superconducting device (8) of the present invention configured as described above will be explained with reference to the system diagram shown in FIG. Figure/l
It is housed in a vacuum container (9) whose inner surface is provided with a radiation shield. Page view 2 section 9) serves as the role U1 of Kaki's cryostat, and the superconducting magnet device (8) is connected to the port (7) and the adiabatic thinning' (It).
j Support valve (lla), ('1lb), (lic:)
Through the vacuum pump (12) and gas cylinder (131
connected to. Super'Q1. Cooling of the conducting coil (1) is provided by the current lead (6) via the valve (1, 1c). At this time, the refrigerant that cools the superconducting coin b (11) is bypassed via the valve (Ilg), and the superconducting coin b (11) is bypassed via the valve (Ilg).
1: Place the plugs (2) and (3) between the conducting coil (1) and the coil container (5).
(4)で構成された空間を通って超’744コイル(1
)の外側からコイルとコイル容器を冷却し、バルブ(1
1(1)を介して回収系へと導びか・れる。ここでつめ
物(2)。(4) through the space made up of the super '744 coil (1
) to cool the coil and coil container from the outside, and cool the coil and coil container from the outside of the valve (1
1 (1) to the recovery system. Here's the stuff (2).
(3) 、 (4)は、コイルの発生電磁力に対して十
分強度を有する構造で、なおかつコイル容器へ力を伝播
するものを使用する。これにより、コイル(1)及びコ
イル容器(5)の温度が高い状態では、コイル内の冷媒
流路の圧力損失が大きい為、バルブ(l1g)を介して
バイパスされる冷却系のほうに冷媒が多く供給される。(3) and (4) use a structure that has sufficient strength against the electromagnetic force generated by the coil, and that also propagates the force to the coil container. As a result, when the temperature of the coil (1) and coil container (5) is high, the pressure loss in the refrigerant flow path inside the coil is large, so the refrigerant flows into the cooling system bypassed via the valve (l1g). Supplied in large quantities.
一方コイル(1)及びコイル容器(5)の温度が低くな
ってくればバルブ(l1g)を絞っていってコイル内の
冷媒流路を増すことによりコイル本体の本冷却を行なう
。コイル(1)とコイル容器45)が十分冷却されれば
バルブ(hd)、Olg)を閉じて、バルブ(lla)
、(1,1c)続して真空ポンプ(13)にてコイル容
器(5)とコイル(1)の空間を真空に引き、断熱にす
る。On the other hand, when the temperature of the coil (1) and coil container (5) becomes low, the valve (11g) is closed to increase the refrigerant flow path within the coil, thereby performing main cooling of the coil body. When the coil (1) and coil container 45) are sufficiently cooled, close the valves (hd) and Olg), and close the valve (lla).
, (1, 1c) Subsequently, the space between the coil container (5) and the coil (1) is evacuated using a vacuum pump (13) to make the space insulated.
以上の作業により、コイル(1)及びコイル容器(5)
の冷却に要する時間は格段に短縮されるとともに外部か
らのコイルへの侵入熱も極力おさえることができる。一
方パルブ(11c)及びガスボンベ(1□□□を設ける
ことによリーコイル(1)とコイル容器(5)との空間
にガスを充満させコイル:1に冷hILを流すことによ
り対流を利用して冷却することもで入る。これは、又コ
イルを加温する際にも利用で〜加i’!ij’を時間の
大幅な短縮をはかることができろ。By the above operations, the coil (1) and coil container (5)
The time required for cooling the coil is significantly shortened, and heat intrusion into the coil from the outside can be suppressed as much as possible. On the other hand, by providing a valve (11c) and a gas cylinder (1 This can also be used to cool the coil.This can also be used to heat the coil, greatly reducing the time it takes to heat the coil.
以北説明したように、本発明に、LれI:r、 、紹7
jし陣コイル及びコイル容器の冷却、加温C二要する時
間を大幅に短縮する超電導マグネット装置をイ1するこ
とかできる。As explained above, the present invention includes LREI:r, , Introduction 7
It is possible to create a superconducting magnet device that greatly reduces the time required for cooling and heating the coil and coil container.
第1図は、本発明による超電;、14(マグネット!・
装置の一実施例を示す断面図、第2図は、本発明0)t
i+11作を説明する全体系統図である1、
(1)・・・超電導コイル、+21 (3) (4)・
・・つめ物(5)・・・コイル容器、 (7)・・・ポ
ート(11)・・・バルブ、 (14)・・空 間代理
人 弁理士 則 近 嶌 佑(ばか1名)第1図
4
第2図FIG. 1 shows a superelectric magnet according to the present invention;
A cross-sectional view showing one embodiment of the device, FIG.
1, (1)...Superconducting coil, +21 (3) (4), which is the overall system diagram explaining the i+11 work.
...Package (5)...Coil container, (7)...Port (11)...Valve, (14)...Space agent Patent attorney rule Yu Chikashima (1 idiot) 1st Figure 4 Figure 2
Claims (2)
温流体を強制的に循環すること(二より冷却する超電導
マグネット装置において、超電導コイルとコイル容器と
の間に冷媒を循環させる所定の空間を設けたことを特徴
とする超電導マグネット装置。(1) Forcibly circulating a cryogenic fluid through a superconducting coil housed in a coil container (in a superconducting magnet device that uses secondary cooling, a predetermined space for circulating a coolant between the superconducting coil and the coil container) A superconducting magnet device characterized by:
設けたつめ物により形成されることを特徴とする特許請
求の範囲第1項記載の超電導マグネット装置。(2) The superconducting magnet device according to claim 1, wherein the predetermined space is formed by a plug provided between the superconducting coil and the container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58179164A JPS6074407A (en) | 1983-09-29 | 1983-09-29 | Ultra-conductive magnet device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58179164A JPS6074407A (en) | 1983-09-29 | 1983-09-29 | Ultra-conductive magnet device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6074407A true JPS6074407A (en) | 1985-04-26 |
JPH0479123B2 JPH0479123B2 (en) | 1992-12-15 |
Family
ID=16061055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58179164A Granted JPS6074407A (en) | 1983-09-29 | 1983-09-29 | Ultra-conductive magnet device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6074407A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5059936A (en) * | 1988-05-05 | 1991-10-22 | Alsthom | Toroidal hybrid transformer |
US5130687A (en) * | 1989-10-09 | 1992-07-14 | Gec Alsthom Sa | Device for storing electromagnetic energy in toroidal superconducting windings |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4617866B2 (en) * | 2004-03-30 | 2011-01-26 | 東洋製罐株式会社 | Branch type standing pouch |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5796508A (en) * | 1980-12-08 | 1982-06-15 | Hitachi Ltd | Superconductive coil |
JPS57211208A (en) * | 1981-06-23 | 1982-12-25 | Toshiba Corp | Cooling structure of superconductive magnet |
-
1983
- 1983-09-29 JP JP58179164A patent/JPS6074407A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5796508A (en) * | 1980-12-08 | 1982-06-15 | Hitachi Ltd | Superconductive coil |
JPS57211208A (en) * | 1981-06-23 | 1982-12-25 | Toshiba Corp | Cooling structure of superconductive magnet |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5059936A (en) * | 1988-05-05 | 1991-10-22 | Alsthom | Toroidal hybrid transformer |
US5130687A (en) * | 1989-10-09 | 1992-07-14 | Gec Alsthom Sa | Device for storing electromagnetic energy in toroidal superconducting windings |
Also Published As
Publication number | Publication date |
---|---|
JPH0479123B2 (en) | 1992-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11275136B2 (en) | Passive flow direction biasing of cryogenic thermosiphon | |
JPS6220303A (en) | Forced-cooling superconducting coil apparatus | |
JPS6074407A (en) | Ultra-conductive magnet device | |
Michel et al. | Dynamic simulation of the first cool down of the JT-60SA cryo-magnet system | |
CN111223631A (en) | Superconducting magnet cooling apparatus and magnetic resonance imaging apparatus | |
US4926646A (en) | Cryogenic precooler for superconductive magnets | |
WO2022077569A1 (en) | Double-ended countercurrent refrigeration system for superconducting cable | |
WO2022077568A1 (en) | Single-ended downstream refrigerating system for superconducting cable | |
Morpurgo | Design and construction of a pump for liquid helium | |
Iwasa et al. | Hybrid III: the system, test results, the next step | |
Daly et al. | Spallation neutron source cryomodule heat loads and thermal design | |
Madur et al. | Final design of the superferric branched dipoles for the FAIR Super-FRS | |
USH119H (en) | Passive emergency core cooling system for a liquid metal fast | |
JPS60104899A (en) | Low temperature vessel connected to refrigerator | |
JPH0734294Y2 (en) | Cryogenic cooling device | |
Wang et al. | The cooling and safety design of a pair of binary leads for the MICE coupling magnets | |
JPS6148875B2 (en) | ||
Chorowski et al. | A proposal for simplification of the LHC cryogenic scheme | |
US10607740B2 (en) | System, a device and a method for passive decay heat transport | |
Green et al. | Progress on the MICE Liquid Absorber Cooling and Cryogenic Distribution System | |
JPS63299181A (en) | Superconducting apparatus | |
Makida et al. | The chimney and superconducting bus lines for the ATLAS central solenoid | |
Parain | Superconducting toroidal field magnet for an experimental tokamak | |
CN115656223A (en) | Irradiation test device for fuel phase irradiation and temperature control method | |
JPH0330403A (en) | Superconducting magnet device |