JPS6343992B2 - - Google Patents

Info

Publication number
JPS6343992B2
JPS6343992B2 JP56083065A JP8306581A JPS6343992B2 JP S6343992 B2 JPS6343992 B2 JP S6343992B2 JP 56083065 A JP56083065 A JP 56083065A JP 8306581 A JP8306581 A JP 8306581A JP S6343992 B2 JPS6343992 B2 JP S6343992B2
Authority
JP
Japan
Prior art keywords
safety valve
valve
helium
metal
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56083065A
Other languages
Japanese (ja)
Other versions
JPS57196848A (en
Inventor
Kyoshi Yamaguchi
Hiroshi Tomeoku
Naoki Maki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56083065A priority Critical patent/JPS57196848A/en
Publication of JPS57196848A publication Critical patent/JPS57196848A/en
Publication of JPS6343992B2 publication Critical patent/JPS6343992B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Description

【発明の詳細な説明】 本発明は超電導回転子に係り、特に冷媒タンク
から外部へ通ずる緊急ガス放出路を有する超電導
回転子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting rotor, and more particularly to a superconducting rotor having an emergency gas release path leading from a refrigerant tank to the outside.

回転軸上に固定された超電導界磁巻線を有する
超電導回転子は回転クライオスタツトであり、超
電導界磁巻線を収納している空間は冷媒の出入用
の比較的径が小さく、長さの大きい管類によつて
外部と連絡されている。従つて超電導界磁巻線の
クエンチ(超電導破壊)や真空断熱部の真空劣化
によつて発生する急激な加熱によつて惹起される
超電導回転子内の冷媒の急激な圧力上昇には十分
対処することができない。このため超電導回転子
には超電導界磁巻線を収納する空間と外部とを連
結する比較的径が大きく、冷媒の流動抵抗の少な
い緊急ガス放出路が必要である。この緊急ガス放
出路にはある設定圧力で作動する安全弁システム
が必要であり、安全弁システムは一般に弁体がば
ねによつて弁座に押しつけられ、そのばねによつ
て冷媒の吹き出し圧力が設定されるようにしてあ
る。そして冷媒は一般に液体ヘリウムが使用され
ている。このような安全弁システムを有し、液体
ヘリウムを使用した超電導回転子の従来例が第1
図に示されている。超電導界磁巻線1はトルクチ
ユーブ2の外周上に固定され、ヘリウム容器壁3
に囲まれた巻線空間4に設置される。液体ヘリウ
ム5は、運転中においては冷媒タンク6すなわち
ヘリウムタンク6内で遠心力によつて外周側へ押
しつけられ、蒸発ガスヘリウム7と分離する。外
周側へ押しつけられた液体ヘリウム5はトルクチ
ユーブ2の通流穴(図示せず)から巻線空間4へ
出入し、超電導界磁巻線1を冷却する。分離した
蒸発ガスヘリウム7は、ヘリウムタンク6の軸心
部に柱状となつて溜まり、トルクチユーブ2や超
電導界磁巻線1に励磁電流を供給するパワーリー
ド(図示せず)等を冷却した後、機外へ出され
る。このヘリウムタンク6内の蒸発ガスヘリウム
7は、熱サイフオン効果によつて一般に大気圧以
下に減圧されている。そしてヘリウム容器壁3の
外側には真空断熱部8を介して輻射熱シールド9
が設けられ、輻射熱シールド9の外側には真空断
熱部8aを介して外筒10が設けられている。こ
の外筒10は超電導回転子内の真空を保持する容
器及び電磁ダンパーシールドとして働く。回転軸
11にはトルクチユーブ2が接続され、回転軸1
1の軸心部にはヘリウムタンク6から出ている緊
急ガス放出路12が設けられており、この緊急ガ
ス放出路12はフランジ13から外部大気側へ抜
け出るようにしてある。そしてこの緊急ガス放出
路12の途中に安全弁システム14が設置されて
いる。
A superconducting rotor having a superconducting field winding fixed on a rotating shaft is a rotating cryostat. It is connected to the outside world by large tubing. Therefore, it is sufficient to cope with the rapid pressure rise of the refrigerant in the superconducting rotor caused by rapid heating caused by quenching of the superconducting field winding (superconductor breakdown) and vacuum deterioration of the vacuum insulation section. I can't. For this reason, the superconducting rotor requires an emergency gas release path that connects the space in which the superconducting field windings are housed and the outside, and that has a relatively large diameter and has low flow resistance of the refrigerant. This emergency gas release path requires a safety valve system that operates at a certain set pressure, and the safety valve system generally has a valve body pressed against a valve seat by a spring, and the spring sets the refrigerant blowout pressure. It's like this. Liquid helium is generally used as a refrigerant. The first conventional example of a superconducting rotor that has such a safety valve system and uses liquid helium is
As shown in the figure. A superconducting field winding 1 is fixed on the outer periphery of a torque tube 2 and is attached to a helium container wall 3.
It is installed in a winding space 4 surrounded by. During operation, the liquid helium 5 is pushed toward the outer circumference by centrifugal force within the refrigerant tank 6, that is, the helium tank 6, and is separated from the evaporated helium gas 7. The liquid helium 5 pressed toward the outer circumference enters and exits the winding space 4 through a communication hole (not shown) in the torque tube 2 and cools the superconducting field winding 1. The separated evaporated gas helium 7 accumulates in the form of a column at the axial center of the helium tank 6, and after cooling the power leads (not shown) that supply excitation current to the torque tube 2 and the superconducting field winding 1, etc. , and was ejected from the plane. The evaporated helium gas 7 in the helium tank 6 is generally reduced in pressure to below atmospheric pressure due to the thermosiphon effect. A radiant heat shield 9 is provided on the outside of the helium container wall 3 via a vacuum insulation section 8.
An outer cylinder 10 is provided on the outside of the radiant heat shield 9 via a vacuum heat insulating section 8a. This outer cylinder 10 functions as a container for maintaining the vacuum inside the superconducting rotor and as an electromagnetic damper shield. A torque tube 2 is connected to the rotating shaft 11, and the rotating shaft 1
An emergency gas release path 12 coming out from the helium tank 6 is provided at the axial center of the helium tank 1, and this emergency gas release path 12 exits from a flange 13 to the outside atmosphere. A safety valve system 14 is installed in the middle of this emergency gas release path 12.

このように構成された超電導回転子において、
安全弁システム14は次のような3つの状態に曝
され、使用されることが考えられる。第1は超電
導界磁巻線1のクエンチや真空断熱部8,8aの
真空劣化等によつて巻線空間4内の液体ヘリウム
5が急激に加熱されて圧力が上昇し、緊急ガス放
出路12を通して蒸発ガスヘリウム7が外部へ放
出される場合である。この場合安全弁システム1
4が作動して蒸発ガスヘリウム7を外部へ放出す
るが、安全弁システム14は多量の極低温の蒸発
ガスヘリウム7に接触するので、作動前の常温に
近い状態から極低温に冷却される。そして圧力が
設定値以下になれば安全弁システム14は、緊急
ガス放出路12を閉鎖する。第2は上述したよう
に運転中において熱サイフオン効果によつてヘリ
ウムタンク6内の蒸発ガスヘリウム7が、大気圧
以下に減圧されている場合である。この場合安全
弁システム14にもこの減圧された圧力が印加さ
れる。第3は予冷時に行う冷媒置換、例えば液体
窒素を使つた冷却から液体ヘリウムを使つた冷却
へ切り替える場合である。この場合一度1Torr程
度の真空に巻線空間4を減圧するが、安全弁シス
テム14にもこの減圧された圧力が印加される。
In the superconducting rotor configured in this way,
It is contemplated that the safety valve system 14 will be exposed to and used under three conditions: First, the liquid helium 5 in the winding space 4 is rapidly heated due to quenching of the superconducting field winding 1, deterioration of the vacuum insulation parts 8, 8a, etc., and the pressure rises, causing the emergency gas release path 12 to rise. This is a case in which the evaporated gas helium 7 is released to the outside through. In this case safety valve system 1
4 is activated to release the evaporated helium gas 7 to the outside, but the safety valve system 14 comes into contact with a large amount of the extremely low temperature evaporated helium gas 7, so that it is cooled from a state close to room temperature before activation to an extremely low temperature. When the pressure falls below the set value, the safety valve system 14 closes the emergency gas release path 12. The second case is when, as described above, the evaporated gas helium 7 in the helium tank 6 is reduced to below atmospheric pressure due to the thermosiphon effect during operation. In this case, this reduced pressure is also applied to the safety valve system 14. The third case is refrigerant replacement performed during precooling, for example, when switching from cooling using liquid nitrogen to cooling using liquid helium. In this case, the winding space 4 is once reduced to a vacuum of about 1 Torr, and this reduced pressure is also applied to the safety valve system 14.

このように安全弁システム14は3つの状態す
なわち極低温、減圧時の外圧等に曝されるが、こ
れらいずれの状態に曝されても弁体が弁座に押し
つけられ、安全弁システム14が所謂閉じている
状態では安全弁システム14からのリークは許さ
れない。それは冷媒置換が困難になつたり、外気
の混入によつて内部の極低温配管部の目づまり等
のトラブルの原因になるからである。
In this way, the safety valve system 14 is exposed to three conditions, including extremely low temperatures and external pressure during depressurization, but when exposed to any of these conditions, the valve body is pressed against the valve seat, and the safety valve system 14 is closed. No leakage from the safety valve system 14 is allowed under these conditions. This is because it becomes difficult to replace the refrigerant and causes troubles such as clogging of the internal cryogenic piping due to the intrusion of outside air.

ところが従来はこの安全弁システム14に弁
体、弁座とも金属製のものを使用していたが、こ
れでは上述のような運転中や冷媒置換時の圧力す
なわち外圧が印加された状態での気密性に問題が
あつて、リークの懸念が大であつた。
However, in the past, metal valve bodies and valve seats were used in the safety valve system 14, but this did not provide airtightness during operation or when external pressure was applied during refrigerant replacement as described above. There was a problem with this, and there were serious concerns about leaks.

本発明は以上の点に鑑みなされたものであり、
その目的とするところは、いかなる状態でも気密
性のよい安全弁システムを有する超電導回転子を
提供するにある。
The present invention has been made in view of the above points,
The purpose is to provide a superconducting rotor having a safety valve system that is airtight under any conditions.

すなわち本発明は、安全弁システムを、ばね体
に接続された金属製の弁体と、この弁体と接触す
る金属製の弁座とからなる第1の安全弁と、ばね
体に接続された金属製の弁体と、この弁体と非金
属製のパツキンを介して接触する金属性の弁座と
からなる第2の安全弁とで形成し、かつこれら第
1の安全弁と第2の安全弁とを直列配置すると共
に、第1の安全弁を冷媒タンク側に配置してなる
ことを特徴とするものである。
That is, the present invention provides a safety valve system including a first safety valve including a metal valve body connected to a spring body, a metal valve seat in contact with the valve body, and a metal valve seat connected to the spring body. a second safety valve consisting of a valve body and a metal valve seat that contacts the valve body through a non-metallic packing, and the first safety valve and the second safety valve are connected in series. In addition, the first safety valve is arranged on the refrigerant tank side.

安全弁システムとして弁体と弁座とが両方共金
属製で、弁体と弁座とが直接面接触して蒸発ガス
ヘリウム等の所謂ガスを遮断する第1の安全弁
と、同じく両方共金属製の弁体と弁座とが非金属
製のパツキン、例えばふつ素ゴム(デユポン社の
バイトン)を介して接触し、ガスを遮断する第2
の安全弁とを使用して、その気密性に関して検討
した。その結果、安全弁が常温で外圧が作用して
いる状態、すなわち運転中や冷媒置換時において
は第2の安全弁が、リークが防止され良い結果が
得られた。これに対し非金属製のパツキンを使用
しない第1の安全弁は、リークを完全に防止する
ことが困難で余り良い結果が得られなかつた。一
方安全弁が極低温の蒸発ガスヘリウムに曝されて
極低温に冷却された状態では、第2の安全弁は、
パツキンが変形して再閉時のガス遮断が良好でな
かつた。これに対して第1の安全弁は極低温に冷
却されても変形することがないので、再閉時には
第2の安全弁よりは良好にガスを遮断した。この
ように第1の安全弁と第2の安全弁とは、その曝
される状態によつて夫々異なつた特性を示すの
で、曝されることが想定されるすべての状態を満
足するにはこれら第1の安全弁と第2の安全弁と
を組合わせて使用すればよいことが確かめられ
た。そこで本発明では安全弁システムを、ばね体
に接続された金属製の弁体と、この弁体と接触す
る金属製の弁座とからなる第1の安全弁と、ばね
体に接続された金属製の弁体と、この弁体と非金
属製のパツキンを介して接触する金属製の弁座と
からなる第2の安全弁とで形成し、かつこれら第
1の安全弁と第2の安全弁とを直列配置すると共
に、第1の安全弁を冷媒タンク側に配置してなる
ようにした。このようにすることにより、いかな
る状態でも気密性のよい安全弁システムを有する
超電導回転子を得ることを可能としたものであ
る。
As a safety valve system, the valve body and the valve seat are both made of metal, and the first safety valve is in direct surface contact with the valve body to shut off so-called gases such as evaporated gas helium, and the first safety valve is also made of metal. The valve body and the valve seat are in contact with each other through a non-metallic gasket, such as fluorine rubber (DuPont's Viton), and a second valve is used to shut off the gas.
The airtightness of the safety valve was investigated. As a result, when the safety valve was at room temperature and external pressure was applied, that is, during operation or during refrigerant replacement, the second safety valve prevented leakage and good results were obtained. On the other hand, with the first safety valve that does not use a non-metallic packing, it is difficult to completely prevent leakage, and the results are not very good. On the other hand, when the safety valve is exposed to cryogenic evaporated gas helium and cooled to a cryogenic temperature, the second safety valve is
The gasket was deformed and did not properly shut off the gas when it was reclosed. On the other hand, since the first safety valve does not deform even when cooled to an extremely low temperature, it shut off the gas better than the second safety valve when it was reclosed. In this way, the first safety valve and the second safety valve exhibit different characteristics depending on the conditions to which they are exposed, so in order to satisfy all the conditions to which they are expected to be exposed, It was confirmed that it is sufficient to use the safety valve in combination with the second safety valve. Therefore, in the present invention, the safety valve system includes a first safety valve consisting of a metal valve body connected to a spring body, a metal valve seat in contact with the valve body, and a metal valve seat connected to the spring body. A second safety valve consisting of a valve body and a metal valve seat that contacts the valve body through a non-metallic packing, and the first safety valve and the second safety valve are arranged in series. At the same time, the first safety valve is arranged on the refrigerant tank side. By doing so, it is possible to obtain a superconducting rotor having a safety valve system that is airtight under any conditions.

以下、実施例について説明する。第2図にはそ
の一実施例が示されている。なお従来と同じ部品
には同じ符号を付したので説明は省略する。本実
施例では安全弁システム14aを、ばね体20に
接続された金属製の弁体15と、この弁体15と
接触する金属製の弁座16とからなる第1の安全
弁17と、ばね体20aに接続された金属製の弁
体15aと、この弁体15aと非金属製のパツキ
ン18を介して接触する金属製の弁座16aとか
らなる第2の安全弁19とで形成し、かつこれら
第1の安全弁17と第2の安全弁19とを直列配
置すると共に、第1の安全弁17を冷媒タンク側
(低温)Pに配置するようにした。従つて外部大
気側(高温)Qには第2の安全弁19が位置する
ようになる。
Examples will be described below. An example of this is shown in FIG. Note that parts that are the same as those in the conventional model are given the same reference numerals, and therefore their explanations will be omitted. In this embodiment, the safety valve system 14a includes a first safety valve 17 consisting of a metal valve body 15 connected to a spring body 20, a metal valve seat 16 in contact with the valve body 15, and a spring body 20a. A second safety valve 19 is formed of a metal valve body 15a connected to a metal valve body 15a, and a metal valve seat 16a that contacts this valve body 15a through a non-metallic packing 18. The first safety valve 17 and the second safety valve 19 are arranged in series, and the first safety valve 17 is arranged on the refrigerant tank side (low temperature) P. Therefore, the second safety valve 19 is located on the outside atmosphere side (high temperature) Q.

このようにすることにより、運転中においては
安全弁システム14aは全体が常温付近の温度な
ので、非金属製のパツキン18例えばふつ素ゴム
(デユポン社のバイトン)を介して弁体15aと
弁座16aとが接触する第2の安全弁19が、パ
ツキン18の変形もなくよくその性能を発揮する
ようになつて、外圧に対してよい密閉効果を示
す。従つて第1の安全弁17の密閉効果に若干問
題があつても第2の安全弁19によつて安全弁シ
ステム14aの気密性は良好に維持される。安全
弁システム14aが作動し蒸発ガスヘリウムが外
部大気側Qに放出される場合、安全弁システム1
4aは多量の極低温の蒸発ガスヘリウムに接触し
て極低温となり、その後回転子内部の圧力が設定
圧力以下となると安全弁システム14aが閉じる
ようになる。この場合には蒸発ガスヘリウムムは
第1の安全弁17で遮断されるので、安全弁シス
テム14a全体が更に冷却されることがない。そ
して第2の安全弁19は外部大気側Qにあつて直
接蒸発ガスヘリウムに接触することがないので、
比較的短時間のうちに常温近傍の温度に戻り、非
金属製のパツキン18がよくその機能を果たし得
るようになつて、すぐれた気密効果を示すように
なる。
By doing so, the entire safety valve system 14a is at around room temperature during operation, so the valve body 15a and the valve seat 16a are connected to each other via a non-metallic gasket 18, for example, fluorine rubber (Viton manufactured by Dupont). The second safety valve 19 in contact with the second safety valve 19 exhibits its performance well without deformation of the gasket 18, and exhibits a good sealing effect against external pressure. Therefore, even if there is some problem in the sealing effect of the first safety valve 17, the airtightness of the safety valve system 14a can be maintained satisfactorily by the second safety valve 19. When the safety valve system 14a is activated and the evaporated helium gas is released to the outside atmosphere side Q, the safety valve system 1
4a comes into contact with a large amount of cryogenic evaporated gas helium and becomes cryogenic, and then when the pressure inside the rotor falls below the set pressure, the safety valve system 14a closes. In this case, the vaporized helium gas is shut off by the first safety valve 17, so that the entire safety valve system 14a is not further cooled. Since the second safety valve 19 is located on the outside atmosphere side Q and does not come into direct contact with the evaporated helium gas,
The temperature returns to near room temperature in a relatively short period of time, and the non-metallic packing 18 is able to perform its function well and exhibits an excellent airtight effect.

上述のように本発明は、第1の安全弁と第2の
安全弁とを直列使用し、かつ第1の安全弁を冷媒
タンク側に配置するようにしたので、各各の安全
弁の特徴が活かされて、遭遇することが想定され
るいかなる状態でも気密性が保持されるようにな
り、いかなる状態でも気密性のよい安全弁システ
ムを有する超電導回転子を得ることができる。
As described above, in the present invention, the first safety valve and the second safety valve are used in series, and the first safety valve is arranged on the refrigerant tank side, so that the characteristics of each safety valve are utilized. Therefore, the superconducting rotor can maintain airtightness under any conditions expected to be encountered, and has a safety valve system with good airtightness under any conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の超電導回転子の縦断側面図、第
2図は本発明の超電導回転子の一実施例の安全弁
システムの縦断側面図である。 1…超電導界磁巻線、2…トルクチユーブ、5
…冷媒(液体ヘリウム)、6…冷媒タンク(ヘリ
ウムタンク)、11…回転軸、12…緊急ガス放
出路、14a…安全弁システム、15,15a…
金属製の弁体、16,16a…金属製の弁座、1
7…第1の安全弁、18…非金属製のパツキン、
19…第2の安全弁、20,20a…ばね体、P
…冷媒タンク側。
FIG. 1 is a longitudinal side view of a conventional superconducting rotor, and FIG. 2 is a longitudinal side view of a safety valve system of an embodiment of the superconducting rotor of the present invention. 1...Superconducting field winding, 2...Torque tube, 5
... Refrigerant (liquid helium), 6... Refrigerant tank (helium tank), 11... Rotating shaft, 12... Emergency gas release path, 14a... Safety valve system, 15, 15a...
Metal valve body, 16, 16a...Metal valve seat, 1
7...First safety valve, 18...Nonmetallic packing,
19...Second safety valve, 20, 20a...Spring body, P
...Refrigerant tank side.

Claims (1)

【特許請求の範囲】[Claims] 1 回転軸と、この回転軸に接続されたトルクチ
ユーブと、このトルクチユーブの外周上に配設さ
れた超電導界磁巻線と、前記トルクチユーブ内に
設けられ、かつ前記超電導界磁巻線を冷却する冷
媒が収納された冷媒タンクと、この冷媒タンクか
ら外部へ通ずる緊急ガス放出路とを備え、前記緊
急ガス放出路には安全弁システムが設けられてい
る超電導回転子において、前記安全弁システム
を、ばね体に接続された金属製の弁体と、この弁
体と接触する金属製の弁座とからなる第1の安全
弁と、ばね体に接続された金属製の弁体と、この
弁体と非金属製のパツキンを介して接触する金属
製の弁座とからなる第2の安全弁とで形成し、か
つこれら第1の安全弁と第2の安全弁とを直列配
置すると共に、前記第1の安全弁を前記冷媒タン
ク側に配置してなることを特徴とする超電導回転
子。
1. A rotating shaft, a torque tube connected to the rotating shaft, a superconducting field winding disposed on the outer periphery of the torque tube, and a superconducting field winding disposed within the torque tube and connected to the superconducting field winding. A superconducting rotor comprising a refrigerant tank containing a refrigerant to be cooled and an emergency gas release path leading from the refrigerant tank to the outside, and a safety valve system is provided in the emergency gas release path, the safety valve system comprising: A first safety valve consisting of a metal valve body connected to a spring body and a metal valve seat in contact with the valve body; a metal valve body connected to the spring body; a second safety valve consisting of a metal valve seat that contacts via a non-metallic packing, and the first safety valve and the second safety valve are arranged in series, and the first safety valve A superconducting rotor, comprising: arranged on the refrigerant tank side.
JP56083065A 1981-05-29 1981-05-29 Superconductive rotor Granted JPS57196848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56083065A JPS57196848A (en) 1981-05-29 1981-05-29 Superconductive rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56083065A JPS57196848A (en) 1981-05-29 1981-05-29 Superconductive rotor

Publications (2)

Publication Number Publication Date
JPS57196848A JPS57196848A (en) 1982-12-02
JPS6343992B2 true JPS6343992B2 (en) 1988-09-02

Family

ID=13791774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56083065A Granted JPS57196848A (en) 1981-05-29 1981-05-29 Superconductive rotor

Country Status (1)

Country Link
JP (1) JPS57196848A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120295U (en) * 1989-03-15 1990-09-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120295U (en) * 1989-03-15 1990-09-27

Also Published As

Publication number Publication date
JPS57196848A (en) 1982-12-02

Similar Documents

Publication Publication Date Title
US3485054A (en) Rapid pump-down vacuum chambers incorporating cryopumps
JP2758774B2 (en) Superconducting magnet and method of assembling the same
EP0188389B1 (en) Cryogenic vessel for a superconducting apparatus
US5187938A (en) Method and a device for precooling the helium tank of a cryostat
JPH0155392B2 (en)
JPH0523509B2 (en)
JPS6051624B2 (en) Cooling system
US4350017A (en) Cryostat structure
JP2758786B2 (en) Superconducting magnet
US6109042A (en) Superconducting magnet burst disk venting mechanism
US20050088266A1 (en) Zero backflow vent for liquid helium cooled magnets
JPS6343992B2 (en)
JP4927250B2 (en) Superconducting coil cooling device
JPH0278281A (en) Cryostat provided with adsorber
US6112530A (en) Non-linear thermal coupling for cryogenic coolers
TW406162B (en) Combination cryopump/getter pump and method for regenerating same, and method for manufacturing integrated circuits using same
JPH08145486A (en) Cryogenic cooler
JPS6349917B2 (en)
JPS61111513A (en) Induction electric apparatus using evaporation cooling
JPH03260575A (en) Liquid hydrogen tank for slush hydrogen
JPS61116250A (en) Superconductive device and cooling method thereof
JP2558510Y2 (en) Pressurized superfluid helium generator
JPH0349376Y2 (en)
JP2637280B2 (en) Cryostat
JPH0311773A (en) Refrigerant gas discharge device