JPH0554685B2 - - Google Patents

Info

Publication number
JPH0554685B2
JPH0554685B2 JP59212569A JP21256984A JPH0554685B2 JP H0554685 B2 JPH0554685 B2 JP H0554685B2 JP 59212569 A JP59212569 A JP 59212569A JP 21256984 A JP21256984 A JP 21256984A JP H0554685 B2 JPH0554685 B2 JP H0554685B2
Authority
JP
Japan
Prior art keywords
valve
inner tank
liquid
pipe
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59212569A
Other languages
Japanese (ja)
Other versions
JPS6191978A (en
Inventor
Hiroyuki Nakao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP59212569A priority Critical patent/JPS6191978A/en
Publication of JPS6191978A publication Critical patent/JPS6191978A/en
Publication of JPH0554685B2 publication Critical patent/JPH0554685B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Description

【発明の詳細な説明】 (1) 技術分野の説明 本発明は超電導電磁石コイルを収納、冷却する
ための極低温冷媒を蓄える内槽とその内槽を断熱
的に包囲する外槽、および外槽と内槽とを貫いて
設けられる注液管と回収管に内槽を締め切る低温
弁などよりなる極低温容器の構造に関するもので
ある。
[Detailed Description of the Invention] (1) Description of the Technical Field The present invention provides an inner tank for storing a cryogenic refrigerant for storing and cooling a superconducting electromagnetic coil, an outer tank that adiabatically surrounds the inner tank, and an outer tank. The present invention relates to the structure of a cryogenic container that includes a liquid injection pipe and a recovery pipe that are provided through an inner tank and a cryogenic valve that closes off the inner tank.

(2) 従来技術とその問題点 従来の極低温容器について、超電導磁石装置等
に付属される液体ヘリウムを貯液する極低温容器
を例にして説明する。液体ヘリウムは資源に乏し
く高価でありかつ蒸発潜熱が小さいため、液体ヘ
リウムを貯液する極低温容器の内槽への熱侵入量
を極力小さくし液体ヘリウムの蒸発を押えて効果
的に利用することが望ましい。よつて、極低温容
器は熱侵入量を減らすために、内槽を内部を真空
にした外槽に収納する二重構造にするとか内・外
槽間に中間冷却層をもうけるとか、そこに超断熱
材を併用するとか、内槽を支持するために外槽と
固定される支持装置に熱絶縁性の良いものを使用
するなどの工夫が行なわれている。また、内槽へ
液体ヘリウムを送液する注液系統配管と蒸発した
ヘリウムガスを回収する回収系統配管において
も、外槽側の常温部端で内槽を締め切ると、液体
ヘリウムの振動による液の配管内への飛び込み
や、配管内のヘリウムガスの対流等により内槽へ
の熱侵入を生じているので、低温部で締切りので
きる低温弁を上記配管に取付けて、内槽への熱侵
入量を極力押えるようにしている。特に、浮上式
鉄道における車載超電導磁石の様に、小型冷凍機
を取付け超電導磁石の連続運転を行う場合には、
上述の構造が重要となる。
(2) Prior art and its problems A conventional cryogenic container will be explained using as an example a cryogenic container that stores liquid helium attached to a superconducting magnet device or the like. Liquid helium is a scarce resource, is expensive, and has a small latent heat of vaporization, so it is important to minimize the amount of heat that enters the inner tank of the cryogenic container that stores liquid helium to suppress evaporation of liquid helium and use it effectively. is desirable. Therefore, in order to reduce the amount of heat intrusion in cryogenic containers, it is necessary to have a double structure in which the inner chamber is housed in an outer chamber with a vacuum inside, or to create an intermediate cooling layer between the inner and outer chambers. Efforts have been made such as using a heat insulating material or using a support device with good thermal insulation properties that is fixed to the outer tank to support the inner tank. In addition, in the liquid injection system piping that sends liquid helium to the inner tank and the recovery system piping that collects evaporated helium gas, if the inner tank is closed at the normal temperature end of the outer tank side, the vibration of the liquid helium will cause the liquid to drop. Since heat intrusion into the inner tank occurs due to helium gas jumping into the piping and convection of helium gas in the piping, a low temperature valve that can be shut off at the low temperature section is installed on the above piping to reduce the amount of heat intrusion into the inner tank. I try to suppress it as much as possible. In particular, when a small refrigerator is attached and the superconducting magnet is operated continuously, such as on-board superconducting magnets in floating trains,
The structure described above is important.

第2図に上記の構造を持つた極低温容器の構成
を示す。内槽1は外槽2の内部に断熱保持されて
おり、冷媒である液体ヘリウム3を貯液できる。
液体ヘリウムは注液管4を通つて内槽1に貯液さ
れ、内槽1内で蒸発したヘリウムガスは回収管5
より回収される。6,7は低温弁で内槽の締め切
りを低温部で行なう。弁8,9は注液、回収の出
入口弁で常温部での各系統の締切りを行う。なお
弁8,9は直接装置に取付けずに、他の場所に設
置してもよい。10は安全弁で配管系統の保安の
ために設けられている。その他、超電導磁石装置
等に接続される配管類、熱シールド板、各種ポー
ト、センサー類等も設置しているが、説明の煩雑
さを避けるために省略している。
FIG. 2 shows the configuration of a cryogenic container having the above structure. The inner tank 1 is insulated and held inside the outer tank 2, and can store liquid helium 3, which is a refrigerant.
Liquid helium is stored in the inner tank 1 through the liquid injection pipe 4, and the helium gas evaporated in the inner tank 1 is stored in the recovery pipe 5.
more will be recovered. 6 and 7 are low temperature valves that close off the inner tank in the low temperature section. Valves 8 and 9 are inlet and outlet valves for liquid injection and recovery, and shut off each system in the room temperature section. Note that the valves 8 and 9 may not be directly attached to the device, but may be installed at other locations. A safety valve 10 is provided for the safety of the piping system. In addition, piping connected to the superconducting magnet device, heat shield plates, various ports, sensors, etc. are also installed, but they are omitted to avoid complication of explanation.

上記の様な極低温容器において、内槽を低温弁
で締め切つた場合、注液管4は低温弁6により内
槽側としや断されるため、冷却が充分ではなく外
槽からの熱侵入により管4は温度上昇を起こし、
外槽から内槽の間である温度勾配をもつて安定す
る。たとえ、注液入口弁8と低温弁6との間の管
4を真空に引いて、ヘリウムガスの伝熱による熱
侵入を減らしたとしても、締め切り時間が長くな
ると熱伝導により管4は上記の様な温度勾配をも
つようになる。
In the cryogenic container described above, when the inner tank is closed off with the cryogenic valve, the liquid injection pipe 4 is cut off from the inner tank side by the cryogenic valve 6, so cooling is not sufficient and heat enters from the outer tank. Tube 4 causes a temperature rise,
It becomes stable with a certain temperature gradient between the outer tank and the inner tank. Even if the tube 4 between the liquid injection inlet valve 8 and the low-temperature valve 6 is evacuated to reduce the heat intrusion caused by the heat transfer of helium gas, if the cut-off time becomes longer, the tube 4 will be reduced due to heat conduction. It will have a different temperature gradient.

よつて、内槽を締め切り保冷後、液体ヘリウム
の追加注液をする場合、注液管4は上で述べた様
な温度上昇をしているため、送液される液体ヘリ
ウムは注液の初期には管4を冷却しながら内槽へ
送られる。ところで、液体ヘリウムは蒸発潜熱が
低いため注液初期の管4が冷却されるまでは、温
度の高いヘリウムガスとなつて、内槽内に直接送
り込まれることになる。内槽内に送り込まれたヘ
リウムガスは温度が高いため、内槽に貯液されて
いた液体ヘリウムを蒸発させてムダにさせる。ま
た、注液の最初は温度の高いヘリウムガスが大量
に内槽に送り込まれるため、貯液されている液体
ヘリウムが急激に蒸発してガスヘリウムになり、
内槽内の過大な圧力上昇を引き起こす危険性があ
つた。そのため、内圧上昇を起こさせないように
追加注液時には弁を調整する必要があつた。
Therefore, when additional liquid helium is injected after the inner tank is closed and kept cool, the temperature of the liquid injection pipe 4 has increased as described above, so the liquid helium that is sent will not reach the initial level of liquid helium injection. Then, the tube 4 is sent to the inner tank while being cooled. By the way, since liquid helium has a low latent heat of vaporization, it becomes a high-temperature helium gas and is directly sent into the inner tank until the pipe 4 is cooled at the initial stage of liquid injection. Since the helium gas sent into the inner tank has a high temperature, the liquid helium stored in the inner tank evaporates and is wasted. Also, at the beginning of injection, a large amount of high-temperature helium gas is sent into the inner tank, so the stored liquid helium rapidly evaporates and becomes gas helium.
There was a risk of causing an excessive pressure rise in the inner tank. Therefore, it was necessary to adjust the valve during additional injection to prevent internal pressure from increasing.

(3) 発明の目的 低温弁にて内槽を締め切る極低温容器におい
て、加注液時に注液管内であたためられて蒸発ガ
スとなつた冷媒を直接内槽内に送り込まない極低
温容器構造を提供する。
(3) Purpose of the invention To provide a cryogenic container structure in which the inner tank is closed off with a low-temperature valve, in which the refrigerant heated in the injection pipe and turned into evaporated gas during liquid injection is not directly sent into the inner tank. do.

(4) 発明の概要 本発明の極低温容器では低温弁の常温側低温部
にバイパス系統配管と締切弁とを設置する構造と
し、追加注液時に低温弁部より常温側の配管を予
冷した後、内槽へ注液するようにして、配管内で
あたためられた冷媒の蒸発ガスを直接内槽へ送ら
ないようにできる。また、注液側の低温弁を3方
弁の構造にして、バイパス系統配管を回収系統配
管に接続することにより、弁の数量を増加させる
ことなく上記の効果が期待できる。
(4) Summary of the invention The cryogenic container of the present invention has a structure in which a bypass system piping and a shutoff valve are installed in the low temperature section on the room temperature side of the low temperature valve, and when additional liquid is poured, the pipes on the room temperature side are precooled from the low temperature valve section. By injecting liquid into the inner tank, it is possible to prevent the evaporated gas of the refrigerant heated in the piping from being sent directly to the inner tank. Further, by making the low temperature valve on the liquid injection side a three-way valve structure and connecting the bypass system piping to the recovery system piping, the above effects can be expected without increasing the number of valves.

(5) 発明の実施例 (実施例の構成) 本発明の極低温容器は、低温弁の常温側低温部
に注液管と回収管とを結ぶバイパス管とそのバイ
パス管を開閉する締切り弁を設ける構成とするも
のである。すなわち、第1図に示す様に、注液管
4の注液側低温弁6の常温側低温部よりバイパス
管11を設け、回収管5の回収側低温弁7の常温
側低温部と接続し、バイパス管の途中に締切弁1
2を設ける構成とする。締切弁12は配管への熱
侵入を低減させるため、低温弁と同様な長軸弁と
する。また、内槽締め切り時は、締切弁12を開
とすることにより、注液系統と回収系統がバイパ
ス系統で共通に結ばれることになるので、配管の
保安のための安全弁10を1個にしている。
(5) Embodiments of the invention (Structure of embodiments) The cryogenic container of the present invention has a bypass pipe connecting a liquid injection pipe and a recovery pipe, and a shutoff valve for opening and closing the bypass pipe, in the low temperature part on the room temperature side of the low temperature valve. The configuration is such that it is provided. That is, as shown in FIG. 1, a bypass pipe 11 is provided from the room temperature side low temperature part of the liquid injection side low temperature valve 6 of the liquid injection pipe 4, and is connected to the room temperature side low temperature part of the recovery side low temperature valve 7 of the recovery pipe 5. , there is a shutoff valve 1 in the middle of the bypass pipe.
2. The shutoff valve 12 is a long-shaft valve similar to a low-temperature valve in order to reduce heat intrusion into the piping. In addition, when the inner tank is closed, by opening the shutoff valve 12, the liquid injection system and the recovery system are commonly connected by the bypass system, so the safety valve 10 for piping security is reduced to one. There is.

さらに、本発明では弁の数量を増加させないた
め、第3図に示す様に注液側低温弁を3方弁形式
の弁13とし、回収管と結ぶバイパス管11と接
続することにより、締切弁12を必要としない構
成にすることができる。注液側低温弁の3方弁1
3としては、第4図に示す構造とする。すなわ
ち、内槽への低温弁の弁座13bと挿入式のバイ
パス系弁座13cとの間を弁体13aが上下する
ことにより、流路を分岐できる構造になつてい
る。また、シール材14により常温側への締切り
を行つている。
Furthermore, in order to avoid increasing the number of valves in the present invention, as shown in FIG. It is possible to create a configuration that does not require 12. 3-way valve 1 for low temperature valve on liquid injection side
3 has the structure shown in FIG. That is, the structure is such that the flow path can be branched by moving the valve body 13a up and down between the valve seat 13b of the low temperature valve to the inner tank and the insertion type bypass system valve seat 13c. In addition, the sealing material 14 closes off the temperature to the normal temperature side.

(実施例の作用効果) 第3図に示す本発明による極低温容器におい
て、内槽締め切り後の追加注液は、まず締切弁1
2を開いて、バイパス管11に液体ヘリウムを送
液管4を冷却した後、注液側低温弁6を開けるこ
とにより、内槽1へは液体ヘリウムが直接注入さ
れ、内槽内に貯液されていた液体ヘリウムを蒸発
させることなく追加注液が行なわれる。また、貯
液されている液体ヘリウムを蒸発させないため、
蒸発ガスによる内槽内の急激な圧力上昇も引き起
こさない。
(Operation and effect of the embodiment) In the cryogenic container according to the present invention shown in FIG.
2 is opened, liquid helium is sent to the bypass pipe 11, and the liquid sending pipe 4 is cooled. By opening the liquid injection side low temperature valve 6, liquid helium is directly injected into the inner tank 1, and the liquid is stored in the inner tank. Additional liquid helium is injected without evaporating the liquid helium. In addition, to prevent the stored liquid helium from evaporating,
It also does not cause a sudden pressure increase in the inner tank due to evaporated gas.

(6) 他の実施例 さらに、第4図に示す様に注液側低温弁を3方
弁13にすれば、弁の数量を増加させることなく
上記で述べた作用を実施できる。また、第5図に
示す様に3方弁の動作は、弁体13aの位置が実
線の場合は内槽へ注液中の状態を示し、実線の矢
印の系路で内槽内へ注液される。バイパス系統と
の締切りは弁体13aが挿入式のバイパス系弁座
13cに押付けることにより行う。弁体13aの
位置が点線の場合はバイパス系統の予冷状態もし
くは内槽締め切り状態を示し、点線の矢印の系路
で予冷が行なわれる。内槽1との締切りは弁体1
3aを弁座13bに押付けることにより行う。
(6) Other Embodiments Furthermore, as shown in FIG. 4, if the low-temperature valve on the liquid injection side is a three-way valve 13, the above-mentioned effect can be achieved without increasing the number of valves. In addition, as shown in Fig. 5, the operation of the three-way valve is such that when the position of the valve body 13a is indicated by a solid line, it indicates that liquid is being poured into the inner tank; be done. The bypass system is shut off by pressing the valve body 13a against the insertable bypass system valve seat 13c. When the position of the valve body 13a is indicated by a dotted line, it indicates a precooling state of the bypass system or a closed state of the inner tank, and precooling is performed in the system indicated by the dotted line arrow. The closure with inner tank 1 is valve body 1
3a against the valve seat 13b.

(7) 発明の効果 上で述べてきた様に、バイパス系統を低温弁の
常温側低温部に設置し、配管の予冷を行つてから
注液することにより、内槽締め切り後の追加注液
を貯液している液体ヘリウムを蒸発させることな
く行なえる。また、貯液されている液体ヘリウム
が急激な蒸発を起こさないため、内槽内の急激な
圧力上昇を防止できる。また、内槽締め切り時に
バイパス系統の締切弁を開けておけば注液系統と
回収系統とがバイパス系統を通して共通につなが
るため、配管の保護の安全弁の数を1個に減らす
ことができる。
(7) Effects of the invention As mentioned above, by installing the bypass system in the low temperature section on the room temperature side of the low temperature valve and pre-cooling the piping before injecting liquid, additional liquid injection after the inner tank is closed is made possible. This can be done without evaporating the stored liquid helium. Furthermore, since the stored liquid helium does not cause rapid evaporation, a sudden pressure increase in the inner tank can be prevented. Furthermore, if the shutoff valve of the bypass system is opened when the inner tank is closed, the liquid injection system and the recovery system are commonly connected through the bypass system, so the number of safety valves for protecting the piping can be reduced to one.

さらに注液側低温弁を3方弁にすることによ
り、弁の数量を増加させることなく、上記と同様
の効果が得られる。また、弁の数が増加しないの
で、弁部からの熱侵入量の増加もなく、より大き
い効果が期待できる。
Furthermore, by using a three-way valve as the low-temperature valve on the liquid injection side, the same effects as described above can be obtained without increasing the number of valves. Further, since the number of valves does not increase, there is no increase in the amount of heat entering from the valve portion, and a greater effect can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による極低温容器の
構成図、第2図は従来の極低温容器の構成図、第
3図は他の実施例による極低温容器の構成図、第
4図は本発明に使われる3方弁の構造図、第5図
は3方弁の他の構造図である。 1……内槽、2……外槽、3……液体ヘリウ
ム、4……注液系統配管、5……回収系統配管、
6……注液側低温弁、7……回収側低温弁、8…
…注液入口弁、9……回収出口弁、10……安全
弁、11……バイパス系統配管、12……締切
弁、13……3方弁、13a……弁体、13b…
…弁座、13c……バイパス系弁座、14……シ
ール材、15……コイルバネ、16……弁棒。
FIG. 1 is a block diagram of a cryogenic container according to an embodiment of the present invention, FIG. 2 is a block diagram of a conventional cryogenic container, FIG. 3 is a block diagram of a cryogenic container according to another embodiment, and FIG. is a structural diagram of a three-way valve used in the present invention, and FIG. 5 is another structural diagram of the three-way valve. 1...Inner tank, 2...Outer tank, 3...Liquid helium, 4...Liquid injection system piping, 5...Recovery system piping,
6... Injection side low temperature valve, 7... Recovery side low temperature valve, 8...
... Liquid injection inlet valve, 9 ... Recovery outlet valve, 10 ... Safety valve, 11 ... Bypass system piping, 12 ... Shutoff valve, 13 ... 3-way valve, 13a ... Valve body, 13b ...
... Valve seat, 13c... Bypass system valve seat, 14... Seal material, 15... Coil spring, 16... Valve stem.

Claims (1)

【特許請求の範囲】 1 超電導電磁石コイルを冷却する極低温冷媒液
を蓄えた内槽と、これを断熱的に包囲して収納す
る常温の外槽とからなり、前記内、外槽を貫いて
前記冷媒液を注入する注液管と前記冷媒液の蒸発
ガスを回収する回収管とを備え、前記各管の内槽
外側部分に低温締切弁を外槽の外側部分に出、入
口弁を設けたものにおいて、低温弁の常温側にあ
る各管を直接連結するバイパス管を設けこのバイ
パス管の途中に締切弁を設けて内槽外の注液管を
予冷するようにしたことを特徴とする超電導電磁
石コイル用極低温容器。 2 バイパス管に設けた締切弁と注液管に設けた
低温弁の代りに三方弁を設けてなる特許請求の範
囲第1項記載の超電導電磁石コイル用極低温容
器。
[Claims] 1. Consisting of an inner tank storing cryogenic refrigerant liquid for cooling the superconducting electromagnet coil, and an outer tank at room temperature that adiabatically surrounds and stores this, the inner tank and the outer tank are penetrated. A liquid injection pipe for injecting the refrigerant liquid and a recovery pipe for recovering evaporated gas of the refrigerant liquid are provided, and each pipe is provided with a low temperature shut-off valve at an outer side of the inner tank and an inlet valve at an outer side of the outer tank. A bypass pipe is provided to directly connect the pipes on the room temperature side of the low temperature valve, and a shutoff valve is provided in the middle of the bypass pipe to pre-cool the liquid injection pipe outside the inner tank. Cryogenic container for superconducting electromagnetic coils. 2. The cryogenic container for a superconducting electromagnet coil according to claim 1, wherein a three-way valve is provided in place of the shutoff valve provided in the bypass pipe and the low temperature valve provided in the liquid injection pipe.
JP59212569A 1984-10-12 1984-10-12 Cryostat for superconductive electromagnetic coil Granted JPS6191978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59212569A JPS6191978A (en) 1984-10-12 1984-10-12 Cryostat for superconductive electromagnetic coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59212569A JPS6191978A (en) 1984-10-12 1984-10-12 Cryostat for superconductive electromagnetic coil

Publications (2)

Publication Number Publication Date
JPS6191978A JPS6191978A (en) 1986-05-10
JPH0554685B2 true JPH0554685B2 (en) 1993-08-13

Family

ID=16624865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59212569A Granted JPS6191978A (en) 1984-10-12 1984-10-12 Cryostat for superconductive electromagnetic coil

Country Status (1)

Country Link
JP (1) JPS6191978A (en)

Also Published As

Publication number Publication date
JPS6191978A (en) 1986-05-10

Similar Documents

Publication Publication Date Title
CN100467934C (en) Reduction of cryogen loss during transportation of cryostats
JP4854396B2 (en) Cryostat structure with low-temperature refrigerator
KR100843389B1 (en) Undercooled horizontal cryostat configuration
JPH0554685B2 (en)
JP2977168B2 (en) Superconducting magnet device
JPH09113052A (en) Freezer
JPH01155605A (en) Very low temperature container for superconducting electromagnet coil
JPH0445740B2 (en)
JPH0513824A (en) Cooling device for cryostat
US4030900A (en) Cooling device
JPH0519284B2 (en)
JPH07104059B2 (en) Dual freezer
JPS5816155A (en) Refrigerator
JPH06283769A (en) Superconducting magnet refrigerating system
US20220102041A1 (en) Pre-cooling and removing ice build-up from cryogenic cooling arrangements
RU2057653C1 (en) Cryostat for magnetic suspension vehicle
JPH0479123B2 (en)
RU2011129C1 (en) Magnetic suspension vehicle cryostat
JPS60129579A (en) Method and device for defrosting cooler
JPH0774019A (en) Cryogenic cooling system
JPH08240353A (en) Cryostat and its operating method
JPS62299005A (en) Superconducting magnet device
JPS6078265A (en) Refrigerator
JPH0555032A (en) Crystal for superconducting magnet use
JPS6343992B2 (en)