JPS63217607A - Superconducting magnet - Google Patents

Superconducting magnet

Info

Publication number
JPS63217607A
JPS63217607A JP62050177A JP5017787A JPS63217607A JP S63217607 A JPS63217607 A JP S63217607A JP 62050177 A JP62050177 A JP 62050177A JP 5017787 A JP5017787 A JP 5017787A JP S63217607 A JPS63217607 A JP S63217607A
Authority
JP
Japan
Prior art keywords
current lead
tubes
pressure
helium
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62050177A
Other languages
Japanese (ja)
Other versions
JPH0519284B2 (en
Inventor
Takashi Sasaki
高士 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62050177A priority Critical patent/JPS63217607A/en
Publication of JPS63217607A publication Critical patent/JPS63217607A/en
Publication of JPH0519284B2 publication Critical patent/JPH0519284B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of thermal oscillation as well as to contrive reduction in the quantity of evaporation of helium by a method wherein a current lead tube and a pressure-releasing tube are connected with a pressure-equalizing tube. CONSTITUTION:Current lead tubes 5a and 5b are connected by pressure-equalizing tubes 11a and 11b. In the piping constituted as above, a hand-operated valves 7a and 7b are closed, another hand-operated valve 9 is opened and a check valve 12 is opened in the normal state (permanent current mode). To be more precise, the evaporated helium gas is gathered in a hand-operated valve 9 by passing through the current lead tubes 5a and 5b and the pressure-equalizing tubes 11a and 11b, it passes through a check valve 12, released into atmospheric air, and the gas pressure at the normal temperature part of the current lead tubes 5a and 5b is made equal to the gas pressure in the helium container 2 by the equalizing tubes 11a and 11b. Accordingly, the gas pressure of the current lead tubes 5a and 5b is made equal in a cryogenic temperature part and the normal temperature part, and the gas is not circulated in the current lead tubes. As a result, the thermal oscillation phenomenon in the current lead tube is removed, the quantity of heat penetrated into the liquid helium is reduced, and the quantity of evaporated helium becomes small.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、MHIや磁気浮上列車等に利用される超電導
マグネットに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a superconducting magnet used in MHI, magnetic levitation trains, etc.

(従来の技術) 第3図に従来の超電導マグネットの一例を示す。(Conventional technology) FIG. 3 shows an example of a conventional superconducting magnet.

1は真空容器であり、内部のヘリウム容器2を真空断熱
する。ヘリウム容器2の中にはコイル3が入っており、
液体ヘリウム4によって温度約4にの極低温に冷却され
ている。5a、 5bはコイルに電流を導く電流リード
管であり、金属パイプの中をヘリウムガスが通る構造と
なっている。1!源6からコイル通電する時には手動弁
7a、7bを開けて、ヘリウムガスを通すことによりパ
イプを冷却し、ジュール発熱による電流リード管5a、
5bの焼損を防いでいる。8は蒸発したヘリウムガスを
大気へ放出する放圧管であり、9は手動弁である。
1 is a vacuum container, and the helium container 2 inside is vacuum-insulated. A coil 3 is contained in the helium container 2,
It is cooled to a cryogenic temperature of about 4 by liquid helium 4. Reference numerals 5a and 5b are current lead tubes that guide current to the coil, and have a structure in which helium gas passes through metal pipes. 1! When the coil is energized from the source 6, the manual valves 7a and 7b are opened to cool the pipe by passing helium gas, and the current lead pipe 5a due to Joule heat generation.
5b is prevented from burning out. 8 is a pressure relief pipe that releases evaporated helium gas to the atmosphere, and 9 is a manual valve.

電流リードに通電する時は手動弁9は閉じておき、ガス
を電流リードだけに流して冷やす。また、コイルに永久
電流が流れている時は、手動弁7a。
When energizing the current lead, the manual valve 9 is closed and gas is allowed to flow only through the current lead to cool it. Also, when a persistent current is flowing through the coil, the manual valve 7a.

7bは閉じて、9の手動弁でけ開けておき、内部のガス
圧が高くなるのを防ぐ、10は破裂板であり、ヘリウム
容器2に過大な内部圧力が加わらない構造となっている
7b is closed and opened using a manual valve 9 to prevent the internal gas pressure from increasing. 10 is a rupture disc, which is structured to prevent excessive internal pressure from being applied to the helium container 2.

超電導マグネットの運転モードによる手動弁の開閉パタ
ーンをまとめると下記のようになる。
The opening/closing pattern of the manual valve depending on the operation mode of the superconducting magnet is summarized as follows.

一般に、超電導マグネットの通常状態は永久電流モード
のことであり、この時間が他のモードより最も長い、尚
、コイルにも電流リードにも電流が流れていない休止モ
ードの時も永久電流モードと同じ開閉パターンである。
Generally, the normal state of a superconducting magnet is the persistent current mode, and this time is the longest than other modes.The resting mode, where no current flows in the coil or current lead, is also the same as the persistent current mode. It has an opening and closing pattern.

すなわち、7a、 7bが閉で9が開である時の液体ヘ
リウムの蒸発量が重要であり、この時の蒸発量を極力少
なくする必要がある。
That is, the amount of evaporation of liquid helium when 7a and 7b are closed and 9 is open is important, and it is necessary to reduce the amount of evaporation at this time as much as possible.

(発明が解決しようとする問題点) しかしながら、従来のような配管において、特に電流リ
ード管の手動弁7a、7bを閉じた時にサーマルオシレ
ーション現象が発生し、蒸発量が増大するという欠点が
あった。サーマルオシレーションとは常温部と極低温と
を結んだ管で常温部側が閉じられた特に細くて長い極低
温配管に発生し、極低温のガスが常温部分でその体積を
膨張させ、圧力が大きくなりガスをまた低温部へ押しや
るというサイクルをくり返えす現象であり、ヘリウムガ
スがパイプの中で循環する為に常温部がら液体ヘリウム
へ熱が大量に侵入する原因となっていた。
(Problems to be Solved by the Invention) However, in conventional piping, a thermal oscillation phenomenon occurs, especially when the manual valves 7a and 7b of the current lead pipe are closed, and the amount of evaporation increases. Ta. Thermal oscillation occurs in particularly thin and long cryogenic piping that connects the normal temperature part and the cryogenic part, and the normal temperature part is closed.The cryogenic gas expands its volume in the normal temperature part, and the pressure increases. This phenomenon repeats the cycle of pushing the gas back to the low-temperature area, and as the helium gas circulates inside the pipe, it causes a large amount of heat to enter the liquid helium from the room-temperature area.

さらに弁の開閉を誤まると、特に7a、7bを開のまま
にすると空気が逆流し中で氷結し、ガスが出てこなくな
るという欠点があった。
Furthermore, if the valves are opened or closed incorrectly, especially if 7a and 7b are left open, air will flow backwards and freeze, resulting in no gas coming out.

本発明はサーマルオシレーションが発生せず、ヘリウム
蒸発量の少ない超電導マグネットを供給することを目的
とする。
An object of the present invention is to provide a superconducting magnet that does not cause thermal oscillation and has a small amount of helium evaporated.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記の目的を達成する為に、本発明では、電流リード管
と放圧管とを均圧管で結ぶ。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, the current lead pipe and the pressure relief pipe are connected by a pressure equalizing pipe.

(作 用) このようにすると電流リード管はそのバルブが閉じられ
ても管の常温部は開放されているので、低温のHeガス
は常温部で膨張してもその圧力は大気へ開放されサーマ
ルオシレーションは発生しない。
(Function) In this way, even if the valve of the current lead tube is closed, the room temperature section of the tube is open, so even if the low temperature He gas expands in the room temperature section, its pressure is released to the atmosphere and thermal No oscillation occurs.

(実施例) 第1図は本発明の実施例の超電導マグネットの図である
(Example) FIG. 1 is a diagram of a superconducting magnet according to an example of the present invention.

電流リード管5a、5bとを均圧管11a、11bにょ
って結ぶ。
Current lead pipes 5a and 5b are connected by pressure equalizing pipes 11a and 11b.

12は逆止弁である。12 is a check valve.

このように構成された配管において、通常状態(永久電
流モード)において、手動弁7a、 7bは閉、手動弁
9は開であり、12の逆止弁は開とする。すなわち、蒸
発したヘリウムガスは、電流リード管5a、 5b、均
圧管11a、 llbを通して手動弁9に集まり、逆止
弁12を通して大気へ放出される。このような状態にお
いては、電流リード管5a、5bの常温部でのガス圧力
は均圧管11a、 llbによってヘリウム容器2内の
ガス圧と等しくなる。よって電流リード管5a、 5b
のガス圧は極低温部と常温部において等しくなる。従っ
て、電流リード管の中でガスの循環がなくなる。
In the piping configured as described above, in the normal state (persistent current mode), manual valves 7a and 7b are closed, manual valve 9 is open, and check valve 12 is open. That is, the evaporated helium gas passes through the current lead pipes 5a and 5b and the pressure equalization pipes 11a and llb, collects in the manual valve 9, and is discharged to the atmosphere through the check valve 12. In such a state, the gas pressure at the normal temperature portion of the current lead tubes 5a, 5b becomes equal to the gas pressure in the helium container 2 by the pressure equalizing tubes 11a, llb. Therefore, current lead tubes 5a, 5b
The gas pressure is the same in the cryogenic temperature section and the normal temperature section. Therefore, there is no gas circulation within the current lead tube.

手動弁7a、 7b、 9を電磁弁等に置き変えてもよ
 ノい、電磁弁にすると各運転モードにおける弁操作が
自動化可能で容易になり、誤操作がなく安全性が増す。
The manual valves 7a, 7b, and 9 may be replaced with electromagnetic valves, etc., but by using electromagnetic valves, the valve operations in each operation mode can be automated and facilitated, and there is no erroneous operation, increasing safety.

第2図も本発明による他の実施例である。5a。FIG. 2 also shows another embodiment of the present invention. 5a.

5b、 8 、 lla、 llbは第1図と同様であ
り説明を省く。
5b, 8, lla, and llb are the same as in FIG. 1, and their explanation will be omitted.

12は逆止弁であり、20a、 20b、 21は電磁
弁である。答弁の開閉パターンは従来方法と同様である
12 is a check valve, and 20a, 20b, and 21 are electromagnetic valves. The opening and closing pattern of answers is the same as in the conventional method.

蒸発したヘリウム賀は最終的に逆止弁12を通して大気
へ放出される。
The evaporated helium is finally released to the atmosphere through the check valve 12.

本実施例では第1図に比べて弁の数が少なく抛作がより
容易となり、信頼性が向上し、コスト上も有利である。
In this embodiment, the number of valves is smaller than that in FIG. 1, making operation easier, improving reliability, and being advantageous in terms of cost.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電流リード管のサーマルオシレージ目
ン現象がなくなり、液体ヘリウムへの侵入熱量は低減さ
れ、ヘリウム蒸発量が少なくなる。
According to the present invention, the thermal oscillation phenomenon of the current lead tube is eliminated, the amount of heat entering liquid helium is reduced, and the amount of helium evaporation is reduced.

また逆止弁がある為、管内部に空気が入ってこない為、
管の氷結がなくなる。
Also, since there is a check valve, air does not get inside the pipe, so
No more ice on the tube.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の超電導マグネットを示す図
、第2図は本発明の他の実施例の要部を示す配管図、第
3図は従来の超電導マグネットを示す図である。 1・・・真空容器    2・・・ヘリウム容器3・・
・コイル     5a、 5b・・・電流リード管8
・・・放圧管     11a、 llb・・・均圧管
代理人 弁理士  則 近 憲 佑 同  三俣弘文 第1図 第2図 第3図
FIG. 1 is a diagram showing a superconducting magnet according to one embodiment of the present invention, FIG. 2 is a piping diagram showing main parts of another embodiment of the present invention, and FIG. 3 is a diagram showing a conventional superconducting magnet. 1... Vacuum container 2... Helium container 3...
・Coil 5a, 5b...Current lead tube 8
...Relief pipe 11a, llb...Pressure equalization pipe agent Patent attorney Noriyuki Chika Ken Yudo Hirofumi MitsumataFigure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims]  ヘリウムガスで冷却される電流リード管とヘリウムガ
スを大気へ放出する放圧管とを有する超電導マグネット
において、電流リード管と放圧管とを均圧管で結んだこ
とを特徴とする超電導マグネット。
A superconducting magnet having a current lead tube cooled by helium gas and a pressure relief tube that releases helium gas to the atmosphere, characterized in that the current lead tube and the pressure relief tube are connected by a pressure equalizing tube.
JP62050177A 1987-03-06 1987-03-06 Superconducting magnet Granted JPS63217607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62050177A JPS63217607A (en) 1987-03-06 1987-03-06 Superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62050177A JPS63217607A (en) 1987-03-06 1987-03-06 Superconducting magnet

Publications (2)

Publication Number Publication Date
JPS63217607A true JPS63217607A (en) 1988-09-09
JPH0519284B2 JPH0519284B2 (en) 1993-03-16

Family

ID=12851916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62050177A Granted JPS63217607A (en) 1987-03-06 1987-03-06 Superconducting magnet

Country Status (1)

Country Link
JP (1) JPS63217607A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109448885A (en) * 2018-11-05 2019-03-08 浙江亮能机电科技有限公司 A kind of YH21CT stainless steel thick film circuit resistance slurry and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109448885A (en) * 2018-11-05 2019-03-08 浙江亮能机电科技有限公司 A kind of YH21CT stainless steel thick film circuit resistance slurry and preparation method thereof

Also Published As

Publication number Publication date
JPH0519284B2 (en) 1993-03-16

Similar Documents

Publication Publication Date Title
JPH0155392B2 (en)
JP4814630B2 (en) Superconducting magnet system
JPS63217607A (en) Superconducting magnet
GB1117246A (en) Improvements in or relating to refrigerators operating at very low temperatures
JP3320772B2 (en) Operation method of superconducting magnet device
JPS61116250A (en) Superconductive device and cooling method thereof
JP2888093B2 (en) Vacuum cooling device
JP2000269022A (en) Superconducting magnet
JP2637280B2 (en) Cryostat
JPS61125002A (en) Forcibly cooled superconductive coil device
JP3935752B2 (en) Air conditioner and solenoid valve unit used therefor
JPS63178570A (en) Cryogenic container
JPS5969668A (en) Magnetic refrigerator
JPH03114279A (en) Cryogenic cooling machine
JPS60140072A (en) Refrigerator with differential pressure open-close valve
JPS62299659A (en) Heat pump type air conditioner
JPS61214588A (en) Superconducting apparatus
JPS5835979Y2 (en) reiki house
KR20000008781U (en) Normally Open Solenoid Valve
JP2645829B2 (en) Absorption refrigerator
JPH0513824A (en) Cooling device for cryostat
JPH06283769A (en) Superconducting magnet refrigerating system
JPH0677541A (en) Cryogenic vessel and its application method
JPH0479123B2 (en)
JPS6236042Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term