JPS6349917B2 - - Google Patents

Info

Publication number
JPS6349917B2
JPS6349917B2 JP55161977A JP16197780A JPS6349917B2 JP S6349917 B2 JPS6349917 B2 JP S6349917B2 JP 55161977 A JP55161977 A JP 55161977A JP 16197780 A JP16197780 A JP 16197780A JP S6349917 B2 JPS6349917 B2 JP S6349917B2
Authority
JP
Japan
Prior art keywords
cryogenic
container
vacuum
gap
liquid helium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55161977A
Other languages
Japanese (ja)
Other versions
JPS5787185A (en
Inventor
Yoshinori Shiraku
Hisanao Ogata
Takamasa Fujinaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP55161977A priority Critical patent/JPS5787185A/en
Publication of JPS5787185A publication Critical patent/JPS5787185A/en
Publication of JPS6349917B2 publication Critical patent/JPS6349917B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/12Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures
    • F17C13/123Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures for gas bottles, cylinders or reservoirs for tank vehicles or for railway tank wagons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 本発明は、極低温容器とこれを包囲する常温の
真空容器に接続される開口管を有する極低温装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cryogenic apparatus having a cryogenic vessel and an open tube connected to a room-temperature vacuum vessel surrounding the cryogenic vessel.

従来の極低温装置とくに超電導磁石を内蔵する
極低温容器などから成るものにおいて、開口管は
一般に容器の上部に上向きに取付けられるのが普
通である。ところが、容器の上部に配管を設ける
余裕が全くないような極低温装置では、容器と断
熱空間をはさんで包囲する常温の真空容器間を水
平または水平に近い配管で連結せざるを得ない。
第1図は、そのような構成の極低温装置を示す。
2が極低温冷媒の液体ヘリウム4および超電導磁
石5を収納する極低温容器、1がそれを包囲する
真空容器で、それらの中間には熱輻射をしやへい
するための輻射シールド3と高真空および積層断
熱材などからなる断熱空間を形成する。極低温容
器2は、図面では省略したが断熱性がすぐれ、高
荷重に耐える断熱荷重支持体によつて真空容器1
に固定される。液体ヘリウム4の上方には気体ヘ
リウムがあつて、内部で急激な蒸発があつたとき
に気体ヘリウムを外部に放出する開口管7および
その常温側の端部に安全弁となる破壊板8から形
成される安全装置6が極低温容器2から真空容器
1へ配管されている。このような構成では、開口
管7の両端に大きな温度差(極低温容器側で−
269℃、真空容器側で20℃)がつくため開口管内
部にガスの自然対流が発生することを実験的に確
認した。その結果、真空容器側から極低温容器側
へ暖かいヘリウムガスが移動することにより熱が
運び込まれる。この熱は、液体ヘリウム4の蒸発
量を増加させ、冷凍の損失として無視できないほ
ど大きくなる。特に、開口管7の口径が大きいほ
ど自然対流は強く、熱損失も大きい。また、磁気
浮上車両用の超電導磁石を収納する極低温装置の
ような移動体では、加減速によつて揺動したり、
開口管側に液体ヘリウム4が片寄つたりすると、
液体ヘリウム4が開口管内に流れ込み、開口管7
の高温より熱を吸収して液体ヘリウムの蒸発量が
増加する。その結果、冷凍の損失として無視でき
なくなるという欠点があつた。
In conventional cryogenic devices, particularly those consisting of a cryogenic vessel containing a superconducting magnet, the open tube is generally mounted upwardly at the top of the vessel. However, in cryogenic equipment where there is no room to install piping above the container, it is necessary to connect the container and a room-temperature vacuum container that surrounds the container with an insulating space in between using horizontal or near-horizontal piping.
FIG. 1 shows a cryogenic apparatus of such a configuration.
2 is a cryogenic container containing cryogenic refrigerant liquid helium 4 and a superconducting magnet 5, 1 is a vacuum container surrounding it, and between them is a radiation shield 3 and a high vacuum for suppressing heat radiation. A heat insulating space is formed using laminated heat insulating materials, etc. Although the cryogenic container 2 is omitted in the drawing, it has excellent heat insulation properties and can withstand high loads, making it possible to connect the vacuum container 1 to the vacuum container 2.
Fixed. Gaseous helium is placed above the liquid helium 4, and it is formed of an open tube 7 that releases the gaseous helium to the outside when rapid evaporation occurs inside, and a rupture plate 8 that serves as a safety valve at the end on the room temperature side. A safety device 6 is piped from the cryogenic container 2 to the vacuum container 1. In such a configuration, there is a large temperature difference between both ends of the open tube 7 (- on the cryogenic container side).
It was experimentally confirmed that natural convection of gas occurs inside the open tube because the temperature is 269℃ (20℃ on the vacuum vessel side). As a result, warm helium gas moves from the vacuum vessel side to the cryogenic vessel side, thereby transporting heat. This heat increases the amount of evaporation of the liquid helium 4, and the loss during refrigeration becomes too large to be ignored. In particular, the larger the diameter of the open tube 7, the stronger the natural convection and the greater the heat loss. In addition, moving objects such as cryogenic equipment that houses superconducting magnets for magnetic levitation vehicles may oscillate due to acceleration or deceleration.
If liquid helium 4 is concentrated on the open tube side,
Liquid helium 4 flows into the open tube 7
The amount of evaporation of liquid helium increases by absorbing heat from the high temperature of the liquid helium. As a result, there was a drawback that the loss of refrigeration could no longer be ignored.

本発明の目的は、液体ヘリウムの蒸発量が小さ
い極低温装置を提供することにある。
An object of the present invention is to provide a cryogenic device in which the amount of evaporation of liquid helium is small.

本発明の特徴は、緊急放出管の両端に破壊板を
取付け、その内部を真空に保持したものを、安全
装置の開口管内に隙間シールを設けて挿入したも
のであり、ヘリウムガスの自然対流や液体ヘリウ
ムの開口管内への侵入を防止し、これによつて液
体ヘリウムの蒸発量を減少させるものである。
A feature of the present invention is that a destruction plate is attached to both ends of the emergency release pipe, and the inside is kept in a vacuum, and the plate is inserted into the open pipe of the safety device with a gap seal provided, thereby preventing natural convection of helium gas. This prevents liquid helium from entering the open tube, thereby reducing the amount of liquid helium evaporated.

以下本発明の実施例を図面によつて説明する。
第2図および第3図は本発明の一実施例を示す断
面図および安全装置の拡大断面図である。緊急放
出管11は低温側に低温破壊板10、常温側に常
温破壊板9を備え開口管7内に挿入されている。
緊急放出管11内は、真空ポンプによつて真空に
され、弁によつて封じ切られる。そのとき、開口
管7と緊急放出管11との間隙は、非常にせまく
して、隙間シールを行い、液体ヘリウム4の間隙
への侵入を防止する。第4図は、本発明の他の実
施例を示す安全装置の拡大断面図である。開口管
7と緊急放出管11との間隙を螺子部12とし
て、隙間シールを行い、前述の実施例と同様の効
果を得るものである。緊急放出管11の常温の真
空容器1への取付けは、耐真空可撓管13を介し
て、螺子14で行う。第5図も、本発明の他の実
施例を示す安全装置の拡大断面図である。ここで
は、隙間シールをテーパ状として前述の実施例と
同様の効果を得るものである。またこの実施例で
は、低温側の破壊板10が動作して、破壊したと
き、常温側の破壊板9がすぐに動作して破壊する
ように強制破壊器具16を取付けている。第6図
のa,bはこの強制破壊器具の具体例を示すもの
で、フランジ17に付属している。その動作原理
を説明すると、第7図のように、低温破壊板が動
作する前は、常温破壊板9は実線で示すような形
状をしている。しかし、低温破壊板が動作する
と、緊急放出管11内の真空が破れ、常温破壊板
9は点線で示すようになり、強制破壊器具16に
接触し、自動的に破壊される。このようにして、
ヘリウムガスの自然対流空間を除去し、かつ液体
ヘリウムの開口管部への侵入を完全になくすこと
ができ、液体ヘリウムの蒸発量の増加をなくすこ
とができる。また、緊急放出管としての役目も充
分に果すことができる。
Embodiments of the present invention will be described below with reference to the drawings.
2 and 3 are a sectional view showing one embodiment of the present invention and an enlarged sectional view of a safety device. The emergency release pipe 11 has a low-temperature rupture plate 10 on the low-temperature side and a normal-temperature rupture plate 9 on the normal-temperature side, and is inserted into the open pipe 7.
The inside of the emergency discharge pipe 11 is evacuated by a vacuum pump and sealed off by a valve. At this time, the gap between the opening tube 7 and the emergency release tube 11 is made very narrow to seal the gap and prevent liquid helium 4 from entering the gap. FIG. 4 is an enlarged sectional view of a safety device showing another embodiment of the present invention. The gap between the opening tube 7 and the emergency release tube 11 is used as a threaded portion 12 to seal the gap, thereby obtaining the same effect as the previous embodiment. The emergency release tube 11 is attached to the vacuum container 1 at normal temperature using a screw 14 via a vacuum-resistant flexible tube 13. FIG. 5 is also an enlarged sectional view of a safety device showing another embodiment of the present invention. Here, the gap seal is tapered to obtain the same effect as in the previous embodiment. Further, in this embodiment, the forced destruction device 16 is installed so that when the destruction plate 10 on the low temperature side is operated and destroyed, the destruction plate 9 on the room temperature side is immediately activated and destroyed. 6a and 6b show specific examples of this forced destruction device, which are attached to the flange 17. To explain the principle of operation, as shown in FIG. 7, before the low-temperature breakdown plate operates, the normal-temperature breakdown plate 9 has a shape as shown by a solid line. However, when the cold destruction plate operates, the vacuum inside the emergency release pipe 11 is broken, and the cold destruction plate 9 comes into contact with the forced destruction device 16 as shown by the dotted line, and is automatically destroyed. In this way,
It is possible to eliminate the natural convection space for helium gas and completely eliminate the intrusion of liquid helium into the open pipe portion, thereby eliminating an increase in the amount of evaporation of liquid helium. Moreover, it can also fully serve as an emergency release pipe.

以上のように、本発明によれば液体ヘリウムの
蒸発量を大幅に減少させることができる。
As described above, according to the present invention, the amount of evaporation of liquid helium can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の極低温装置の構成を示す図、第
2図は本発明は極低温装置の一実施例を示す図、
第3図は第2図における安全装置の拡大断面図、
第4図および第5図は本発明の極低温装置の他の
例における安全装置の拡大断面図、第6図は第5
図における強制破壊器の具体例を示す図、第7図
は第5図における常温破壊板の動作を説明する図
である。 1……真空容器、2……極低温容器、3……輻
射シールド、4……液体ヘリウム、5……超電導
磁石、6……安全装置、7……開口管、8……破
壊板、9……常温破壊板、10……低温破壊板、
11……緊急放出管、16……強制破壊装置。
FIG. 1 is a diagram showing the configuration of a conventional cryogenic apparatus, FIG. 2 is a diagram showing an embodiment of the cryogenic apparatus of the present invention,
Figure 3 is an enlarged sectional view of the safety device in Figure 2;
4 and 5 are enlarged sectional views of a safety device in another example of the cryogenic apparatus of the present invention, and FIG.
FIG. 7 is a diagram illustrating the operation of the room-temperature rupture plate in FIG. 5, showing a specific example of the forced rupture device in the figure. 1... Vacuum container, 2... Cryogenic container, 3... Radiation shield, 4... Liquid helium, 5... Superconducting magnet, 6... Safety device, 7... Open tube, 8... Breaking plate, 9 ...Room temperature rupture plate, 10...Low temperature rupture plate,
11...Emergency release pipe, 16...Forced destruction device.

Claims (1)

【特許請求の範囲】 1 極低温冷媒を溜める極低温容器と、この極低
温容器を断熱空間を介して包囲する真空容器と、
前記極低温容器と前記真空容器の間に接続される
安全装置を有する極低温装置において、両端に破
壊板を取付け、その内部を真空に保持した緊急放
出管を、前記安全装置の開口管内に隙間シールを
設けるようにして挿入したことを特徴とする極低
温装置。 2 特許請求の範囲第1項において、隙間シール
を螺子状としたことを特徴とする極低温装置。 3 特許請求の範囲第1項において、隙間シール
をテーパ状としたことを特徴とする極低温装置。 4 特許請求の範囲第1項ないし第3項のいずれ
か1項において、真空容器側の破壊板部分に、極
低温容器側の破壊板が動作した直後に真空容器側
破壊板を強制的に破壊する装置を取付けたことを
特徴とする極低温装置。
[Scope of Claims] 1. A cryogenic container for storing a cryogenic refrigerant, a vacuum container surrounding the cryogenic container via a heat insulating space,
In a cryogenic device having a safety device connected between the cryogenic container and the vacuum container, an emergency release tube with break plates attached to both ends and whose interior is kept in a vacuum is inserted into the open tube of the safety device with a gap. A cryogenic device characterized by being inserted so as to provide a seal. 2. A cryogenic device according to claim 1, characterized in that the gap seal is screw-shaped. 3. A cryogenic device according to claim 1, characterized in that the gap seal is tapered. 4. In any one of claims 1 to 3, the rupture plate on the vacuum vessel side is forcibly destroyed immediately after the rupture plate on the cryogenic vessel side operates. A cryogenic device characterized by having a device attached thereto.
JP55161977A 1980-11-19 1980-11-19 Crygenic device Granted JPS5787185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55161977A JPS5787185A (en) 1980-11-19 1980-11-19 Crygenic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55161977A JPS5787185A (en) 1980-11-19 1980-11-19 Crygenic device

Publications (2)

Publication Number Publication Date
JPS5787185A JPS5787185A (en) 1982-05-31
JPS6349917B2 true JPS6349917B2 (en) 1988-10-06

Family

ID=15745673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55161977A Granted JPS5787185A (en) 1980-11-19 1980-11-19 Crygenic device

Country Status (1)

Country Link
JP (1) JPS5787185A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144917A (en) * 1984-01-09 1985-07-31 Toshiba Corp Superconductive coil apparatus
US4526015A (en) * 1984-10-15 1985-07-02 General Electric Company Support for cryostat penetration tube
JPS61236175A (en) * 1985-04-12 1986-10-21 Mitsubishi Electric Corp Cryogenic container

Also Published As

Publication number Publication date
JPS5787185A (en) 1982-05-31

Similar Documents

Publication Publication Date Title
US3114469A (en) Means for improving thermal insulation space
US2831549A (en) Isolation trap
JPH0310124A (en) Method of forming vacuum device and infrared detector
US3006157A (en) Cryogenic apparatus
EP0188389B1 (en) Cryogenic vessel for a superconducting apparatus
GB2274330A (en) Apparatus for producing liquid nitrogen
JPS6349917B2 (en)
JP2008041660A (en) Terminator of superconducting cable
US4625192A (en) Superconducting apparatus with improved current lead-in
JPH0240461Y2 (en)
JPS60233874A (en) Lateral cryostat
JP2530065B2 (en) Superconducting device current lead
JP3674967B2 (en) Cryogenic cooling device
GB2139311A (en) Concentric pipe system
JPH062247Y2 (en) Superconducting device
JPH0521846Y2 (en)
JPS63299180A (en) Superconducting apparatus
US3245195A (en) Method of producing heat insulating panels
JPH0869911A (en) Superconducting magnet device
JPH0230193B2 (en)
JPS63217606A (en) Cryogenic container for superconductng electromagnet
JPH0155720B2 (en)
JPS6343992B2 (en)
JPS5917550B2 (en) cryogenic container
JPS62220Y2 (en)