JP4494767B2 - Current leads for superconducting coils - Google Patents

Current leads for superconducting coils Download PDF

Info

Publication number
JP4494767B2
JP4494767B2 JP2003411529A JP2003411529A JP4494767B2 JP 4494767 B2 JP4494767 B2 JP 4494767B2 JP 2003411529 A JP2003411529 A JP 2003411529A JP 2003411529 A JP2003411529 A JP 2003411529A JP 4494767 B2 JP4494767 B2 JP 4494767B2
Authority
JP
Japan
Prior art keywords
lead
vacuum vessel
current lead
vacuum
superconducting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003411529A
Other languages
Japanese (ja)
Other versions
JP2005175123A (en
Inventor
調 秋田
奉文 笠原
俊夫 上出
雅行 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Fuji Electric Co Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Fuji Electric Systems Co Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP2003411529A priority Critical patent/JP4494767B2/en
Publication of JP2005175123A publication Critical patent/JP2005175123A/en
Application granted granted Critical
Publication of JP4494767B2 publication Critical patent/JP4494767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

この発明は、真空容器内に設置されて冷却される超電導コイルに対して、真空容器外部から電流を供給する電流リード、特に、電流リード本体と超電導コイルとの電気的接続部の電気絶縁構成に関する。   The present invention relates to a current lead that supplies current from the outside of a vacuum vessel to a superconducting coil that is installed and cooled in a vacuum vessel, and particularly relates to an electrical insulation configuration of an electrical connection portion between a current lead body and a superconducting coil. .

超電導コイルの冷却や電流リードの構成に関しては、種々の方式が開発されている。近年、冷凍機の冷凍能力の向上に伴って、超電導コイルに冷凍機を付設して熱伝導によって超電導コイルを冷却する方式の超電導磁石装置の開発が盛んに進められている(特許文献1および特許文献2参照)。   Various methods have been developed for the cooling of the superconducting coil and the configuration of the current leads. In recent years, with the improvement of the refrigeration capacity of refrigerators, development of superconducting magnet devices of a type in which a refrigerator is attached to a superconducting coil and the superconducting coil is cooled by heat conduction has been actively promoted (Patent Document 1 and Patents). Reference 2).

図6は、特許文献1に開示された従来の冷凍機冷却方式の超電導磁石装置の基本構成を模式的に示す断面図で、中央部に常温の高磁界空間を備えた超電導磁石装置について中心軸を通る断面を示したものである。図6において、1は超電導線をソレノイド状に巻回して構成された超電導コイル、4は超電導コイル1の周囲に配され、外部からの熱輻射を遮断して断熱する輻射シールド、2はこれらを取り囲み内部を真空に保持して断熱する真空容器である。また、3は超電導コイル1を冷却する冷凍機、33は冷凍機3に圧縮ヘリウムガスを供給し運転制御する圧縮機、7は超電導コイル1に図示しない電源より電流を供給して励磁する電流リードである。   FIG. 6 is a cross-sectional view schematically showing a basic configuration of a conventional refrigerator-cooled superconducting magnet device disclosed in Patent Document 1, with a central axis of a superconducting magnet device having a room-temperature high magnetic field space at the center. The cross section which passes through is shown. In FIG. 6, 1 is a superconducting coil formed by winding a superconducting wire in a solenoid shape, 4 is arranged around the superconducting coil 1, and is a radiation shield that shields and insulates heat radiation from the outside. It is a vacuum vessel that keeps the inside of the enclosure in a vacuum and insulates it. Reference numeral 3 denotes a refrigerator for cooling the superconducting coil 1, 33 a compressor for supplying and operating compressed helium gas to the refrigerator 3, and 7 a current lead for exciting the superconducting coil 1 by supplying current from a power source (not shown). It is.

図6に示すように、冷凍機3は、超電導コイル1を側面より支持する冷却フランジ54と輻射シールド4に接続されており、超電導コイル1を極低温に、また輻射シールド4を、例えば約80Kの低温に冷却する。超電導コイル1は円筒状の冷却ボビン55に図示しない超電導線を層状に巻回して構成されており、両側面に冷却フランジ54が、また外周に冷却板56が備えられている。冷凍機3により図中下側の冷却フランジ54の一端を冷却することにより、これに連結された冷却ボビン55、冷却板56、上部の冷却フランジ54が熱伝導により冷却され、さらにこれらに取り囲まれた超電導コイル1が熱伝導により超電導線の臨界温度以下の温度に冷却され、超電導状態に保持される。超電導状態において電流リード7を用いて超電導コイル1に電流を供給すると、強磁界が生じ、同時にインダクタンスに比例した磁気エネルギーが超電導コイル1に蓄積されることとなる。なお、静磁界として用いる場合に、超電導コイル1と電流リード7との間に超電導コイル1を短絡するスイッチ(永久電流スイッチ)を組み込んで、いわゆる永久電流モードとして使用される場合もある。   As shown in FIG. 6, the refrigerator 3 is connected to the cooling flange 54 and the radiation shield 4 that support the superconducting coil 1 from the side, and the superconducting coil 1 is set to a cryogenic temperature, and the radiation shield 4 is set to about 80K, for example. Cool to low temperature. The superconducting coil 1 is formed by winding a superconducting wire (not shown) around a cylindrical cooling bobbin 55 in layers, and is provided with cooling flanges 54 on both sides and a cooling plate 56 on the outer periphery. By cooling one end of the cooling flange 54 on the lower side in the drawing by the refrigerator 3, the cooling bobbin 55, the cooling plate 56, and the upper cooling flange 54 connected thereto are cooled by heat conduction and further surrounded by them. The superconducting coil 1 is cooled to a temperature lower than the critical temperature of the superconducting wire by heat conduction and kept in the superconducting state. When a current is supplied to the superconducting coil 1 using the current lead 7 in the superconducting state, a strong magnetic field is generated, and at the same time, magnetic energy proportional to the inductance is accumulated in the superconducting coil 1. In addition, when using as a static magnetic field, the switch (permanent current switch) which short-circuits the superconducting coil 1 between the superconducting coil 1 and the current lead 7 may be incorporated and used as a so-called permanent current mode.

次に、図5について述べる。図5は、図6に示す超電導磁石装置に関し、電流リード部分に着目してその詳細断面を示し、かつ説明の便宜上、他の部分は全体的に簡略化して模式的に示した図であり、図6と同一機能部材には、同一番号を付して、その詳細説明は省略する。なお、図5に示す超電導磁石装置においては、超電導コイル1の外面に、コイル絶縁5を示し、冷凍機3は、コイル絶縁5を介して超電導コイル1に接し冷却する構成を示す。また、超電導コイル1の口出しリード線6が電流リード7と接続されて、電流リード7から超電導コイル1に電流が供給される構成を示すが、本質的には図6と同一である。   Next, FIG. 5 will be described. FIG. 5 is a diagram showing a detailed cross section of the superconducting magnet device shown in FIG. 6 with a focus on the current lead portion, and the other portions are simplified and schematically shown for convenience of explanation. The same functional members as those in FIG. 6 are denoted by the same reference numerals, and detailed description thereof is omitted. In the superconducting magnet device shown in FIG. 5, the coil insulation 5 is shown on the outer surface of the superconducting coil 1, and the refrigerator 3 is in contact with the superconducting coil 1 through the coil insulation 5 and cooled. In addition, the lead wire 6 of the superconducting coil 1 is connected to the current lead 7 and current is supplied from the current lead 7 to the superconducting coil 1, which is essentially the same as FIG. 6.

図4は、図5における電流リード7の部分の詳細断面図であり、電流リード7と口出しリード線6(口出しリード線2本の内1本を図示)の接続部の詳細断面を示す。図4によれば、電流リード本体低温端子8と口出しリード線端子9はボルトにより接続されている。口出しリード線6は、リード絶縁16により被覆されている。また、電流リード7にはガラス強化樹脂(GFRP)製の電流リード本体用絶縁筒10が配設されて、電流リード本体7aの絶縁を保っている。接続部の絶縁は電流リード本体低温端子8と口出しリード線端子9とをボルト接続後に、例えばカプトンテープ等の絶縁テープを前記接続部に巻き付けて接続部絶縁11を施している。
特開平10−116725号公報(第2頁、図8,9) 特開平11−144938号公報(第2−4頁、図1,4)
FIG. 4 is a detailed cross-sectional view of the portion of the current lead 7 in FIG. 5, showing a detailed cross-section of the connecting portion between the current lead 7 and the lead wire 6 (one of the two lead wires is shown). According to FIG. 4, the current lead main body low-temperature terminal 8 and the lead-out lead wire terminal 9 are connected by bolts. The lead wire 6 is covered with a lead insulation 16. The current lead 7 is provided with a current lead body insulating tube 10 made of glass reinforced resin (GFRP) to keep the current lead body 7a insulated. Insulation of the connection portion is performed by connecting the current lead body low-temperature terminal 8 and the lead wire terminal 9 with bolts, and then insulating the connection portion 11 by winding an insulating tape such as Kapton tape around the connection portion.
JP-A-10-116725 (second page, FIGS. 8 and 9) Japanese Patent Laid-Open No. 11-144938 (page 2-4, FIGS. 1 and 4)

ところで、従来の電流リード本体と超電導コイルとの電気的接続部の電気絶縁構成に関しては、下記のような問題点がある。   By the way, there are the following problems regarding the electrical insulation configuration of the electrical connection portion between the conventional current lead body and the superconducting coil.

第1の問題点は、接続部絶縁11に関わり、ボルト締め後に絶縁テープを前記接続部に巻き付けて絶縁を行う際に、ボルト部に凹凸があり、また接続部の絶縁対象部の形状が複雑なために、絶縁施行が上手く出来ず、絶縁の信頼性に問題があった。   The first problem is related to the connection part insulation 11. When the insulation tape is wound around the connection part after the bolt is tightened, the bolt part has irregularities, and the shape of the insulation target part of the connection part is complicated. For this reason, insulation could not be performed well, and there was a problem in insulation reliability.

第2の問題点は、電流リード本体用絶縁筒10と接続部絶縁11との間に、電流リード本体の高電位部が絶縁で覆われない部分が存在することによる後述の問題点である。通常の高真空状態においては、高真空中の絶縁耐力は非常に高いので、設計上、絶縁に覆われない高電位部と最短接地電位部(例えば、近傍の幅射シールド4)との絶縁距離dを、高電圧に耐える所定寸法とすれば良い。   The second problem is a problem described later due to the existence of a portion where the high potential portion of the current lead body is not covered with insulation between the current lead body insulating cylinder 10 and the connection part insulation 11. In a normal high vacuum state, the dielectric strength in high vacuum is very high, so that the insulation distance between the high potential portion that is not covered with insulation and the shortest ground potential portion (for example, the adjacent width shield 4) by design. d may be a predetermined dimension that can withstand a high voltage.

しかしながら、何らかの原因、例えば、真空容器貫通部のシール不良や真空容器自体のリーク、アウトガスによる真空度の悪化、不十分な真空引きで運転スタート等の原因で、真空度が悪くなった時、いわゆるパシェンミニマム時には、真空中の絶縁耐力は極端に低くなり、この場合には、絶縁に覆われない高電位部と近くの接地電位部の絶縁を、前記絶縁距離dを大きくとることで絶縁を保つのは不可能となる。 However, when the degree of vacuum deteriorates due to some cause, for example, poor sealing of the vacuum vessel penetrating part, leakage of the vacuum vessel itself, deterioration of the degree of vacuum due to outgas, start of operation due to insufficient evacuation, etc., so-called the path Tsu Shen minimum time, the dielectric strength of the vacuum becomes extremely low, in this case, the insulation by the insulation of the ground potential portion near the high potential portion not covered with the insulating, a large the insulation distance d It is impossible to keep

この発明は上記の点に鑑みてなされたもので、本発明の課題は、電流リード本体と超電導コイルとの電気的接続部の電気絶縁の信頼性の向上、特に、真空容器内の真空度が低下した際であっても、所定の電気絶縁性能が維持可能な超電導コイル用電流リードを提供することにある。   The present invention has been made in view of the above points. An object of the present invention is to improve the electrical insulation reliability of the electrical connection portion between the current lead main body and the superconducting coil, in particular, the degree of vacuum in the vacuum vessel. An object of the present invention is to provide a superconducting coil current lead capable of maintaining a predetermined electrical insulation performance even when it is lowered.

上記課題は、以下により達成される。即ち、請求項1の発明によれば、真空容器内に設置されて冷却される超電導コイルに対して、少なくとも一部が前記真空容器と、超電導コイルの周囲に配設され外部からの輻射熱を遮断して断熱すべく約80Kに冷却される輻射シールドとを貫通して設けられ、真空容器外部から導電材料からなる電流リード本体を介して電流を供給する電流リードであって、絶縁被覆された超電導コイルの口出しリード線と電流リード本体の低温側端子との電気的接続部が、前記真空容器内に配設される超電導コイル用電流リードにおいて、前記電流リード本体の真空容器貫通部と前記電気的接続部および口出しリード線端部の外周部全体にわたって、前記真空容器内の真空層とは気密の独立空間を作るように、電気絶縁材料により包囲して、電流リードの高電位部と真空容器ないし真空容器内部材の接地電位部との間を電気的に絶縁してなるとともに、前記電流リードの高電位部と真空容器ないし真空容器内部材の接地電位部との間を電気的に絶縁した部分における前記口出しリード線の貫通部と前記口出しリード線の絶縁被覆部とを樹脂接着により封止してなり、さらに、前記気密の独立空間は、真空容器内の真空層とは異なる真空断熱層としたことを特徴とする。 The above-mentioned subject is achieved by the following. That is, according to the first aspect of the present invention, at least a part of the superconducting coil that is installed and cooled in the vacuum vessel is disposed around the vacuum vessel and the superconducting coil to block radiant heat from the outside. A current lead which is provided through a radiation shield cooled to about 80 K to insulate the current and supplies current from the outside of the vacuum vessel through a current lead body made of a conductive material, and is superconductive An electrical connection between the lead wire of the coil and the low-temperature side terminal of the current lead body is a current lead for a superconducting coil disposed in the vacuum vessel. Enclosed with an electrically insulating material so as to form an airtight independent space from the vacuum layer in the vacuum vessel over the entire outer periphery of the connection portion and the end of the lead wire lead, Together comprising electrically isolates the ground potential portion of the potential area and the vacuum container or a vacuum container member, between a high potential portion and the ground potential portion of the vacuum container or a vacuum container member of the current lead The lead portion of the lead wire in the electrically insulated portion and the insulating coating portion of the lead wire are sealed by resin bonding, and the airtight independent space is formed with a vacuum layer in a vacuum vessel. Are characterized by having different vacuum insulation layers .

前記構成によれば、電気的絶縁の施工が容易であり、かつ真空容器内の真空層を介しての電気的絶縁部がないので、前記パシェンミニマム時の絶縁不良問題も解消でき、全体として絶縁の信頼性が向上する。また、電流リードの良好な絶縁構成と断熱構成とが実現できる。 According to the above construction, the construction of the electrical insulation is easy, and because there is no electrical isolation section through the vacuum layer of the vacuum vessel, also eliminates insulation failure problems during the path Tsu Shen minimum, total As a result, the reliability of insulation is improved. Moreover, the favorable insulation structure and heat insulation structure of an electric current lead are realizable.

上記請求項1の発明の実施態様としては、下記請求項2の発明が好ましい As an embodiment of the invention of claim 1, the invention of claim 2 is preferable .

即ち、前記請求項に記載のものにおいて、前記真空断熱層は、その真空引き口を、シールオフバルブにより封じ切りとしたことを特徴とする(請求項)。これにより、前記真空断熱層は封じ切りとなるので、封じ切り後は、当該真空断熱層の真空引き配管は取り外しが可能となる。従って、この場合、接地電位にある真空引き配管の絶縁は不要となる。 That is, in those described in the claim 1, wherein the vacuum insulation layer, the vacuum port, and characterized in that a sealed cut by a seal-off valve (claim 2). Thereby, since the said vacuum heat insulation layer becomes a sealing, the vacuuming piping of the said vacuum heat insulation layer becomes removable after sealing. Therefore, in this case, the insulation of the evacuation pipe at the ground potential is unnecessary.

さらに、下記のような請求項3の発明によっても、前記請求項1の発明と同様の絶縁の信頼性向上が図れる。即ち、真空容器内に設置されて冷却される超電導コイルに対して、少なくとも一部が前記真空容器と、超電導コイルの周囲に配設され外部からの輻射熱を遮断して断熱すべく約80Kに冷却される輻射シールドとを貫通して設けられ、真空容器外部から導電材料からなる電流リード本体を介して電流を供給する電流リードであって、絶縁被覆された超電導コイルの口出しリード線と電流リード本体の低温側端子との電気的接続部が、前記真空容器内に配設される超電導コイル用電流リードにおいて、前記電流リード本体の真空容器貫通部と前記電気的接続部および口出しリード線端部の外周部全体にわたって、前記真空容器内の真空層とは気密の独立空間を作るように、電気絶縁材料により包囲して、電流リードの高電位部と真空容器ないし真空容器内部材の接地電位部との間を電気的に絶縁してなるとともに、前記電流リードの高電位部と真空容器ないし真空容器内部材の接地電位部との間を電気的に絶縁した部分における前記口出しリード線の貫通部と前記口出しリード線の絶縁被覆部とを樹脂接着により封止してなり、さらに、前記気密の独立空間は、その内部にプラスチックフォームを充填した非真空の断熱層としたことを特徴とする(請求項)。例えば、請求項4の発明のように、独立空間に、プラスチックフォームとして発泡ポリウレタンを充填することにより、断熱性能の高い独立空間を構成することができる。 Further, according to the invention of claim 3 as described below, the insulation reliability similar to that of the invention of claim 1 can be improved. That is, at least a part of the superconducting coil that is installed in the vacuum vessel and is cooled is arranged around the superconducting coil and the superconducting coil, and is cooled to about 80K to insulate and shield the radiation heat from the outside. A current lead that is provided through the radiation shield and supplies a current from the outside of the vacuum vessel through a current lead body made of a conductive material. The lead wire and the current lead body of the superconducting coil coated with insulation In the current lead for the superconducting coil disposed in the vacuum vessel, the electrical connection portion with the low-temperature side terminal of the vacuum lead-through portion of the current lead main body, the electrical connection portion, and the lead end of the lead wire Surrounded by an electrically insulating material so as to form an airtight independent space with the vacuum layer in the vacuum vessel over the entire outer periphery, the high potential portion of the current lead and the vacuum vessel or A portion that is electrically insulated from the ground potential portion of the empty container inner member and electrically insulated from the high potential portion of the current lead and the ground potential portion of the vacuum vessel or vacuum container member. A non-vacuum heat insulating layer in which a penetration portion of the lead wire and an insulating coating portion of the lead wire are sealed by resin bonding, and the airtight independent space is filled with plastic foam inside (Claim 3 ). For example, as in the invention of claim 4, by filling the independent space with polyurethane foam as a plastic foam, the independent space with high heat insulation performance can be configured.

さらにまた、前記請求項1ないし4のいずれか1項に記載のものにおいて、前記電流リードの高電位部と真空容器ないし真空容器内部材の接地電位部との間を電気的に絶縁した部分は、フランジ付電流リード本体用絶縁筒と、電気接続部用絶縁筒と、口出しリード線貫通部用の塞ぎ板とから構成し、前記各絶縁筒および塞ぎ板との間は接着剤で接合されたことを特徴とする(請求項5)。前記各絶縁筒および塞ぎ板との間を、例えば接着剤で接合することにより、前記独立空間の組み立てが容易となり、独立空間をシンプルに構成することができる。また、前記請求項5に記載のものにおいて、前記フランジ付電流リード本体用絶縁筒と、前記電気接続部用絶縁筒と、前記口出しリード線貫通部用の塞ぎ板とは、いずれもガラス強化樹脂からなることを特徴とする(請求項6)。 Furthermore, in the device according to any one of claims 1 to 4, a portion that electrically insulates between a high potential portion of the current lead and a ground potential portion of a vacuum vessel or a vacuum vessel internal member is The insulating lead tube for the flanged current lead body, the insulating connecting tube for the electrical connection portion, and the closing plate for the lead wire lead-through portion, and the insulating tube and the closing plate are joined with an adhesive . (Claim 5). By joining the insulating cylinders and the closing plate with, for example, an adhesive, the independent space can be easily assembled, and the independent space can be configured simply. Moreover, the thing of the said Claim 5 WHEREIN: As for the said insulation pipe | tube for current leads with a flange, the said insulation pipe | tube for electrical connection parts, and the closing board for the said lead-out lead wire penetration parts, all are glass reinforced resin. (Claim 6).

さらに、前記請求項5または6に記載のものにおいて、前記電流リード本体は、その真空容器外の軸方向端部にベローズを介して結合された対面する2個のフランジを有し、真空容器側の一方のフランジのフランジ主面と前記フランジ付電流リード本体用絶縁筒のフランジ主面とを接合して、前記独立空間の上部を封止する構成としたことを特徴とする(請求項)。上記構成により、導電材料からなる電流リード本体と電気絶縁材料からなる前記独立空間の組み立て体との間の熱膨張係数の差を吸収して、熱応力の緩和を図ることができる。 Furthermore, in those described in the claim 5 or 6, wherein the current lead body has two flanges facing coupled via a bellows in the axial direction end portion of the vacuum chamber outside the vacuum container side The flange main surface of one of the flanges and the flange main surface of the flanged current lead main body insulating tube are joined to seal the upper part of the independent space (Claim 7 ). . With the above-described configuration, the thermal stress can be reduced by absorbing the difference in thermal expansion coefficient between the current lead body made of a conductive material and the assembly of the independent space made of an electrically insulating material.

この発明によれば、絶縁被覆された超電導コイルの口出しリード線と電流リード本体の低温側端子との電気的接続部が、真空容器内に配設される超電導コイル用電流リードにおいて、電流リード本体と超電導コイルとの電気的接続部の電気絶縁の信頼性の向上を図ることができ、特に、真空容器内の真空度が低下した場合であっても、所定の電気絶縁性能が維持できる。   According to the present invention, in the current lead for a superconducting coil in which the electrical connection between the lead wire of the insulation-coated superconducting coil and the low-temperature side terminal of the current lead body is disposed in the vacuum vessel, the current lead body It is possible to improve the reliability of the electrical insulation of the electrical connection between the coil and the superconducting coil. In particular, even when the degree of vacuum in the vacuum vessel is lowered, a predetermined electrical insulation performance can be maintained.

次に、この発明の実施形態に関して、図1ないし図3に基いて説明する。なお、図1ないし図3において、図4ないし図6における同一機能部材には同一番号を付してその詳細説明を省略する。まず、図1および図2について述べる。   Next, an embodiment of the present invention will be described with reference to FIGS. 1 to 3, the same functional members in FIGS. 4 to 6 are denoted by the same reference numerals, and detailed description thereof is omitted. First, FIG. 1 and FIG. 2 will be described.

図1および図2は、それぞれ、従来装置の図4および図5に対応するこの発明の実施形態に係る電流リードの詳細断面図および超電導電磁石装置の模式図を示す。図4における構成と同様に、電流リード本体低温端子8と口出しリード線端子9とはボルトにて接続され、電流リード本体7aは、GFRP製の電流リード本体用絶縁筒10により包囲されて、絶縁を保っている。   1 and 2 show a detailed sectional view of a current lead and a schematic diagram of a superconducting electromagnet device according to an embodiment of the present invention corresponding to FIGS. 4 and 5 of the conventional device, respectively. As in the configuration in FIG. 4, the current lead body low-temperature terminal 8 and the lead wire terminal 9 are connected by bolts, and the current lead body 7a is surrounded by a current lead body insulating cylinder 10 made of GFRP to be insulated. Keep.

また、接続部の絶縁としては、電流リード本体低温端子8と口出しリード線端子9とをボルト接続後に、GFRP製の塞ぎ板12,GFRP製の電気接続部用絶縁筒13との組み立て体を、樹脂接着により、口出しリード線絶縁16と電流リード本体用絶縁筒10とに取り付ける。場合によっては、GFRP製の塞ぎ板12と電気接続部用絶縁筒13とは分割しておき、分割部も、後から樹脂接着するようにしてもよい。   For insulation of the connecting portion, an assembly of the current lead main body low-temperature terminal 8 and the lead-out lead wire terminal 9 with bolts, and then a GFRP closing plate 12 and an GFRP insulating connecting tube 13 for electrical connection portion, It is attached to the lead wire insulation 16 and the current lead body insulation tube 10 by resin bonding. In some cases, the closing plate 12 made of GFRP and the insulating cylinder 13 for electrical connection portion may be divided, and the divided portion may be resin-bonded later.

電流リード7の常温側には、前述の塞ぎ板12,電気接続部用絶縁筒13,電流リード本体用絶縁筒10等で閉じられた部分の空間を真空引きする為の真空引き口14が設けられている。真空引き口14の先端には、市販品のシールオフバルブ15を設けることにより、真空引き後に、真空封じ切りができる。   On the normal temperature side of the current lead 7, a vacuum suction port 14 is provided for evacuating the space closed by the above-described closing plate 12, electrical connecting portion insulating tube 13, current lead body insulating tube 10, and the like. It has been. By providing a commercially available seal-off valve 15 at the tip of the vacuum port 14, vacuum sealing can be performed after evacuation.

上記のように、接続部の絶縁を電気接続部用絶縁筒で行うことにより、ボルトの凹凸部のテーピングより遥かに絶縁の信頼性が向上できる。また、塞ぎ板12,電気接続部用絶縁筒13および電流リード本体用絶縁筒10等で閉じられた部分を形成し、電流リード本体および接続部が、電気絶縁材料なしに真空容器内の真空層を介して接地電位部に対向する部分が無いので、真空容器内の超電導コイル周りの真空が劣化しても、所望の絶縁性能を維持することができる。   As described above, by performing the insulation of the connection portion with the insulating tube for the electrical connection portion, the reliability of the insulation can be improved far more than taping of the uneven portion of the bolt. Further, a closed portion is formed by the closing plate 12, the electrical connecting portion insulating cylinder 13 and the current lead main body insulating tube 10 and the like, and the current lead main body and the connecting portion have no vacuum insulating layer in the vacuum vessel. Therefore, even if the vacuum around the superconducting coil in the vacuum vessel deteriorates, the desired insulation performance can be maintained.

さらに、前記閉じられた部分の真空引き口を電流リード高電位部に設け、先端をシールオフバルブで封じ切りする構成により、接地電位にある真空引き配管との絶縁が不要となり、真空引き作業を含めた装置構成が簡単となる。   In addition, the vacuum outlet of the closed part is provided in the current lead high potential part, and the tip is sealed off with a seal-off valve, which eliminates the need for insulation from the vacuum pipe at the ground potential. The included device configuration is simplified.

なお、前記口出しリード線絶縁16は、絶縁・接着・耐真空洩れの機能を果たすようにするために、例えば、カプトンなどの高分子絶縁フィルムとエポキシ樹脂とを組み合わせた複合絶縁とするのが好ましい。また、前記閉じられた部分の空間は、上述のように真空断熱層として構成することに代えて、前述のように、前記空間の内部にプラスチックフォームを充填した非真空の断熱層とすることもできる。   The lead wire insulation 16 is preferably a composite insulation, for example, a combination of a polymer insulation film such as Kapton and an epoxy resin in order to perform the functions of insulation, adhesion, and vacuum leakage resistance. . In addition, the space of the closed portion may be a non-vacuum heat insulating layer filled with plastic foam inside the space, as described above, instead of being configured as a vacuum heat insulating layer as described above. it can.

次に、図3について述べる。図3は、請求項6に係る電流リードの模式的断面図を示す。即ち、図3の実施形態においては、電流リード本体7aが、その真空容器外の軸方向端部に、ベローズ17を介して結合された対面する2個のフランジ7b,7cを有するものとし、真空容器側の一方のフランジ7cのフランジ主面とフランジ付電流リード本体用絶縁筒10のフランジ10aのフランジ主面とを接合して、独立真空層の上部を封止する構成としている。この構成によれば、導電材料からなる電流リード本体7aと電気絶縁材料からなるフランジ付電流リード本体用絶縁筒10等との間の熱膨張係数の差を吸収して、特に、超電導コイルおよび電流リードの冷却時に発生する熱応力の緩和を図ることができる。   Next, FIG. 3 will be described. FIG. 3 shows a schematic cross-sectional view of a current lead according to claim 6. That is, in the embodiment of FIG. 3, the current lead body 7a has two facing flanges 7b and 7c coupled via the bellows 17 at the axial end outside the vacuum vessel. The flange main surface of one flange 7c on the container side and the flange main surface of the flange 10a of the flanged current lead main body insulating cylinder 10 are joined to seal the upper part of the independent vacuum layer. According to this configuration, the difference in thermal expansion coefficient between the current lead main body 7a made of a conductive material and the flanged current lead main body insulating cylinder 10 made of an electrically insulating material is absorbed. It is possible to alleviate thermal stress generated when cooling the lead.

この発明の実施形態に関わる電流リードの詳細断面図。1 is a detailed cross-sectional view of a current lead according to an embodiment of the present invention. この発明の実施形態に関わる超電導電磁石装置の模式図。The schematic diagram of the superconducting electromagnet apparatus concerning embodiment of this invention. この発明の図1とは異なる実施形態の電流リードの模式的断面図。The typical sectional view of the current lead of the embodiment different from FIG. 1 of this invention. 従来の電流リードの詳細断面図。Detailed sectional drawing of the conventional electric current lead. 従来の超電導電磁石装置の模式図。The schematic diagram of the conventional superconducting electromagnet apparatus. 従来の超電導電磁石装置の構成図。The block diagram of the conventional superconducting electromagnet apparatus.

1 超電導コイル
2 真空容器
3 冷凍機
4 幅射シールド
6 口出しリード線
7 電流リード
7a 電流リード本体
7b,7c,10a フランジ
8 電流リード本体低温端子
9 口出しリード線端子
10 電流リード本体用絶縁筒
12 塞ぎ板
13 電気接続部用絶縁筒
14 真空引き口
15 シールオフバルブ
16 口出しリード線絶縁
17 ベローズ
DESCRIPTION OF SYMBOLS 1 Superconducting coil 2 Vacuum vessel 3 Refrigerator 4 Radiation shield 6 Lead wire 7 Current lead 7a Current lead body 7b, 7c, 10a Flange 8 Current lead body low temperature terminal 9 Lead wire terminal 10 Current lead body insulation tube 12 Block Plate 13 Insulating cylinder for electrical connection 14 Vacuum inlet 15 Seal-off valve 16 Lead wire insulation 17 Bellows

Claims (7)

真空容器内に設置されて冷却される超電導コイルに対して、少なくとも一部が前記真空容器と、超電導コイルの周囲に配設され外部からの輻射熱を遮断して断熱すべく約80Kに冷却される輻射シールドとを貫通して設けられ、真空容器外部から導電材料からなる電流リード本体を介して電流を供給する電流リードであって、絶縁被覆された超電導コイルの口出しリード線と電流リード本体の低温側端子との電気的接続部が、前記真空容器内に配設される超電導コイル用電流リードにおいて、
前記電流リード本体の真空容器貫通部と前記電気的接続部および口出しリード線端部の外周部全体にわたって、前記真空容器内の真空層とは気密の独立空間を作るように、電気絶縁材料により包囲して、電流リードの高電位部と真空容器ないし真空容器内部材の接地電位部との間を電気的に絶縁してなるとともに、前記電流リードの高電位部と真空容器ないし真空容器内部材の接地電位部との間を電気的に絶縁した部分における前記口出しリード線の貫通部と前記口出しリード線の絶縁被覆部とを樹脂接着により封止してなり、
さらに、前記気密の独立空間は、真空容器内の真空層とは異なる真空断熱層としたことを特徴とする超電導コイル用電流リード。
At least a part of the superconducting coil that is installed in the vacuum vessel and is cooled is disposed around the superconducting coil and the superconducting coil, and is cooled to about 80K to insulate and shield the radiation heat from the outside. A current lead that is provided through the radiation shield and supplies current from the outside of the vacuum vessel through a current lead body made of a conductive material. The insulation lead wire of the superconducting coil and the low temperature of the current lead body In the electrical lead for the superconducting coil, the electrical connection with the side terminal is disposed in the vacuum vessel,
Surrounded by an electrically insulating material so as to form an airtight independent space with the vacuum layer in the vacuum vessel over the vacuum vessel penetrating portion of the current lead body and the entire outer periphery of the electrical connection portion and the lead wire end portion. And electrically insulating the high potential portion of the current lead and the ground potential portion of the vacuum vessel or the vacuum vessel inner member, and the high potential portion of the current lead and the vacuum vessel or the vacuum vessel inner member. The lead portion of the lead wire in the portion electrically insulated from the ground potential portion and the insulating coating portion of the lead wire are sealed by resin bonding,
Furthermore, the current lead for a superconducting coil is characterized in that the airtight independent space is a vacuum heat insulating layer different from the vacuum layer in the vacuum vessel .
請求項に記載のものにおいて、前記真空断熱層は、その真空引き口を、シールオフバルブにより封じ切りとしたことを特徴とする超電導コイル用電流リード。 2. The superconducting coil current lead according to claim 1 , wherein the vacuum heat insulating layer has its vacuum suction port sealed by a seal-off valve. 真空容器内に設置されて冷却される超電導コイルに対して、少なくとも一部が前記真空容器と、超電導コイルの周囲に配設され外部からの輻射熱を遮断して断熱すべく約80Kに冷却される輻射シールドとを貫通して設けられ、真空容器外部から導電材料からなる電流リード本体を介して電流を供給する電流リードであって、絶縁被覆された超電導コイルの口出しリード線と電流リード本体の低温側端子との電気的接続部が、前記真空容器内に配設される超電導コイル用電流リードにおいて、
前記電流リード本体の真空容器貫通部と前記電気的接続部および口出しリード線端部の外周部全体にわたって、前記真空容器内の真空層とは気密の独立空間を作るように、電気絶縁材料により包囲して、電流リードの高電位部と真空容器ないし真空容器内部材の接地電位部との間を電気的に絶縁してなるとともに、前記電流リードの高電位部と真空容器ないし真空容器内部材の接地電位部との間を電気的に絶縁した部分における前記口出しリード線の貫通部と前記口出しリード線の絶縁被覆部とを樹脂接着により封止してなり、
さらに、前記気密の独立空間は、その内部にプラスチックフォームを充填した非真空の断熱層としたことを特徴とする超電導コイル用電流リード。
At least a part of the superconducting coil that is installed in the vacuum vessel and is cooled is disposed around the superconducting coil and the superconducting coil, and is cooled to about 80K to insulate and shield the radiation heat from the outside. A current lead that is provided through the radiation shield and supplies current from the outside of the vacuum vessel through a current lead body made of a conductive material. The insulation lead wire of the superconducting coil and the low temperature of the current lead body In the electrical lead for the superconducting coil, the electrical connection with the side terminal is disposed in the vacuum vessel,
Surrounded by an electrically insulating material so as to form an airtight independent space with the vacuum layer in the vacuum vessel over the vacuum vessel penetrating portion of the current lead body and the entire outer periphery of the electrical connection portion and the lead wire end portion. And electrically insulating the high potential portion of the current lead and the ground potential portion of the vacuum vessel or the vacuum vessel inner member, and the high potential portion of the current lead and the vacuum vessel or the vacuum vessel inner member. The lead portion of the lead wire in the portion electrically insulated from the ground potential portion and the insulating coating portion of the lead wire are sealed by resin bonding,
Furthermore, the current lead for a superconducting coil is characterized in that the airtight independent space is a non-vacuum heat insulating layer filled with plastic foam.
請求項3に記載のものにおいて、前記プラスチックフォームは、発泡ポリウレタンであることを特徴とする超電導コイル用電流リード。  The current lead for a superconducting coil according to claim 3, wherein the plastic foam is polyurethane foam. 請求項1ないし4のいずれか1項に記載のものにおいて、前記電流リードの高電位部と真空容器ないし真空容器内部材の接地電位部との間を電気的に絶縁した部分は、フランジ付電流リード本体用絶縁筒と、電気接続部用絶縁筒と、口出しリード線貫通部用の塞ぎ板とから構成し、前記各絶縁筒および塞ぎ板との間は接着剤で接合されたことを特徴とする超電導コイル用電流リード。 5. The part according to claim 1, wherein a portion electrically insulated between the high potential portion of the current lead and the ground potential portion of the vacuum vessel or a member in the vacuum vessel is a flanged current. A lead body insulating tube, an electrical connecting portion insulating tube, and a lead plate for a lead wire penetration portion, and the insulating tube and the closing plate are joined with an adhesive. Current leads for superconducting coils. 請求項5に記載のものにおいて、前記フランジ付電流リード本体用絶縁筒と、前記電気接続部用絶縁筒と、前記口出しリード線貫通部用の塞ぎ板とは、いずれもガラス強化樹脂からなることを特徴とする超電導コイル用電流リード。  6. The flange according to claim 5, wherein the flanged current lead body insulating tube, the electrical connecting portion insulating tube, and the lead-out lead wire penetration portion are made of glass-reinforced resin. Current leads for superconducting coils. 請求項5または6に記載のものにおいて、前記電流リード本体は、その真空容器外の軸方向端部にベローズを介して結合された対面する2個のフランジを有し、真空容器側の一方のフランジのフランジ主面と前記フランジ付電流リード本体用絶縁筒のフランジ主面とを接合して、前記独立空間の上部を封止する構成としたことを特徴とする超電導コイル用電流リード。 In those described in claim 5 or 6, wherein the current lead body has two flanges facing coupled via a bellows in the axial direction end portion of the vacuum chamber outside, one of the vacuum container side A current lead for a superconducting coil, wherein a flange main surface of a flange and a flange main surface of the flanged current lead main body insulating cylinder are joined to seal an upper portion of the independent space.
JP2003411529A 2003-12-10 2003-12-10 Current leads for superconducting coils Expired - Fee Related JP4494767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003411529A JP4494767B2 (en) 2003-12-10 2003-12-10 Current leads for superconducting coils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003411529A JP4494767B2 (en) 2003-12-10 2003-12-10 Current leads for superconducting coils

Publications (2)

Publication Number Publication Date
JP2005175123A JP2005175123A (en) 2005-06-30
JP4494767B2 true JP4494767B2 (en) 2010-06-30

Family

ID=34732234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003411529A Expired - Fee Related JP4494767B2 (en) 2003-12-10 2003-12-10 Current leads for superconducting coils

Country Status (1)

Country Link
JP (1) JP4494767B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101013844B1 (en) 2008-08-29 2011-02-14 한국전기연구원 current lead for variable capacity
JP5713489B2 (en) * 2010-11-22 2015-05-07 大陽日酸株式会社 FRP cryostat
JP5697161B2 (en) * 2011-11-14 2015-04-08 学校法人中部大学 Current lead
JP6172979B2 (en) * 2013-03-11 2017-08-02 株式会社神戸製鋼所 Superconducting device
DE102015223909A1 (en) * 2015-12-01 2017-06-01 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg System of a first component with a conductor and a partition element and a method of manufacturing the system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974689A (en) * 1982-10-21 1984-04-27 Toshiba Corp Closed type current introducing terminal
JPS61222286A (en) * 1985-03-28 1986-10-02 Toshiba Corp Switch for current lead of superconducting coil
JPS624161U (en) * 1985-06-21 1987-01-12
JPS63157903U (en) * 1987-04-01 1988-10-17
JPH04321205A (en) * 1991-04-22 1992-11-11 Toshiba Corp Current lead of superconducting device
JPH05114754A (en) * 1991-10-23 1993-05-07 Fuji Electric Co Ltd Current lead insulating support structure of superconductive equipment
JPH06204575A (en) * 1992-11-11 1994-07-22 Toshiba Corp Cryogenic apparatus
JPH07297025A (en) * 1994-04-28 1995-11-10 Mitsubishi Electric Corp Oxide superconducting current lead device
JPH07312309A (en) * 1994-02-14 1995-11-28 Canon Inc Superconducting device
JP2004235336A (en) * 2003-01-29 2004-08-19 Central Japan Railway Co Superconductive magnet device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974689A (en) * 1982-10-21 1984-04-27 Toshiba Corp Closed type current introducing terminal
JPS61222286A (en) * 1985-03-28 1986-10-02 Toshiba Corp Switch for current lead of superconducting coil
JPS624161U (en) * 1985-06-21 1987-01-12
JPS63157903U (en) * 1987-04-01 1988-10-17
JPH04321205A (en) * 1991-04-22 1992-11-11 Toshiba Corp Current lead of superconducting device
JPH05114754A (en) * 1991-10-23 1993-05-07 Fuji Electric Co Ltd Current lead insulating support structure of superconductive equipment
JPH06204575A (en) * 1992-11-11 1994-07-22 Toshiba Corp Cryogenic apparatus
JPH07312309A (en) * 1994-02-14 1995-11-28 Canon Inc Superconducting device
JPH07297025A (en) * 1994-04-28 1995-11-10 Mitsubishi Electric Corp Oxide superconducting current lead device
JP2004235336A (en) * 2003-01-29 2004-08-19 Central Japan Railway Co Superconductive magnet device

Also Published As

Publication number Publication date
JP2005175123A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
JP4468388B2 (en) Magnetic field generator
US6888060B2 (en) Terminal structure of extreme-low temperature equipment
US8787998B2 (en) Superconducting coil apparatus, superconducting appatatus, and method of making superconducting coil apparatus
JP5432429B2 (en) Composite sealed container for use in a magnetic resonance imaging system and method for manufacturing the same
RU2367044C2 (en) Superconducting cable
JP5297162B2 (en) Superconducting device
WO2006075443A1 (en) Low temperature container of superconducting apparatus
WO2004068514A1 (en) Superconducting magnet
US6038867A (en) Wide multilayer insulating blankets for zero boiloff superconducting magnet
JP4494767B2 (en) Current leads for superconducting coils
KR100848796B1 (en) Fastening structure for use at low temperature
US8989827B2 (en) Superconducting magnet
JP6104007B2 (en) Current supply device
JP2002270913A (en) Superconductive coil unit and mri device
JP3421837B2 (en) Refrigerator-cooled superconducting magnet device for single crystal pulling device
US11199600B2 (en) Superconducting magnet with cold head thermal path cooled by heat exchanger
JP4981156B2 (en) Superconducting motor
JP6172979B2 (en) Superconducting device
WO2019229923A1 (en) Superconductive magnet
JP2530065B2 (en) Superconducting device current lead
JP4984323B2 (en) Vacuum insulated container
JP6021791B2 (en) Permanent current switch and superconducting device equipped with it
JP7477959B2 (en) Superconducting coil device and current lead structure for superconducting coil
RU2735953C1 (en) Method for cryostatting of superconducting windings of a brushless dc motor
KR101651024B1 (en) Insulation structure for superconducting power device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees