JPH05114754A - Current lead insulating support structure of superconductive equipment - Google Patents

Current lead insulating support structure of superconductive equipment

Info

Publication number
JPH05114754A
JPH05114754A JP3274365A JP27436591A JPH05114754A JP H05114754 A JPH05114754 A JP H05114754A JP 3274365 A JP3274365 A JP 3274365A JP 27436591 A JP27436591 A JP 27436591A JP H05114754 A JPH05114754 A JP H05114754A
Authority
JP
Japan
Prior art keywords
current lead
room temperature
flange
insulating
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3274365A
Other languages
Japanese (ja)
Inventor
Ikuo Ito
郁夫 伊藤
Kiyoshi Takita
清 滝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3274365A priority Critical patent/JPH05114754A/en
Publication of JPH05114754A publication Critical patent/JPH05114754A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To prevent troubles such as breakage of a bellows and a ceramic tube by a method wherein reinforcements whose upper lower end are linked to an upper flange provided to the normal-temperature terminal of a current lead and a lower flange connected to a vacuum heat insulating chamber respectively are provided. CONSTITUTION:The upper and the lower end of a reinforcing member 20 are linked and fixed to an upper flange 5 provided to the normal-temperature terminal 1A of a current lead 1 and a lower flange 6 connected to a vacuum heat insulating chamber 2 respectively. The reinforcing member 20 is arranged in a dry coolant gas atmosphere shut off from the outside air, and a cylindrical insulator (FRP tube) 21 can be protected against contaminants. By this setup, a normal-temperature port 7 can be mechanically reinforced without deteriorating a ceramic tube 3 in voltage-resistant properties, a current lead 1 can be prevented from swinging due to an external force, and troubles such as the deformation of a bellows 4 or breakage of the ceramic tube 3 can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高電圧大容量の超電
導マグネットなどの超電導機器に外部電源からの励磁電
流を供給する電流リードの絶縁支持構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating support structure for a current lead for supplying an exciting current from an external power source to a superconducting device such as a superconducting magnet having a high voltage and a large capacity.

【0002】[0002]

【従来の技術】超電導マグネット等の超電導機器本体を
その超電導状態を保持して収納する真空断熱容器に外部
から挿入され、超電導機器本体に外部電源からの励磁電
流を通流する電流リードは、その通流電流が10KAを
越えるものもあり、導体断面積や重量が大きいため、そ
の絶縁支持構造部には高い機械的強度が要求される。ま
た、電流リードの低温端子側は極低温となるため、その
熱影響が常温端子にまで及び、常温端子や絶縁支持構造
部の外気側には大気中の水分が氷結したり結露し、電流
の通流による発熱で溶融して絶縁材の表面を濡らす湿潤
汚損が発生するので、耐電圧性能を維持するために耐湿
潤汚損性の高い絶縁構造が求められる。
2. Description of the Related Art A superconducting device such as a superconducting magnet is inserted from the outside into a vacuum heat insulating container for holding the superconducting device while holding the superconducting state, and a current lead for passing an exciting current from an external power source to the superconducting device main body is In some cases, the flowing current exceeds 10 KA, and the cross-sectional area and weight of the conductor are large, so high mechanical strength is required for the insulating support structure. Also, since the low temperature terminal side of the current lead becomes extremely low temperature, its heat effect extends to the room temperature terminal, and moisture in the atmosphere freezes or condenses on the outside air side of the room temperature terminal or the insulating support structure, and Since the heat generated by the flow of heat melts and wets the surface of the insulating material to cause wet fouling, an insulating structure having high wet fouling resistance is required to maintain the withstand voltage performance.

【0003】図3は超電導機器の従来の電流リード絶縁
支持構造を示す側断面図、図4は図3を上方から見た要
部の平面図である。図において、電流リード1は常温ポ
−ト7に絶縁支持された状態で真空断熱容器2内に挿入
され、真空断熱容器2内に液体ヘリウム等の冷却媒体に
浸漬されて超電導状態が保持された図示しない超電導マ
グネット等の超電導機器に導電接続され、外部電源に導
電接続された常温端子1Aからの励磁電流を超電導機器
に通流する。また、常温ポ−ト7は電流リードの常温端
子1A近くに設けた上部フランジ5と、真空断熱容器2
側に機密に連結された下部フランジ6と、両フランジ
5,6間を機密に結合するセラミック碍管3およびベロ
−ズ4の直列体とで構成され、常温ポ−ト7内に外気か
ら遮断され,気化した冷媒ガス(例えばヘリウムガス)
が充満した空間を画成し、電流リードの主体部分がこの
空間を通って真空断熱容器2内に挿入される。
FIG. 3 is a side sectional view showing a conventional current lead insulating and supporting structure of a superconducting device, and FIG. 4 is a plan view of a main part of FIG. 3 seen from above. In the figure, the current lead 1 is inserted into the vacuum heat insulating container 2 while being insulated and supported by the room temperature port 7, and is immersed in a cooling medium such as liquid helium in the vacuum heat insulating container 2 to maintain the superconducting state. An exciting current from a room temperature terminal 1A that is conductively connected to a superconducting device such as a superconducting magnet (not shown) and conductively connected to an external power source is passed to the superconducting device. In addition, the room temperature port 7 includes the upper flange 5 provided near the room temperature terminal 1A of the current lead, and the vacuum insulation container 2
It is composed of a lower flange 6 which is connected to the side in a sealed manner and a series body of ceramic porcelain tube 3 and a bellows 4 which connect the flanges 5 and 6 to each other in a sealed manner. , Evaporated refrigerant gas (eg helium gas)
Define a filled space, through which the main part of the current lead is inserted into the vacuum insulation container 2.

【0004】上述のように構成された常温ポ−ト7は、
常温端子への導体の接続作業,地震等による外力,ある
いは電流を断続する際電流リードに働く電磁力等による
過大な軸方向力,曲げ荷重,捩じり荷重等の外力がセラ
ミック碍管に加わることを防ぐため、さらには温度差に
よる熱応力を吸収するため、セラミック碍管3に直列に
ベロ−ズ4が設けられており、そのため上記外力が加わ
る度に電流リードが揺れるという不都合が発生する。そ
こで、このような不都合を回避するために、フランジ
5,6から放射状に突設された支持座12,13に保護
絶縁筒11をボルト14を用いて連結した補強部10
を、常温ポ−ト7の外側に設けて上記外力を吸収するこ
とにより、外力による電流リードの揺れや振動を阻止す
るよう構成した電流リード絶縁支持構造が、この発明と
同一の出願人等により既に提案されている(平成3年実
用新案公報第7966号)。
The room temperature port 7 constructed as described above is
Connection of conductors to room temperature terminals, external force due to earthquake, etc., or excessive axial force due to electromagnetic force acting on the current lead when current is interrupted, external force such as bending load, twisting load, etc. applied to the ceramic porcelain tube In order to prevent the above, and in order to absorb the thermal stress due to the temperature difference, the ceramic porcelain tube 3 is provided with the bellows 4 in series, so that there occurs the inconvenience that the current lead sways each time the external force is applied. Therefore, in order to avoid such an inconvenience, the reinforcing portion 10 in which the protective insulating cylinder 11 is connected to the support seats 12 and 13 radially protruding from the flanges 5 and 6 using the bolts 14 is used.
Is provided outside the room temperature port 7 and absorbs the external force to prevent the current lead from shaking or vibrating due to the external force. It has already been proposed (1991 Utility Model Publication No. 7966).

【0005】上述の補強部10を備えた電流リード絶縁
支持構造においては、筒状に形成されて大きな断面係数
を持つ保護絶縁筒の剛性を利用して一対のフランジ5,
6間を強固に連結できるので、動的な外力に対する変移
が少なく、外力によるベロ−ズの変形や過度の外力によ
るセラミック碍管の破損などの危険性のない電流リード
の絶縁支持構造が得られる。ところで、従来の補強部1
0において保護絶縁筒11は高い剛性と耐電圧性能が要
求されるために繊維強化プラスチック円筒(FRPチュ
−ブ)が用いられ、かつその長さは常温ポ−トの構造上
セラミック碍管3の長さに比べて充分長い寸法に形成さ
れる。従って、セラミック碍管や保護絶縁筒が乾いた状
態では電流リード絶縁支持構造の耐電圧はセラミック碍
管3の沿面絶縁距離によって決まることになる。そこ
で、常温端子1Aや常温ポ−ト7の表面の氷結が電流の
通流による発熱で溶け、セラミック碍管の表面が濡れた
状態になることを想定してセラミック碍管3の沿面絶縁
距離を決めることにより、要求される耐電圧性能を有す
る常温ポ−トを構成できるものと考えられていた。
In the current lead insulating support structure having the above-mentioned reinforcing portion 10, the rigidity of the protective insulating cylinder formed in a tubular shape and having a large section modulus is utilized to make use of the pair of flanges 5, 5.
Since the six members can be firmly connected to each other, there is little change with respect to a dynamic external force, and an insulating support structure for the current lead can be obtained without the risk of the deformation of the bellows due to the external force or the damage of the ceramic porcelain tube due to an excessive external force. By the way, the conventional reinforcing portion 1
0, a fiber reinforced plastic cylinder (FRP tube) is used as the protective insulating cylinder 11 because high rigidity and withstand voltage performance are required, and its length is the length of the ceramic porcelain tube 3 which is structurally a room temperature port. It is formed to have a dimension that is sufficiently longer than the length. Therefore, when the ceramic porcelain tube or the protective insulating tube is dry, the withstand voltage of the current lead insulating support structure is determined by the creepage insulation distance of the ceramic porcelain tube 3. Therefore, the creepage insulation distance of the ceramic porcelain tube 3 is determined on the assumption that the freezing of the surface of the room temperature terminal 1A and the room temperature port 7 is melted by the heat generated by the flow of the electric current and the surface of the ceramic porcelain tube becomes wet. It has been considered that a room temperature port having the required withstand voltage performance can be constructed.

【0006】[0006]

【発明が解決しようとする課題】ところが、補強部10
を有する高電圧の電流リード絶縁支持構造においては、
セラミック碍管および保護絶縁筒の表面が濡れた状態
(湿潤汚損と呼ぶ)になると、セラミック碍管に比べて
沿面絶縁距離の長いFRPチュ−ブからなる保護絶縁筒
13の表面で沿面絶縁破壊が発生し、所望の耐電圧性能
を有する電流リードの絶縁支持構造が得られないという
問題点があることが判明し、その改善が求められてい
る。
However, the reinforcing portion 10
In a high voltage current lead insulation support structure having
When the surfaces of the ceramic porcelain tube and the protective insulating tube become wet (called wet stain), creeping dielectric breakdown occurs on the surface of the protective insulating tube 13 made of an FRP tube having a longer creeping insulation distance than the ceramic porcelain tube. However, it has been found that there is a problem in that an insulating support structure for a current lead having a desired withstand voltage performance cannot be obtained, and an improvement thereof is required.

【0007】この発明の目的は、耐電圧性能に影響を及
ぼすことなく常温ポ−トを機械的に保護でき、従って外
力による電流リードの揺れを阻止できる超電導機器の電
流リード絶縁支持構造を得ることにある。
An object of the present invention is to obtain a current lead insulating support structure for a superconducting device which can mechanically protect a room temperature port without affecting the withstand voltage performance and thus can prevent the current lead from swinging due to an external force. It is in.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、超電導機器をその超電導状態を
保持して収納する真空断熱容器に連結された下部フラン
ジと、前記超電導機器に電流を供給する電流リードの常
温端子側に設けた上部フランジとがセラミック碍管およ
びベロ−ズの直列体を介して連結されてなる常温ポ−ト
を備え、前記電流リードの主体部分を外気と遮断した状
態で絶縁支持するものにおいて、前記外気と遮断された
常温ポ−ト内に前記電流リードを包囲するようほぼ同軸
状に配された筒状の絶縁材からなり、その上下端が前記
上部フランジおよび下部フランジにそれぞれ連結されて
なる補強部を備えるものとする。
In order to solve the above-mentioned problems, according to the present invention, a lower flange connected to a vacuum heat insulating container for holding a superconducting device while holding its superconducting state, and the superconducting device are provided. A current-supplying current lead is provided with a room temperature port which is connected to an upper flange provided on the room temperature terminal side through a ceramic porcelain tube and a bellows series body, and shuts off the main part of the current lead from the outside air. In such a state that it is insulated and supported, a normal temperature port isolated from the outside air is made of a cylindrical insulating material arranged substantially coaxially so as to surround the current lead, and the upper and lower ends thereof are the upper flange. And a reinforcing portion connected to the lower flange, respectively.

【0009】また、補強部が、筒状の絶縁材としての繊
維強化プラスチック円筒と、上下一対のフランジそれぞ
れから放射状に突設された支持座と、前記繊維強化プラ
スチック円筒を前記支持座に固定するボルトとからなる
ものとする。
Further, the reinforcing portion fixes the fiber reinforced plastic cylinder as a tubular insulating material, the support seat radially protruding from the pair of upper and lower flanges, and the fiber reinforced plastic cylinder to the support seat. It shall consist of a bolt and.

【0010】さらに、下部フランジから放射状に突設さ
れた支持座、およびこれに結合するボルトがそれぞれ絶
縁材からなるものとする。
Further, the support seats radially protruding from the lower flange and the bolts connected to the support seats are made of an insulating material.

【0011】[0011]

【作用】この発明の構成は、セラミック碍管に比べて沿
面絶縁距離の長い保護絶縁筒が湿潤汚損を受けることに
より耐電圧性能が大幅に低下する原因を追求した結果、
セラミック碍管の場合、濡れた沿面に漏れ電流が流れて
も、漏れ電流による発熱により水分が蒸発してセラミッ
ク碍管の表面が乾燥するとともに、優れた耐熱性無機物
であるセラミック材が電流による発熱に耐えて炭化した
電流通路(トラッキングと呼ぶ)を形成しないために絶
縁の回復性に優れ、耐電圧性能の低下が少ない。これに
対してFRP材からなる保護絶縁筒の場合には、漏れ電
流による発熱によりFRP材表層部のプラスチックが炭
化してしまうためにトラッキングを生じやすく、絶縁の
自己回復性が低いために、沿面絶縁破壊に発展し易いと
いう事実が判明し、得られた事実に基づいて下記のよう
に構成されたものである。すなわち、外気と遮断された
常温ポ−ト内に電流リードを包囲するようほぼ同軸状に
配された筒状の絶縁材からなり、その上下端が上部フラ
ンジおよび下部フランジにそれぞれ連結されてなる補強
部を備えるよう構成したことにより、常温ポ−トをその
内部から機械的に補強して外力による電流リードの揺れ
やこれに伴うベロ−ズ,セラミック碍管等の損傷を回避
できるとともに、補強部が常温ポ−トにより外気と画成
された乾燥状態の冷媒ガス雰囲気中にあって、筒状の絶
縁材の耐電圧性能が正常に保持されるので、常温ポ−ト
の耐電圧性能は湿潤による耐電圧性能の低下が少ないセ
ラミック碍管の沿面絶縁距離によって決まり、補強部の
湿潤による耐電圧性能の低下をほぼ完全に排除できるの
で、耐電圧性能に影響を及ぼすことなく常温ポ−トを機
械的に強化する機能が得られる。
The structure of the present invention, as a result of pursuing the cause that the withstand voltage performance is significantly lowered due to wet contamination of the protective insulating cylinder having a longer creepage insulation distance than that of the ceramic porcelain tube,
In the case of a ceramic porcelain tube, even if a leakage current flows through a wet creeping surface, the heat generated by the leakage current evaporates water and the surface of the ceramic porcelain tube dries, and the ceramic material, which is an excellent heat-resistant inorganic material, withstands the heat generated by the current. Since a carbonized current path (called tracking) is not formed, insulation recovery is excellent, and the withstand voltage performance is not significantly degraded. On the other hand, in the case of the protective insulating cylinder made of FRP material, the plastic of the surface layer of the FRP material is carbonized due to the heat generated by the leakage current, so tracking is likely to occur, and the self-healing property of the insulation is low. The fact that dielectric breakdown is likely to develop has been found, and it is constructed as follows based on the obtained fact. That is, a reinforcement made of a cylindrical insulating material which is arranged substantially coaxially so as to surround the current lead in a room temperature port which is shielded from the outside air, and whose upper and lower ends are respectively connected to the upper flange and the lower flange. Since the normal-temperature port is mechanically reinforced from the inside by arranging the part, it is possible to avoid swaying of the current lead due to external force and the accompanying damage to the bellows, the ceramic porcelain tube, etc. In a dry refrigerant gas atmosphere defined by the ambient temperature port as the outside air, the withstand voltage performance of the cylindrical insulating material is normally maintained. Decrease in withstand voltage performance is small The creepage insulation distance of the ceramic porcelain tube determines the decrease in withstand voltage performance due to wetting of the reinforcement part almost completely, so it does not affect the withstand voltage performance at room temperature. - the ability to strengthen the door mechanically can be obtained.

【0012】また、筒状の絶縁材が繊維強化プラスチッ
ク円筒(FRPチュ−ブ)からなり、このFRPチュ−
ブを貫通するボルトを、上下一対のフランジそれぞれか
ら放射状に突設された支持座に結合して補強部を構成す
れば、FRPチュ−ブの持つ高い剛性、および乾燥状態
における優れた耐電圧性能とを活用して、外力に対する
機械的安定性、および湿潤汚損に対する絶縁性能の安定
性とを確保する機能が得られる。
The tubular insulating material is made of a fiber reinforced plastic cylinder (FRP tube).
By constructing the reinforcing part by connecting the bolts that penetrate the tube to the support seats that are radially projected from the pair of upper and lower flanges, respectively, the high rigidity of the FRP tube and the excellent withstand voltage performance in a dry state can be obtained. By utilizing and, it is possible to obtain the function of ensuring mechanical stability against external force and insulation performance against wet fouling.

【0013】さらに、下部フランジから放射状に突設さ
れた支持座、およびこれに結合するボルトをそれぞれ絶
縁材で形成すれば、常温ポ−トの内径の増大をもたらす
ことなく、補強部を常温ポ−ト内部に設けたことができ
る。
Further, if the support seats radially protruding from the lower flange and the bolts connected to the support seats are made of an insulating material, the reinforcing portion can be supported at room temperature without increasing the inner diameter of the room temperature port. -It can be provided inside.

【0014】[0014]

【実施例】以下、この発明を実施例に基づいて説明す
る。図1はこの発明の実施例になる超電導機器の電流リ
ード絶縁支持構造を示す側断面図、図2は図1における
A−A方向の断面図であり、従来技術と同じ構成部分に
は同一参照符号を付すことにより、重複した説明を省略
する。図において、常温ポ−ト7における上部フランジ
5は電流リード1側のフランジ5Aと、ベロ−ズ4側の
フランジ5Bとに分割され、両者をパッキングを介して
気密にボルト結合することにより、常温ポ−ト7の内部
に外気と遮断された冷媒ガス空間27が形成されるとと
もに、常温ポ−ト7への電流リード1の着脱が容易化さ
れる。補強部20は、常温ポ−ト7で外気と遮断された
冷媒ガス空間27内に設けられ、電流リード1を包囲す
るようほぼ同軸状に配された筒状の絶縁材,例えばFR
Pチュ−ブ21と、上下一対のフランジ5Bおよび6か
らそれぞれ放射状に突設された支持座22および23
と、FRPチュ−ブを貫通して支持座にFRPチュ−ブ
を固定するボルト24とで構成される。また、電流リー
ド絶縁支持構造の組立作業は、常温ポ−ト7の内側にあ
らかじめ補強部20をボルト結合した状態で、真空断熱
容器2への取りつけ作業,次いで電流リード1の取りつ
け作業を行えばよく、上部フランジ5を5A,5Bに分
割したことにより、補強部の組立作業が容易化される。
EXAMPLES The present invention will be described below based on examples. FIG. 1 is a side sectional view showing a current lead insulating and supporting structure of a superconducting device according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line AA in FIG. Duplicated description will be omitted by giving reference numerals. In the figure, the upper flange 5 of the room temperature port 7 is divided into a flange 5A on the side of the current lead 1 and a flange 5B on the side of the bellows 4, and the two are airtightly bolted through packing to allow room temperature. A refrigerant gas space 27 isolated from the outside air is formed inside the port 7, and the current lead 1 is easily attached to and detached from the room temperature port 7. The reinforcing portion 20 is provided in the refrigerant gas space 27 that is shielded from the outside air by the room temperature port 7, and is a cylindrical insulating material, for example, FR, which is arranged substantially coaxially so as to surround the current lead 1.
The P-tube 21 and support seats 22 and 23 radially protruding from the pair of upper and lower flanges 5B and 6, respectively.
And a bolt 24 penetrating the FRP tube and fixing the FRP tube to the support seat. Further, in the assembling work of the current lead insulating and supporting structure, if the reinforcing portion 20 is previously bolted inside the room temperature port 7, the work of attaching to the vacuum insulation container 2 and then the work of attaching the current lead 1 are performed. Well, by dividing the upper flange 5 into 5A and 5B, the assembling work of the reinforcing portion is facilitated.

【0015】このように構成された超電導機器の電流リ
ード絶縁支持構造においては、補強部20が常温ポ−ト
7をその内側から機械的に補強するとともに、補強部2
0が外気と遮断された乾燥状態の冷媒ガス雰囲気中に配
されてFRPチュ−ブの湿潤汚損を回避できるので、セ
ラミック碍管の耐電圧性能を損なうことなく常温ポ−ト
を機械的に補強し、外力による電流リード1の揺れを防
止できるとともに、電流リードの揺れが抑制されること
により、ベロ−ズ4が変形したりセラミック碍管3が破
損する等の重大事故への進展を阻止することができる。
また、常温ポ−ト7の耐電圧性能はそのセラミック碍管
3の沿面絶縁距離で決まることになり、セラミック碍管
の耐湿潤汚損性を活かして絶縁信頼性の高い電流リード
絶縁支持構造を得ることができる。
In the current lead insulating and supporting structure for superconducting equipment constructed as described above, the reinforcing portion 20 mechanically reinforces the room temperature port 7 from its inner side, and the reinforcing portion 2
Since 0 is placed in a dry refrigerant gas atmosphere that is cut off from the outside air to prevent wet contamination of the FRP tube, the room temperature port is mechanically reinforced without impairing the withstand voltage performance of the ceramic porcelain tube. The current lead 1 can be prevented from swaying due to an external force, and the swaying of the current lead can be suppressed, so that the progress to a serious accident such as deformation of the bevel 4 or damage to the ceramic insulator tube 3 can be prevented. it can.
Further, the withstand voltage performance of the room temperature port 7 is determined by the creepage insulation distance of the ceramic porcelain tube 3, and it is possible to obtain a current lead insulation support structure having high insulation reliability by utilizing the wet stain resistance of the ceramic porcelain tube. it can.

【0016】なお、補強部20において、下部フランジ
6から突設した支持座22、およびこれに結合するボル
ト24は、ともに絶縁材で構成してよく、このように構
成することにより、大地電位にある下部フランジ6と、
高電位にある電流リード1との絶縁距離が、下部フラン
ジから突設された支持座およびボルトにより短縮されて
この部分の耐電圧性能が低下することを回避できるの
で、補強部を内設したことによる常温ポ−ト7の径の増
大を防ぎ、かつ従来の保護絶縁筒に比べて径が縮小され
たFRPチュ−ブを用いて補強部を小型化できる利点が
得られる。
In the reinforcing portion 20, both the support seat 22 projecting from the lower flange 6 and the bolt 24 connected to the support seat 22 may be made of an insulating material. A lower flange 6 and
Since it is possible to prevent the insulation distance from the current lead 1 at a high potential from being shortened by the support seats and bolts protruding from the lower flange and degrading the withstand voltage performance of this portion, it is necessary to install the reinforcing portion internally. It is possible to obtain an advantage that the diameter of the room temperature port 7 is prevented from increasing due to the above, and the reinforcing portion can be downsized by using the FRP tube whose diameter is reduced as compared with the conventional protective insulating cylinder.

【0017】[0017]

【発明の効果】この発明は前述のように、外気と遮断さ
れた常温ポ−ト内に電流リードを包囲するようほぼ同軸
状に配された筒状の絶縁材からなり、その上下端が上部
フランジおよび下部フランジにそれぞれ連結されてなる
補強部を備えるよう構成した。その結果、常温ポ−トを
その内部から機械的に補強して外力による電流リードの
揺れやこれに伴うベロ−ズ,セラミック碍管等の損傷を
回避できるとともに、補強部が常温ポ−トにより外気と
画成された乾燥状態の冷媒ガス雰囲気中にあって湿潤汚
損が回避され、常温ポ−トの耐電圧を、湿潤汚損による
耐電圧性能の低下が少ないセラミック碍管の沿面絶縁距
離により決めることが可能となり、従来技術で問題とな
った保護絶縁筒の湿潤汚損による耐電圧性能の低下をほ
ぼ完全に排除できる。従って、耐電圧性能に影響を及ぼ
すことなく常温ポ−トを機械的に強化する機能を有する
電流リード絶縁支持構造を備えた超電導機器を提供する
ことができる。
As described above, the present invention comprises a cylindrical insulating material which is coaxially arranged so as to surround a current lead in a room temperature port which is insulated from the outside air, and whose upper and lower ends are upper parts. It is configured to include a reinforcing portion connected to each of the flange and the lower flange. As a result, the room temperature port is mechanically reinforced from the inside to prevent the current lead from swaying due to an external force and the resulting damage to the bellows, the ceramic porcelain tube and the like. Wet fouling is avoided in a dry refrigerant gas atmosphere defined as, and the withstand voltage of the room temperature port can be determined by the creepage insulation distance of the ceramic porcelain tube in which the decrease in withstand voltage performance due to wet fouling is small. This makes it possible to almost completely eliminate the deterioration of the withstand voltage performance due to the wet contamination of the protective insulating cylinder, which has been a problem in the prior art. Therefore, it is possible to provide a superconducting device having a current lead insulating support structure having a function of mechanically strengthening a room temperature port without affecting the withstand voltage performance.

【0018】また、筒状の絶縁材が繊維強化プラスチッ
ク円筒(FRPチュ−ブ)からなり、このFRPチュ−
ブを上下一対のフランジそれぞれから放射状に突設され
た支持座にボルト結合するよう構成すれば、FRPチュ
−ブの持つ高い剛性と、乾燥状態における優れた耐電圧
性能とを活用して、外力に対する優れた機械的安定性
と、湿潤汚損に対する優れた絶縁信頼性とを有する電流
リード絶縁支持構造を備えた超電導機器を経済的にも有
利に提供することができる。
The tubular insulating material is a fiber reinforced plastic cylinder (FRP tube).
If the tube is configured to be bolted to the support seats radially protruding from each of the pair of upper and lower flanges, the high rigidity of the FRP tube and the excellent withstand voltage performance in a dry state are utilized to apply an external force. It is possible to economically and advantageously provide a superconducting device provided with a current lead insulating support structure having excellent mechanical stability against heat damage and excellent insulation reliability against wet fouling.

【0019】さらに、下部フランジから放射状に突設さ
れた支持座、およびこれに結合するボルトをそれぞれ絶
縁材とするよう構成すれば、常温ポ−トの内径の増大を
防ぎ、かつ補強部を従来より小型化できる利点が得られ
る。
Further, if the support seats radially protruding from the lower flange and the bolts connected to the support seats are made of insulating material, the inner diameter of the room temperature port can be prevented from increasing and the reinforcing portion can be made to be conventional. The advantage that it can be made smaller can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例になる超電導機器の電流リー
ド絶縁支持構造を示す断面図
FIG. 1 is a sectional view showing a current lead insulation support structure for a superconducting device according to an embodiment of the present invention.

【図2】図1におけるA−A方向の断面図FIG. 2 is a sectional view taken along the line AA in FIG.

【図3】超電導機器の従来の電流リード絶縁支持構造を
示す側断面図
FIG. 3 is a side sectional view showing a conventional current lead insulation support structure for a superconducting device.

【図4】図3を上方から見た要部の平面図FIG. 4 is a plan view of a main part when FIG. 3 is viewed from above.

【符号の説明】[Explanation of symbols]

1 電流リード 1A 常温端子 1B 低温端子 2 真空断熱容器 3 セラミック碍管 4 ベロ−ズ 5 上部フランジ 6 下部フランジ 7 常温ポ−ト 10 補強部 11 保護絶縁筒(FRPチュ−ブ) 12 支持座 13 支持座 14 ボルト 20 補強部 21 筒状の絶縁体(FRPチュ−ブ) 22 支持座 23 支持座 24 ボルト 27 冷媒ガス空間 1 Current Lead 1A Room Temperature Terminal 1B Low Temperature Terminal 2 Vacuum Insulation Container 3 Ceramic Insulator Tube 4 Bellows 5 Upper Flange 6 Lower Flange 7 Room Temperature Port 10 Reinforcement 11 Protective Insulation Cylinder (FRP Tube) 12 Support Seat 13 Support Seat 14 Bolts 20 Reinforcement part 21 Cylindrical insulator (FRP tube) 22 Support seat 23 Support seat 24 Bolt 27 Refrigerant gas space

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】超電導機器をその超電導状態を保持して収
納する真空断熱容器に連結された下部フランジと、前記
超電導機器に電流を供給する電流リードの常温端子側に
設けた上部フランジとがセラミック碍管およびベロ−ズ
の直列体を介して連結されてなる常温ポ−トを備え、前
記電流リードの主体部分を外気と遮断した状態で絶縁支
持するものにおいて、前記外気と遮断された常温ポ−ト
内に前記電流リードを包囲するようほぼ同軸状に配され
た筒状の絶縁材からなり、その上下端が前記上部フラン
ジおよび下部フランジにそれぞれ連結されてなる補強部
を備えたことを特徴とする超電導機器の電流リード絶縁
支持構造。
1. A ceramic comprising a lower flange connected to a vacuum heat insulation container for holding the superconducting device while holding the superconducting state, and an upper flange provided on a room temperature terminal side of a current lead for supplying a current to the superconducting device. An ordinary temperature port which is insulated from the outside air, which is provided with an ordinary temperature port connected through a series body of an insulator and a bellows and which insulates and supports the main portion of the current lead from the outside air. A cylindrical insulating material arranged substantially coaxially so as to surround the current lead, and upper and lower ends thereof are respectively connected to the upper flange and the lower flange, and a reinforcing portion is provided. Current lead insulation support structure for superconducting equipment.
【請求項2】補強部が、筒状の絶縁材としての繊維強化
プラスチック円筒と、上下一対のフランジそれぞれから
放射状に突設された支持座と、前記繊維強化プラスチッ
ク円筒を前記支持座に固定するボルトとからなることを
特徴とする請求項1記載の超電導機器の電流リード絶縁
支持構造。
2. A reinforcing portion, a fiber-reinforced plastic cylinder as a tubular insulating material, a support seat radially protruding from a pair of upper and lower flanges, and the fiber-reinforced plastic cylinder fixed to the support seat. The current lead insulating and supporting structure for a superconducting device according to claim 1, characterized in that it comprises a bolt.
【請求項3】下部フランジから放射状に突設された支持
座、およびこれに結合するボルトがそれぞれ絶縁材から
なることを特徴とする請求項2記載の超電導機器の電流
リード絶縁支持構造。
3. A current lead insulating support structure for a superconducting device according to claim 2, wherein the support seats radially protruding from the lower flange and the bolts connected thereto are made of an insulating material.
JP3274365A 1991-10-23 1991-10-23 Current lead insulating support structure of superconductive equipment Pending JPH05114754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3274365A JPH05114754A (en) 1991-10-23 1991-10-23 Current lead insulating support structure of superconductive equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3274365A JPH05114754A (en) 1991-10-23 1991-10-23 Current lead insulating support structure of superconductive equipment

Publications (1)

Publication Number Publication Date
JPH05114754A true JPH05114754A (en) 1993-05-07

Family

ID=17540647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3274365A Pending JPH05114754A (en) 1991-10-23 1991-10-23 Current lead insulating support structure of superconductive equipment

Country Status (1)

Country Link
JP (1) JPH05114754A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175123A (en) * 2003-12-10 2005-06-30 Central Res Inst Of Electric Power Ind Current lead for superconducting coil
US7132914B2 (en) 2003-01-29 2006-11-07 Central Japan Railway Superconducting magnet apparatus
CN109215928A (en) * 2018-11-26 2019-01-15 宁波健信核磁技术有限公司 A kind of superconducting magnet room temperature current feed attachment device
JP2021150499A (en) * 2020-03-19 2021-09-27 住友重機械工業株式会社 Current lead device, superconducting coil device, and maintenance method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7132914B2 (en) 2003-01-29 2006-11-07 Central Japan Railway Superconducting magnet apparatus
JP2005175123A (en) * 2003-12-10 2005-06-30 Central Res Inst Of Electric Power Ind Current lead for superconducting coil
JP4494767B2 (en) * 2003-12-10 2010-06-30 財団法人電力中央研究所 Current leads for superconducting coils
CN109215928A (en) * 2018-11-26 2019-01-15 宁波健信核磁技术有限公司 A kind of superconducting magnet room temperature current feed attachment device
CN109215928B (en) * 2018-11-26 2024-05-24 宁波健信超导科技股份有限公司 Normal temperature current lead connecting device for superconducting magnet
JP2021150499A (en) * 2020-03-19 2021-09-27 住友重機械工業株式会社 Current lead device, superconducting coil device, and maintenance method

Similar Documents

Publication Publication Date Title
US6888060B2 (en) Terminal structure of extreme-low temperature equipment
US7849704B2 (en) Cryogenic apparatus of superconducting equipment
JP5118815B2 (en) Electric bushings for superconducting members
JP3563355B2 (en) Terminal structure of cryogenic equipment
CN102884693B (en) Pole cryocable terminal connection part
JP4292416B2 (en) Superconducting cable terminal structure
JPH05114754A (en) Current lead insulating support structure of superconductive equipment
JP3779168B2 (en) Terminal structure of cryogenic equipment
US8748757B2 (en) Temperature compensated bushing design
JP2005009582A (en) Fastening structure for use at low temperature
JP4658839B2 (en) Electrical connection structure for superconducting members
JPS60173883A (en) Superconductive magnet
US20020134757A1 (en) Vacuum circuit breaker
US20140162882A1 (en) Cable termination for high voltage power cables cooled by a gaseous cryogen
JP2000090998A (en) Superconducting cable joint
KR100508710B1 (en) termination structure of super conducting cable
JP3347990B2 (en) Gas circuit breaker
JP3181513B2 (en) Terminal structure of cryogenic cable
JPS63261706A (en) Cryogenic apparatus
JPH0434904A (en) Superconducting magnetic device
JPH0810937Y2 (en) Insulation support structure for current leads for cryogenic equipment
JPH0520945A (en) Bushing
JPH09130955A (en) Terminal structure for cryogenic cable
JPH06252454A (en) Superconductive current lead
JPH07284265A (en) Superconducting rotor