JPH0519284B2 - - Google Patents

Info

Publication number
JPH0519284B2
JPH0519284B2 JP62050177A JP5017787A JPH0519284B2 JP H0519284 B2 JPH0519284 B2 JP H0519284B2 JP 62050177 A JP62050177 A JP 62050177A JP 5017787 A JP5017787 A JP 5017787A JP H0519284 B2 JPH0519284 B2 JP H0519284B2
Authority
JP
Japan
Prior art keywords
current lead
tube
pressure
helium
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62050177A
Other languages
Japanese (ja)
Other versions
JPS63217607A (en
Inventor
Takashi Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP62050177A priority Critical patent/JPS63217607A/en
Publication of JPS63217607A publication Critical patent/JPS63217607A/en
Publication of JPH0519284B2 publication Critical patent/JPH0519284B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の目的〕 (産業上の利用分野) 本発明は、MRIや磁気浮上列車等に利用され
る超電導マグネツトに関する。 (従来の技術) 第3図に従来の超電導マグネツトの一例を示
す。1は真空容器であり、内部のヘリウム容器2
を真空断熱する。ヘリウム容器2の中にはコイル
3が入つており、液体ヘリウム4によつて温度約
4Kの極低温に冷却されている。5a,5bはコ
イルに電流を導く電流リード管であり、金属パイ
プの中をヘリウムガスが通る構造となつている。
電源6からコイル通電する時には手動弁7a,7
bを開けて、ヘリウムガスを通すことによりパイ
プを冷却し、ジユール発熱による電流リード管5
a,5bの焼損を防いでいる。8は蒸発したヘリ
ウムガスを大気へ放出する放圧管であり、9は手
動弁である。 電流リードに通電する時は手動弁9は閉じてお
き、ガスを電流リードだけに流して冷やす。ま
た、コイルに永久電流が流れている時は、手動弁
7a,7bは閉じて、9の手動弁でけ開けてお
き、内部のガス圧が高くなるのを防ぐ。10は破
裂板であり、ヘリウム容器2に過大な内部圧力が
加わらない構造となつている。 超電導マグネツトの運転モードによる手動弁の
開閉パターンをまとめると下記のようになる。
[Object of the Invention] (Field of Industrial Application) The present invention relates to a superconducting magnet used in MRI, magnetic levitation trains, etc. (Prior Art) FIG. 3 shows an example of a conventional superconducting magnet. 1 is a vacuum container, and an internal helium container 2
vacuum insulated. A coil 3 is placed inside the helium container 2, and the liquid helium 4 maintains a temperature of approximately
It is cooled to an extremely low temperature of 4K. Reference numerals 5a and 5b are current lead tubes that guide current to the coils, and have a structure in which helium gas passes through metal pipes.
When energizing the coil from the power source 6, use the manual valves 7a and 7.
By opening b and letting helium gas pass through, the pipe is cooled, and the current lead pipe 5 is
This prevents burnout of parts a and 5b. 8 is a pressure relief pipe that releases evaporated helium gas to the atmosphere, and 9 is a manual valve. When energizing the current lead, the manual valve 9 is closed and gas is allowed to flow only through the current lead to cool it. Further, when a persistent current is flowing through the coil, the manual valves 7a and 7b are closed and the manual valve 9 is left open to prevent the internal gas pressure from increasing. Reference numeral 10 denotes a rupture disc, which has a structure that prevents excessive internal pressure from being applied to the helium container 2. The opening/closing pattern of the manual valve depending on the operating mode of the superconducting magnet is summarized as follows.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記の目的を達成する為に、本発明では、電流
リード管と放圧管とを均圧管で結ぶ。 (作用) このようにすると電流リード管はそのバルブが
閉じられても管の常温部は開放されているので、
低温のHeガスは常温部で膨張してもその圧力は
大気へ開放されサーマルオシレーシヨンは発生し
ない。 (実施例) 第1図は本発明の実施例の超電導マグネツトの
図である。 電流リード管5a,5bとを均圧管11a,1
1bによつて結ぶ。 12は逆止弁である。 このように構成された配管において、通常状態
(永久電流モード)において、主動弁7a,7b
は閉、主動弁9は開であり、12の逆止弁は開と
する。すなわち、蒸発したヘリウムガスは、電流
リード管5a,5b、均圧管11a,11bを通
して主動弁9に集まり、逆止弁12を通して大気
へ放出される。このような状態においては、電流
リード管5a,5bの常温部でのガス圧力は均圧
管11a,11bによつてヘリウム容器2内のガ
ス圧と等しくなる。よつて電流リード管5a,5
bのガス圧は極低温部と常温部において等しくな
る。従つて、電流リード管の中でガスの循環がな
くなる。 主動弁7a,7b,9を電磁弁等に置き変えて
もよい。電磁弁にすると各運転モードにおける弁
操作が自動化可能で容易になり、誤操作がなく安
全性が増す。 第2図も本発明による他の実施例である。5
a,5b,8,11a,11bは第1図と同様で
あり説明を省く。 12は逆止弁であり、20a,20b,21は
電磁弁である。各弁の開閉パターンは従来方法と
同様である。蒸発したヘリウム賀は最終的に逆止
弁12を通して大気へ放出される。 本実施例では第1図に比べて弁の数が少なく操
作がより容易となり、信頼性が向上し、コスト上
も有利である。 〔発明の効果〕 本発明によれば、電流リード管のサーマルオシ
レーシヨン現象がなくなり、液体ヘリウムへの侵
入熱量は低減され、ヘリウム蒸発量が少なくな
る。また逆止弁がある為、管内部に空気が入つて
こない為、管の氷結がなくなる。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, the current lead pipe and the pressure relief pipe are connected by a pressure equalizing pipe. (Function) In this way, even if the valve of the current lead tube is closed, the normal temperature part of the tube is open, so
Even if low-temperature He gas expands at room temperature, its pressure is released to the atmosphere and thermal oscillation does not occur. (Example) FIG. 1 is a diagram of a superconducting magnet according to an example of the present invention. The current lead tubes 5a, 5b are connected to the pressure equalizing tubes 11a, 1.
1b. 12 is a check valve. In the piping configured in this way, in the normal state (persistent current mode), the main valves 7a, 7b
is closed, main valve 9 is open, and check valve 12 is open. That is, the evaporated helium gas passes through the current lead pipes 5a and 5b and the pressure equalization pipes 11a and 11b, collects in the main valve 9, and is discharged to the atmosphere through the check valve 12. In such a state, the gas pressure at the room temperature portion of the current lead tubes 5a, 5b becomes equal to the gas pressure in the helium container 2 by the pressure equalizing tubes 11a, 11b. Therefore, current lead tubes 5a, 5
The gas pressure b becomes equal in the cryogenic temperature section and the normal temperature section. Therefore, there is no gas circulation within the current lead tube. The main valves 7a, 7b, 9 may be replaced with electromagnetic valves or the like. By using a solenoid valve, valve operation in each operation mode can be automated and facilitated, eliminating erroneous operation and increasing safety. FIG. 2 also shows another embodiment according to the present invention. 5
a, 5b, 8, 11a, and 11b are the same as in FIG. 1, and their explanation will be omitted. 12 is a check valve, and 20a, 20b, 21 are electromagnetic valves. The opening and closing pattern of each valve is the same as in the conventional method. The evaporated helium is finally released to the atmosphere through the check valve 12. This embodiment has fewer valves than the one shown in FIG. 1, making operation easier, improving reliability, and being advantageous in terms of cost. [Effects of the Invention] According to the present invention, the thermal oscillation phenomenon of the current lead tube is eliminated, the amount of heat entering liquid helium is reduced, and the amount of helium evaporation is reduced. Also, since there is a check valve, air does not get inside the pipe, which eliminates freezing of the pipe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の超電導マグネツト
を示す図、第2図は本発明の他の実施例の要部を
示す配管図、第3図は従来の超電導マグネツトを
示す図である。 1……真空容器、2……ヘリウム容器、3……
コイル、5a,5b……電流リード管、8……放
圧管、11a,11b……均圧管。
FIG. 1 is a diagram showing a superconducting magnet according to one embodiment of the present invention, FIG. 2 is a piping diagram showing main parts of another embodiment of the present invention, and FIG. 3 is a diagram showing a conventional superconducting magnet. 1... Vacuum container, 2... Helium container, 3...
Coil, 5a, 5b... Current lead tube, 8... Pressure relief tube, 11a, 11b... Pressure equalization tube.

Claims (1)

【特許請求の範囲】[Claims] 1 ヘリウムガスで冷却される電流リード管とヘ
リウムガスを大気へ放出する放圧管とを有する超
電導マグネツトにおいて、電流リード管と放圧管
とを均圧管で結んだことを特徴とする超電導マグ
ネツト。
1. A superconducting magnet having a current lead tube cooled by helium gas and a pressure relief tube that releases helium gas to the atmosphere, characterized in that the current lead tube and the pressure relief tube are connected by a pressure equalizing tube.
JP62050177A 1987-03-06 1987-03-06 Superconducting magnet Granted JPS63217607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62050177A JPS63217607A (en) 1987-03-06 1987-03-06 Superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62050177A JPS63217607A (en) 1987-03-06 1987-03-06 Superconducting magnet

Publications (2)

Publication Number Publication Date
JPS63217607A JPS63217607A (en) 1988-09-09
JPH0519284B2 true JPH0519284B2 (en) 1993-03-16

Family

ID=12851916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62050177A Granted JPS63217607A (en) 1987-03-06 1987-03-06 Superconducting magnet

Country Status (1)

Country Link
JP (1) JPS63217607A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109448885A (en) * 2018-11-05 2019-03-08 浙江亮能机电科技有限公司 A kind of YH21CT stainless steel thick film circuit resistance slurry and preparation method thereof

Also Published As

Publication number Publication date
JPS63217607A (en) 1988-09-09

Similar Documents

Publication Publication Date Title
CN100467934C (en) Reduction of cryogen loss during transportation of cryostats
US4986077A (en) Cryostat with cryo-cooler
US5513498A (en) Cryogenic cooling system
JPH0155392B2 (en)
KR850000746A (en) Superconducting magnetic device
JP4814630B2 (en) Superconducting magnet system
JPH0519284B2 (en)
US5979176A (en) Refrigerator
JPH0429376B2 (en)
JP2977168B2 (en) Superconducting magnet device
JPH07142234A (en) Apparatus for cooling cryogenic-temperature superconducting coil
CN212433377U (en) Cold head exhaust structure of magnetic resonance imaging equipment and magnetic resonance imaging equipment
JPS60178260A (en) Cryogenic refrigerator
JPS61116250A (en) Superconductive device and cooling method thereof
US11486609B2 (en) Systems and methods for providing continuous cooling at cryogenic temperatures
JPH0231511B2 (en)
JPS58152988A (en) Reversible magnet valve
JPS6289305A (en) Superconducting magnet
JPH0554685B2 (en)
EP0525529A1 (en) Multiway valve, in particular for refrigerating circuits
JPS61125002A (en) Forcibly cooled superconductive coil device
JPH0479123B2 (en)
JPH02237101A (en) Superconducting magnetic-field utilization apparatus
JPH01155605A (en) Very low temperature container for superconducting electromagnet coil
JPS6280468A (en) Expansion valve for refrigeration cycle

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term