JPH0814711A - Solenoid valve-integrated receiver and refrigerating cycle - Google Patents

Solenoid valve-integrated receiver and refrigerating cycle

Info

Publication number
JPH0814711A
JPH0814711A JP14305894A JP14305894A JPH0814711A JP H0814711 A JPH0814711 A JP H0814711A JP 14305894 A JP14305894 A JP 14305894A JP 14305894 A JP14305894 A JP 14305894A JP H0814711 A JPH0814711 A JP H0814711A
Authority
JP
Japan
Prior art keywords
refrigerant
passage
solenoid valve
receiver
outlet passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14305894A
Other languages
Japanese (ja)
Inventor
Akio Ogiso
朗雄 小木曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP14305894A priority Critical patent/JPH0814711A/en
Publication of JPH0814711A publication Critical patent/JPH0814711A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress pressure variations (pressure increase) to be caused when a solenoid valve is closed, control vibrations of refrigerant pipes and a rear side evaporator and reduce an impact noise to be accompanied by pressure variations. CONSTITUTION:A solenoid valve-integrated receiver 4 is formed integrally with a receiver 14, a three-way branching body 15 and a solenoid valve 16. The three-way branching body 15 is screwed and fixed to a vessel main body 14a of the receiver 14 and provided with an inlet passage 15a communicating to an outlet pipe 14c of the receiver 14, a first outlet passage 15b and a second outlet passage 15c, both communicating to the inlet passage 15a. The first outlet passage 15b is connected to a main passage 9 for a refrigerant which communicates to a front side evaporator, while the second outlet passage 15c is connected to a sub-passage 10 for the refrigerant, which communicates to a rear side evaporator. The solenoid valve 16 screwed and fixed to the three-way branching body 15 opens the second outlet passage 15c of the three-way branching body 15 when a coil 16e receives the supply of power, and closes the second outlet passage 15c when the supply of power to the coil 16e is stopped.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍サイクルに使用さ
れる電磁弁一体型レシーバに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solenoid valve integrated receiver used in a refrigeration cycle.

【0002】[0002]

【従来の技術】従来より、乗用車やワゴン車に搭載され
る空気調和装置では、車室内の前席側と後席側とを独立
して冷房することのできるデュアルエアコンシステムが
ある。このシステムは、前席側の冷房を行なうフロント
側蒸発器と、後席側の冷房を行なうリヤ側蒸発器とを備
え、そのフロント側蒸発器とリヤ側蒸発器とが1つの冷
凍サイクル中に並列に接続されて、リヤ側蒸発器のみ冷
媒の流れを停止できるように、リヤ側蒸発器の上流に電
磁弁が設置されている。従って、後席側を冷房しない時
は、電磁弁を閉じてリヤ側蒸発器への冷媒の流れを停止
することができる。
2. Description of the Related Art Conventionally, in an air conditioner mounted on a passenger car or a wagon vehicle, there is a dual air conditioner system capable of independently cooling the front seat side and the rear seat side in a passenger compartment. This system includes a front-side evaporator that cools the front seats and a rear-side evaporator that cools the rear seats. The front-side evaporator and the rear-side evaporator are combined in one refrigeration cycle. An electromagnetic valve is installed upstream of the rear evaporator so that the refrigerant can be stopped only in the rear evaporator by being connected in parallel. Therefore, when the rear seat side is not cooled, the electromagnetic valve can be closed to stop the flow of the refrigerant to the rear side evaporator.

【0003】[0003]

【発明が解決しようとする課題】ところが、上述のシス
テムでは、図3に模式的に示すように、電磁弁100の
上流に液冷媒を貯留するレシーバ200が配置されるこ
とから、電磁弁100を閉じた時に、それまで冷媒配管
300を流れていた高圧液冷媒の流れが急激に止められ
るため、過渡的な圧力変動(圧力上昇)を招く、所謂ウ
ォータハンマ現象が生じる。その結果、冷媒配管300
やリヤ側蒸発器が振動したり、圧力変動に伴う衝撃音
(ウォータハンマ音)を発生するという不具合を生じ
る。
However, in the system described above, the receiver 200 for storing the liquid refrigerant is arranged upstream of the solenoid valve 100 as schematically shown in FIG. When closed, the flow of the high-pressure liquid refrigerant, which has been flowing through the refrigerant pipe 300, is suddenly stopped, so that a so-called water hammer phenomenon that causes a transient pressure fluctuation (pressure increase) occurs. As a result, the refrigerant pipe 300
Also, the rear evaporator may vibrate, and a shock noise (water hammer noise) may be generated due to pressure fluctuation.

【0004】このウォータハンマ現象は、電磁弁100
が閉じて液冷媒の流れが止められると、それまでレシー
バ200から電磁弁100までの冷媒配管300を流れ
ていた高圧液冷媒の運動エネルギーが液冷媒を圧縮する
エネルギーに変換されて、その圧縮エネルギーが急激に
高くなることで生じる。従って、ウォータハンマ現象に
よる衝撃圧力を低減するためには、電磁弁100が閉じ
た時に液冷媒を圧縮する圧縮エネルギーとなる液冷媒の
運動エネルギーを小さくすれば良い。
This water hammer phenomenon is caused by the solenoid valve 100.
Is closed and the flow of the liquid refrigerant is stopped, the kinetic energy of the high-pressure liquid refrigerant that has been flowing through the refrigerant pipe 300 from the receiver 200 to the solenoid valve 100 is converted into energy for compressing the liquid refrigerant, and the compression energy Is caused by a sudden rise in. Therefore, in order to reduce the impact pressure due to the water hammer phenomenon, the kinetic energy of the liquid refrigerant, which is the compression energy for compressing the liquid refrigerant when the solenoid valve 100 is closed, may be reduced.

【0005】この運動エネルギーは、レシーバ200か
ら電磁弁100までの距離Lが長くなる程、大きくなる
ため、電磁弁100を閉じた時の衝撃圧力を低減するた
めには、レシーバ200から電磁弁100までの距離L
を短くすることが効果的であると言える。
This kinetic energy increases as the distance L from the receiver 200 to the solenoid valve 100 increases, so in order to reduce the impact pressure when the solenoid valve 100 is closed, the receiver 200 to the solenoid valve 100. Distance to
It can be said that shortening is effective.

【0006】なお、電磁弁を車体側へ取付ける際に、電
磁弁の取付けブラケットと車体側との間にゴム等の弾性
体を介在させることで振動を防止したり、マフラーやホ
ース等を使用して電磁弁を閉じた時の圧力変動を減衰す
る等の方法があるが、いずれも十分な効果を得ることは
できず、また、別部品を使用することでコスト高を招く
ことにもなっている。本発明は、上記事情に基づいて成
されたもので、その目的は、電磁弁を閉じた時に生じる
所謂ウォータハンマ現象による配管や蒸発器の振動を抑
えるとともに、圧力変動に伴う衝撃音の低減を図ること
にある。
When the solenoid valve is mounted on the vehicle body side, an elastic body such as rubber is interposed between the mounting bracket of the solenoid valve and the vehicle body side to prevent vibration, or to use a muffler or a hose. There is a method such as damping the pressure fluctuation when the solenoid valve is closed, but none of them can achieve sufficient effect, and the use of separate parts also leads to higher costs. There is. The present invention has been made based on the above circumstances, and an object thereof is to suppress vibration of pipes and evaporators due to a so-called water hammer phenomenon that occurs when a solenoid valve is closed, and to reduce impact noise due to pressure fluctuation. It is to plan.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するために、請求項1において、内部に所定量の冷媒
を貯留することのできる容器本体、およびこの容器本体
に貯留された冷媒を前記容器本体の外部へ導く流出通路
を有するレシーバと、前記容器本体に組付けられて、前
記流出通路に連通する入口通路、この入口通路より分岐
してそれぞれ外部に開口する第1出口通路と第2出口通
路が形成された三方分岐体と、前記第2出口通路を開閉
可能に設けられた弁体を有し、電磁力を利用して前記弁
体を駆動する電磁弁とを備え、前記レシーバ、前記三方
分岐体、および前記電磁弁を一体化したことを技術的手
段とする。
In order to achieve the above object, the present invention provides a container main body capable of storing a predetermined amount of refrigerant therein, and a refrigerant stored in the container main body according to claim 1. A receiver having an outflow passage leading to the outside of the container body, an inlet passage that is assembled to the container body and communicates with the outflow passage, and a first outlet passage that branches from the inlet passage and opens to the outside, respectively. A three-way branch body in which a second outlet passage is formed; and a solenoid valve that has a valve body that can open and close the second outlet passage and that drives the valve body by using electromagnetic force, The technical means is to integrate the receiver, the three-way branch body, and the solenoid valve.

【0008】また、請求項2では、一台の冷媒圧縮機に
対して第1冷媒蒸発器と第2冷媒蒸発器とを備える冷凍
サイクルにおいて、請求項1に記載された電磁弁一体型
レシーバを冷媒凝縮器の下流に配置して、前記三方分岐
体の前記第1出口通路に前記第1冷媒蒸発器を有する第
1冷媒通路が接続され、前記第2出口通路に前記第2冷
媒蒸発器を有する第2冷媒通路が接続されたことを特徴
とする。
According to a second aspect of the present invention, in the refrigeration cycle in which the first refrigerant evaporator and the second refrigerant evaporator are provided for one refrigerant compressor, the electromagnetic valve integrated receiver according to the first aspect is provided. The first refrigerant passage having the first refrigerant evaporator is connected to the first outlet passage of the three-way branch body, and the second refrigerant evaporator is provided in the second outlet passage. It is characterized in that the second refrigerant passage that it has is connected.

【0009】請求項3では、前記第1冷媒通路には、前
記第1冷媒蒸発器より上流に、前記レシーバより送られ
た冷媒を減圧膨脹する第1減圧手段が設けられて、前記
第2冷媒通路には、前記第2冷媒蒸発器より上流に、前
記レシーバより送られた冷媒を減圧膨脹する第2減圧手
段が設けられたことを特徴とする。
According to a third aspect of the present invention, the first refrigerant passage is provided with a first pressure reducing means for decompressing and expanding the refrigerant sent from the receiver upstream of the first refrigerant evaporator, and the second refrigerant is provided. A second decompression means for decompressing and expanding the refrigerant sent from the receiver is provided upstream of the second refrigerant evaporator in the passage.

【0010】[0010]

【作用および発明の効果】請求項1に示す本発明の電磁
弁一体型レシーバは、レシーバ、三方分岐体、および電
磁弁を一体化することにより、レシーバと電磁弁とを近
接して配置することができる。つまり、レシーバ、三方
分岐体、および電磁弁をそれぞれ配管で接続して構成し
た場合と比較して、レシーバと電磁弁との距離を小さく
することができる。その結果、電磁弁が閉じた時、つま
り電磁弁の弁体が三方分岐体の第2出口通路を閉じた時
に生じる圧力上昇が緩和されて、ウォータハンマ現象に
よる衝撃圧力を低減することができる。
According to the electromagnetic valve integrated receiver of the present invention as set forth in claim 1, the receiver, the three-way branch body, and the electromagnetic valve are integrated so that the receiver and the electromagnetic valve are arranged close to each other. You can That is, the distance between the receiver and the solenoid valve can be reduced as compared with the case where the receiver, the three-way branch body, and the solenoid valve are connected by pipes. As a result, the pressure increase that occurs when the solenoid valve is closed, that is, when the valve body of the solenoid valve closes the second outlet passage of the three-way branch body is mitigated, and the impact pressure due to the water hammer phenomenon can be reduced.

【0011】[0011]

【実施例】次に、本発明の電磁弁一体型レシーバを備え
た冷凍サイクルの一実施例を図1および図2に基づいて
説明する。図1は電磁弁一体型レシーバの断面図であ
る。本実施例の冷凍サイクル1は、車両用空気調和装置
に適用されて、車室内の前席側と後席側とをそれぞれ独
立して冷房することのできるデュアルエアコンシステム
を構成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of a refrigeration cycle equipped with a solenoid valve integrated receiver of the present invention will be described with reference to FIGS. FIG. 1 is a sectional view of a solenoid valve integrated receiver. The refrigeration cycle 1 of the present embodiment is applied to an air conditioner for a vehicle and constitutes a dual air conditioner system capable of independently cooling the front seat side and the rear seat side in a vehicle compartment.

【0012】この冷凍サイクル1は、図2に示すよう
に、冷媒圧縮機2、冷媒凝縮器3、電磁弁一体型レシー
バ4、フロント側膨脹弁5(第1減圧手段)、フロント
側蒸発器6(第1冷媒蒸発器)、リヤ側膨脹弁7(第2
減圧手段)、リヤ側蒸発器8(第2冷媒蒸発器)の各機
能部品より構成され、電磁弁一体型レシーバ4と冷媒圧
縮機2との間で、フロント側膨脹弁5とフロント側蒸発
器6とを有する主冷媒通路9(第1冷媒通路)に対して
リヤ側膨脹弁7とリヤ側蒸発器8とを有する副冷媒通路
10(第2冷媒通路)が並列に分岐接続されている。
As shown in FIG. 2, the refrigeration cycle 1 includes a refrigerant compressor 2, a refrigerant condenser 3, a solenoid valve integrated receiver 4, a front side expansion valve 5 (first pressure reducing means), and a front side evaporator 6. (First refrigerant evaporator), rear expansion valve 7 (second refrigerant
Pressure reducing means) and rear side evaporator 8 (second refrigerant evaporator), and the front expansion valve 5 and front evaporator between the solenoid valve integrated receiver 4 and the refrigerant compressor 2. A sub-refrigerant passage 10 (second refrigerant passage) having a rear-side expansion valve 7 and a rear-side evaporator 8 is branched and connected in parallel to a main refrigerant passage 9 (first refrigerant passage) having a rear-side expansion valve 7 and a rear-side evaporator 8.

【0013】冷媒圧縮機2は、電磁クラッチ11を介し
て車両の走行用エンジン12によって駆動され、吸引し
たガス冷媒を圧縮して吐出する。冷媒凝縮器3は、冷媒
圧縮機2より吐出された高温高圧の冷媒をクーリングフ
ァン13の送風を受けて凝縮液化する。
The refrigerant compressor 2 is driven by the running engine 12 of the vehicle through the electromagnetic clutch 11, and compresses and discharges the sucked gas refrigerant. The refrigerant condenser 3 condenses and liquefies the high-temperature and high-pressure refrigerant discharged from the refrigerant compressor 2 by receiving air from the cooling fan 13.

【0014】電磁弁一体型レシーバ4は、図1に示すよ
うに、冷媒凝縮器3で凝縮液化された冷媒を貯留して液
冷媒を送り出すレシーバ14、このレシーバ14より流
出した冷媒をフロント側膨脹弁5とリヤ側膨脹弁7とに
分岐して流すための三方分岐体15、およびこの三方分
岐体15のリヤ側膨脹弁7に通じる冷媒通路(下述す
る)を開閉する電磁弁16を一体化したものである。な
お、レシーバ14、三方分岐体15、および電磁弁16
の各構造は後述する。
As shown in FIG. 1, the electromagnetic valve integrated receiver 4 stores the refrigerant condensed and liquefied in the refrigerant condenser 3 and sends out the liquid refrigerant, and the refrigerant flowing out of the receiver 14 is expanded on the front side. A three-way branch body 15 for branching and flowing into the valve 5 and the rear-side expansion valve 7, and a solenoid valve 16 for opening and closing a refrigerant passage (described below) leading to the rear-side expansion valve 7 of the three-way branch body 15 are integrated. It has been transformed. The receiver 14, the three-way branch body 15, and the solenoid valve 16
Each structure of will be described later.

【0015】フロント側膨脹弁5およびリヤ側膨脹弁7
は、それぞれ主冷媒通路9および副冷媒通路10におい
てフロント側蒸発器6およびリヤ側蒸発器8の上流に配
置されて、レシーバ14より導かれた冷媒を減圧膨脹す
る。なお、本実施例のフロント側膨脹弁5およびリヤ側
膨脹弁7は、それぞれフロント側蒸発器6およびリヤ側
蒸発器8より流出する出口冷媒の過熱度が略一定となる
ように、通過する冷媒流量を調節する温度作動式膨脹弁
である。
Front side expansion valve 5 and rear side expansion valve 7
Are arranged upstream of the front side evaporator 6 and the rear side evaporator 8 in the main refrigerant passage 9 and the sub refrigerant passage 10, respectively, and decompress and expand the refrigerant guided from the receiver 14. The front-side expansion valve 5 and the rear-side expansion valve 7 of the present embodiment pass through the refrigerant so that the superheat degree of the outlet refrigerant flowing from the front-side evaporator 6 and the rear-side evaporator 8 becomes substantially constant. It is a temperature-controlled expansion valve that regulates the flow rate.

【0016】フロント側蒸発器6およびリヤ側蒸発器8
は、それぞれフロント側膨脹弁5およびリヤ側膨脹弁7
で減圧膨脹された低温低圧の冷媒と室内ファン17、1
8によって送風された空気との熱交換を行なう。
Front side evaporator 6 and rear side evaporator 8
Are the front side expansion valve 5 and the rear side expansion valve 7, respectively.
Low-temperature low-pressure refrigerant that has been decompressed and expanded by the indoor fan 17, 1
The heat exchange with the air blown by 8 is performed.

【0017】次に、上述の電磁弁一体型レシーバ4の構
造を図1に基づいて説明する。レシーバ14は、内部に
所定量の冷媒を貯留することのできる容器本体14aを
備える。この容器本体14aには、冷媒凝縮器3の冷媒
出口と冷媒配管19によって連絡されて、冷媒凝縮器3
で凝縮液化された冷媒を容器本体14a内へ流入させる
流入路14bが形成されるとともに、容器本体14aに
貯留された液冷媒を容器本体14aの外部へ導く出口管
14c(本発明の流出通路)が設けられている。この出
口管14cは、先端が容器本体14aの底部まで延びて
開口し、後端が容器本体14aの頭部に形成された凹部
14dに開口する。この凹部14dは、三方分岐体15
を組付けるために形成されたものである。
Next, the structure of the solenoid valve integrated receiver 4 will be described with reference to FIG. The receiver 14 includes a container body 14a capable of storing a predetermined amount of refrigerant therein. The container body 14a is communicated with the refrigerant outlet of the refrigerant condenser 3 by a refrigerant pipe 19 and is connected to the refrigerant condenser 3
An inflow passage 14b for allowing the condensed and liquefied refrigerant to flow into the container body 14a is formed, and an outlet pipe 14c for guiding the liquid refrigerant stored in the container body 14a to the outside of the container body 14a (outflow passage of the present invention) Is provided. The outlet pipe 14c has a tip that extends to the bottom of the container body 14a and opens, and a trailing end that opens to a recess 14d formed in the head of the container body 14a. This concave portion 14d is a three-way branch body 15
It is formed for assembling.

【0018】三方分岐体15には、入口通路15a、第
1出口通路15b、および第2出口通路15cが形成さ
れている。入口通路15aは、一端(図1の下端)が流
入口として外部に開口し、他端が流入口と反対側に電磁
弁16の弁体を挿入するために開口された開口孔に通じ
る。第1出口通路15bは、入口通路15aの途中から
直角方向に分岐して、先端が第1流出口として外部に開
口する。第2出口通路15cは、開口孔を介して入口通
路15aと連通し、入口通路15aに対し直角方向(第
1出口通路15bと同方向)に延びて、先端が第2流出
口として外部に開口する。
The three-way branch body 15 has an inlet passage 15a, a first outlet passage 15b, and a second outlet passage 15c. One end (the lower end in FIG. 1) of the inlet passage 15a is opened to the outside as an inflow port, and the other end is connected to an opening hole opened for inserting the valve body of the solenoid valve 16 on the side opposite to the inflow port. The first outlet passage 15b branches at a right angle from the middle of the inlet passage 15a, and its tip opens to the outside as a first outlet. The second outlet passage 15c communicates with the inlet passage 15a through the opening hole, extends in a direction perpendicular to the inlet passage 15a (the same direction as the first outlet passage 15b), and has a tip opening to the outside as a second outlet. To do.

【0019】入口通路15aの他端側には、電磁弁16
のプランジャ16a(本発明の弁体)が着座する円錐状
の弁座15dが形成されており、この弁座15dにプラ
ンジャ16aが着座することで入口通路15aと第2出
口通路15cとの間が遮断され(以下第2出口通路15
cを閉じると言う)、弁座15dからプランジャ16a
が離れることで入口通路15aと第2出口通路15cと
が連通する。一方、入口通路15aと第1出口通路15
bとは常に導通している。
A solenoid valve 16 is provided at the other end of the inlet passage 15a.
Is formed with a conical valve seat 15d on which the plunger 16a (valve element of the present invention) is seated, and the plunger 16a is seated on the valve seat 15d so that the inlet passage 15a and the second outlet passage 15c are separated from each other. Shut off (hereinafter second outlet passage 15
c), the valve seat 15d to the plunger 16a.
The inlet passage 15a and the second outlet passage 15c communicate with each other due to the separation. On the other hand, the inlet passage 15a and the first outlet passage 15
There is always continuity with b.

【0020】入口通路15aの開口端側外周には、フラ
ンジ15eが設けられて、このフランジ15eより先端
側が容器本体14aとの組付けを行なう継手部15fと
して設けられている。また第1出口通路15bおよび第
2出口通路15cの開口端側外周には、それぞれ冷媒配
管(主冷媒通路9、副冷媒通路10)との接続を行なう
配管継手部15g、15hが設けられている。
A flange 15e is provided on the outer periphery of the inlet passage 15a on the open end side, and a tip end side of the flange 15e is provided as a joint portion 15f for assembling with the container body 14a. Further, pipe joint portions 15g and 15h for connecting to the refrigerant pipes (the main refrigerant passage 9 and the sub-refrigerant passage 10) are provided on the outer peripheries of the first outlet passage 15b and the second outlet passage 15c on the opening end side. .

【0021】この三方分岐体15は、レシーバ14の容
器本体14aに形成された凹部14dに入口通路15a
の外周に設けられた継手部15fを螺着して容器本体1
4aに固定される。これにより、レシーバ14の出口管
14cと三方分岐体15の入口通路15aとが連通す
る。なお、三方分岐体15と容器本体14aとの組付け
部は、入口通路15aの外周に設けられたフランジ15
eと容器本体14aとの間に介在されたOリング20に
よってシールされる。
The three-way branch body 15 has an inlet passage 15a in a recess 14d formed in the container body 14a of the receiver 14.
The container main body 1 by screwing the joint portion 15f provided on the outer periphery of the container
It is fixed to 4a. As a result, the outlet pipe 14c of the receiver 14 and the inlet passage 15a of the three-way branch body 15 communicate with each other. The assembly portion of the three-way branch body 15 and the container body 14a is a flange 15 provided on the outer circumference of the inlet passage 15a.
It is sealed by an O-ring 20 interposed between e and the container body 14a.

【0022】また、第1出口通路15bには、配管継手
部15gを介して主冷媒通路9と接続され、第2出口通
路15cには、配管継手部15hを介して副冷媒通路1
0と接続される。なお、上述したリヤ側膨脹弁7に通じ
る冷媒通路とは、第2出口通路15cである。
The first outlet passage 15b is connected to the main refrigerant passage 9 via a pipe joint portion 15g, and the second outlet passage 15c is connected to the auxiliary refrigerant passage 1 via a pipe joint portion 15h.
Connected with 0. The refrigerant passage communicating with the rear expansion valve 7 described above is the second outlet passage 15c.

【0023】電磁弁16は、三方分岐体15への組付け
を行なう連結筒16b、この連結筒16bに連結された
円筒形のプランジャ筒16c、ボビン16dに巻回され
てプランジャ筒16cの外周に配置されるコイル16
e、プランジャ筒16c内の上端側に固定された鉄心1
6f、プランジャ筒16c内で摺動可能に配されたプラ
ンジャ16a、プランジャ筒16c内で鉄心16fとプ
ランジャ16aとの間に配されて、プランジャ16aを
図示下方へ付勢するスプリング16g等より構成され
る。
The solenoid valve 16 is connected to the three-way branch body 15 by a connecting cylinder 16b, a cylindrical plunger cylinder 16c connected to the connecting cylinder 16b, and a bobbin 16d wound around the outer periphery of the plunger cylinder 16c. Coil 16 placed
e, the iron core 1 fixed to the upper end side in the plunger cylinder 16c
6f, a plunger 16a slidably arranged in the plunger cylinder 16c, and a spring 16g arranged between the iron core 16f and the plunger 16a in the plunger cylinder 16c to urge the plunger 16a downward in the drawing. It

【0024】この電磁弁16は、プランジャ16aの先
端側が三方分岐体15の開口孔に挿入された状態で、連
結筒16bにより三方分岐体15に螺子固定されてい
る。開口孔に挿入されたプランジャ16aは、プランジ
ャ筒16c内を図示下方へ移動した時に、三方分岐体1
5の入口通路15aに形成された弁座15dとの間で第
2出口通路15cを閉じるように、その先端部が弁座1
5dに対応する円錐形状(テーパ形状)に設けられてい
る。
The solenoid valve 16 is screwed to the three-way branch body 15 by the connecting cylinder 16b in a state where the tip end side of the plunger 16a is inserted into the opening hole of the three-way branch body 15. When the plunger 16a inserted into the opening is moved downward in the drawing in the plunger cylinder 16c, the three-way branch body 1
5 of the valve seat 15d formed in the inlet passage 15a of the valve seat 1 so that the second outlet passage 15c is closed.
It is provided in a conical shape (tapered shape) corresponding to 5d.

【0025】この電磁弁16は、コイル16eが通電さ
れると、コイル16eに発生する磁力により鉄心16f
が磁化されて電磁石となる。このため、磁性体であるプ
ランジャ16aがスプリング16gの付勢力に抗して鉄
心16fに吸着される。つまり、プランジャ筒16c内
を図示上方へ移動することになる。その結果、プランジ
ャ16aの先端が弁座15dより離れることで、三方分
岐体15の入口通路15aと第2出口通路15cとが連
通する。
In the solenoid valve 16, when the coil 16e is energized, the iron core 16f is generated by the magnetic force generated in the coil 16e.
Is magnetized to become an electromagnet. Therefore, the plunger 16a, which is a magnetic body, is attracted to the iron core 16f against the biasing force of the spring 16g. That is, the inside of the plunger cylinder 16c is moved upward in the drawing. As a result, the tip of the plunger 16a moves away from the valve seat 15d, so that the inlet passage 15a of the three-way branch body 15 and the second outlet passage 15c communicate with each other.

【0026】また、コイル16eへの通電が停止する
と、磁力の消滅に伴って、それまで鉄心16fに吸着さ
れていたプランジャ16aがスプリング16gの付勢力
によって押圧される。つまり、プランジャ筒16c内を
図示下方へ移動して、プランジャ16aの先端が弁座1
5dに当接(着座)することにより、第2出口通路15
cを閉じる。
When the coil 16e is de-energized, the magnetic force disappears and the plunger 16a, which has been attracted to the iron core 16f, is pressed by the urging force of the spring 16g. That is, the inside of the plunger cylinder 16c is moved downward in the drawing so that the tip of the plunger 16a moves toward the valve seat 1
By abutting (sit down) on 5d, the second outlet passage 15
Close c.

【0027】次に、本実施例の作動を説明する。 イ)前席側と後席側とを共に冷房する場合。 電磁弁16をON(コイル16eを通電する)して、三
方分岐体15の第2出口通路15cを開く(入口通路1
5aと第2出口通路15cとが連通する)。これによ
り、レシーバ14の出口管14cより流出する高圧液冷
媒は、三方分岐体15の入口通路15aより第1出口通
路15bと第2出口通路15cの両方に流れて、それぞ
れ主冷媒通路9および副冷媒通路10へ導かれる。
Next, the operation of this embodiment will be described. B) When cooling both the front and rear seats. The solenoid valve 16 is turned on (the coil 16e is energized) to open the second outlet passage 15c of the three-way branch body 15 (the inlet passage 1).
5a communicates with the second outlet passage 15c). As a result, the high-pressure liquid refrigerant flowing out of the outlet pipe 14c of the receiver 14 flows from the inlet passage 15a of the three-way branch body 15 into both the first outlet passage 15b and the second outlet passage 15c, and the main refrigerant passage 9 and the auxiliary refrigerant passage 9 respectively. It is guided to the refrigerant passage 10.

【0028】主冷媒通路9および副冷媒通路10を流れ
る冷媒は、フロント側膨脹弁5およびリヤ側膨脹弁7で
減圧膨脹されて低温低圧のガス状冷媒となり、それぞれ
フロント側蒸発器6およびリヤ側蒸発器8で周囲の空気
より蒸発潜熱を奪って蒸発する。このフロント側蒸発器
6およびリヤ側蒸発器8で冷却された空気が、それぞれ
室内ファン17、18によって車室内へ送られることに
より、前席側および後席側の冷房が行なわれる。
The refrigerant flowing through the main refrigerant passage 9 and the auxiliary refrigerant passage 10 is decompressed and expanded by the front expansion valve 5 and the rear expansion valve 7 to become a low-temperature low-pressure gaseous refrigerant, and the front evaporator 6 and the rear side, respectively. In the evaporator 8, the latent heat of evaporation is taken from the surrounding air to evaporate. The air cooled by the front side evaporator 6 and the rear side evaporator 8 is sent into the vehicle compartment by the indoor fans 17 and 18, respectively, so that the front seat side and the rear seat side are cooled.

【0029】ロ)前席側のみ冷房する場合。 電磁弁16をOFF(コイル16eを通電停止する)し
て、三方分岐体15の第2出口通路15cを閉じる。こ
れにより、レシーバ14の出口管14cより流出する高
圧液冷媒は、三方分岐体15の入口通路15aより第1
出口通路15bのみを流れて主冷媒通路9へ導かれ、フ
ロント側膨脹弁5で減圧膨脹された後、フロント側蒸発
器6で周囲の空気より蒸発潜熱を奪って蒸発する。この
フロント側蒸発器6で冷却された空気が室内ファン17
によって車室内へ送られることにより、前席側の冷房が
行なわれる。
(B) When cooling only the front seat side. The solenoid valve 16 is turned off (the coil 16e is de-energized) to close the second outlet passage 15c of the three-way branch body 15. As a result, the high-pressure liquid refrigerant flowing out from the outlet pipe 14c of the receiver 14 is discharged from the inlet passage 15a of the three-way branch body 15 to the first position.
After flowing only through the outlet passage 15b, being guided to the main refrigerant passage 9 and being decompressed and expanded by the front expansion valve 5, the front evaporator 6 deprives the surrounding air of evaporation latent heat and evaporates. The air cooled by the front side evaporator 6 is supplied to the indoor fan 17
The air is sent to the passenger compartment of the vehicle to cool the front seat.

【0030】この電磁弁16をOFFする時(第2出口
通路15cを閉じる時)には、高圧液冷媒の圧縮エネル
ギーが急激に上昇することにより、所謂ウォータハンマ
現象が生じる。このウォータハンマ現象における圧縮エ
ネルギー(ΔPmax )は、以下の式(Joukowski の式)
によって求められる。
When the solenoid valve 16 is turned off (when the second outlet passage 15c is closed), the compression energy of the high-pressure liquid refrigerant sharply rises, and a so-called water hammer phenomenon occurs. The compression energy (ΔPmax) in this water hammer phenomenon is calculated by the following formula (Joukowski's formula).
Required by.

【数1】ΔPmax =ρ・2L/Ts・V×10-3 ρ(kg/m3):液冷媒密度 L(m):レシーバ14から電磁弁16までの距離(図
3参照) V(m/s):流速
[Formula 1] ΔP max = ρ · 2 L / Ts · V × 10 −3 ρ (kg / m 3 ): Liquid refrigerant density L (m): Distance from receiver 14 to solenoid valve 16 (see FIG. 3) V (m / S): Flow velocity

【0031】この式で示されるように、圧縮エネルギー
の上昇ΔPmax を抑えるためには、レシーバ14から電
磁弁16までの距離Lを小さくすれば良いことが分か
る。本実施例では、レシーバ14と電磁弁16とを三方
分岐体15とともに一体化したことにより、レシーバ1
4から電磁弁16までの距離L(本実施例ではレシーバ
14の出口管14cと三方分岐体15の入口通路15a
の長さ)を最小に設定することができる。その結果、電
磁弁16をOFFした時の圧縮エネルギーの上昇ΔPma
x を抑えることができるため、その圧縮エネルギーの上
昇ΔPmax による衝撃力が小さくなり、冷媒配管やリヤ
側蒸発器8の振動が抑えられるとともに、ウォータハン
マ音が低減される。
As shown by this equation, it can be understood that the distance L from the receiver 14 to the solenoid valve 16 can be made small in order to suppress the increase ΔPmax of the compression energy. In the present embodiment, the receiver 14 and the solenoid valve 16 are integrated with the three-way branch body 15, so that the receiver 1
4 to the solenoid valve 16 (in this embodiment, the outlet pipe 14c of the receiver 14 and the inlet passage 15a of the three-way branch body 15)
Can be set to a minimum. As a result, the increase in compression energy when the solenoid valve 16 is turned off ΔPma
Since x can be suppressed, the impact force due to the increase ΔPmax of the compression energy becomes small, the vibration of the refrigerant pipe and the rear side evaporator 8 is suppressed, and the water hammer noise is reduced.

【0032】また、従来の三方分岐体15は、レシーバ
14および電磁弁16と別体で配管途中に設けていた
が、本実施例では、電磁弁16とともにレシーバ14と
一体化したことにより、三方分岐体15と冷媒配管との
接続用ジョイントが少なくなり、低コスト化を図ること
ができる。
The conventional three-way branch body 15 is provided separately from the receiver 14 and the solenoid valve 16 in the middle of the piping. However, in the present embodiment, the three-way branch body 15 is integrated with the receiver 14 together with the solenoid valve 16, so that The number of joints for connecting the branch body 15 and the refrigerant pipe is reduced, and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】電磁弁一体型レシーバの断面図である。FIG. 1 is a cross-sectional view of a solenoid valve integrated receiver.

【図2】本実施例の冷凍サイクル図である。FIG. 2 is a refrigeration cycle diagram of the present embodiment.

【図3】レシーバと電磁弁との模式図である。FIG. 3 is a schematic diagram of a receiver and a solenoid valve.

【符号の説明】[Explanation of symbols]

1 冷凍サイクル 2 冷媒圧縮機 3 冷媒凝縮器 4 電磁弁一体型レシーバ 5 フロント側膨脹弁(第1減圧手段) 6 フロント側蒸発器(第1冷媒蒸発器) 7 リヤ側膨脹弁(第2減圧手段) 8 リヤ側蒸発器(第2冷媒蒸発器) 9 主冷媒通路(第1冷媒通路) 10 副冷媒通路(第2冷媒通路) 14 レシーバ 14a 容器本体 14c 出口管(流出通路) 15 三方分岐体 15a 入口通路 15b 第1出口通路 15c 第2出口通路 16 電磁弁 16a プランジャ(弁体) DESCRIPTION OF SYMBOLS 1 Refrigeration cycle 2 Refrigerant compressor 3 Refrigerant condenser 4 Solenoid valve integrated receiver 5 Front expansion valve (first pressure reducing means) 6 Front evaporator (first refrigerant evaporator) 7 Rear expansion valve (second pressure reducing means) ) 8 rear side evaporator (2nd refrigerant evaporator) 9 main refrigerant passage (1st refrigerant passage) 10 auxiliary refrigerant passage (2nd refrigerant passage) 14 receiver 14a container body 14c outlet pipe (outflow passage) 15 three-way branch body 15a Inlet passage 15b First outlet passage 15c Second outlet passage 16 Solenoid valve 16a Plunger (valve body)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】a)内部に所定量の冷媒を貯留することの
できる容器本体、およびこの容器本体に貯留された冷媒
を前記容器本体の外部へ導く流出通路を有するレシーバ
と、 b)前記容器本体に組付けられて、前記流出通路に連通
する入口通路、この入口通路より分岐してそれぞれ外部
に開口する第1出口通路と第2出口通路が形成された三
方分岐体と、 c)前記第2出口通路を開閉可能に設けられた弁体を有
し、電磁力を利用して前記弁体を駆動する電磁弁とを備
え、 前記レシーバ、前記三方分岐体、および前記電磁弁を一
体化したことを特徴とする電磁弁一体型レシーバ。
1. A container main body capable of storing a predetermined amount of refrigerant therein, and a receiver having an outflow passage for guiding the refrigerant stored in the container main body to the outside of the container main body, and b) the container. An inlet passage that is assembled to the main body and communicates with the outflow passage, and a three-way branch body in which a first outlet passage and a second outlet passage that branch from the inlet passage and open to the outside are formed; A solenoid valve for driving the valve body by using an electromagnetic force is provided, and the receiver, the three-way branch body, and the solenoid valve are integrated. A solenoid valve integrated receiver characterized in that
【請求項2】一台の冷媒圧縮機に対して第1冷媒蒸発器
と第2冷媒蒸発器とを備える冷凍サイクルにおいて、 請求項1に記載された電磁弁一体型レシーバを冷媒凝縮
器の下流に配置して、 前記三方分岐体の前記第1出口通路に前記第1冷媒蒸発
器を有する第1冷媒通路が接続され、前記第2出口通路
に前記第2冷媒蒸発器を有する第2冷媒通路が接続され
たことを特徴とする冷凍サイクル。
2. A refrigeration cycle comprising a first refrigerant evaporator and a second refrigerant evaporator for one refrigerant compressor, wherein the electromagnetic valve integrated receiver according to claim 1 is provided downstream of the refrigerant condenser. A first refrigerant passage having the first refrigerant evaporator is connected to the first outlet passage of the three-way branch body, and a second refrigerant passage having the second refrigerant evaporator is provided in the second outlet passage. Is connected to the refrigeration cycle.
【請求項3】前記第1冷媒通路には、前記第1冷媒蒸発
器より上流に、前記レシーバより送られた冷媒を減圧膨
脹する第1減圧手段が設けられて、 前記第2冷媒通路には、前記第2冷媒蒸発器より上流
に、前記レシーバより送られた冷媒を減圧膨脹する第2
減圧手段が設けられたことを特徴とする請求項2に記載
された冷凍サイクル。
3. A first decompression means for decompressing and expanding the refrigerant sent from the receiver is provided upstream of the first refrigerant evaporator in the first refrigerant passage, and in the second refrigerant passage. And a second decompression and expansion of the refrigerant sent from the receiver upstream of the second refrigerant evaporator.
The refrigeration cycle according to claim 2, further comprising a decompression unit.
JP14305894A 1994-06-24 1994-06-24 Solenoid valve-integrated receiver and refrigerating cycle Pending JPH0814711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14305894A JPH0814711A (en) 1994-06-24 1994-06-24 Solenoid valve-integrated receiver and refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14305894A JPH0814711A (en) 1994-06-24 1994-06-24 Solenoid valve-integrated receiver and refrigerating cycle

Publications (1)

Publication Number Publication Date
JPH0814711A true JPH0814711A (en) 1996-01-19

Family

ID=15329938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14305894A Pending JPH0814711A (en) 1994-06-24 1994-06-24 Solenoid valve-integrated receiver and refrigerating cycle

Country Status (1)

Country Link
JP (1) JPH0814711A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275435A (en) * 2005-03-30 2006-10-12 Fujitsu General Ltd Gas-liquid separator and air-conditioner
WO2007029493A1 (en) * 2005-09-06 2007-03-15 Tgk Co., Ltd. Refrigeration cycle and compression assistance device
JP2007178008A (en) * 2005-12-26 2007-07-12 Zeneral Heat Pump Kogyo Kk Air conditioner other function adding device
JP2008057941A (en) * 2006-09-04 2008-03-13 Fuji Electric Retail Systems Co Ltd Refrigerant cycle device
JP2011085278A (en) * 2009-10-13 2011-04-28 Hitachi Appliances Inc Air conditioner
CN108571840A (en) * 2017-03-14 2018-09-25 北京含萃技术有限公司 A kind of refrigerant purifier apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275435A (en) * 2005-03-30 2006-10-12 Fujitsu General Ltd Gas-liquid separator and air-conditioner
WO2007029493A1 (en) * 2005-09-06 2007-03-15 Tgk Co., Ltd. Refrigeration cycle and compression assistance device
JP2007071430A (en) * 2005-09-06 2007-03-22 Tgk Co Ltd Refrigeration cycle and compression auxiliary device
JP2007178008A (en) * 2005-12-26 2007-07-12 Zeneral Heat Pump Kogyo Kk Air conditioner other function adding device
JP2008057941A (en) * 2006-09-04 2008-03-13 Fuji Electric Retail Systems Co Ltd Refrigerant cycle device
JP2011085278A (en) * 2009-10-13 2011-04-28 Hitachi Appliances Inc Air conditioner
CN108571840A (en) * 2017-03-14 2018-09-25 北京含萃技术有限公司 A kind of refrigerant purifier apparatus
CN108571840B (en) * 2017-03-14 2021-03-23 北京含萃技术有限公司 Refrigerant purification equipment

Similar Documents

Publication Publication Date Title
US7165421B2 (en) Refrigeration system
US6076366A (en) Refrigerating cycle system with hot-gas bypass passage
JP3397862B2 (en) Expansion valve with solenoid valve
JP2007163074A (en) Refrigeration cycle
JP4285060B2 (en) Vapor compression refrigerator
JPH11278045A (en) Refrigerating cycle device
US6718791B2 (en) Heat pump air conditioning system for vehicles
JP3555592B2 (en) Refrigeration cycle device and valve device used therefor
JP2004028461A (en) Air conditioner
JPH0814711A (en) Solenoid valve-integrated receiver and refrigerating cycle
JP2002267285A (en) Cooler/refrigerator
JP5604626B2 (en) Expansion valve
JP3921870B2 (en) Refrigeration cycle equipment
WO2018016219A1 (en) Ejector-type refrigeration cycle
JP2003130500A (en) Solenoid valve-integrated expansion valve
JP4240682B2 (en) Refrigeration cycle equipment for vehicles
JP4450248B2 (en) Refrigeration cycle parts for vehicles
JPH06174319A (en) Air conditioner for vehicle
WO2019155805A1 (en) Ejector refrigeration cycle, and flow rate adjustment valve
JP3924935B2 (en) Thermal expansion valve
JP3825929B2 (en) Refrigeration cycle with bypass
JPH1114164A (en) Freezing cycle with bypass pipeline
JP7119785B2 (en) Ejector refrigeration cycle and ejector module
JP4260037B2 (en) Expansion device
WO2019155806A1 (en) Ejector-type refrigeration cycle, and ejector module