JP2530065B2 - Superconducting device current lead - Google Patents

Superconducting device current lead

Info

Publication number
JP2530065B2
JP2530065B2 JP3090182A JP9018291A JP2530065B2 JP 2530065 B2 JP2530065 B2 JP 2530065B2 JP 3090182 A JP3090182 A JP 3090182A JP 9018291 A JP9018291 A JP 9018291A JP 2530065 B2 JP2530065 B2 JP 2530065B2
Authority
JP
Japan
Prior art keywords
current lead
lead body
temperature side
superconducting device
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3090182A
Other languages
Japanese (ja)
Other versions
JPH04321205A (en
Inventor
孝穂 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP3090182A priority Critical patent/JP2530065B2/en
Publication of JPH04321205A publication Critical patent/JPH04321205A/en
Application granted granted Critical
Publication of JP2530065B2 publication Critical patent/JP2530065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

[発明の目的] [Object of the Invention]

【0001】[0001]

【産業上の利用分野】本発明は超電導装置の電流リード
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current lead of a superconducting device.

【0002】[0002]

【従来の技術】図4および図5を参照して従来の電流リ
ードについて説明する。
2. Description of the Related Art A conventional current lead will be described with reference to FIGS.

【0003】図4は代表的な従来の超電導マグネットの
構造であり、超電導コイル1に電流リード本体2、つな
ぎリード3を介して電流が供給される。超電導コイル1
は極低温容器4内に断熱収納されている。極低温容器4
内部の雰囲気と外部雰囲気とは極低温容器4に機械的に
固定されているトップフランジ5で遮蔽されており、ト
ップフランジ5には電流リード本体2が貫通保持され、
その他配管類等(図示せず)が装着されている。極低温
容器4内には液体ヘリウム6が貯液されていて、超電導
コイル1を浸漬することにより超電導コイル1を超電導
状態(約−269℃)に冷却する。
FIG. 4 shows a structure of a typical conventional superconducting magnet, in which a current is supplied to a superconducting coil 1 through a current lead body 2 and a connecting lead 3. Superconducting coil 1
Is heat-insulated and stored in the cryogenic container 4. Cryogenic container 4
The internal atmosphere and the external atmosphere are shielded by a top flange 5 mechanically fixed to the cryogenic container 4, and the current lead body 2 is penetratingly held by the top flange 5.
Other pipes and the like (not shown) are attached. Liquid helium 6 is stored in the cryogenic container 4, and by immersing the superconducting coil 1, the superconducting coil 1 is cooled to a superconducting state (about −269 ° C.).

【0004】電流リード本体2の部分は図5に示すよう
に、常温領域にある絶縁フランジ7でトップフランジ5
と電流リード本体2の耐電圧絶縁を保ち、極低温容器4
の内部と外部の雰囲気をガスケット8で密閉シールして
いる。電流リード本体2は通電による抵抗損失により発
熱し、この熱量が電流リード本体2およびつなぎリード
3をとおして液体ヘリウム6へ侵入し液体ヘリウム6の
蒸発量を増大させる。このため電流リード本体2での発
熱量および伝導による液体ヘリウム6への伝熱量を少く
するため、一般的には電流リード本体2内部には冷却流
路(図示せず)が設けられ、液体ヘリウム6の蒸発ガス
9を冷却流路に導いて電流リード本体2を冷却する方法
がとられている。電流リード本体2には外部電源へ接続
するための端子板10が常温側に設けてある。
As shown in FIG. 5, the portion of the current lead body 2 is an insulating flange 7 in the room temperature region, which is a top flange 5.
Cryogenic container 4 that maintains the withstand voltage insulation of the current lead body 2 and
The inside and outside atmospheres are hermetically sealed by the gasket 8. The current lead body 2 generates heat due to resistance loss due to energization, and this amount of heat penetrates into the liquid helium 6 through the current lead body 2 and the connecting lead 3 to increase the evaporation amount of the liquid helium 6. Therefore, in order to reduce the amount of heat generated in the current lead body 2 and the amount of heat transferred to the liquid helium 6 due to conduction, a cooling flow path (not shown) is generally provided inside the current lead body 2 to provide liquid helium. A method of guiding the vaporized gas 9 of 6 to the cooling flow path to cool the current lead body 2 is adopted. The current lead body 2 is provided with a terminal plate 10 for connecting to an external power source on the room temperature side.

【0005】[0005]

【発明が解決しようとする課題】コイル通電にともない
電流リード本体2に発生する抵抗損失による液体ヘリウ
ム6の蒸発ガス9は電流リード本体2の冷却流路を通っ
て常温側ヘ排出されるが、電流リード本体2内で完全に
熱交換はされず低温の蒸発ガスが排出される。このため
端子板10、フランジ11および、これらの近傍にある部材
は低温となり、これらの表面は大気中の水分が霜となっ
て付着する。そして、超電導コイル1の運転サイクルの
間において付着した霜の表面は溶けて絶縁フランジ7の
表面を水で覆い、電流リード本体2のフランジ11とトッ
プフランジ5間の絶縁耐圧を低下させる。
The evaporative gas 9 of the liquid helium 6 due to the resistance loss generated in the current lead body 2 due to the energization of the coil is discharged to the room temperature side through the cooling flow path of the current lead body 2. The heat is not completely exchanged in the current lead body 2 and the low temperature evaporative gas is discharged. Therefore, the temperature of the terminal plate 10, the flange 11 and the members in the vicinity thereof becomes low, and the moisture in the atmosphere becomes frost and adheres to the surface of these. Then, the surface of the frost adhered during the operation cycle of the superconducting coil 1 is melted to cover the surface of the insulating flange 7 with water, and the withstand voltage between the flange 11 of the current lead body 2 and the top flange 5 is lowered.

【0006】従来の比較的小型の直流超電導マグネット
においては発生する電圧も低いため多小、絶縁フランジ
7が水で濡れていても絶縁耐圧は確保されて問題はない
が、近年、超電導コイルはその用途が拡大され、例えば
電力貯蔵システムや超電導トランス等においては発生電
圧力も数KVと高くなり霜や水分が付着した状態では絶
縁耐圧を確保することはできず正常な運転を行うことは
不可能となる。また、高電圧部分がトップフランジ5の
上部空間に露出している状態は人間が誤って接近した場
合、感電事故に致る恐れがある。従って、本発明は電流
リードの常温側に霜の付着がなく、かつ人間が接近して
も安全な電流リードを提供することを目的とする。 [発明の構成]
Since a relatively small DC superconducting magnet in the related art generates a low voltage, there are many, and even if the insulating flange 7 is wet with water, there is no problem because the dielectric strength is secured, but in recent years, the superconducting coil has been Applications are expanded, and for example, in power storage systems and superconducting transformers, the generated voltage power is as high as several KV, and with frost and moisture adhering to it, it is not possible to ensure dielectric strength and normal operation is impossible. Become. Further, the state where the high voltage portion is exposed in the upper space of the top flange 5 may cause an electric shock accident if a person accidentally approaches. Therefore, an object of the present invention is to provide a current lead which is free from frost on the room temperature side of the current lead and which is safe even when a person approaches it. [Constitution of Invention]

【0007】[0007]

【課題を解決するための手段】本発明は上記の目的を達
成するため、電流リード本体の常温側を絶縁ケースで覆
い、このケース内を真空にしあるいは乾燥ガスを流す構
成とする。
In order to achieve the above-mentioned object, the present invention has a structure in which the room temperature side of the current lead body is covered with an insulating case, and the inside of this case is evacuated or a dry gas is made to flow.

【0008】[0008]

【作用】このような構成の電流リードにあっては、常温
側の部分は絶縁ケースにより覆われ、内部を窒素ガス等
の絶縁特性のよい乾燥ガスで置換し、流すことにより電
流リードの端子板、フランジ等の表面に霜が発生、付着
するのを防ぐことができる。また乾燥ガスを流すことに
より端子板等が過度に冷却されるのを防ぐことができ
る。この他、人間が誤って接近しても安全である。
In the current lead having such a structure, the room temperature side portion is covered with an insulating case, the inside is replaced with a dry gas having a good insulating property such as nitrogen gas, and the current lead terminal plate is made to flow. It is possible to prevent frost from being generated and attached to the surface of the flange, etc. Further, by flowing the dry gas, it is possible to prevent the terminal board and the like from being excessively cooled. In addition, it is safe for humans to approach by mistake.

【0009】[0009]

【実施例】【Example】

(実施例1)以下、本発明の第1の実施例を図面を参照
して説明する。
(First Embodiment) A first embodiment of the present invention will be described below with reference to the drawings.

【0010】図1は本発明の第1の実施例における電流
リードの構成を示す断面図で、図4および図5の同一部
分には同一記号を付して示し、ここでは図4および図5
と異なる点について述へる。
FIG. 1 is a sectional view showing the structure of a current lead according to a first embodiment of the present invention. The same parts as those in FIGS. 4 and 5 are designated by the same reference numerals.
I will describe the points that are different from.

【0011】本実施例では電流リード本体2の筒部に絶
縁フランジ7と一体化した絶縁管12をかぶせ、筒部と絶
縁管12間はエポキシ樹脂等で密閉シールする。電流リー
ド本体2は絶縁フランジ7を使用しトップフランジ5に
取付、フランジ間にガスケットを挿入し、極低温容器4
の内部空間雰囲気と遮蔽シールする。又、電流リード本
体2の常温側全体を覆う絶縁ケース13をトップフランジ
5上に設け、接続部をシール接続する。
In this embodiment, the tubular portion of the current lead body 2 is covered with an insulating tube 12 integrated with the insulating flange 7, and the tubular portion and the insulating tube 12 are hermetically sealed with epoxy resin or the like. The current lead body 2 is attached to the top flange 5 by using the insulating flange 7, and the gasket is inserted between the flanges.
The inner space atmosphere and the shielding seal. Further, an insulating case 13 that covers the whole of the current lead body 2 at room temperature is provided on the top flange 5, and the connection portion is sealed and connected.

【0012】電流リード本体2の上部には蒸発ガス9の
排出用パイプ14が接続され、絶縁ケース13の壁面を貫通
して外部に導く構造である。貫通部は気密シールを行う
ため図2に示すようにガスケット15、パッキン押え16、
袋ナット17で構成する。電源へつながる給電ケーブル18
はフレキシブル導体19により端子板10に接続される。ケ
ーブル18の気密シールはスリーブ20、袋ナット21、ガス
ケット22、シール材23により行う。絶縁ケース13には乾
燥ガスの導入、排出のためのポート24を設ける。
A pipe 14 for discharging the vaporized gas 9 is connected to the upper portion of the current lead body 2 and has a structure which penetrates the wall surface of the insulating case 13 and guides it to the outside. Since the through portion is airtightly sealed, as shown in FIG. 2, the gasket 15, packing retainer 16,
Consists of a cap nut 17. Power supply cable 18 that connects to the power supply
Is connected to the terminal board 10 by a flexible conductor 19. The airtight seal of the cable 18 is performed by the sleeve 20, the cap nut 21, the gasket 22, and the sealing material 23. The insulating case 13 is provided with a port 24 for introducing and discharging dry gas.

【0013】次に作用を説明する。蒸発ガス9は電流リ
ード本体2の内部冷却流路を通り、上部の排出用パイプ
14から絶縁ケース13の外部へ排出される。絶縁ケース13
の内部には絶縁特性のよい乾燥ガスをポート24から導入
し、排出させることにより内部空間は置換される。
Next, the operation will be described. The evaporative gas 9 passes through the internal cooling flow path of the current lead body 2, and the upper discharge pipe.
It is discharged from 14 to the outside of the insulating case 13. Insulation case 13
The internal space is replaced by introducing and discharging a dry gas having a good insulating property from the port 24 inside.

【0014】従って、常温側部材が0℃以下に冷却され
ても、乾燥ガス雰囲気であるため、霜の発生、付着はな
い。また、乾燥ガスを強制的に流すので、常温側部材は
加温され過度に冷却されることを防ぐことができる。こ
の他、高電圧がかかる電流リードにおいては、誤って人
間が接近しても直接電流リードに触れることがないので
感電事故を防ぐこともできる。 (実施例2)第2の実施例は図3に示すように絶縁ケー
ス13に底板25を設け、これに電流リード本体2を絶縁フ
ランジ7により取付けたものである。このような構成に
しても実施例1と同じ作用がある。 (実施例3)第3の実施例は図1、図3においてポート
24の1ケ所以上から真空排気し、絶縁ケース内を真空雰
囲気にするものである。このような構成にしても実施例
1と同じ作用がある。
Therefore, even if the room temperature side member is cooled to 0 ° C. or less, since it is in the dry gas atmosphere, frost is not generated and adhered. Further, since the dry gas is forced to flow, the room temperature member can be prevented from being heated and excessively cooled. Besides, in the case of a current lead to which a high voltage is applied, even if a person accidentally approaches the current lead, the current lead is not directly touched, so that an electric shock accident can be prevented. (Embodiment 2) In the second embodiment, as shown in FIG. 3, an insulating case 13 is provided with a bottom plate 25, and the current lead body 2 is attached thereto by an insulating flange 7. Even with such a configuration, the same operation as that of the first embodiment can be obtained. (Embodiment 3) The third embodiment is a port in FIGS.
The vacuum is evacuated from one or more places of 24 to create a vacuum atmosphere in the insulating case. Even with such a configuration, the same operation as that of the first embodiment can be obtained.

【0015】[0015]

【発明の効果】以上述べたように本発明によれば、電流
リードの常温側に霜が付着せず耐電圧絶縁を保つことが
でき、かつ安全な超電導装置の電流リードを提供でき
る。
As described above, according to the present invention, it is possible to provide a safe current lead of a superconducting device which can maintain withstand voltage insulation without frost adhering to the room temperature side of the current lead.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す断面図。FIG. 1 is a sectional view showing a first embodiment of the present invention.

【図2】上記実施例における気密シール部を示す拡大
図。
FIG. 2 is an enlarged view showing an airtight seal portion in the above embodiment.

【図3】第2の実施例を示す断面図。FIG. 3 is a sectional view showing a second embodiment.

【図4】従来の超電導マグネットの構成を示す縦断面
図。
FIG. 4 is a vertical cross-sectional view showing the structure of a conventional superconducting magnet.

【図5】従来の電流リードの構成を示す縦断面図。FIG. 5 is a vertical cross-sectional view showing the configuration of a conventional current lead.

【符号の説明】[Explanation of symbols]

1…超電導コイル 2…電流リード
本体 3…つなきリード 4…極低温容器 5…トップフランジ 6…液体ヘリウ
ム 7…絶縁フランジ 8…ガスケット 9…蒸発ガス 10…端子板 11…フランジ 12…絶縁管 13…絶縁ケース 14…排出用パイ
プ 15,22…ガスケット 16…パッキン押
え 17,21…袋ナット 18…ケーブル 19…フレキシブル導体 20…スリーブ 23…シール材 24…ポート 25…底板
1 ... Superconducting coil 2 ... Current lead body 3 ... Connection lead 4 ... Cryogenic container 5 ... Top flange 6 ... Liquid helium 7 ... Insulation flange 8 ... Gasket 9 ... Evaporated gas 10 ... Terminal plate 11 ... Flange 12 ... Insulation tube 13 … Insulation case 14… Discharge pipe 15, 22… Gasket 16… Packing retainer 17, 21… Cap nut 18… Cable 19… Flexible conductor 20… Sleeve 23… Sealing material 24… Port 25… Bottom plate

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一端に常温側ターミナルを有し他端に低
温側ターミナルを有するリード外管と、このリード外管
の中空部に設置され端部が前記両ターミナルに導電接合
されたリード本体とからなり、低温容器に気密に挿入さ
れて超電導機器に電流を供給し、前記中空部を通る冷媒
液の気化ガスによって冷却されるものにおいて、前記リ
ード本体の常温側を覆う絶縁ケースを備え、この絶縁ケ
ース内を真空にしあるいは乾燥ガスを流すようにしたこ
とを特徴とする超電導装置の電流リード。
1. A lead outer tube having a room temperature side terminal at one end and a low temperature side terminal at the other end, and a lead body which is installed in the hollow portion of the lead outer tube and whose ends are conductively joined to both terminals. Which is inserted in a cryogenic container in an airtight manner to supply a current to a superconducting device and is cooled by vaporized gas of a refrigerant liquid passing through the hollow portion, and which is provided with an insulating case covering a normal temperature side of the lead body, A current lead for a superconducting device, characterized in that the inside of the insulating case is evacuated or a dry gas is made to flow.
JP3090182A 1991-04-22 1991-04-22 Superconducting device current lead Expired - Fee Related JP2530065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3090182A JP2530065B2 (en) 1991-04-22 1991-04-22 Superconducting device current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3090182A JP2530065B2 (en) 1991-04-22 1991-04-22 Superconducting device current lead

Publications (2)

Publication Number Publication Date
JPH04321205A JPH04321205A (en) 1992-11-11
JP2530065B2 true JP2530065B2 (en) 1996-09-04

Family

ID=13991348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3090182A Expired - Fee Related JP2530065B2 (en) 1991-04-22 1991-04-22 Superconducting device current lead

Country Status (1)

Country Link
JP (1) JP2530065B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4494767B2 (en) * 2003-12-10 2010-06-30 財団法人電力中央研究所 Current leads for superconducting coils
JP4568253B2 (en) * 2006-07-10 2010-10-27 株式会社東芝 Superconducting magnet protection circuit
JP5253880B2 (en) * 2008-05-22 2013-07-31 株式会社東芝 Superconducting device and operation method thereof
JP5367393B2 (en) * 2009-01-30 2013-12-11 アイシン精機株式会社 Superconducting device
JP5713489B2 (en) * 2010-11-22 2015-05-07 大陽日酸株式会社 FRP cryostat
JP7329367B2 (en) * 2019-06-10 2023-08-18 住友重機械工業株式会社 superconducting device

Also Published As

Publication number Publication date
JPH04321205A (en) 1992-11-11

Similar Documents

Publication Publication Date Title
US5342471A (en) Plasma processing apparatus including condensation preventing means
US3609992A (en) Hermetically sealed box for maintaining a semiconductor radiation detector at a very low temperature
US7557295B2 (en) Isolating tube for a cooling element which can be loaded with high voltage
JP5118815B2 (en) Electric bushings for superconducting members
JP4784852B2 (en) Cryogenic container for superconducting equipment
JP2530065B2 (en) Superconducting device current lead
US4625192A (en) Superconducting apparatus with improved current lead-in
JPH06204575A (en) Cryogenic apparatus
JP4927250B2 (en) Superconducting coil cooling device
JP4494767B2 (en) Current leads for superconducting coils
JP2011176025A (en) Bushing for superconducting device
JPS5910248A (en) Ebullition type cooling apparatus for semiconductor
JPH11204324A (en) Superconducting apparatus
JP3316986B2 (en) Current leads for superconducting devices
JPH03105873A (en) Fuel cell storage container
JPS6244502Y2 (en)
JPH04332105A (en) Superconducting magnet device
JPS5826534Y2 (en) semiconductor cooling equipment
JPS63299217A (en) Gas cooling type current lead for superconducting machinery and apparatus
JP3339118B2 (en) Superconducting device current leads
JPH0132324Y2 (en)
JP3541287B2 (en) Bushing
JPH07161519A (en) Superconducting unit
JPH0455522B2 (en)
JPS5947711A (en) Current lead of superconductive coil

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees