WO2019155805A1 - Ejector refrigeration cycle, and flow rate adjustment valve - Google Patents

Ejector refrigeration cycle, and flow rate adjustment valve Download PDF

Info

Publication number
WO2019155805A1
WO2019155805A1 PCT/JP2019/000270 JP2019000270W WO2019155805A1 WO 2019155805 A1 WO2019155805 A1 WO 2019155805A1 JP 2019000270 W JP2019000270 W JP 2019000270W WO 2019155805 A1 WO2019155805 A1 WO 2019155805A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
suction
pressure
flow rate
evaporator
Prior art date
Application number
PCT/JP2019/000270
Other languages
French (fr)
Japanese (ja)
Inventor
照之 堀田
陽一郎 河本
大介 櫻井
陽平 長野
航 袁
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018091449A external-priority patent/JP7031482B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019155805A1 publication Critical patent/WO2019155805A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series

Definitions

  • the present disclosure relates to an ejector refrigeration cycle including an ejector, and a flow rate adjusting valve applied to the ejector refrigeration cycle.
  • an ejector refrigeration cycle which is a vapor compression refrigeration cycle equipped with an ejector
  • the pressure of the refrigerant sucked into the compressor can be increased by the pressure increasing action of the diffuser portion of the ejector.
  • the power consumption of the compressor can be reduced and the coefficient of performance (COP) of the cycle can be improved.
  • Patent Document 1 discloses an ejector-type refrigeration cycle that is applied to an air conditioner and cools blown air that is blown into an air-conditioning target space.
  • the ejector refrigeration cycle of Patent Document 1 includes a branching portion that branches the flow of the high-pressure refrigerant that has flowed out of the radiator, and a suction-side evaporator that evaporates the low-pressure refrigerant and cools the blown air. Yes. Then, one refrigerant branched at the branching portion flows into the nozzle portion of the ejector, and the other refrigerant branched at the branching portion is depressurized by the suction side decompression portion and flows into the suction side evaporator. Further, the refrigerant has a cycle configuration in which the refrigerant flowing out from the suction side evaporator is sucked from the refrigerant suction port of the ejector.
  • Patent Document 1 employs a temperature expansion valve that adjusts the throttle opening degree so that the superheat degree of the refrigerant on the outlet side of the suction side evaporator approaches a predetermined reference superheat degree as the suction side pressure reducing unit. Examples are also disclosed.
  • the refrigerant sucked from the refrigerant suction port of the ejector can be reliably made into a gas phase refrigerant having a superheat degree. According to this, it can suppress that the flow volume (mass flow rate) of the refrigerant
  • the flow rate of the refrigerant flowing into the suction-side evaporator may decrease, so that the temperature distribution of the blown air cooled by the suction-side evaporator may increase. That is, even if the throttle opening degree of the suction side pressure reducing unit is adjusted so that the superheat degree of the refrigerant on the outlet side of the suction side evaporator approaches a predetermined reference superheat degree as in Patent Document 1, cycle load fluctuation Accordingly, there is a possibility that the flow rate of the refrigerant flowing into the suction side evaporator cannot be adjusted appropriately.
  • an object of the present disclosure is to provide an ejector refrigeration cycle in which the flow rate of the refrigerant flowing into the suction side evaporator can be appropriately adjusted.
  • Another object of the present disclosure is to provide a flow rate adjusting valve capable of appropriately adjusting the flow rate of the refrigerant flowing into the suction side evaporator when applied to an ejector refrigeration cycle.
  • the ejector refrigeration cycle includes a compressor, a radiator, an ejector, a suction-side decompression unit, a suction-side evaporator, a bypass path that leads, and a variable throttle mechanism.
  • the compressor compresses and discharges the refrigerant.
  • the radiator dissipates heat from the refrigerant discharged from the compressor.
  • the ejector sucks the refrigerant from the refrigerant suction port by the suction action of the jet refrigerant jetted from the nozzle part that decompresses the refrigerant that has flowed out of the radiator, and the mixed refrigerant of the jet refrigerant and the suction refrigerant sucked from the refrigerant suction port. Increase the pressure.
  • the suction side decompression unit decompresses the refrigerant.
  • the suction side evaporator evaporates the refrigerant decompressed by the suction side decompression unit and causes the refrigerant to flow out to the refrigerant suction port side.
  • the bypass passage guides the refrigerant on the inlet side of the suction side decompression unit to the inlet side of the suction side evaporator, bypassing the suction side decompression unit.
  • the variable throttle mechanism adjusts the flow rate of the refrigerant flowing through the bypass passage.
  • the suction-side decompression unit changes the throttle opening so that the superheat degree of the refrigerant on the outlet side of the suction-side evaporator approaches a predetermined reference superheat degree.
  • the variable throttle mechanism has a function of opening and closing the bypass passage, and opens the bypass passage when the flow rate of the refrigerant flowing out from the suction-side decompression portion is equal to or lower than a predetermined reference flow rate.
  • variable throttle mechanism closes the bypass passage under the operating condition in which the flow rate of the refrigerant flowing out from the suction-side decompression unit is larger than the reference flow rate as in normal operation. Thereby, the refrigerant decompressed by the suction side decompression unit can flow into the suction side evaporator.
  • the suction side decompression unit changes the throttle opening, so that the superheat degree of the refrigerant on the outlet side of the suction side evaporator becomes the reference superheat.
  • the flow rate of the refrigerant flowing into the suction side evaporator can be appropriately adjusted so as to approach the degree.
  • variable throttle mechanism opens the bypass passage when the operating condition is such that the flow rate of the refrigerant flowing out from the suction-side decompression unit is below the reference flow rate, such as during low-load operation.
  • entrance of a suction side pressure reduction part can be flowed into a suction side evaporator via a bypass channel.
  • the ejector refrigeration cycle includes a compressor, a radiator, an ejector, a suction-side decompression unit, a suction-side evaporator, and a bypass passage.
  • the compressor compresses and discharges the refrigerant.
  • the radiator dissipates heat from the refrigerant discharged from the compressor.
  • the ejector sucks the refrigerant from the refrigerant suction port by the suction action of the jet refrigerant jetted from the nozzle part that decompresses the refrigerant that has flowed out of the radiator, and the mixed refrigerant of the jet refrigerant and the suction refrigerant sucked from the refrigerant suction port.
  • the suction side decompression unit decompresses the refrigerant.
  • the suction side evaporator evaporates the refrigerant decompressed by the suction side decompression unit and causes the refrigerant to flow out to the refrigerant suction port side.
  • the bypass passage guides the refrigerant on the inlet side of the suction side decompression unit to the inlet side of the suction side evaporator, bypassing the suction side decompression unit.
  • the suction-side decompression unit has a sealed space in which a temperature-sensitive medium whose pressure changes with a change in temperature of the refrigerant on the outlet side of the suction-side evaporator is enclosed, and a throttle valve that is displaced according to the pressure of the temperature-sensitive medium.
  • the throttle opening is changed so that the superheat degree of the refrigerant on the outlet side of the suction side evaporator approaches a predetermined reference superheat degree.
  • the value obtained by subtracting the saturation pressure of the temperature-sensitive medium at a predetermined reference medium temperature from the outlet-side pressure, which is the pressure of the refrigerant flowing out of the suction-side evaporator, is defined as the valve opening set pressure, and the maximum passage cut-off of the suction-side decompression unit
  • the ratio of the minimum passage cross-sectional area of the bypass passage to the area is defined as an area ratio X, ⁇ 170X + 3 ⁇ Y and Y ⁇ ⁇ 350X-9.
  • both the refrigerant decompressed by the suction side decompression unit and the refrigerant that has passed through the bypass passage can be caused to flow into the suction side evaporator.
  • the suction side pressure reducing unit increases the throttle opening. For this reason, the ratio of the flow volume of the refrigerant
  • the suction side decompression unit changes the throttle opening, so that the superheat degree of the refrigerant on the outlet side of the suction side evaporator becomes the reference superheat.
  • the flow rate of the refrigerant flowing into the suction side evaporator can be appropriately adjusted so as to approach the degree.
  • the suction-side decompression unit decreases the throttle opening when the operating condition is such that the flow rate of the refrigerant flowing into the suction-side evaporator is relatively low, such as during low-load operation. For this reason, the ratio of the flow rate of the refrigerant
  • the flow rate adjustment valve is configured to suck the refrigerant from the refrigerant suction port by the suction action of the jet refrigerant injected from the nozzle portion that depressurizes the refrigerant, and the suction refrigerant sucked from the jet refrigerant and the refrigerant suction port This is applied to an ejector-type refrigeration cycle having an ejector for increasing the pressure of the mixed refrigerant and a suction side evaporator for evaporating the refrigerant to flow out to the refrigerant suction port side.
  • the flow rate adjusting valve includes a suction side pressure reducing unit, a bypass passage, and a variable throttle mechanism.
  • the suction-side decompression unit changes the throttle opening so that the superheat degree of the refrigerant on the outlet side of the suction-side evaporator approaches a predetermined reference superheat degree.
  • the bypass passage guides the refrigerant on the inlet side of the suction side decompression unit to the outlet side of the suction side decompression unit by bypassing the suction side decompression unit.
  • the variable throttle mechanism adjusts the flow rate of the refrigerant flowing through the bypass passage.
  • the refrigerant inlet side of the suction side evaporator is connected to the evaporator side outlet from which the refrigerant decompressed by the suction side decompression unit flows out.
  • variable throttle mechanism has a function of opening and closing the bypass passage, and bypasses when the flow rate of the refrigerant flowing from the suction-side decompression unit to the refrigerant inlet side of the suction-side evaporator is equal to or lower than a predetermined reference flow rate. Open the passage.
  • variable throttle mechanism unit is Close the bypass passage. Thereby, the refrigerant decompressed by the suction side decompression unit can flow out to the suction side evaporator side.
  • the suction-side decompression unit changes the throttle opening, It is possible to appropriately adjust the flow rate of the refrigerant flowing into the suction side evaporator so that the superheat degree of the refrigerant on the outlet side of the side evaporator approaches the reference superheat degree.
  • variable throttle mechanism unit when the applied ejector-type refrigeration cycle has an operating condition in which the flow rate of the refrigerant flowing out from the suction-side decompression unit is equal to or lower than the reference flow rate as in low load operation, the variable throttle mechanism unit is open. Thereby, the refrigerant
  • the applied ejector-type refrigeration cycle has an operating condition in which a relatively small amount of refrigerant flows into the suction-side evaporator, even if the suction-side decompression unit reduces the throttle opening,
  • the refrigerant that has passed through the passage can surely flow into the suction-side evaporator. Thereby, it can suppress that the flow volume of the refrigerant
  • a flow rate adjustment valve capable of appropriately adjusting the flow rate of the refrigerant flowing into the suction-side evaporator when applied to the ejector-type refrigeration cycle in accordance with the load fluctuation of the cycle. be able to.
  • the flow rate adjusting valve is configured to suck the refrigerant from the refrigerant suction port by the suction action of the jet refrigerant injected from the nozzle portion that depressurizes the refrigerant, and to suck the refrigerant that is sucked from the jet refrigerant and the refrigerant suction port.
  • This is applied to an ejector-type refrigeration cycle having an ejector for increasing the pressure of the mixed refrigerant and a suction side evaporator for evaporating the refrigerant to flow out to the refrigerant suction port side.
  • the flow rate adjusting valve includes a suction side pressure reducing unit and a bypass passage.
  • the suction-side decompression unit includes a sealed space in which a temperature-sensitive medium whose pressure changes with a change in temperature of the refrigerant on the outlet side of the suction-side evaporator is enclosed, and a throttle valve that is displaced according to the pressure of the temperature-sensitive medium.
  • the refrigerant inlet side of the suction side evaporator is connected to the evaporator side outlet through which the refrigerant decompressed by the suction side decompression unit flows out.
  • the value obtained by subtracting the saturation pressure of the temperature-sensitive medium at a predetermined reference medium temperature from the outlet-side pressure, which is the pressure of the refrigerant flowing out of the suction-side evaporator, is defined as the valve opening set pressure, and the maximum passage cut-off of the suction-side decompression unit
  • the ratio of the minimum passage cross-sectional area of the bypass passage to the area is defined as an area ratio X, ⁇ 170X + 3 ⁇ Y and Y ⁇ ⁇ 350X-9.
  • both the refrigerant decompressed by the suction side decompression unit and the refrigerant that has passed through the bypass passage can flow out to the refrigerant inlet side of the suction side evaporator.
  • the suction-side decompression unit reduces the throttle opening. increase. For this reason, the ratio of the flow rate of the refrigerant
  • the suction side decompression unit changes the throttle opening, It is possible to appropriately adjust the flow rate of the refrigerant flowing into the suction side evaporator so that the superheat degree of the refrigerant on the outlet side of the suction side evaporator approaches the reference superheat degree.
  • the suction-side decompression unit when the applied ejector-type refrigeration cycle has an operating condition in which a relatively small amount of refrigerant flows from the suction-side decompression unit to the suction-side evaporator as in low-load operation, the suction-side decompression The part reduces the throttle opening. For this reason, the ratio of the flow volume of the refrigerant
  • the applied ejector-type refrigeration cycle has an operating condition in which a relatively small flow rate of refrigerant flows into the suction-side evaporator, even if the suction-side decompression unit reduces the throttle opening,
  • the refrigerant that has passed through the bypass passage can surely flow into the suction side evaporator. Thereby, it can suppress that the flow volume of the refrigerant
  • a flow rate adjusting valve capable of appropriately adjusting the flow rate of the refrigerant flowing into the suction side evaporator according to the load fluctuation of the cycle when applied to the ejector refrigeration cycle. be able to.
  • FIG. 1 It is a whole block diagram of the ejector-type refrigerating cycle of 1st Embodiment. It is typical sectional drawing at the time of the flow regulating valve of a 1st embodiment making a bypass passage fully closed. It is a typical sectional view at the time of the flow regulating valve of a 1st embodiment making a bypass passage the throttling state. It is typical sectional drawing when the flow regulating valve of a 1st embodiment has made a bypass passage into a full open state. It is a typical sectional view at the time of the flow regulating valve of a 2nd embodiment making a bypass passage fully open. It is typical sectional drawing at the time of the flow regulating valve of a 3rd embodiment making a bypass passage fully open.
  • FIGS. 1-4 1st Embodiment of this indication is described using FIGS. 1-4.
  • the ejector-type refrigeration cycle 10 of this embodiment is applied to a vehicle air conditioner, and fulfills a function of cooling blown air that is blown into a vehicle interior that is a space to be air-conditioned. Therefore, the fluid to be cooled in the ejector refrigeration cycle 10 is blown air.
  • the ejector refrigeration cycle 10 employs an HFO refrigerant (specifically, R1234yf) as a refrigerant, and constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure of the cycle does not exceed the critical pressure of the refrigerant. Furthermore, refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant. A part of the refrigeration oil circulates in the cycle together with the refrigerant.
  • HFO refrigerant specifically, R1234yf
  • the compressor 11 sucks in refrigerant, compresses it, and discharges it. More specifically, the compressor 11 of the present embodiment is an electric compressor that is configured by housing a fixed capacity type compression mechanism and an electric motor that drives the compression mechanism in one housing.
  • the electric motor is a motor whose rotation speed (that is, refrigerant discharge capacity) is controlled by a control signal output from the air conditioning control device 40, and any type of an AC motor or a DC motor can be adopted. Good.
  • the refrigerant inlet side of the radiator 12 is connected to the discharge port of the compressor 11.
  • the radiator 12 is a heat exchanger for condensing by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and outside air (outside air) blown by the cooling fan 12a to dissipate the high-pressure refrigerant and condense it.
  • the cooling fan 12 a is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the air conditioning control device 40.
  • the inlet side of the branch portion 13 is connected to the refrigerant outlet of the radiator 12.
  • the branch part 13 branches the flow of the refrigerant that has flowed out of the radiator 12.
  • the branch part 13 has a three-way joint structure having three refrigerant inlets and outlets communicating with each other, one of the three refrigerant inlets and outlets being a refrigerant inlet and the other two being refrigerant outlets. .
  • the inlet side of the nozzle part 14 a of the ejector 14 is connected to one refrigerant outlet of the branch part 13.
  • the other refrigerant outlet of the branch part 13 is connected to the refrigerant inlet 21 a side formed in the body part 21 of the flow rate adjusting valve 20.
  • the ejector 14 has a nozzle portion 14a for depressurizing and injecting the refrigerant flowing out of the radiator 12, and functions as a refrigerant depressurizing portion. Further, the ejector 14 functions as a refrigerant circulation section that sucks and circulates the refrigerant from the outside by the suction action of the refrigerant injected from the refrigerant injection port of the nozzle portion 14a.
  • the ejector 14 converts the kinetic energy of the mixed refrigerant of the refrigerant injected from the nozzle portion 14a and the suction refrigerant sucked from the refrigerant suction port 14c into pressure energy, and increases the pressure of the mixed refrigerant. It fulfills the function as a part.
  • the ejector 14 has a nozzle portion 14a and a body portion 14b.
  • the nozzle portion 14a is formed of a substantially cylindrical metal (stainless alloy in the present embodiment) that gradually tapers in the refrigerant flow direction.
  • the nozzle part 14a is an isentropic decompression of the refrigerant in the refrigerant passage formed inside.
  • the refrigerant passage formed in the nozzle portion 14a includes a throat portion that reduces the passage cross-sectional area the most, and a divergent portion in which the passage cross-sectional area gradually increases from the throat toward the refrigerant injection port that injects the refrigerant. Is formed. That is, the nozzle part 14a of this embodiment is configured as a Laval nozzle.
  • the nozzle portion 14a is set such that the flow rate of the injected refrigerant injected from the refrigerant injection port during the normal operation of the cycle is equal to or higher than the sound speed.
  • the body portion 14b is made of a substantially cylindrical metal (in this embodiment, aluminum).
  • the body portion 14b functions as a fixing member that supports and fixes the nozzle portion 14a therein and forms an outer shell of the ejector 14. More specifically, the nozzle portion 14a is fixed by press-fitting so as to be housed inside the longitudinal end of the body portion 14b.
  • the body part 14b may be formed of resin.
  • a portion corresponding to the outer peripheral side of the nozzle portion 14a is formed with a refrigerant suction port 14c provided so as to penetrate the inside and the outside and communicate with the refrigerant injection port of the nozzle portion 14a.
  • the refrigerant suction port 14c is a through hole that sucks the refrigerant that has flowed out from a suction side evaporator 19 described later into the ejector 14 by the suction action of the jet refrigerant injected from the nozzle portion 14a.
  • a suction passage and a diffuser portion 14d are formed inside the body portion 14b.
  • the suction passage is a refrigerant passage that guides the suction refrigerant sucked from the refrigerant suction port 14c to the refrigerant injection port side of the nozzle portion 14a.
  • the diffuser unit 14d is a pressure increasing unit that increases the pressure by mixing the suction refrigerant and the injection refrigerant.
  • the suction passage is formed in a space between the outer peripheral side around the tapered tip of the nozzle portion 14a and the inner peripheral side of the body portion 14b, and the refrigerant passage area of the suction passage is directed toward the refrigerant flow direction. It is gradually shrinking. Thereby, the flow rate of the suction refrigerant flowing through the suction passage is gradually increased to reduce energy loss (so-called mixing loss) when the suction refrigerant and the injection refrigerant are mixed in the diffuser portion 14d.
  • the diffuser portion 14d is a portion where a refrigerant passage extending in a truncated cone shape is formed so as to be continuous with the outlet of the suction passage.
  • the passage cross-sectional area gradually increases toward the downstream side of the refrigerant flow.
  • the diffuser part 14d converts the kinetic energy of the mixed refrigerant into pressure energy by such a passage shape.
  • the cross-sectional shape of the inner peripheral wall surface of the body portion 14b that forms the diffuser portion 14d of the present embodiment is formed by combining a plurality of curves. And since the degree of spread of the refrigerant passage cross-sectional area of the diffuser portion 14d gradually increases in the refrigerant flow direction and then decreases again, the refrigerant can be increased in an isentropic manner.
  • the refrigerant inlet side of the outflow side evaporator 18 is connected to the outlet of the diffuser portion 14d.
  • the outflow side evaporator 18 exchanges heat between the refrigerant flowing out from the diffuser portion 14d and the blown air blown from the indoor blower 18a toward the vehicle interior, evaporating the refrigerant and exerting an endothermic effect, thereby generating blown air. It is a heat exchanger for endothermic cooling.
  • the indoor blower 18a is an electric blower in which the rotation speed (that is, the amount of blown air) is controlled by a control voltage output from the air conditioning control device 40. Furthermore, the suction port side of the compressor 11 is connected to the refrigerant outlet side of the outflow side evaporator 18.
  • the flow rate adjustment valve 20 is an integrated (in other words, modularized) cycle component device surrounded by a broken line in FIG. More specifically, the flow rate adjusting valve 20 is an integrated unit of the suction side pressure reducing device 15, the bypass passage 16, the variable throttle device 17, and the like.
  • the suction-side decompression device 15 is a suction-side decompression unit that decompresses the other refrigerant branched by the branching unit 13 until it becomes a low-pressure refrigerant.
  • the suction-side decompression device 15 is a variable throttle configured to be able to change the passage cross-sectional area (that is, the throttle opening) of the throttle passage 20a that decompresses the refrigerant.
  • the suction side decompression device 15 causes the decompressed refrigerant to flow out to the refrigerant inlet side of the suction side evaporator 19 described later.
  • the bypass passage 16 bypasses the refrigerant on the inlet side of the suction-side decompression device 15 (more specifically, the throttle passage 20a) by bypassing the suction-side decompression device 15, and more specifically, the suction-side decompression device 15 (more specifically, This is a refrigerant passage that leads to the outlet side of the throttle passage 20a) (in other words, the refrigerant inlet side of the suction-side evaporator 19).
  • the variable throttle device 17 is a variable throttle mechanism that adjusts the flow rate of the refrigerant flowing through the bypass passage 16 (specifically, the mass flow rate and other flow rates are the same). Furthermore, the variable throttle device 17 has a function of opening and closing the bypass passage 16. More specifically, the variable throttle device 17 opens the bypass passage 16 when the flow rate Ge1 of the refrigerant flowing out from the suction side pressure reducing device 15 is equal to or lower than a predetermined reference flow rate KGe1.
  • the reference flow rate KGe1 is based on the temperature distribution of the blown air cooled by the suction side evaporator 19 when the variable throttle device 17 closes the bypass passage 16 and reduces the flow rate of the circulating refrigerant circulating in the cycle. It is set to a value that expands beyond the temperature difference.
  • the temperature distribution of the blown air is defined by a temperature difference obtained by subtracting the minimum temperature from the maximum temperature of the blown air immediately after being cooled by the suction side evaporator 19. Furthermore, the reference temperature difference is set to a value at which the occupant begins to feel uncomfortable due to the temperature distribution.
  • the detailed configuration of the flow rate adjusting valve 20 will be described with reference to FIGS.
  • the up and down arrows in FIGS. 2 to 4 indicate the up and down directions when the flow rate adjusting valve 20 is mounted on the vehicle.
  • the flow regulating valve 20 has a body part 21.
  • the body part 21 is formed by combining a plurality of constituent members made of metal (in this embodiment, made of aluminum).
  • the body portion 21 forms an outer shell of the flow rate adjusting valve 20 and functions as a housing that accommodates some of the components such as the suction side pressure reducing device 15 and the variable throttle device 17 therein.
  • the body part 21 may be formed of resin.
  • various refrigerant passages such as a bypass passage 16, a throttle passage 20a, and a temperature sensing passage 20b are formed inside the body portion 21 .
  • the outer surface of the body portion 21 is provided with a plurality of refrigerant inlets and outlets such as a refrigerant inlet 21a, an evaporator side outlet 21b, an evaporator side inlet 21c, and a low pressure outlet 21d.
  • the other refrigerant outlet side of the branch part 13 is connected to the refrigerant inlet 21a.
  • the refrigerant inlet 21 a is a refrigerant inlet through which the other refrigerant branched at the branching portion 13 flows.
  • the refrigerant inlet 21 a communicates with the inlet side of the throttle passage 20 a of the suction side pressure reducing device 15 and the inlet side of the bypass passage 16 inside the body portion 21.
  • the refrigerant inlet side of the suction side evaporator 19 is connected to the evaporator side outlet 21b.
  • the evaporator side outlet 21 b is a refrigerant outlet through which the refrigerant decompressed by the suction side decompression device 15 and the refrigerant that has passed through the bypass passage 16 flow out to the refrigerant inlet side of the suction side evaporator 19.
  • the refrigerant outlet side of the suction side evaporator 19 is connected to the evaporator side inlet 21c.
  • the evaporator side inlet 21c is a refrigerant inlet through which the refrigerant flowing out from the suction side evaporator 19 flows into the temperature sensitive passage 20b.
  • the refrigerant suction port 14c side of the ejector 14 is connected to the low pressure outlet 21d.
  • the low-pressure outlet 21d is a refrigerant outlet through which the refrigerant flowing through the temperature-sensitive passage 20b flows out to the refrigerant suction port 14c side.
  • the suction side pressure reducing device 15 has a throttle passage 20a, a throttle valve 51, a drive mechanism 52, and the like.
  • the throttle passage 20a is a refrigerant passage that depressurizes the other refrigerant branched at the branching portion 13 by reducing the passage cross-sectional area.
  • the throttle passage 20a is formed in a rotating body shape such as a hemispherical shape or a truncated cone shape.
  • the throttle passage 20a of the present embodiment is formed integrally with the body portion 21.
  • the throttle passage 20a may be formed by fixing an orifice formed of a separate member to the body portion 21 to the body portion 21 by means such as press fitting.
  • the throttle valve 51 is formed in a spherical shape, and changes the minimum passage sectional area (that is, the throttle opening) of the throttle passage 20a by being displaced in the central axis direction of the throttle passage 20a. Furthermore, the throttle passage 20a can be closed by bringing the throttle valve 51 into contact with the outlet of the throttle passage 20a.
  • the throttle valve 51 receives a load on the side for reducing the throttle opening of the throttle passage 20a from a coil spring 52e which is an elastic member.
  • the drive mechanism 52 is a drive unit that displaces the throttle valve 51 in the central axis direction of the throttle passage 20a.
  • the drive mechanism 52 is a mechanical mechanism.
  • the drive mechanism 52 has a temperature sensing part 52a in which a diaphragm 52b, which is a deforming member that deforms in accordance with the temperature and pressure of the refrigerant flowing out from the suction side evaporator 19, is arranged.
  • the deformation of the diaphragm 52 b is transmitted to the throttle valve 51 via the operating rod 53, thereby displacing the throttle valve 51.
  • the diaphragm 52b divides the space formed in the temperature sensing part 52a into an enclosed space 52c and an introduction space 52d.
  • a temperature-sensitive medium whose pressure changes with a change in temperature is enclosed.
  • the temperature-sensitive medium is mainly composed of a refrigerant circulating in the ejector refrigeration cycle 10.
  • the temperature sensing part 52a is fixed to the body part 21 so that the introduction space 52d communicates with the temperature sensing passage 20b.
  • the pressure of the temperature sensitive medium in the enclosed space 52c changes according to the temperature of the refrigerant flowing through the temperature sensitive passage 20b (that is, the refrigerant flowing out of the suction side evaporator 19).
  • transforms according to the pressure difference of the pressure of the refrigerant
  • the diaphragm 52b is formed of a material that is rich in elasticity and excellent in pressure resistance and airtightness. Therefore, in this embodiment, a circular metal thin plate made of stainless steel (specifically, SUS304) is employed as the diaphragm 52b.
  • SUS304 stainless steel
  • the diaphragm 52b may be made of rubber (eg, ethylene propylene diene rubber or hydrogenated nitrile rubber) containing a base fabric (eg, polyester).
  • the saturation pressure of the temperature sensing medium in the enclosed space 52c of the drive mechanism 52 rises, and the enclosed space
  • the pressure difference between the pressure of the refrigerant flowing through the temperature sensing passage 20b increases from the pressure of the temperature sensing medium in 52c.
  • the throttle valve 51 is displaced to the side that increases the throttle opening of the throttle passage 20a.
  • the drive mechanism 52 can displace the throttle valve 51 in accordance with the temperature and pressure of the refrigerant on the outlet side of the suction-side evaporator 19 in the same manner as a so-called temperature expansion valve. In other words, the drive mechanism 52 can displace the throttle valve 51 according to the degree of superheat of the refrigerant on the outlet side of the suction side evaporator 19.
  • the throttle valve 51 is displaced so that the superheat degree SH1 of the refrigerant on the outlet side of the suction side evaporator 19 approaches a predetermined reference superheat degree KSH1 (specifically, 0 ° C.).
  • the suction side pressure reducing device 15 changes the throttle opening so that the superheat degree SH1 of the refrigerant on the outlet side of the suction side evaporator 19 approaches the reference superheat degree KSH1.
  • the reference superheat degree KSH1 can be adjusted by changing the load of the coil spring 52e.
  • the bypass passage 16 is formed by a part of the first passage 16a formed in the body portion 21 and the second passage 16b.
  • the first passage 16a is formed so as to connect the inlet side of the suction side pressure reducing device 15 (specifically, the inlet side of the throttle passage 20a) and the temperature sensitive passage 20b.
  • the first passage 16a is formed in a substantially cylindrical shape. The central axis of the first passage 16 a extends in parallel with the displacement direction of the throttle valve 51.
  • the second passage 16b is formed so as to connect the first passage 16a and the outlet side of the suction side decompression device 15 (specifically, the outlet side of the throttle passage 20a).
  • the second passage 16b is formed in a substantially cylindrical shape.
  • path 16b is extended in the direction perpendicular
  • a substantially cylindrical valve body 17a constituting the variable throttle device 17 is disposed inside the first passage 16a.
  • a communication passage that connects the first passage 16a and the second passage 16b is formed in the valve body portion 17a.
  • the valve body portion 17a is displaced in the direction of the central axis of the first passage 16a to open and close the bypass passage 16 by opening and closing the inlet portion of the second passage 16b. Further, the valve body portion 17a is displaced in the direction of the central axis of the first passage 16a, and the passage opening area of the variable passage device 17 as a whole is changed by changing the passage cross-sectional area of the inlet portion of the second passage 16b.
  • the valve body portion 17a circulates through the inlet-side pressure receiving surface that receives the inlet-side pressure Pri, which is the pressure of the refrigerant flowing from the refrigerant inlet 21a (that is, the refrigerant on the inlet side of the suction-side decompression device 15), and the temperature sensing passage 20b. It has an outlet side pressure receiving surface that receives the outlet side pressure Peo which is the pressure of the refrigerant (that is, the refrigerant flowing out of the suction side evaporator 19).
  • the area of the inlet side pressure receiving surface and the area of the lower stage pressure receiving surface are set to be approximately equal.
  • a seal member such as an O-ring is interposed in the gap between the inner peripheral surface of the first passage 16a and the outer peripheral surface of the valve body portion 17a, and the refrigerant does not leak from the gap between these members. Further, the valve body 17a receives a load on the side where the bypass passage 16 is opened from a coil spring 17b which is an elastic member.
  • variable throttle device 17 of the present embodiment when the pressure difference ⁇ P is larger than a predetermined reference pressure difference K ⁇ P, as shown in FIG. 2, the coil spring 17b is pushed and contracted. The valve body portion 17a is displaced so that the bypass passage 16 is closed.
  • valve body portion 17a When the pressure difference ⁇ P becomes equal to or less than the reference pressure difference K ⁇ P, as shown in FIG. 3, the valve body portion 17a is connected to the first passage 16a and the second passage 16b by the load of the coil spring 17b. Displace to. Then, by slightly opening the inlet portion of the second passage 16b, a throttle state in which a pressure reducing action is exerted is achieved.
  • the throttle opening is increased. Then, as shown in FIG. 4, the valve body portion 17a is displaced until the passage cross-sectional area of the inlet portion of the second passage 16b is maximized, so that the bypass passage 16 is fully opened.
  • the pressure difference ⁇ P at which the flow rate Ge1 of the refrigerant flowing out from the suction-side decompression device 15 becomes the reference flow rate KGe1 is set to the reference pressure difference K ⁇ P.
  • the variable throttle device 17 opens the bypass passage 16 when the flow rate Ge1 of the refrigerant flowing out from the suction side pressure reducing device 15 is equal to or less than the reference flow rate KGe1.
  • the reference pressure difference K ⁇ P can be adjusted by changing the load of the coil spring 17b.
  • the refrigerant inlet side of the suction side evaporator 19 is connected to the evaporator side outlet 21 b of the flow rate adjusting valve 20.
  • the suction-side evaporator 19 exchanges heat between the refrigerant that has flowed out of the evaporator-side outlet 21b of the flow rate adjustment valve 20 and the blown air that has passed through the outflow-side evaporator 18, and evaporates the refrigerant to exert a heat absorption effect.
  • An endothermic heat exchanger that cools blown air.
  • the refrigerant outlet of the suction side evaporator 19 is connected to the evaporator side inlet 21c side of the flow rate adjustment valve 20.
  • the refrigerant suction port 14 c side of the ejector 14 is connected to the low pressure outlet 21 d of the flow rate adjusting valve 20.
  • the refrigerant outlet of the suction side evaporator 19 is connected to the refrigerant suction port 14 c side of the ejector 14 via the temperature sensing passage 20 b of the flow rate adjusting valve 20.
  • each of the outflow side evaporator 18 and the suction side evaporator 19 of the present embodiment are integrally configured.
  • each of the outflow side evaporator 18 and the suction side evaporator 19 includes a plurality of tubes that circulate the refrigerant, and a collection or distribution of refrigerants that are arranged at both ends of the plurality of tubes and circulate through the tubes.
  • a so-called tank-and-tube heat exchanger having a pair of collective distribution tanks.
  • the outflow side evaporator 18 and the suction side evaporator 19 are integrated by forming the collective distribution tank of the outflow side evaporator 18 and the suction side evaporator 19 with the same member.
  • the outflow side evaporator 18 and the suction side evaporator 19 are connected in series with the blowing air flow so that the outflow side evaporator 18 is arranged upstream of the blowing air flow with respect to the suction side evaporator 19. Is arranged. Accordingly, the blown air flows as shown by the arrows drawn by the two-dot chain line in FIG.
  • the air conditioning control device 40 (not shown) is composed of a well-known microcomputer including a CPU, ROM, RAM, etc. and its peripheral circuits, and performs various calculations and processing based on an air conditioning control program stored in the ROM. The operation of the various control target devices 11, 12a, 18a connected to is controlled.
  • an inside air temperature sensor that detects the vehicle interior temperature Tr
  • an outside air temperature sensor that detects the outside air temperature Tam
  • a solar radiation sensor that detects the amount of solar radiation As in the vehicle interior
  • a blowout from the suction-side evaporator 19 A group of sensors for air conditioning control such as an evaporator temperature sensor for detecting the blown air temperature (evaporator temperature) Tefin is connected, and detection values of these air conditioning sensor groups are input.
  • an operation panel (not shown) is connected to the input side of the air conditioning control device 40, and operation signals from various operation switches provided on the operation panel are input to the air conditioning control device 40.
  • an air conditioning operation switch that requests air conditioning
  • a vehicle interior temperature setting switch that sets the vehicle interior temperature, and the like are provided.
  • the air conditioning control device 40 of the present embodiment is configured such that a control unit that controls the operation of various devices to be controlled connected to the output side is integrally configured.
  • a configuration (hardware and software) for controlling the operation of the control target device constitutes a control unit of each control target device.
  • the configuration for controlling the operation of the compressor 11 constitutes a discharge capacity control unit.
  • the air-conditioning control device 40 executes an air-conditioning control program stored in advance to control the operations of the various control target devices 11, 12a, and 18a.
  • the target blowing temperature TAO of the blown air blown into the vehicle interior is calculated based on the detection signal of the sensor group for air conditioning control and the operation signal from the operation panel. And based on the target blowing temperature TAO etc., the operating state of each control object apparatus is determined. For example, about the compressor 11, it determines so that a refrigerant
  • the target blowing temperature TAO is a value having a correlation with the amount of heat that the ejector refrigeration cycle needs to generate in order to keep the passenger compartment at a desired temperature (in other words, the heat load of the ejector refrigeration cycle 10). . Therefore, when cooling the passenger compartment, reducing the refrigerant discharge capacity of the compressor 11 as the target blowing temperature TAO increases increases the refrigerant discharge capacity of the compressor 11 as the cooling heat load decreases. It means to lower.
  • the air conditioning control device 40 decreases the refrigerant discharge capacity of the compressor 11 as the cooling heat load decreases, the flow rate of the circulating refrigerant that circulates in the cycle decreases, and the refrigerant flowing out of the suction-side decompression device 15 decreases.
  • the flow rate Ge1 also decreases.
  • the refrigerant discharge capacity of the compressor 11 is lowered with a decrease in the cooling heat load, the inlet side pressure Pri is lowered and the pressure difference ⁇ P is also reduced.
  • the operating condition in which the cooling heat load is relatively high and the flow rate Ge1 of the refrigerant flowing out from the suction-side decompression device 15 is larger than the reference flow rate KGe1 is defined as normal operation.
  • the normal operation is performed when the outside air temperature is relatively high, for example, in summer.
  • an operation condition in which the cooling heat load is relatively low and the refrigerant flow rate Ge1 flowing out from the suction-side decompression device 15 is equal to or lower than the reference flow rate KGe1 is defined as low load operation.
  • the low load operation is executed, for example, when the outside air temperature is relatively low, such as in spring or autumn, or when anti-fogging of the vehicle window is performed at the low outside air temperature.
  • the air conditioning control device 40 When the air conditioning control device 40 operates the compressor 11, the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the radiator 12.
  • the refrigerant flowing into the radiator 12 exchanges heat with the outside air blown from the cooling fan 12a, and is cooled and condensed.
  • the flow of the refrigerant flowing out of the radiator 12 is branched at the branching section 13.
  • One refrigerant branched by the branch part 13 flows into the nozzle part 14 a of the ejector 14.
  • the refrigerant that has flowed into the nozzle portion 14a of the ejector 14 is decompressed in an isentropic manner at the nozzle portion 14a and is injected from the refrigerant injection port of the nozzle portion 14a. Then, the refrigerant that has flowed out of the suction-side evaporator 19 by the suction action of the injected refrigerant is sucked from the refrigerant suction port 14 c through the temperature sensing passage 20 b of the flow rate adjustment valve 20.
  • the injection refrigerant injected from the refrigerant injection port of the nozzle portion 14a and the suction refrigerant sucked from the refrigerant suction port 14c flow into the diffuser portion 14d.
  • the velocity energy of the refrigerant is converted into pressure energy by expanding the refrigerant passage area.
  • the pressure of the mixed refrigerant of the injection refrigerant and the suction refrigerant increases.
  • the refrigerant whose pressure has been increased in the diffuser section 14d flows into the outflow side evaporator 18.
  • the refrigerant that has flowed into the outflow evaporator 18 absorbs heat from the air blown by the indoor blower 18a and evaporates. Thereby, the blowing air blown by the indoor blower 18a is cooled. The refrigerant flowing out from the outflow side evaporator 18 is sucked into the compressor 11 and compressed again.
  • the other refrigerant branched at the branching section 13 flows into the refrigerant inlet 21 a of the flow rate adjusting valve 20.
  • the variable throttle device 17 closes the bypass passage 16
  • the total flow rate of the refrigerant flowing into the refrigerant inlet 21 a of the flow rate adjusting valve 20 is reduced by the suction side pressure reducing device 15 to adjust the flow rate. It flows out from the evaporator side outlet 21b of the valve 20.
  • variable throttle device 17 opens the bypass passage 16, so that the refrigerant flowing into the refrigerant inlet 21 a of the flow rate adjustment valve 20 is decompressed by both the suction side decompression device 15 and the bypass passage 16. Then, it flows out from the evaporator side outlet 21b of the flow rate adjusting valve 20.
  • the superheat degree SH1 of the refrigerant on the outlet side of the suction-side evaporator 19 approaches the reference superheat degree KSH1 during normal operation and low load operation regardless of load fluctuations.
  • the throttle opening is adjusted.
  • the refrigerant that has flowed out of the evaporator side outlet 21 b of the flow rate adjusting valve 20 flows into the suction side evaporator 19.
  • the refrigerant flowing into the suction side evaporator 19 absorbs heat from the blown air after passing through the outflow side evaporator 18 and evaporates. Thereby, the blast air after passing the outflow side evaporator 18 is further cooled.
  • the refrigerant that has flowed out of the suction side evaporator 19 is sucked from the refrigerant suction port 14c.
  • the outflow side evaporator 18 and the suction side evaporator 19 can be used in the vehicle interior during normal operation and low load operation regardless of load fluctuations. It is possible to cool the blown air sent to the air.
  • the refrigerant whose pressure has been increased by the diffuser portion 14d of the ejector 14 is sucked into the compressor 11 via the outflow side evaporator 18.
  • the consumption power of the compressor 11 is reduced and the coefficient of performance of the cycle is reduced compared to the normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the evaporator and the pressure of the suction refrigerant sucked into the compressor are substantially equal. (COP) can be improved.
  • variable throttle device 17 of the flow rate adjusting valve 20 closes the bypass passage 16 during normal operation. Therefore, during normal operation, the suction side decompression device 15 adjusts the throttle opening, so that the refrigerant on the outlet side of the suction side evaporator 19 can be a gas phase refrigerant having a superheat degree.
  • variable throttle device 17 of the flow rate adjustment valve 20 opens the bypass passage 16 during low load operation, so the suction side pressure reducing device 15 reduces the throttle opening. Even so, the refrigerant that has passed through the bypass passage 16 can surely flow out to the inlet side of the suction side evaporator 19. Therefore, it is possible to suppress a shortage of the flow rate of the refrigerant flowing into the suction side evaporator 19 during the low load operation.
  • the flow rate adjustment valve 20 of the present embodiment when applied to the ejector refrigeration cycle 10, the flow rate of the refrigerant flowing into the suction-side evaporator 19 is appropriately adjusted according to cycle load fluctuations. be able to.
  • the flow rate adjustment valve 20 is provided, so that the flow rate of the refrigerant flowing into the suction-side evaporator 19 is appropriately adjusted according to the cycle load fluctuation. be able to.
  • variable throttle device 17 of the flow rate adjusting valve 20 of the present embodiment increases the throttle opening as the pressure difference ⁇ P decreases. Therefore, the flow rate of the refrigerant flowing out to the inlet side of the suction side evaporator 19 through the bypass passage 16 can be increased with the decrease in the flow rate Ge1 of the refrigerant flowing out from the suction side decompression device 15. According to this, the flow rate of the refrigerant flowing into the suction side evaporator 19 can be more appropriately adjusted according to the cycle load fluctuation.
  • FIG. 5 is a view in which the variable throttle device 17 of the present embodiment opens the bypass passage 16 in the fully open state, similarly to FIG. 4 described in the first embodiment.
  • the same or equivalent parts as those in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
  • one end portion of the first passage 16a of the bypass passage 16 is the inlet side of the suction side pressure reducing device 15 (specifically, the inlet side of the throttle passage 20a).
  • the other end of the first passage 16a does not communicate with the temperature sensing passage 20b.
  • the inner peripheral surface of the first passage 16a and the valve body portion 17a so that the pressure Psp in the spring chamber 17c in which the coil spring 17b is accommodated is equal to the refrigerant pressure on the outlet side of the throttle passage 20a.
  • a part of the sealing member interposed in the gap with the outer peripheral surface of is omitted.
  • the valve body part 17a of this embodiment is displaced according to the pressure difference which subtracted the pressure Psp in the spring chamber 17c from the inlet side pressure Pri and the load received from the coil spring 17b.
  • the pressure Psp in the spring chamber 17c is highly responsive in accordance with the change in the refrigerant pressure on the outlet side of the throttle passage 20a. It does not change and becomes a substantially constant value. For this reason, the valve body 17a of the present embodiment is displaced substantially according to the load generated by the inlet side pressure Pri and the load received from the coil spring 17b.
  • the valve body 17a When the inlet pressure Pri becomes equal to or lower than the reference pressure KPri, the valve body 17a is displaced to a position where the first passage 16a and the second passage 16b are communicated with each other by the load of the coil spring 17b. Set to the aperture state.
  • the throttle opening is increased as the inlet pressure Pri decreases.
  • the valve body part 17a is displaced until the channel
  • the inlet side pressure Pri at which the flow rate Ge1 of the refrigerant flowing out from the suction side pressure reducing device 15 becomes the reference flow rate KGe1 is set to the reference pressure KPri.
  • the variable throttle device 17 opens the bypass passage 16 when the flow rate Ge1 of the refrigerant flowing out from the suction side pressure reducing device 15 is equal to or lower than the reference flow rate KGe1.
  • the reference pressure KPri can be adjusted by changing the load of the coil spring 17b.
  • variable throttle device 17 of the flow rate adjustment valve 20 closes the bypass passage 16. Further, during the low load operation of the ejector refrigeration cycle 10, the variable throttle device 17 of the flow rate adjustment valve 20 opens the bypass passage 16.
  • the flow rate adjusting valve 20 of the present embodiment when applied to the ejector refrigeration cycle 10, the flow rate adjusting valve 20 flows into the suction-side evaporator 19 according to the load fluctuation of the cycle, as in the first embodiment.
  • the flow rate of the refrigerant can be adjusted appropriately.
  • the flow rate adjustment valve 20 is provided, so that the flow rate of the refrigerant flowing into the suction-side evaporator 19 is appropriately adjusted according to the cycle load fluctuation. be able to.
  • variable throttle device 17 of the flow rate adjusting valve 20 of the present embodiment increases the throttle opening as the inlet side pressure Pri decreases. Therefore, the flow rate of the refrigerant flowing out to the inlet side of the suction side evaporator 19 through the bypass passage 16 can be increased with the decrease in the flow rate Ge1 of the refrigerant flowing out from the suction side decompression device 15. According to this, the flow rate of the refrigerant flowing into the suction side evaporator 19 can be more appropriately adjusted according to the cycle load fluctuation.
  • FIG. 6 is a view in which the variable throttle device 17 of the present embodiment opens the bypass passage 16 in the fully open state, similarly to FIG. 4 described in the first embodiment.
  • the throttle opening can be increased with higher accuracy than the second embodiment as the inlet pressure Pri decreases.
  • a part of the first passage 16a of the bypass passage 16 is formed in a rotating body shape such as a hemispherical shape or a truncated cone shape similar to the throttle passage 20a. Yes. Furthermore, the same spherical body as the throttle valve 51 is adopted as the valve body portion 17d. The valve body portion 17d receives a load on the side of reducing the partial cross-sectional area of the first passage 16a from the coil spring 17b.
  • the minimum passage sectional area (that is, the throttle opening) of the first passage 16a can be changed by displacing the valve body portion 17d. Further, the first passage 16a can be closed by bringing the valve body portion 17d into contact with the first passage 16a.
  • the flow rate adjusting valve 20 of the present embodiment has a drive mechanism 71 for the variable throttle device 17 as a drive unit that drives and displaces the valve body portion 17d.
  • the basic configuration of the drive mechanism 71 for the variable aperture device 17 is the same as that of the drive mechanism 52.
  • the drive mechanism 71 has a temperature sensing part 72.
  • the temperature sensing unit 72 includes a diaphragm 72b that is a deformable member that partitions the space in the temperature sensing unit 72 into an enclosed space 72c and an introduction space 72d.
  • An inert gas in this embodiment, nitrogen gas
  • the introduction space 72d of the drive mechanism 71 is fixed to the body portion 21 so as to communicate with the inlet side of the suction side pressure reducing device 15 (specifically, the throttle passage 20a).
  • the diaphragm 72b deforms according to the pressure difference between the pressure of the refrigerant on the inlet side of the suction-side decompression device 15 and the pressure of the inert gas in the enclosed space 72c. Further, the drive mechanism 71 displaces the valve body portion 17d by transmitting the deformation of the diaphragm 72b to the valve body portion 17d via the operating rod 73.
  • the volume change due to the temperature of the inert gas is relatively small. For this reason, even if the temperature and the outside air temperature of the inlet side of the suction side decompression device 15 introduced into the introduction space 72d change, the pressure of the inert gas in the enclosed space 72c becomes substantially constant. Therefore, in the variable throttle device 17 of the present embodiment, the throttle opening can be increased with a decrease in the inlet-side pressure Pri with higher accuracy than in the second embodiment.
  • a reference medium temperature (this embodiment) determined in advance from the pressure of the refrigerant flowing through the temperature sensing passage 20b of the flow rate adjusting valve 20 and flowing out from the low-pressure outlet 21d (that is, outlet-side pressure Peo).
  • a value obtained by subtracting the saturation pressure of the temperature sensitive medium at 0 ° C. is defined as the valve opening set pressure Y.
  • a detailed method for measuring the valve opening set pressure Y will be described later.
  • the maximum value of the passage sectional area of the suction side pressure reducing device 15 is defined as the maximum throttle sectional area Aex
  • the minimum value of the passage sectional area of the bypass passage 16 is defined as the minimum passage sectional area Apt.
  • the ratio (Apt / Aex) of the maximum passage sectional area Apt to the maximum throttle sectional area Aex is defined as an area ratio X.
  • the maximum throttle cross-sectional area Aex can be determined based on the maximum circulation flow rate of the refrigerant circulating in the cycle. Therefore, in the flow regulating valve 20, the area ratio X can be changed mainly by changing the minimum passage sectional area Apt.
  • the area ratio X increases, the ratio of the flow rate of the refrigerant flowing into the suction side evaporator 19 via the bypass passage 16 tends to increase. For this reason, if the area ratio X is set to be large, the superheat degree SH1 of the refrigerant on the outlet side of the suction side evaporator 19 is changed to the reference superheat degree KSH1 even if the suction side pressure reducing device 15 changes the throttle opening during normal operation. There is a risk that it will be difficult to approach.
  • the area ratio X decreases, the ratio of the flow rate of the refrigerant flowing into the suction side evaporator 19 via the bypass passage 16 decreases. For this reason, if the area ratio X is set to a small value, the flow rate of the refrigerant flowing into the suction side evaporator 19 may be insufficient when the suction side pressure reducing device 15 reduces the throttle opening degree during low load operation. is there.
  • valve opening set pressure Y of the flow rate adjusting valve 20 is related to the flow rate of the refrigerant flowing from the flow rate adjusting valve 20 to the suction side evaporator 19, and the valve opening set pressure is set.
  • Y we examined how to determine the area ratio X systematically.
  • valve opening set pressure Y in the present embodiment is determined in advance from the “expansion valve outlet pressure” in the “Testing method for static superheat of expansion valves for automobile air conditioners” in the “Standard of the Japan Refrigeration and Air Conditioning Industry Association”. This corresponds to a pressure obtained by subtracting the saturation pressure of the temperature-sensitive medium in the enclosed space 52c at the reference medium temperature (0 ° C. in the present embodiment).
  • the pressure Py of the refrigerant flowing out from the low pressure outlet 21d of the flow rate adjustment valve 20 is measured, and the valve opening set pressure Y is determined using this value. ing.
  • the inlet side of the pressure vessel BT is connected to the evaporator side outlet 21b of the flow rate adjusting valve 20, and the evaporator side inlet 21c of the flow rate adjusting valve 20 is connected to the outlet side of the pressure vessel BT.
  • the pressure vessel BT forms a buffer space corresponding to the suction side evaporator 19.
  • a pressure vessel BT having an internal volume of the buffer space of 0.001 m 3 is employed.
  • the pressure Py of the air flowing out from the low pressure outlet 21d of the flow rate adjusting valve 20 is measured using the temperature of the temperature sensitive medium in the enclosed space 52c as the reference medium temperature.
  • an orifice that causes a predetermined pressure loss is measured in order to measure the pressure Py.
  • the pressure Py is substantially a pressure corresponding to the outlet-side pressure Peo that is the pressure of the refrigerant that has flowed out of the suction-side evaporator when the ejector refrigeration cycle 10 is operated.
  • the valve opening set pressure Y is determined by subtracting the saturation pressure of the temperature sensitive medium that is the reference medium temperature from the pressure Py.
  • valve opening set pressure Y is adjusted by changing the load of the coil spring 52e, similarly to the reference superheat degree KSH1.
  • the area ratio X may be decreased as the valve opening set pressure Y is set to a high value.
  • the throttle opening of the suction side pressure reducing device 15 decreases. Therefore, the area ratio X may be increased as the valve opening set pressure Y is set to a low value.
  • the present inventors set the area ratio X and the valve opening set pressure Y so as to satisfy the following formulas F1 and F2 during normal operation, so that an appropriate flow rate can be obtained. It was confirmed that the refrigerant could be supplied to the suction side evaporator 19.
  • the present inventors determine the area ratio X and the valve opening set pressure Y so as to satisfy the formulas F1 and F3 (so as to enter the shaded hatched region in FIG. 9) as a practically effective range. ing.
  • the maximum throttle cross-sectional area Aex, the minimum passage cross-sectional area Apt, and the load of the coil spring 52e are adjusted so as to satisfy the expressions F1 and F3.
  • the area ratio X and the valve opening set pressure are set so that the ratio of the flow rate of the refrigerant flowing into the suction-side evaporator 19 via the bypass passage 16 does not unnecessarily increase during normal operation.
  • Y is determined.
  • the area ratio X and the valve opening set pressure Y are determined so that the flow rate of the refrigerant flowing into the suction-side evaporator 19 is not insufficient during low load operation.
  • the refrigerant decompressed by the suction-side decompression device 15 regardless of load fluctuations, whether during normal operation or during low load operation. And the refrigerant that has passed through the bypass passage 16 can flow out from the evaporator-side outlet 21 b and flow into the suction-side evaporator 19.
  • the suction side pressure reducing device 15 increases the throttle opening. For this reason, the ratio of the flow rate of the refrigerant flowing into the suction side evaporator 19 via the suction side pressure reducing device 15 in the flow rate of the refrigerant flowing into the suction side evaporator 19 increases. In other words, regarding the change in the flow rate of the refrigerant flowing into the suction-side evaporator 19, the degree of influence of the change in the throttle opening degree of the suction-side decompression device 15 increases.
  • the area ratio X and the valve opening set pressure Y are set so as to satisfy the above formula F1. Therefore, even if the bypass passage 16 is not closed, the suction side pressure reducing device 15 changes the throttle opening so that the superheat degree of the refrigerant on the outlet side of the suction side evaporator 19 approaches the reference superheat degree. The flow rate of the refrigerant flowing into the suction side evaporator 19 can be adjusted.
  • the suction-side pressure reducing device 15 decreases the throttle opening degree under the operating condition in which the flow rate of the refrigerant flowing into the suction-side evaporator 19 is relatively small as in the low-load operation. For this reason, the ratio of the flow rate of the refrigerant that has passed through the bypass passage 16 in the flow rate of the refrigerant flowing into the suction side evaporator 19 increases. In other words, regarding the change in the flow rate of the refrigerant flowing into the suction-side evaporator 19 during the low load operation, the degree of influence of the change in the throttle opening degree of the suction-side decompression device 15 becomes small.
  • the area ratio X and the valve opening set pressure Y are set so as to satisfy the above formula F3. Therefore, at the time of low load operation, even if the suction side pressure reducing device 15 reduces the throttle opening, the refrigerant that has passed through the bypass passage 16 can surely flow into the suction side evaporator 19. Thereby, it can suppress that the flow volume of the refrigerant
  • the flow rate adjustment valve 20 of the present embodiment when applied to the ejector refrigeration cycle 10, the flow rate of the refrigerant flowing into the suction-side evaporator 19 is appropriately adjusted according to cycle load fluctuations. be able to.
  • the flow rate adjustment valve 20 is provided, so that the flow rate of the refrigerant flowing into the suction-side evaporator 19 is appropriately adjusted according to the cycle load fluctuation. be able to.
  • the above formulas F1 and F2 are differential pressures obtained by subtracting the area ratio X, which is a dimensionless number, and the saturation pressure determined by the physical properties of the refrigerant from the outlet side pressure Peo. Since the valve opening set pressure Y is used, it is also confirmed that the present invention is applicable to a wide range of refrigerants without being limited to R1234yf.
  • the ejector refrigeration cycle 10 that employs a wide variety of refrigerants is suitable for both normal operation and low load operation. It is possible to allow a refrigerant having a proper flow rate to flow into the suction side evaporator 19.
  • the refrigerant on the inlet side of the suction-side decompression device 15 is led to the outlet side of the suction-side decompression device 15 by bypassing the suction-side decompression device 15.
  • the example in which the bypass passage 16 is arranged has been described, but the arrangement of the bypass passage 16 is not limited to this.
  • the bypass passage 16 is formed. It may be shortened.
  • a nozzle side pressure reducing device 25 is added to the ejector refrigeration cycle 10 as shown in the overall configuration diagram of FIG. 11 with respect to the first embodiment.
  • the nozzle side pressure reducing device 25 is a variable throttle mechanism that reduces the pressure of the refrigerant branched by the branching portion 13 on the upstream side of the nozzle portion 14a. Further, the nozzle-side pressure reducing device 25 functions as a flow rate adjusting device that adjusts the flow rate of the refrigerant flowing into the nozzle portion 14a.
  • the basic configuration of the nozzle side pressure reducing device 25 is the same temperature type expansion valve as the suction side pressure reducing device 15 described in the first embodiment.
  • the superheat degree SH of the refrigerant on the outlet side of the outflow side evaporator 18 (that is, the suction refrigerant sucked into the compressor 11) is a predetermined nozzle side reference superheat degree KSH (in this embodiment, The throttle opening is displaced so as to approach 1 ° C.
  • an intermediate pressure reducing device 26 is added to the ejector refrigeration cycle 10 as shown in the overall configuration diagram of FIG. 12 with respect to the first embodiment.
  • the intermediate pressure depressurization device 26 is a variable throttle mechanism that depressurizes the refrigerant flowing out of the radiator 12 until it becomes an intermediate pressure refrigerant on the upstream side of the branch portion 13. Further, the intermediate pressure reducing device 26 functions as a flow rate adjusting device that adjusts the flow rate of the refrigerant flowing into the branch portion 13.
  • the basic configuration of the intermediate pressure reducing device 26 is the same temperature type expansion valve as the suction side reducing device 15 described in the first embodiment.
  • the superheat degree SH of the refrigerant on the outlet side of the outflow side evaporator 18 (that is, the suction refrigerant sucked into the compressor 11) is a predetermined nozzle side reference superheat degree KSH (in this embodiment, The throttle opening is displaced so as to approach 1 ° C.
  • the gas-liquid separator 27 is a gas-liquid separator that stores the excess liquid-phase refrigerant separated by separating the gas-liquid of the refrigerant that has flowed out of the diffuser portion 14d.
  • the inlet side of the nozzle portion 14 a of the ejector 14 is connected to the outlet of the radiator 12.
  • the gas-phase refrigerant outlet of the gas-liquid separator 27 is connected to the suction port side of the compressor 11, and the liquid-phase refrigerant outlet of the gas-liquid separator 27 is connected to the refrigerant inlet 21 a side of the flow rate adjusting valve 20. Yes.
  • the air conditioning control device 40 operates the compressor 11, the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the radiator 12.
  • the refrigerant flowing into the radiator 12 exchanges heat with the outside air blown from the cooling fan 12a, and is cooled and condensed.
  • the refrigerant that has flowed out of the radiator 12 flows into the nozzle portion 14 a of the ejector 14.
  • the refrigerant that has flowed into the nozzle portion 14a of the ejector 14 is decompressed in an isentropic manner at the nozzle portion 14a and is injected from the refrigerant injection port of the nozzle portion 14a. Then, the refrigerant that has flowed out of the suction-side evaporator 19 by the suction action of the injected refrigerant is sucked from the refrigerant suction port 14 c through the temperature sensing passage 20 b of the flow rate adjustment valve 20.
  • the injection refrigerant injected from the refrigerant injection port of the nozzle portion 14a and the suction refrigerant sucked from the refrigerant suction port 14c flow into the diffuser portion 14d.
  • the refrigerant whose pressure has been increased in the diffuser section 14 d flows into the gas-liquid separator 27.
  • the gas-phase refrigerant separated by the gas-liquid separator 27 is sucked into the compressor 11 and compressed again.
  • the liquid phase refrigerant separated by the gas-liquid separator 27 flows into the refrigerant inlet 21 a of the flow rate adjustment valve 20.
  • the refrigerant decompressed by the suction side decompression device 15 flows out from the evaporator side outlet 21b of the flow rate adjustment valve 20 and flows into the suction side evaporator 19. To do. Further, during low load operation, the refrigerant decompressed by the suction side decompression device 15 and the refrigerant that has passed through the bypass passage 16 flow out from the evaporator side outlet 21 b of the flow rate adjustment valve 20 and flow into the suction side evaporator 19. To do.
  • the refrigerant flowing into the suction side evaporator 19 absorbs heat from the blown air blown by the indoor blower 18a and evaporates. Thereby, the blowing air blown by the indoor blower 18a is cooled. The refrigerant that has flowed out of the suction side evaporator 19 is sucked from the refrigerant suction port 14c.
  • the blown air blown into the vehicle interior by the suction-side evaporator 19 during normal operation and low load operation regardless of load fluctuations. Can be cooled. And the effect similar to the ejector-type refrigerating cycle 10 demonstrated in 1st Embodiment can be acquired.
  • the flow rate adjusting valve 20 can appropriately adjust the flow rate of the refrigerant flowing into the suction side evaporator 19 even when applied to the ejector refrigeration cycle 10a.
  • the flow rate adjustment valve 20 is provided, so that the flow rate of the refrigerant flowing into the suction-side evaporator 19 is appropriately adjusted according to the cycle load fluctuation. be able to.
  • the present invention is not limited to this.
  • the same effect can be obtained even if the ejector refrigeration cycle 10, 10a includes the suction side pressure reducing device 15, the bypass passage 16, and the variable throttle device 17 as separate components.
  • the branching unit 13, the ejector 14, and the like may be integrated with the flow rate adjusting valve 20.
  • the present invention is not limited to this.
  • the spring chamber 17c may be communicated with the outside air, and the pressure Psp of the spring chamber 17c may be set to the external pressure.
  • the spring chamber 17c may be evacuated.
  • a seal member may be disposed in the gap between the inner wall surface of the first passage 16a and the valve body portion 17a.
  • bypass passage 16 may be a relatively short distance extending from immediately before the throttle passage 20a to the downstream side of the throttle passage 20a.
  • the bypass passage 16 may be formed by cutting out a part of the inner peripheral surface of the portion of the body 21 where the throttle passage 20a is formed.
  • Each component device constituting the ejector refrigeration cycle 10 is not limited to that disclosed in the above-described embodiment.
  • an electric compressor is employed as the compressor 11
  • the compressor 11 is driven by a rotational driving force transmitted from a vehicle traveling engine via a pulley, a belt, or the like.
  • An engine driven compressor may be employed.
  • the variable capacity compressor that can adjust the refrigerant discharge capacity by changing the discharge capacity, or the refrigerant discharge capacity can be adjusted by changing the operating rate of the compressor by intermittently connecting the electromagnetic clutch A fixed-capacity compressor can be employed.
  • the receiver integrated condenser which has the receiver part (in other words, liquid receiver) which stores the condensed refrigerant
  • FIG. May be adopted.
  • the branch portion 13 is not limited to this.
  • a centrifugal type gas-liquid separator structure may be adopted as the branching section 13.
  • the refrigerant having a relatively high dryness on the turning center side is caused to flow out to the nozzle portion 14a side of the ejector 14, and the refrigerant having a relatively low dryness on the outer peripheral side is caused to flow out to the refrigerant inlet 21a side of the flow rate adjusting valve 20. May be.
  • outflow side evaporator 18 and the suction side evaporator 19 are integrally configured.
  • the outflow side evaporator 18 and the suction side evaporator 19 are configured separately. Also good.
  • different refrigerant target fluids may be cooled in different temperature zones.
  • R1234yf is adopted as the refrigerant
  • the refrigerant is not limited to this.
  • R134a, R600a, R410A, R404A, R32, R407C, etc. may be adopted.
  • a supercritical refrigeration cycle in which carbon dioxide is employed as the refrigerant and the high-pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant may be configured.
  • the ejector refrigeration cycle 10 is applied to a vehicle air conditioner, but application of the ejector refrigeration cycle 10 is not limited thereto.
  • the present invention may be applied to stationary air conditioners, cold storages, other cooling and heating devices, and the like.
  • each of the above embodiments may be appropriately combined within a practicable range.
  • the flow rate adjusting valve 20 described in the second to fourth embodiments may be applied to the ejector refrigeration cycles 10 and 10a described in the fifth to seventh embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

This ejector refrigeration cycle comprises a compressor (11), a condenser (12), an ejector (14), an intake-side depressurisation unit (15), an intake-side evaporator (19), a guiding bypass passage (16), and a variable-throttle mechanism (17). The intake-side depressurisation unit depressurises a refrigerant. The intake-side evaporator causes the refrigerant depressurised by the intake-side depressurisation unit to evaporate and flow out towards the refrigerant intake port side. The bypass passage causes the refrigerant on the inlet side of the intake-side depressurisation unit to bypass the intake-side depressurisation unit and guides said refrigerant to the inlet side of the intake-side evaporator. The variable-throttle mechanism adjusts the flow rate of the refrigerant flowing in the bypass passage. The intake-side depressurisation unit changes the throttle aperture so that the superheat degree (SH1) of the refrigerant on the outlet side of the intake-side evaporator approaches a predetermined reference superheat degree (KSH1). The variable-throttle mechanism has the function of opening and closing the bypass passage, and opens the bypass passage if the flow rate (Ge1) of the refrigerant flowing out from the intake-side depressurisation unit is no greater than a predetermined reference flow rate (KGe1).

Description

エジェクタ式冷凍サイクル、および流量調整弁Ejector refrigeration cycle and flow control valve 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年2月8日に出願された日本特許出願番号2018-020762号と、2018年5月10日に出願された日本特許出願番号2018-091449号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2018-020762 filed on Feb. 8, 2018 and Japanese Patent Application No. 2018-091449 filed on May 10, 2018. The description is incorporated.
 本開示は、エジェクタを備えるエジェクタ式冷凍サイクル、およびエジェクタ式冷凍サイクルに適用される流量調整弁に関する。 The present disclosure relates to an ejector refrigeration cycle including an ejector, and a flow rate adjusting valve applied to the ejector refrigeration cycle.
 従来、エジェクタを備える蒸気圧縮式の冷凍サイクルであるエジェクタ式冷凍サイクルが知られている。この種のエジェクタ式冷凍サイクルでは、エジェクタのディフューザ部の昇圧作用によって、圧縮機へ吸入される吸入冷媒の圧力を上昇させることができる。これにより、エジェクタ式冷凍サイクルでは、圧縮機の消費動力を低減させて、サイクルの成績係数(COP)を向上させることができる。 Conventionally, an ejector refrigeration cycle, which is a vapor compression refrigeration cycle equipped with an ejector, is known. In this type of ejector refrigeration cycle, the pressure of the refrigerant sucked into the compressor can be increased by the pressure increasing action of the diffuser portion of the ejector. Thereby, in the ejector type refrigeration cycle, the power consumption of the compressor can be reduced and the coefficient of performance (COP) of the cycle can be improved.
 例えば、特許文献1には、空調装置に適用されて、空調対象空間へ送風される送風空気を冷却するエジェクタ式冷凍サイクルが開示されている。 For example, Patent Document 1 discloses an ejector-type refrigeration cycle that is applied to an air conditioner and cools blown air that is blown into an air-conditioning target space.
 より具体的には、特許文献1のエジェクタ式冷凍サイクルは、放熱器から流出した高圧冷媒の流れを分岐する分岐部、および低圧冷媒を蒸発させて送風空気を冷却する吸引側蒸発器を備えている。そして、分岐部で分岐された一方の冷媒をエジェクタのノズル部へ流入させ、分岐部で分岐された他方の冷媒を吸引側減圧部にて減圧させて吸引側蒸発器へ流入させる。さらに、吸引側蒸発器から流出した冷媒を、エジェクタの冷媒吸引口から吸引させるサイクル構成になっている。 More specifically, the ejector refrigeration cycle of Patent Document 1 includes a branching portion that branches the flow of the high-pressure refrigerant that has flowed out of the radiator, and a suction-side evaporator that evaporates the low-pressure refrigerant and cools the blown air. Yes. Then, one refrigerant branched at the branching portion flows into the nozzle portion of the ejector, and the other refrigerant branched at the branching portion is depressurized by the suction side decompression portion and flows into the suction side evaporator. Further, the refrigerant has a cycle configuration in which the refrigerant flowing out from the suction side evaporator is sucked from the refrigerant suction port of the ejector.
 また、特許文献1には、吸引側減圧部として、吸引側蒸発器の出口側の冷媒の過熱度が予め定めた基準過熱度に近づくように絞り開度を調整する温度式膨張弁を採用した例も開示されている。 Patent Document 1 employs a temperature expansion valve that adjusts the throttle opening degree so that the superheat degree of the refrigerant on the outlet side of the suction side evaporator approaches a predetermined reference superheat degree as the suction side pressure reducing unit. Examples are also disclosed.
特許第5217121号公報Japanese Patent No. 5217121
 ところで、特許文献1のように、吸引側減圧部の絞り開度を調整することで、エジェクタの冷媒吸引口から吸引される冷媒を、確実に過熱度を有する気相冷媒とすることができる。これによれば、冷媒吸引口から吸引される冷媒の流量(質量流量)が不必要に増加してしまうことを抑制して、ディフューザ部における昇圧量の減少を抑制することができる。すなわち、サイクルのCOPの低下を抑制することができる。 By the way, by adjusting the throttle opening degree of the suction side decompression unit as in Patent Document 1, the refrigerant sucked from the refrigerant suction port of the ejector can be reliably made into a gas phase refrigerant having a superheat degree. According to this, it can suppress that the flow volume (mass flow rate) of the refrigerant | coolant suck | inhaled from a refrigerant | coolant suction port increases unnecessarily, and can suppress the fall of the pressure | voltage rise amount in a diffuser part. That is, a decrease in cycle COP can be suppressed.
 ところが、低負荷運転時等には、吸引側蒸発器へ流入する冷媒の流量が減少おそれがあるので、吸引側蒸発器にて冷却された送風空気の温度分布が拡大するおそれがあった。つまり、特許文献1のように、吸引側蒸発器の出口側の冷媒の過熱度が予め定めた基準過熱度に近づくように吸引側減圧部の絞り開度を調整しても、サイクルの負荷変動に応じて、吸引側蒸発器へ流入する冷媒の流量を適切に調整することができないおそれがある。 However, during low-load operation, etc., the flow rate of the refrigerant flowing into the suction-side evaporator may decrease, so that the temperature distribution of the blown air cooled by the suction-side evaporator may increase. That is, even if the throttle opening degree of the suction side pressure reducing unit is adjusted so that the superheat degree of the refrigerant on the outlet side of the suction side evaporator approaches a predetermined reference superheat degree as in Patent Document 1, cycle load fluctuation Accordingly, there is a possibility that the flow rate of the refrigerant flowing into the suction side evaporator cannot be adjusted appropriately.
 本開示は、上記点に鑑み、吸引側蒸発器へ流入する冷媒の流量を適切に調整可能なエジェクタ式冷凍サイクルを提供することを目的とする。 In view of the above points, an object of the present disclosure is to provide an ejector refrigeration cycle in which the flow rate of the refrigerant flowing into the suction side evaporator can be appropriately adjusted.
 また、本開示は、エジェクタ式冷凍サイクルに適用された際に、吸引側蒸発器へ流入する冷媒の流量を適切に調整可能な流量調整弁を提供することを別の目的とする。 Another object of the present disclosure is to provide a flow rate adjusting valve capable of appropriately adjusting the flow rate of the refrigerant flowing into the suction side evaporator when applied to an ejector refrigeration cycle.
 本開示の第1態様によるエジェクタ式冷凍サイクルは、圧縮機と、放熱器と、エジェクタと、吸引側減圧部と、吸引側蒸発器と、導くバイパス通路と、可変絞り機構部と、を備える。圧縮機は、冷媒を圧縮して吐出する。放熱器は、圧縮機から吐出された冷媒を放熱させる。エジェクタは、放熱器から流出した冷媒を減圧させるノズル部から噴射される噴射冷媒の吸引作用によって冷媒吸引口から冷媒を吸引し、噴射冷媒と冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させる。吸引側減圧部は、冷媒を減圧させる。吸引側蒸発器は、吸引側減圧部にて減圧された冷媒を蒸発させて冷媒吸引口側へ流出させる。バイパス通路は、吸引側減圧部の入口側の冷媒を、吸引側減圧部を迂回させて吸引側蒸発器の入口側へ導く。可変絞り機構部は、バイパス通路を流通する冷媒の流量を調整する。吸引側減圧部は、吸引側蒸発器の出口側の冷媒の過熱度が予め定めた基準過熱度に近づくように絞り開度を変化させる。可変絞り機構部は、バイパス通路を開閉する機能を有し、吸引側減圧部から流出する冷媒の流量が予め定めた基準流量以下となっている際に、バイパス通路を開く。 The ejector refrigeration cycle according to the first aspect of the present disclosure includes a compressor, a radiator, an ejector, a suction-side decompression unit, a suction-side evaporator, a bypass path that leads, and a variable throttle mechanism. The compressor compresses and discharges the refrigerant. The radiator dissipates heat from the refrigerant discharged from the compressor. The ejector sucks the refrigerant from the refrigerant suction port by the suction action of the jet refrigerant jetted from the nozzle part that decompresses the refrigerant that has flowed out of the radiator, and the mixed refrigerant of the jet refrigerant and the suction refrigerant sucked from the refrigerant suction port. Increase the pressure. The suction side decompression unit decompresses the refrigerant. The suction side evaporator evaporates the refrigerant decompressed by the suction side decompression unit and causes the refrigerant to flow out to the refrigerant suction port side. The bypass passage guides the refrigerant on the inlet side of the suction side decompression unit to the inlet side of the suction side evaporator, bypassing the suction side decompression unit. The variable throttle mechanism adjusts the flow rate of the refrigerant flowing through the bypass passage. The suction-side decompression unit changes the throttle opening so that the superheat degree of the refrigerant on the outlet side of the suction-side evaporator approaches a predetermined reference superheat degree. The variable throttle mechanism has a function of opening and closing the bypass passage, and opens the bypass passage when the flow rate of the refrigerant flowing out from the suction-side decompression portion is equal to or lower than a predetermined reference flow rate.
 これによれば、通常運転時のように、吸引側減圧部から流出する冷媒の流量が基準流量より多くなる運転条件時には、可変絞り機構部がバイパス通路を閉じる。これにより、吸引側減圧部にて減圧された冷媒を吸引側蒸発器へ流入させることができる。 According to this, the variable throttle mechanism closes the bypass passage under the operating condition in which the flow rate of the refrigerant flowing out from the suction-side decompression unit is larger than the reference flow rate as in normal operation. Thereby, the refrigerant decompressed by the suction side decompression unit can flow into the suction side evaporator.
 従って、吸引側蒸発器へ流入させる冷媒の流量が比較的多くなる運転条件時には、吸引側減圧部が絞り開度を変化させることによって、吸引側蒸発器の出口側の冷媒の過熱度が基準過熱度に近づくように、吸引側蒸発器へ流入する冷媒の流量を適切に調整することができる。 Therefore, under operating conditions in which the flow rate of the refrigerant flowing into the suction side evaporator is relatively large, the suction side decompression unit changes the throttle opening, so that the superheat degree of the refrigerant on the outlet side of the suction side evaporator becomes the reference superheat. The flow rate of the refrigerant flowing into the suction side evaporator can be appropriately adjusted so as to approach the degree.
 一方、低負荷運転時のように、吸引側減圧部から流出する冷媒の流量が基準流量以下となっている運転条件時には、可変絞り機構部がバイパス通路を開く。これにより、バイパス通路を介して、吸引側減圧部の入口側の冷媒を吸引側蒸発器へ流入させることができる。 On the other hand, the variable throttle mechanism opens the bypass passage when the operating condition is such that the flow rate of the refrigerant flowing out from the suction-side decompression unit is below the reference flow rate, such as during low-load operation. Thereby, the refrigerant | coolant by the side of the inlet_port | entrance of a suction side pressure reduction part can be flowed into a suction side evaporator via a bypass channel.
 従って、吸引側蒸発器へ流入させる冷媒の流量が比較的少なくなる運転条件時には、吸引側減圧部が絞り開度を減少させたとしても、バイパス通路を通過した冷媒を確実に吸引側蒸発器へ流入させることができる。これにより、吸引側蒸発器へ流入する冷媒の流量が不足してしまうことを抑制することができる。 Therefore, under operating conditions in which the flow rate of the refrigerant flowing into the suction side evaporator is relatively small, even if the suction side decompression unit reduces the throttle opening, the refrigerant that has passed through the bypass passage is reliably transferred to the suction side evaporator. Can flow in. Thereby, it can suppress that the flow volume of the refrigerant | coolant which flows in into a suction side evaporator runs short.
 すなわち、第1態様によれば、サイクルの負荷変動に応じて、吸引側蒸発器へ流入する冷媒の流量を適切に調整可能なエジェクタ式冷凍サイクルを提供することができる。 That is, according to the first aspect, it is possible to provide an ejector refrigeration cycle in which the flow rate of the refrigerant flowing into the suction-side evaporator can be appropriately adjusted according to cycle load fluctuations.
 本開示の第2態様によるエジェクタ式冷凍サイクルは、圧縮機と、放熱器と、エジェクタと、吸引側減圧部と、吸引側蒸発器と、バイパス通路と、を備える。圧縮機は、冷媒を圧縮して吐出する。放熱器は、圧縮機から吐出された冷媒を放熱させる。エジェクタは、放熱器から流出した冷媒を減圧させるノズル部から噴射される噴射冷媒の吸引作用によって冷媒吸引口から冷媒を吸引し、噴射冷媒と冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させる。吸引側減圧部は冷媒を減圧させる。吸引側蒸発器は、吸引側減圧部にて減圧された冷媒を蒸発させて冷媒吸引口側へ流出させる。バイパス通路は、吸引側減圧部の入口側の冷媒を、吸引側減圧部を迂回させて吸引側蒸発器の入口側へ導く。吸引側減圧部は、吸引側蒸発器の出口側の冷媒の温度変化に伴って圧力変化する感温媒体が封入された封入空間、および感温媒体の圧力に応じて変位する絞り弁を有し、吸引側蒸発器の出口側の冷媒の過熱度が予め定めた基準過熱度に近づくように絞り開度を変化させる。吸引側蒸発器から流出した冷媒の圧力である出口側圧力から予め定めた基準媒体温度における感温媒体の飽和圧力を減算した値を開弁設定圧と定義し、吸引側減圧部の最大通路断面積に対するバイパス通路の最小通路断面積の比を面積比Xと定義したとき、-170X+3≧YかつY≧-350X-9である。 The ejector refrigeration cycle according to the second aspect of the present disclosure includes a compressor, a radiator, an ejector, a suction-side decompression unit, a suction-side evaporator, and a bypass passage. The compressor compresses and discharges the refrigerant. The radiator dissipates heat from the refrigerant discharged from the compressor. The ejector sucks the refrigerant from the refrigerant suction port by the suction action of the jet refrigerant jetted from the nozzle part that decompresses the refrigerant that has flowed out of the radiator, and the mixed refrigerant of the jet refrigerant and the suction refrigerant sucked from the refrigerant suction port. Increase the pressure. The suction side decompression unit decompresses the refrigerant. The suction side evaporator evaporates the refrigerant decompressed by the suction side decompression unit and causes the refrigerant to flow out to the refrigerant suction port side. The bypass passage guides the refrigerant on the inlet side of the suction side decompression unit to the inlet side of the suction side evaporator, bypassing the suction side decompression unit. The suction-side decompression unit has a sealed space in which a temperature-sensitive medium whose pressure changes with a change in temperature of the refrigerant on the outlet side of the suction-side evaporator is enclosed, and a throttle valve that is displaced according to the pressure of the temperature-sensitive medium. The throttle opening is changed so that the superheat degree of the refrigerant on the outlet side of the suction side evaporator approaches a predetermined reference superheat degree. The value obtained by subtracting the saturation pressure of the temperature-sensitive medium at a predetermined reference medium temperature from the outlet-side pressure, which is the pressure of the refrigerant flowing out of the suction-side evaporator, is defined as the valve opening set pressure, and the maximum passage cut-off of the suction-side decompression unit When the ratio of the minimum passage cross-sectional area of the bypass passage to the area is defined as an area ratio X, −170X + 3 ≧ Y and Y ≧ −350X-9.
 これによれば、吸引側減圧部にて減圧された冷媒とバイパス通路を通過した冷媒との双方を吸引側蒸発器へ流入させることができる。 According to this, both the refrigerant decompressed by the suction side decompression unit and the refrigerant that has passed through the bypass passage can be caused to flow into the suction side evaporator.
 そして、通常運転時のように吸引側蒸発器へ流入させる冷媒の流量が比較的多くなる運転条件時には、吸引側減圧部が絞り開度を増加させる。このため、吸引側蒸発器へ流入する冷媒の流量のうち、吸引側減圧部を介して吸引側蒸発器へ流入する冷媒の流量の割合が増加する。 And, under the operating condition where the flow rate of the refrigerant flowing into the suction side evaporator is relatively large as in the normal operation, the suction side pressure reducing unit increases the throttle opening. For this reason, the ratio of the flow volume of the refrigerant | coolant which flows into a suction side evaporator via a suction side decompression part among the flow volume of the refrigerant | coolant which flows into a suction side evaporator increases.
 従って、吸引側蒸発器へ流入させる冷媒の流量が比較的多くなる運転条件時には、吸引側減圧部が絞り開度を変化させることによって、吸引側蒸発器の出口側の冷媒の過熱度が基準過熱度に近づくように、吸引側蒸発器へ流入する冷媒の流量を適切に調整することができる。 Therefore, under operating conditions in which the flow rate of the refrigerant flowing into the suction side evaporator is relatively large, the suction side decompression unit changes the throttle opening, so that the superheat degree of the refrigerant on the outlet side of the suction side evaporator becomes the reference superheat. The flow rate of the refrigerant flowing into the suction side evaporator can be appropriately adjusted so as to approach the degree.
 一方、低負荷運転時のように吸引側蒸発器へ流入させる冷媒の流量が比較的少なくなる運転条件時には、吸引側減圧部が絞り開度を減少させる。このため、吸引側蒸発器へ流入する冷媒の流量のうち、バイパス通路を通過した冷媒の流量の割合が増加する。 On the other hand, the suction-side decompression unit decreases the throttle opening when the operating condition is such that the flow rate of the refrigerant flowing into the suction-side evaporator is relatively low, such as during low-load operation. For this reason, the ratio of the flow rate of the refrigerant | coolant which passed the bypass channel among the flow rates of the refrigerant | coolant which flows into a suction side evaporator increases.
 従って、吸引側蒸発器へ流入させる冷媒の流量が比較的少なくなる運転条件時には、吸引側減圧部が絞り開度を減少させたとしても、バイパス通路を通過した冷媒を確実に吸引側蒸発器へ流入させることができる。これにより、吸引側蒸発器へ流入する冷媒の流量が不足してしまうことを抑制することができる。 Therefore, under operating conditions in which the flow rate of the refrigerant flowing into the suction side evaporator is relatively small, even if the suction side decompression unit reduces the throttle opening, the refrigerant that has passed through the bypass passage is reliably transferred to the suction side evaporator. Can flow in. Thereby, it can suppress that the flow volume of the refrigerant | coolant which flows in into a suction side evaporator runs short.
 すなわち、第2態様によれば、サイクルの負荷変動に応じて、吸引側蒸発器へ流入する冷媒の流量を適切に調整可能なエジェクタ式冷凍サイクルを提供することができる。 That is, according to the second aspect, it is possible to provide an ejector refrigeration cycle in which the flow rate of the refrigerant flowing into the suction-side evaporator can be appropriately adjusted according to cycle load fluctuations.
 本開示の第3態様による流量調整弁は、冷媒を減圧させるノズル部から噴射される噴射冷媒の吸引作用によって冷媒吸引口から冷媒を吸引し、噴射冷媒と冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させるエジェクタ、および冷媒を蒸発させて冷媒吸引口側へ流出させる吸引側蒸発器を有するエジェクタ式冷凍サイクルに適用される。流量調整弁は、吸引側減圧部と、バイパス通路と、可変絞り機構部と、を備える。吸引側減圧部は、吸引側蒸発器の出口側の冷媒の過熱度が予め定めた基準過熱度に近づくように絞り開度を変化させる。バイパス通路は、吸引側減圧部の入口側の冷媒を、吸引側減圧部を迂回させて吸引側減圧部の出口側へ導く。可変絞り機構部は、バイパス通路を流通する冷媒の流量を調整する。吸引側減圧部にて減圧された冷媒を流出させる蒸発器側出口には、吸引側蒸発器の冷媒入口側が接続されている。可変絞り機構部は、バイパス通路を開閉する機能を有し、吸引側減圧部から吸引側蒸発器の冷媒入口側へ流出させる冷媒の流量が予め定めた基準流量以下となっている際に、バイパス通路を開く。 The flow rate adjustment valve according to the third aspect of the present disclosure is configured to suck the refrigerant from the refrigerant suction port by the suction action of the jet refrigerant injected from the nozzle portion that depressurizes the refrigerant, and the suction refrigerant sucked from the jet refrigerant and the refrigerant suction port This is applied to an ejector-type refrigeration cycle having an ejector for increasing the pressure of the mixed refrigerant and a suction side evaporator for evaporating the refrigerant to flow out to the refrigerant suction port side. The flow rate adjusting valve includes a suction side pressure reducing unit, a bypass passage, and a variable throttle mechanism. The suction-side decompression unit changes the throttle opening so that the superheat degree of the refrigerant on the outlet side of the suction-side evaporator approaches a predetermined reference superheat degree. The bypass passage guides the refrigerant on the inlet side of the suction side decompression unit to the outlet side of the suction side decompression unit by bypassing the suction side decompression unit. The variable throttle mechanism adjusts the flow rate of the refrigerant flowing through the bypass passage. The refrigerant inlet side of the suction side evaporator is connected to the evaporator side outlet from which the refrigerant decompressed by the suction side decompression unit flows out. The variable throttle mechanism has a function of opening and closing the bypass passage, and bypasses when the flow rate of the refrigerant flowing from the suction-side decompression unit to the refrigerant inlet side of the suction-side evaporator is equal to or lower than a predetermined reference flow rate. Open the passage.
 これによれば、適用されたエジェクタ式冷凍サイクルが通常運転時のように吸引側減圧部から流出する冷媒の流量が基準流量より多くなる運転条件になっている際には、可変絞り機構部がバイパス通路を閉じる。これにより、吸引側減圧部にて減圧された冷媒を、吸引側蒸発器側へ流出させることができる。 According to this, when the applied ejector-type refrigeration cycle has an operating condition in which the flow rate of the refrigerant flowing out from the suction-side decompression unit is larger than the reference flow rate as in normal operation, the variable throttle mechanism unit is Close the bypass passage. Thereby, the refrigerant decompressed by the suction side decompression unit can flow out to the suction side evaporator side.
 従って、適用されたエジェクタ式冷凍サイクルが比較的多くの流量の冷媒を吸引側蒸発器へ流入させる運転条件になっている際には、吸引側減圧部が絞り開度を変化させることによって、吸引側蒸発器の出口側の冷媒の過熱度が基準過熱度に近づくように、吸引側蒸発器へ流入する冷媒の流量を適切に調整することができる。 Therefore, when the applied ejector-type refrigeration cycle has an operating condition in which a relatively large amount of refrigerant flows into the suction-side evaporator, the suction-side decompression unit changes the throttle opening, It is possible to appropriately adjust the flow rate of the refrigerant flowing into the suction side evaporator so that the superheat degree of the refrigerant on the outlet side of the side evaporator approaches the reference superheat degree.
 一方、適用されたエジェクタ式冷凍サイクルが低負荷運転時のように吸引側減圧部から流出する冷媒の流量が基準流量以下となる運転条件になっている際には、可変絞り機構部がバイパス通路を開く。これにより、バイパス通路を介して、吸引側減圧部の入口側の冷媒を吸引側蒸発器側へ流出させることができる。 On the other hand, when the applied ejector-type refrigeration cycle has an operating condition in which the flow rate of the refrigerant flowing out from the suction-side decompression unit is equal to or lower than the reference flow rate as in low load operation, the variable throttle mechanism unit is open. Thereby, the refrigerant | coolant by the side of the inlet of a suction side pressure reduction part can be flowed out to the suction side evaporator side via a bypass channel.
 従って、適用されたエジェクタ式冷凍サイクルが比較的少ない流量の冷媒を吸引側蒸発器へ流入させる運転条件になっている際には、吸引側減圧部が絞り開度を減少させたとしても、バイパス通路を通過した冷媒を確実に吸引側蒸発器へ流入させることができる。これにより、吸引側蒸発器へ流入する冷媒の流量が不足してしまうことを抑制することができる。 Therefore, when the applied ejector-type refrigeration cycle has an operating condition in which a relatively small amount of refrigerant flows into the suction-side evaporator, even if the suction-side decompression unit reduces the throttle opening, The refrigerant that has passed through the passage can surely flow into the suction-side evaporator. Thereby, it can suppress that the flow volume of the refrigerant | coolant which flows in into a suction side evaporator runs short.
 すなわち、第3態様によれば、エジェクタ式冷凍サイクルに適用された際に、サイクルの負荷変動に応じて、吸引側蒸発器へ流入する冷媒の流量を適切に調整可能な流量調整弁を提供することができる。 That is, according to the third aspect, there is provided a flow rate adjustment valve capable of appropriately adjusting the flow rate of the refrigerant flowing into the suction-side evaporator when applied to the ejector-type refrigeration cycle in accordance with the load fluctuation of the cycle. be able to.
 本開示の第4態様による流量調整弁は、冷媒を減圧させるノズル部から噴射される噴射冷媒の吸引作用によって冷媒吸引口から冷媒を吸引し、噴射冷媒と冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させるエジェクタ、および冷媒を蒸発させて冷媒吸引口側へ流出させる吸引側蒸発器を有するエジェクタ式冷凍サイクルに適用される。流量調整弁は、吸引側減圧部と、バイパス通路と、を備える。吸引側減圧部は、吸引側蒸発器の出口側の冷媒の温度変化に伴って圧力変化する感温媒体が封入された封入空間、および感温媒体の圧力に応じて変位する絞り弁を有する。吸引側減圧部にて減圧された冷媒を流出させる蒸発器側出口には、吸引側蒸発器の冷媒入口側が接続される。吸引側蒸発器から流出した冷媒の圧力である出口側圧力から予め定めた基準媒体温度における感温媒体の飽和圧力を減算した値を開弁設定圧と定義し、吸引側減圧部の最大通路断面積に対するバイパス通路の最小通路断面積の比を面積比Xと定義したとき、-170X+3≧YかつY≧-350X-9である。 The flow rate adjusting valve according to the fourth aspect of the present disclosure is configured to suck the refrigerant from the refrigerant suction port by the suction action of the jet refrigerant injected from the nozzle portion that depressurizes the refrigerant, and to suck the refrigerant that is sucked from the jet refrigerant and the refrigerant suction port. This is applied to an ejector-type refrigeration cycle having an ejector for increasing the pressure of the mixed refrigerant and a suction side evaporator for evaporating the refrigerant to flow out to the refrigerant suction port side. The flow rate adjusting valve includes a suction side pressure reducing unit and a bypass passage. The suction-side decompression unit includes a sealed space in which a temperature-sensitive medium whose pressure changes with a change in temperature of the refrigerant on the outlet side of the suction-side evaporator is enclosed, and a throttle valve that is displaced according to the pressure of the temperature-sensitive medium. The refrigerant inlet side of the suction side evaporator is connected to the evaporator side outlet through which the refrigerant decompressed by the suction side decompression unit flows out. The value obtained by subtracting the saturation pressure of the temperature-sensitive medium at a predetermined reference medium temperature from the outlet-side pressure, which is the pressure of the refrigerant flowing out of the suction-side evaporator, is defined as the valve opening set pressure, and the maximum passage cut-off of the suction-side decompression unit When the ratio of the minimum passage cross-sectional area of the bypass passage to the area is defined as an area ratio X, −170X + 3 ≧ Y and Y ≧ −350X-9.
 これによれば、吸引側減圧部にて減圧された冷媒とバイパス通路を通過した冷媒との双方を吸引側蒸発器の冷媒入口側へ流出させることができる。 According to this, both the refrigerant decompressed by the suction side decompression unit and the refrigerant that has passed through the bypass passage can flow out to the refrigerant inlet side of the suction side evaporator.
 そして、適用されたエジェクタ式冷凍サイクルが通常運転時のように比較的多くの流量の冷媒を吸引側蒸発器へ流入させる運転条件になっている際には、吸引側減圧部が絞り開度を増加させる。このため、吸引側蒸発器側へ流出させる冷媒の流量のうち、吸引側減圧部を介して吸引側蒸発器の冷媒入口側へ流出させる冷媒の流量の割合が増加する。 When the applied ejector-type refrigeration cycle is in an operating condition in which a relatively large amount of refrigerant flows into the suction-side evaporator as in normal operation, the suction-side decompression unit reduces the throttle opening. increase. For this reason, the ratio of the flow rate of the refrigerant | coolant made to flow out to the refrigerant | coolant inlet side of a suction side evaporator via a suction side pressure reduction part among the flow volume of the refrigerant | coolant flowed out to the suction side evaporator side increases.
 従って、適用されたエジェクタ式冷凍サイクルが、比較的多くの流量の冷媒を吸引側蒸発器へ流入させる運転条件になっている際には、吸引側減圧部が絞り開度を変化させることによって、吸引側蒸発器の出口側の冷媒の過熱度が基準過熱度に近づくように、吸引側蒸発器へ流入する冷媒の流量を適切に調整することができる。 Therefore, when the applied ejector-type refrigeration cycle is in an operating condition in which a relatively large amount of refrigerant flows into the suction side evaporator, the suction side decompression unit changes the throttle opening, It is possible to appropriately adjust the flow rate of the refrigerant flowing into the suction side evaporator so that the superheat degree of the refrigerant on the outlet side of the suction side evaporator approaches the reference superheat degree.
 一方、適用されたエジェクタ式冷凍サイクルが、低負荷運転時のように比較的少ない流量の冷媒を吸引側減圧部から吸引側蒸発器へ流入させる運転条件になっている際には、吸引側減圧部が絞り開度を減少させる。このため、吸引側蒸発器側へ流出させる冷媒の流量のうち、バイパス通路を通過した冷媒の流量の割合が増加する。 On the other hand, when the applied ejector-type refrigeration cycle has an operating condition in which a relatively small amount of refrigerant flows from the suction-side decompression unit to the suction-side evaporator as in low-load operation, the suction-side decompression The part reduces the throttle opening. For this reason, the ratio of the flow volume of the refrigerant | coolant which passed the bypass channel among the flow volume of the refrigerant | coolant made to flow out to the suction side evaporator side increases.
 従って、適用されたエジェクタ式冷凍サイクルが、比較的少ない流量の冷媒を吸引側蒸発器へ流入させる運転条件になっている際には、吸引側減圧部が絞り開度を減少させたとしても、バイパス通路を通過した冷媒を確実に吸引側蒸発器へ流入させることができる。これにより、吸引側蒸発器へ流入する冷媒の流量が不足してしまうことを抑制することができる。 Therefore, when the applied ejector-type refrigeration cycle has an operating condition in which a relatively small flow rate of refrigerant flows into the suction-side evaporator, even if the suction-side decompression unit reduces the throttle opening, The refrigerant that has passed through the bypass passage can surely flow into the suction side evaporator. Thereby, it can suppress that the flow volume of the refrigerant | coolant which flows in into a suction side evaporator runs short.
 すなわち、第4態様によれば、エジェクタ式冷凍サイクルに適用された際に、サイクルの負荷変動に応じて、吸引側蒸発器へ流入する冷媒の流量を適切に調整可能な流量調整弁を提供することができる。 That is, according to the fourth aspect, there is provided a flow rate adjusting valve capable of appropriately adjusting the flow rate of the refrigerant flowing into the suction side evaporator according to the load fluctuation of the cycle when applied to the ejector refrigeration cycle. be able to.
第1実施形態のエジェクタ式冷凍サイクルの全体構成図である。It is a whole block diagram of the ejector-type refrigerating cycle of 1st Embodiment. 第1実施形態の流量調整弁がバイパス通路を全閉状態としている際の模式的な断面図である。It is typical sectional drawing at the time of the flow regulating valve of a 1st embodiment making a bypass passage fully closed. 第1実施形態の流量調整弁がバイパス通路を絞り状態としている際の模式的な断面図である。It is a typical sectional view at the time of the flow regulating valve of a 1st embodiment making a bypass passage the throttling state. 第1実施形態の流量調整弁がバイパス通路を全開状態としている際の模式的な断面図である。It is typical sectional drawing when the flow regulating valve of a 1st embodiment has made a bypass passage into a full open state. 第2実施形態の流量調整弁がバイパス通路を全開状態としている際の模式的な断面図である。It is a typical sectional view at the time of the flow regulating valve of a 2nd embodiment making a bypass passage fully open. 第3実施形態の流量調整弁がバイパス通路を全開状態としている際の模式的な断面図である。It is typical sectional drawing at the time of the flow regulating valve of a 3rd embodiment making a bypass passage fully open. 第4実施形態の流量調整弁の模式的な断面図である。It is typical sectional drawing of the flow regulating valve of 4th Embodiment. 第4実施形態の開弁設定圧の測定方法を説明するための説明図である。It is explanatory drawing for demonstrating the measuring method of the valve opening setting pressure of 4th Embodiment. 第4実施形態の面積比と開弁設定圧との関係を示すグラフである。It is a graph which shows the relationship between the area ratio of 4th Embodiment, and valve-opening setting pressure. 第4実施形態の変形例の流量調整弁の模式的な断面図である。It is typical sectional drawing of the flow regulating valve of the modification of 4th Embodiment. 第5実施形態のエジェクタ式冷凍サイクルの全体構成図である。It is a whole block diagram of the ejector-type refrigerating cycle of 5th Embodiment. 第6実施形態のエジェクタ式冷凍サイクルの全体構成図である。It is a whole block diagram of the ejector-type refrigerating cycle of 6th Embodiment. 第7実施形態のエジェクタ式冷凍サイクルの全体構成図である。It is a whole block diagram of the ejector type refrigerating cycle of 7th Embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not explicitly stated unless there is a problem with the combination. Is also possible.
 (第1実施形態)
 図1~図4を用いて、本開示の第1実施形態を説明する。本実施形態のエジェクタ式冷凍サイクル10は、車両用空調装置に適用されており、空調対象空間である車室内に送風される送風空気を冷却する機能を果たす。従って、エジェクタ式冷凍サイクル10の冷却対象流体は、送風空気である。
(First embodiment)
1st Embodiment of this indication is described using FIGS. 1-4. The ejector-type refrigeration cycle 10 of this embodiment is applied to a vehicle air conditioner, and fulfills a function of cooling blown air that is blown into a vehicle interior that is a space to be air-conditioned. Therefore, the fluid to be cooled in the ejector refrigeration cycle 10 is blown air.
 エジェクタ式冷凍サイクル10では、冷媒としてHFO系冷媒(具体的には、R1234yf)を採用しており、サイクルの高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。さらに、冷媒には圧縮機11を潤滑するための冷凍機油が混入されている。また、冷凍機油の一部は、冷媒とともにサイクルを循環している。 The ejector refrigeration cycle 10 employs an HFO refrigerant (specifically, R1234yf) as a refrigerant, and constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure of the cycle does not exceed the critical pressure of the refrigerant. Furthermore, refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant. A part of the refrigeration oil circulates in the cycle together with the refrigerant.
 図1の全体構成図に示すエジェクタ式冷凍サイクル10において、圧縮機11は、冷媒を吸入し、圧縮して吐出するものである。より具体的には、本実施形態の圧縮機11は、1つのハウジング内に固定容量型の圧縮機構、および圧縮機構を駆動する電動モータを収容して構成された電動圧縮機である。 In the ejector refrigeration cycle 10 shown in the overall configuration diagram of FIG. 1, the compressor 11 sucks in refrigerant, compresses it, and discharges it. More specifically, the compressor 11 of the present embodiment is an electric compressor that is configured by housing a fixed capacity type compression mechanism and an electric motor that drives the compression mechanism in one housing.
 圧縮機構としては、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用することができる。また、電動モータは、空調制御装置40から出力される制御信号によって、回転数(すなわち、冷媒吐出能力)が制御されるもので、交流モータ、直流モータのいずれの形式のものを採用してもよい。 As the compression mechanism, various compression mechanisms such as a scroll-type compression mechanism and a vane-type compression mechanism can be employed. The electric motor is a motor whose rotation speed (that is, refrigerant discharge capacity) is controlled by a control signal output from the air conditioning control device 40, and any type of an AC motor or a DC motor can be adopted. Good.
 圧縮機11の吐出口には、放熱器12の冷媒入口側が接続されている。放熱器12は、圧縮機11から吐出された高圧冷媒と冷却ファン12aにより送風される車室外空気(外気)を熱交換させて、高圧冷媒を放熱させて凝縮させる凝縮用熱交換器である。冷却ファン12aは、空調制御装置40から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。 The refrigerant inlet side of the radiator 12 is connected to the discharge port of the compressor 11. The radiator 12 is a heat exchanger for condensing by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and outside air (outside air) blown by the cooling fan 12a to dissipate the high-pressure refrigerant and condense it. The cooling fan 12 a is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the air conditioning control device 40.
 放熱器12の冷媒出口には、分岐部13の流入口側が接続されている。分岐部13は、放熱器12から流出した冷媒の流れを分岐するものである。分岐部13は、互いに連通する3つの冷媒流入出口を有する三方継手構造のもので、3つの冷媒流入出口のうち1つを冷媒流入口とし、残りの2つを冷媒流出口としたものである。 The inlet side of the branch portion 13 is connected to the refrigerant outlet of the radiator 12. The branch part 13 branches the flow of the refrigerant that has flowed out of the radiator 12. The branch part 13 has a three-way joint structure having three refrigerant inlets and outlets communicating with each other, one of the three refrigerant inlets and outlets being a refrigerant inlet and the other two being refrigerant outlets. .
 分岐部13の一方の冷媒流出口には、エジェクタ14のノズル部14aの入口側が接続されている。分岐部13の他方の冷媒流出口には、流量調整弁20のボデー部21に形成された冷媒入口21a側が接続されている。 The inlet side of the nozzle part 14 a of the ejector 14 is connected to one refrigerant outlet of the branch part 13. The other refrigerant outlet of the branch part 13 is connected to the refrigerant inlet 21 a side formed in the body part 21 of the flow rate adjusting valve 20.
 エジェクタ14は、放熱器12から流出した冷媒を減圧させて噴射するノズル部14aを有し、冷媒減圧部としての機能を果たす。さらに、エジェクタ14は、ノズル部14aの冷媒噴射口から噴射された噴射冷媒の吸引作用によって、外部から冷媒を吸引して循環させる冷媒循環部としての機能を果たす。 The ejector 14 has a nozzle portion 14a for depressurizing and injecting the refrigerant flowing out of the radiator 12, and functions as a refrigerant depressurizing portion. Further, the ejector 14 functions as a refrigerant circulation section that sucks and circulates the refrigerant from the outside by the suction action of the refrigerant injected from the refrigerant injection port of the nozzle portion 14a.
 これに加えて、エジェクタ14は、ノズル部14aから噴射された噴射冷媒と冷媒吸引口14cから吸引された吸引冷媒との混合冷媒の運動エネルギを圧力エネルギに変換し、混合冷媒を昇圧させるエネルギ変換部としての機能を果たす。 In addition to this, the ejector 14 converts the kinetic energy of the mixed refrigerant of the refrigerant injected from the nozzle portion 14a and the suction refrigerant sucked from the refrigerant suction port 14c into pressure energy, and increases the pressure of the mixed refrigerant. It fulfills the function as a part.
 より具体的には、エジェクタ14は、ノズル部14a、およびボデー部14bを有している。ノズル部14aは、冷媒の流れ方向に向かって徐々に先細る略円筒状の金属(本実施形態では、ステンレス合金)等で形成されている。ノズル部14aは、内部に形成された冷媒通路にて冷媒を等エントロピ的に減圧させるものである。 More specifically, the ejector 14 has a nozzle portion 14a and a body portion 14b. The nozzle portion 14a is formed of a substantially cylindrical metal (stainless alloy in the present embodiment) that gradually tapers in the refrigerant flow direction. The nozzle part 14a is an isentropic decompression of the refrigerant in the refrigerant passage formed inside.
 ノズル部14aの内部に形成された冷媒通路には、通路断面積を最も縮小させる喉部、および喉部から冷媒を噴射する冷媒噴射口へ向かうに伴って通路断面積が徐々に拡大する末広部が形成されている。つまり、本実施形態のノズル部14aは、ラバールノズルとして構成されている。 The refrigerant passage formed in the nozzle portion 14a includes a throat portion that reduces the passage cross-sectional area the most, and a divergent portion in which the passage cross-sectional area gradually increases from the throat toward the refrigerant injection port that injects the refrigerant. Is formed. That is, the nozzle part 14a of this embodiment is configured as a Laval nozzle.
 さらに、本実施形態では、ノズル部14aとして、サイクルの通常運転時に冷媒噴射口から噴射される噴射冷媒の流速が音速以上となるように設定されたものが採用されている。もちろん、ノズル部14aを先細ノズルで構成してもよい。 Furthermore, in the present embodiment, the nozzle portion 14a is set such that the flow rate of the injected refrigerant injected from the refrigerant injection port during the normal operation of the cycle is equal to or higher than the sound speed. Of course, you may comprise the nozzle part 14a with a tapered nozzle.
 ボデー部14bは、略円筒状の金属(本実施形態では、アルミニウム)で形成されている。ボデー部14bは、内部にノズル部14aを支持固定する固定部材として機能するとともに、エジェクタ14の外殻を形成するものである。より具体的には、ノズル部14aは、ボデー部14bの長手方向一端側の内部に収容されるように圧入にて固定されている。ボデー部14bは、樹脂にて形成されていてもよい。 The body portion 14b is made of a substantially cylindrical metal (in this embodiment, aluminum). The body portion 14b functions as a fixing member that supports and fixes the nozzle portion 14a therein and forms an outer shell of the ejector 14. More specifically, the nozzle portion 14a is fixed by press-fitting so as to be housed inside the longitudinal end of the body portion 14b. The body part 14b may be formed of resin.
 ボデー部14bの外周面のうち、ノズル部14aの外周側に対応する部位には、その内外を貫通してノズル部14aの冷媒噴射口と連通するように設けられた冷媒吸引口14cが形成されている。冷媒吸引口14cは、ノズル部14aから噴射される噴射冷媒の吸引作用によって、後述する吸引側蒸発器19から流出した冷媒をエジェクタ14の内部へ吸引する貫通穴である。 Of the outer peripheral surface of the body portion 14b, a portion corresponding to the outer peripheral side of the nozzle portion 14a is formed with a refrigerant suction port 14c provided so as to penetrate the inside and the outside and communicate with the refrigerant injection port of the nozzle portion 14a. ing. The refrigerant suction port 14c is a through hole that sucks the refrigerant that has flowed out from a suction side evaporator 19 described later into the ejector 14 by the suction action of the jet refrigerant injected from the nozzle portion 14a.
 ボデー部14bの内部には、吸引通路、およびディフューザ部14dが形成されている。吸引通路は、冷媒吸引口14cから吸引された吸引冷媒をノズル部14aの冷媒噴射口側へ導く冷媒通路である。ディフューザ部14dは、吸引冷媒と噴射冷媒とを混合させて昇圧させる昇圧部である。 A suction passage and a diffuser portion 14d are formed inside the body portion 14b. The suction passage is a refrigerant passage that guides the suction refrigerant sucked from the refrigerant suction port 14c to the refrigerant injection port side of the nozzle portion 14a. The diffuser unit 14d is a pressure increasing unit that increases the pressure by mixing the suction refrigerant and the injection refrigerant.
 吸引通路は、ノズル部14aの先細り形状の先端部周辺の外周側とボデー部14bの内周側との間の空間に形成されており、吸引通路の冷媒通路面積は、冷媒流れ方向に向かって徐々に縮小している。これにより、吸引通路を流通する吸引冷媒の流速を徐々に増加させて、ディフューザ部14dにて吸引冷媒と噴射冷媒が混合する際のエネルギ損失(いわゆる、混合損失)を減少させている。 The suction passage is formed in a space between the outer peripheral side around the tapered tip of the nozzle portion 14a and the inner peripheral side of the body portion 14b, and the refrigerant passage area of the suction passage is directed toward the refrigerant flow direction. It is gradually shrinking. Thereby, the flow rate of the suction refrigerant flowing through the suction passage is gradually increased to reduce energy loss (so-called mixing loss) when the suction refrigerant and the injection refrigerant are mixed in the diffuser portion 14d.
 ディフューザ部14dは、吸引通路の出口に連続するように配置された円錐台状に広がる冷媒通路が形成された部位である。ディフューザ部14dでは、通路断面積が冷媒流れ下流側に向かって徐々に拡大する。ディフューザ部14dは、このような通路形状によって、混合冷媒の運動エネルギを圧力エネルギに変換する。 The diffuser portion 14d is a portion where a refrigerant passage extending in a truncated cone shape is formed so as to be continuous with the outlet of the suction passage. In the diffuser portion 14d, the passage cross-sectional area gradually increases toward the downstream side of the refrigerant flow. The diffuser part 14d converts the kinetic energy of the mixed refrigerant into pressure energy by such a passage shape.
 より具体的には、本実施形態のディフューザ部14dを形成するボデー部14bの内周壁面の断面形状は、複数の曲線を組み合わせて形成されている。そして、ディフューザ部14dの冷媒通路断面積の広がり度合が冷媒流れ方向に向かって徐々に大きくなった後に再び小さくなっていることで、冷媒を等エントロピ的に昇圧させることができる。 More specifically, the cross-sectional shape of the inner peripheral wall surface of the body portion 14b that forms the diffuser portion 14d of the present embodiment is formed by combining a plurality of curves. And since the degree of spread of the refrigerant passage cross-sectional area of the diffuser portion 14d gradually increases in the refrigerant flow direction and then decreases again, the refrigerant can be increased in an isentropic manner.
 ディフューザ部14dの出口には、流出側蒸発器18の冷媒入口側が接続されている。流出側蒸発器18は、ディフューザ部14dから流出した冷媒と室内送風機18aから車室内へ向けて送風された送風空気とを熱交換させ、冷媒を蒸発させて吸熱作用を発揮させることによって送風空気を冷却する吸熱用熱交換器である。 The refrigerant inlet side of the outflow side evaporator 18 is connected to the outlet of the diffuser portion 14d. The outflow side evaporator 18 exchanges heat between the refrigerant flowing out from the diffuser portion 14d and the blown air blown from the indoor blower 18a toward the vehicle interior, evaporating the refrigerant and exerting an endothermic effect, thereby generating blown air. It is a heat exchanger for endothermic cooling.
 室内送風機18aは、空調制御装置40から出力される制御電圧によって回転数(すなわち、送風空気量)が制御される電動式送風機である。さらに、流出側蒸発器18の冷媒出口側には、圧縮機11の吸入口側が接続されている。 The indoor blower 18a is an electric blower in which the rotation speed (that is, the amount of blown air) is controlled by a control voltage output from the air conditioning control device 40. Furthermore, the suction port side of the compressor 11 is connected to the refrigerant outlet side of the outflow side evaporator 18.
 次に、流量調整弁20について説明する。流量調整弁20は、図1の破線で囲まれたサイクル構成機器を一体化(換言すると、モジュール化)させたものである。より具体的には、流量調整弁20は、吸引側減圧装置15、バイパス通路16、可変絞り装置17等を一体化させたものである。 Next, the flow rate adjustment valve 20 will be described. The flow rate adjustment valve 20 is an integrated (in other words, modularized) cycle component device surrounded by a broken line in FIG. More specifically, the flow rate adjusting valve 20 is an integrated unit of the suction side pressure reducing device 15, the bypass passage 16, the variable throttle device 17, and the like.
 吸引側減圧装置15は、分岐部13にて分岐された他方の冷媒を低圧冷媒となるまで減圧させる吸引側減圧部である。吸引側減圧装置15は、冷媒を減圧させる絞り通路20aの通路断面積(すなわち、絞り開度)を変更可能に構成された可変絞りである。吸引側減圧装置15は、減圧させた冷媒を後述する吸引側蒸発器19の冷媒入口側へ流出させる。 The suction-side decompression device 15 is a suction-side decompression unit that decompresses the other refrigerant branched by the branching unit 13 until it becomes a low-pressure refrigerant. The suction-side decompression device 15 is a variable throttle configured to be able to change the passage cross-sectional area (that is, the throttle opening) of the throttle passage 20a that decompresses the refrigerant. The suction side decompression device 15 causes the decompressed refrigerant to flow out to the refrigerant inlet side of the suction side evaporator 19 described later.
 バイパス通路16は、吸引側減圧装置15(より具体的には、絞り通路20a)の入口側の冷媒を、吸引側減圧装置15を迂回させて、吸引側減圧装置15(より具体的には、絞り通路20a)の出口側(換言すると、吸引側蒸発器19の冷媒入口側)へ導く冷媒通路である。 The bypass passage 16 bypasses the refrigerant on the inlet side of the suction-side decompression device 15 (more specifically, the throttle passage 20a) by bypassing the suction-side decompression device 15, and more specifically, the suction-side decompression device 15 (more specifically, This is a refrigerant passage that leads to the outlet side of the throttle passage 20a) (in other words, the refrigerant inlet side of the suction-side evaporator 19).
 可変絞り装置17は、バイパス通路16を流通する冷媒の流量(具体的には、質量流量であって、他の流量も同様である。)を調整する可変絞り機構部である。さらに、可変絞り装置17は、バイパス通路16を開閉する機能を有している。より具体的には、可変絞り装置17は、吸引側減圧装置15から流出する冷媒の流量Ge1が、予め定めた基準流量KGe1以下となっている際に、バイパス通路16を開く。 The variable throttle device 17 is a variable throttle mechanism that adjusts the flow rate of the refrigerant flowing through the bypass passage 16 (specifically, the mass flow rate and other flow rates are the same). Furthermore, the variable throttle device 17 has a function of opening and closing the bypass passage 16. More specifically, the variable throttle device 17 opens the bypass passage 16 when the flow rate Ge1 of the refrigerant flowing out from the suction side pressure reducing device 15 is equal to or lower than a predetermined reference flow rate KGe1.
 基準流量KGe1は、可変絞り装置17がバイパス通路16を閉じた状態で、サイクルを循環する循環冷媒流量を低下させた際に、吸引側蒸発器19にて冷却される送風空気の温度分布が基準温度差以上に拡大してしまう値に設定されている。 The reference flow rate KGe1 is based on the temperature distribution of the blown air cooled by the suction side evaporator 19 when the variable throttle device 17 closes the bypass passage 16 and reduces the flow rate of the circulating refrigerant circulating in the cycle. It is set to a value that expands beyond the temperature difference.
 送風空気の温度分布は、吸引側蒸発器19にて冷却された直後の送風空気の最高温度から最低温度を減算した温度差で定義される。さらに、基準温度差は、温度分布によって乗員が違和感を覚え始める程度の値に設定されている。 The temperature distribution of the blown air is defined by a temperature difference obtained by subtracting the minimum temperature from the maximum temperature of the blown air immediately after being cooled by the suction side evaporator 19. Furthermore, the reference temperature difference is set to a value at which the occupant begins to feel uncomfortable due to the temperature distribution.
 流量調整弁20の詳細構成については、図2~図4を用いて説明する。図2~図4における上下の各矢印は、流量調整弁20を車両に搭載した状態における上下の各方向を示している。 The detailed configuration of the flow rate adjusting valve 20 will be described with reference to FIGS. The up and down arrows in FIGS. 2 to 4 indicate the up and down directions when the flow rate adjusting valve 20 is mounted on the vehicle.
 流量調整弁20は、ボデー部21を有している。ボデー部21は、金属製(本実施形態では、アルミニウム製)の複数の構成部材を組み合わせることによって形成されている。ボデー部21は、流量調整弁20の外殻を形成するとともに、内部に吸引側減圧装置15、可変絞り装置17等の構成機器の一部を収容するハウジングとしての機能を果たす。ボデー部21は、樹脂にて形成されていてもよい。 The flow regulating valve 20 has a body part 21. The body part 21 is formed by combining a plurality of constituent members made of metal (in this embodiment, made of aluminum). The body portion 21 forms an outer shell of the flow rate adjusting valve 20 and functions as a housing that accommodates some of the components such as the suction side pressure reducing device 15 and the variable throttle device 17 therein. The body part 21 may be formed of resin.
 ボデー部21の内部には、バイパス通路16、絞り通路20a、感温通路20bといった各種の冷媒通路が形成されている。ボデー部21の外表面には、冷媒入口21a、蒸発器側出口21b、蒸発器側入口21c、低圧出口21dといった複数の冷媒出入口が設けられている。 Inside the body portion 21, various refrigerant passages such as a bypass passage 16, a throttle passage 20a, and a temperature sensing passage 20b are formed. The outer surface of the body portion 21 is provided with a plurality of refrigerant inlets and outlets such as a refrigerant inlet 21a, an evaporator side outlet 21b, an evaporator side inlet 21c, and a low pressure outlet 21d.
 冷媒入口21aには、分岐部13の他方の冷媒流出口側が接続される。冷媒入口21aは、分岐部13にて分岐された他方の冷媒を流入させる冷媒入口である。冷媒入口21aは、ボデー部21の内部で、吸引側減圧装置15の絞り通路20aの入口側およびバイパス通路16の入口側に連通している。 The other refrigerant outlet side of the branch part 13 is connected to the refrigerant inlet 21a. The refrigerant inlet 21 a is a refrigerant inlet through which the other refrigerant branched at the branching portion 13 flows. The refrigerant inlet 21 a communicates with the inlet side of the throttle passage 20 a of the suction side pressure reducing device 15 and the inlet side of the bypass passage 16 inside the body portion 21.
 蒸発器側出口21bには、吸引側蒸発器19の冷媒入口側が接続される。蒸発器側出口21bは、吸引側減圧装置15にて減圧された冷媒およびバイパス通路16を通過した冷媒を吸引側蒸発器19の冷媒入口側へ流出させる冷媒出口である。蒸発器側入口21cには、吸引側蒸発器19の冷媒出口側が接続される。蒸発器側入口21cは、吸引側蒸発器19から流出した冷媒を感温通路20bへ流入させる冷媒入口である。 The refrigerant inlet side of the suction side evaporator 19 is connected to the evaporator side outlet 21b. The evaporator side outlet 21 b is a refrigerant outlet through which the refrigerant decompressed by the suction side decompression device 15 and the refrigerant that has passed through the bypass passage 16 flow out to the refrigerant inlet side of the suction side evaporator 19. The refrigerant outlet side of the suction side evaporator 19 is connected to the evaporator side inlet 21c. The evaporator side inlet 21c is a refrigerant inlet through which the refrigerant flowing out from the suction side evaporator 19 flows into the temperature sensitive passage 20b.
 低圧出口21dには、エジェクタ14の冷媒吸引口14c側が接続される。低圧出口21dは、感温通路20bを流通した冷媒を冷媒吸引口14c側へ流出させる冷媒出口である。 The refrigerant suction port 14c side of the ejector 14 is connected to the low pressure outlet 21d. The low-pressure outlet 21d is a refrigerant outlet through which the refrigerant flowing through the temperature-sensitive passage 20b flows out to the refrigerant suction port 14c side.
 吸引側減圧装置15は、絞り通路20a、絞り弁51、駆動機構52等を有している。絞り通路20aは、通路断面積を縮小させることによって、分岐部13にて分岐された他方の冷媒を減圧させる冷媒通路である。絞り通路20aは、半球形状や円錐台形状等の回転体形状に形成されている。本実施形態の絞り通路20aは、ボデー部21に一体的に形成されている。もちろん、ボデー部21に対して別部材で形成されたオリフィスを、圧入等の手段でボデー部21に固定することによって絞り通路20aを形成してもよい。 The suction side pressure reducing device 15 has a throttle passage 20a, a throttle valve 51, a drive mechanism 52, and the like. The throttle passage 20a is a refrigerant passage that depressurizes the other refrigerant branched at the branching portion 13 by reducing the passage cross-sectional area. The throttle passage 20a is formed in a rotating body shape such as a hemispherical shape or a truncated cone shape. The throttle passage 20a of the present embodiment is formed integrally with the body portion 21. Of course, the throttle passage 20a may be formed by fixing an orifice formed of a separate member to the body portion 21 to the body portion 21 by means such as press fitting.
 絞り弁51は、球状に形成されており、絞り通路20aの中心軸方向に変位することによって、絞り通路20aの最小通路断面積(すなわち、絞り開度)を変化させる。さらに、絞り弁51を絞り通路20aの出口部に当接させることによって、絞り通路20aを閉塞させることもできる。絞り弁51は、弾性部材であるコイルバネ52eから、絞り通路20aの絞り開度を縮小させる側の荷重を受けている。 The throttle valve 51 is formed in a spherical shape, and changes the minimum passage sectional area (that is, the throttle opening) of the throttle passage 20a by being displaced in the central axis direction of the throttle passage 20a. Furthermore, the throttle passage 20a can be closed by bringing the throttle valve 51 into contact with the outlet of the throttle passage 20a. The throttle valve 51 receives a load on the side for reducing the throttle opening of the throttle passage 20a from a coil spring 52e which is an elastic member.
 駆動機構52は、絞り弁51を絞り通路20aの中心軸方向に変位させる駆動部である。駆動機構52は、機械的機構で構成されている。駆動機構52は、吸引側蒸発器19から流出した冷媒の温度および圧力に応じて変形する変形部材であるダイヤフラム52bが配置された感温部52aを有している。駆動機構52では、ダイヤフラム52bの変形を作動棒53を介して絞り弁51に伝達することによって、絞り弁51を変位させる。 The drive mechanism 52 is a drive unit that displaces the throttle valve 51 in the central axis direction of the throttle passage 20a. The drive mechanism 52 is a mechanical mechanism. The drive mechanism 52 has a temperature sensing part 52a in which a diaphragm 52b, which is a deforming member that deforms in accordance with the temperature and pressure of the refrigerant flowing out from the suction side evaporator 19, is arranged. In the drive mechanism 52, the deformation of the diaphragm 52 b is transmitted to the throttle valve 51 via the operating rod 53, thereby displacing the throttle valve 51.
 ダイヤフラム52bは、感温部52a内に形成された空間を、封入空間52cと導入空間52dに仕切っている。封入空間52cには、温度変化に伴って圧力変化する感温媒体が封入されている。本実施形態では、感温媒体として、エジェクタ式冷凍サイクル10を循環する冷媒を主成分とするものを採用している。 The diaphragm 52b divides the space formed in the temperature sensing part 52a into an enclosed space 52c and an introduction space 52d. In the enclosed space 52c, a temperature-sensitive medium whose pressure changes with a change in temperature is enclosed. In the present embodiment, the temperature-sensitive medium is mainly composed of a refrigerant circulating in the ejector refrigeration cycle 10.
 さらに、感温部52aは、導入空間52dが感温通路20bに連通するようにボデー部21に固定されている。このため、封入空間52c内の感温媒体の圧力は、感温通路20bを流通する冷媒(すなわち、吸引側蒸発器19から流出した冷媒)の温度に応じて変化する。そして、ダイヤフラム52bは、感温通路20bを流通する冷媒の圧力と封入空間52c内の感温媒体の圧力との圧力差に応じて変形する。 Furthermore, the temperature sensing part 52a is fixed to the body part 21 so that the introduction space 52d communicates with the temperature sensing passage 20b. For this reason, the pressure of the temperature sensitive medium in the enclosed space 52c changes according to the temperature of the refrigerant flowing through the temperature sensitive passage 20b (that is, the refrigerant flowing out of the suction side evaporator 19). And the diaphragm 52b deform | transforms according to the pressure difference of the pressure of the refrigerant | coolant which distribute | circulates the temperature sensing path 20b, and the pressure of the temperature sensitive medium in the enclosure space 52c.
 従って、ダイヤフラム52bは弾性に富み、かつ耐圧性および気密性に優れる材質で形成されていることが望ましい。そこで、本実施形態では、ダイヤフラム52bとして、ステンレス(具体的には、SUS304)製の円形状の金属薄板を採用している。もちろん、ダイヤフラム52bとして、基布(例えば、ポリエステル)入りのゴム(例えば、エチレンプロピレンジエンゴム、または水素添加ニトリルゴム)製のものを採用してもよい。 Therefore, it is desirable that the diaphragm 52b is formed of a material that is rich in elasticity and excellent in pressure resistance and airtightness. Therefore, in this embodiment, a circular metal thin plate made of stainless steel (specifically, SUS304) is employed as the diaphragm 52b. Of course, the diaphragm 52b may be made of rubber (eg, ethylene propylene diene rubber or hydrogenated nitrile rubber) containing a base fabric (eg, polyester).
 本実施形態の感温部52aでは、感温通路20bを流通する冷媒の温度(過熱度)が上昇すると、駆動機構52の封入空間52c内の感温媒体の飽和圧力が上昇して、封入空間52c内の感温媒体の圧力から感温通路20bを流通する冷媒の圧力の圧力差が大きくなる。これにより、ダイヤフラム52bが変形すると、絞り弁51が絞り通路20aの絞り開度を拡大させる側に変位する。 In the temperature sensing part 52a of this embodiment, when the temperature of the refrigerant flowing through the temperature sensing passage 20b (superheat degree) rises, the saturation pressure of the temperature sensing medium in the enclosed space 52c of the drive mechanism 52 rises, and the enclosed space The pressure difference between the pressure of the refrigerant flowing through the temperature sensing passage 20b increases from the pressure of the temperature sensing medium in 52c. As a result, when the diaphragm 52b is deformed, the throttle valve 51 is displaced to the side that increases the throttle opening of the throttle passage 20a.
 一方、感温通路20bを流通する低圧冷媒の温度(過熱度)が低下すると、封入空間52c内の感温媒体の飽和圧力が低下して、封入空間52c内の感温媒体の圧力から感温通路20bを流通する低圧冷媒の圧力の圧力差が小さくなる。これにより、ダイヤフラム52bが変形すると、絞り弁51が絞り通路20aの絞り開度を縮小させる側に変位する。 On the other hand, when the temperature (superheat degree) of the low-pressure refrigerant flowing through the temperature sensing passage 20b is lowered, the saturation pressure of the temperature sensing medium in the enclosed space 52c is lowered, and the temperature sensing is performed from the pressure of the temperature sensing medium in the enclosed space 52c. The pressure difference between the pressures of the low-pressure refrigerant flowing through the passage 20b is reduced. As a result, when the diaphragm 52b is deformed, the throttle valve 51 is displaced to the side that reduces the throttle opening of the throttle passage 20a.
 つまり、駆動機構52は、いわゆる温度式膨張弁と同様に、吸引側蒸発器19の出口側の冷媒の温度および圧力に応じて、絞り弁51を変位させることができる。換言すると、駆動機構52は、吸引側蒸発器19の出口側の冷媒の過熱度に応じて、絞り弁51を変位させることができる。 That is, the drive mechanism 52 can displace the throttle valve 51 in accordance with the temperature and pressure of the refrigerant on the outlet side of the suction-side evaporator 19 in the same manner as a so-called temperature expansion valve. In other words, the drive mechanism 52 can displace the throttle valve 51 according to the degree of superheat of the refrigerant on the outlet side of the suction side evaporator 19.
 そこで、駆動機構52では、吸引側蒸発器19の出口側の冷媒の過熱度SH1が予め定めた基準過熱度KSH1(具体的には、0℃)に近づくように絞り弁51を変位させる。換言すると、吸引側減圧装置15は、吸引側蒸発器19の出口側の冷媒の過熱度SH1が基準過熱度KSH1に近づくように絞り開度を変化させる。また、基準過熱度KSH1は、コイルバネ52eの荷重を変更することによって調整することができる。 Therefore, in the drive mechanism 52, the throttle valve 51 is displaced so that the superheat degree SH1 of the refrigerant on the outlet side of the suction side evaporator 19 approaches a predetermined reference superheat degree KSH1 (specifically, 0 ° C.). In other words, the suction side pressure reducing device 15 changes the throttle opening so that the superheat degree SH1 of the refrigerant on the outlet side of the suction side evaporator 19 approaches the reference superheat degree KSH1. The reference superheat degree KSH1 can be adjusted by changing the load of the coil spring 52e.
 バイパス通路16は、ボデー部21に形成された第1通路16aの一部と第2通路16bによって形成されている。第1通路16aは、吸引側減圧装置15の入口側(具体的には、絞り通路20aの入口側)と感温通路20bとを接続するように形成されている。第1通路16aは、略円柱状に形成されている。第1通路16aの中心軸は、絞り弁51の変位方向と平行に延びている。 The bypass passage 16 is formed by a part of the first passage 16a formed in the body portion 21 and the second passage 16b. The first passage 16a is formed so as to connect the inlet side of the suction side pressure reducing device 15 (specifically, the inlet side of the throttle passage 20a) and the temperature sensitive passage 20b. The first passage 16a is formed in a substantially cylindrical shape. The central axis of the first passage 16 a extends in parallel with the displacement direction of the throttle valve 51.
 第2通路16bは、第1通路16aと吸引側減圧装置15の出口側(具体的には、絞り通路20aの出口側)とを接続するように形成されている。第2通路16bは、略円柱状に形成されている。第2通路16bは、ボデー部21のうち第1通路16aの側面を形成する部位から第1通路16aの中心軸に垂直な方向へ延びている。 The second passage 16b is formed so as to connect the first passage 16a and the outlet side of the suction side decompression device 15 (specifically, the outlet side of the throttle passage 20a). The second passage 16b is formed in a substantially cylindrical shape. The 2nd channel | path 16b is extended in the direction perpendicular | vertical to the central axis of the 1st channel | path 16a from the site | part which forms the side surface of the 1st channel | path 16a in the body part 21. As shown in FIG.
 第1通路16aの内部には、可変絞り装置17を構成する略円柱状の弁体部17aが配置されている。弁体部17aの内部には、第1通路16aと第2通路16bとを連通させる連通路が形成されている。 A substantially cylindrical valve body 17a constituting the variable throttle device 17 is disposed inside the first passage 16a. A communication passage that connects the first passage 16a and the second passage 16b is formed in the valve body portion 17a.
 弁体部17aは、第1通路16aの中心軸方向に変位して、第2通路16bの入口部を開閉させることによって、バイパス通路16を開閉する。さらに、弁体部17aは、第1通路16aの中心軸方向に変位して、第2通路16bの入口部の通路断面積を変化させることによって、可変絞り装置17全体としての絞り開度を変化させる。 The valve body portion 17a is displaced in the direction of the central axis of the first passage 16a to open and close the bypass passage 16 by opening and closing the inlet portion of the second passage 16b. Further, the valve body portion 17a is displaced in the direction of the central axis of the first passage 16a, and the passage opening area of the variable passage device 17 as a whole is changed by changing the passage cross-sectional area of the inlet portion of the second passage 16b. Let
 弁体部17aは、冷媒入口21aから流入した冷媒(すなわち、吸引側減圧装置15の入口側の冷媒)の圧力である入口側圧力Priを受ける入口側受圧面、および感温通路20bを流通する冷媒(すなわち、吸引側蒸発器19から流出した冷媒)の圧力である出口側圧力Peoを受ける出口側受圧面を有している。入口側受圧面の面積と低段側受圧面の面積は概ね同等に設定されている。 The valve body portion 17a circulates through the inlet-side pressure receiving surface that receives the inlet-side pressure Pri, which is the pressure of the refrigerant flowing from the refrigerant inlet 21a (that is, the refrigerant on the inlet side of the suction-side decompression device 15), and the temperature sensing passage 20b. It has an outlet side pressure receiving surface that receives the outlet side pressure Peo which is the pressure of the refrigerant (that is, the refrigerant flowing out of the suction side evaporator 19). The area of the inlet side pressure receiving surface and the area of the lower stage pressure receiving surface are set to be approximately equal.
 また、第1通路16aの内周面と弁体部17aの外周面との隙間には、Oリング等のシール部材が介在されており、これらの部材の隙間から冷媒が漏れることはない。さらに、弁体部17aは、弾性部材であるコイルバネ17bから、バイパス通路16を開ける側の荷重を受けている。 Further, a seal member such as an O-ring is interposed in the gap between the inner peripheral surface of the first passage 16a and the outer peripheral surface of the valve body portion 17a, and the refrigerant does not leak from the gap between these members. Further, the valve body 17a receives a load on the side where the bypass passage 16 is opened from a coil spring 17b which is an elastic member.
 このため、本実施形態の弁体部17aは、入口側圧力Priから出口側圧力Peoを減算した圧力差ΔP(ΔP=Pri-Peo)によって生じる荷重、およびコイルバネ17bから受ける荷重に応じて変位する。 For this reason, the valve body portion 17a of the present embodiment is displaced according to a load generated by a pressure difference ΔP (ΔP = Pri−Peo) obtained by subtracting the outlet side pressure Peo from the inlet side pressure Pri and a load received from the coil spring 17b. .
 より具体的には、本実施形態の可変絞り装置17では、圧力差ΔPが予め定めた基準圧力差KΔPより大きくなっている際には、図2に示すように、コイルバネ17bを押し縮める側へ弁体部17aを変位させて、バイパス通路16を閉じる全閉状態とする。 More specifically, in the variable throttle device 17 of the present embodiment, when the pressure difference ΔP is larger than a predetermined reference pressure difference KΔP, as shown in FIG. 2, the coil spring 17b is pushed and contracted. The valve body portion 17a is displaced so that the bypass passage 16 is closed.
 そして、圧力差ΔPが基準圧力差KΔP以下になった際には、図3に示すように、コイルバネ17bの荷重によって、弁体部17aを第1通路16aと第2通路16bとを連通させる位置に変位させる。そして、第2通路16bの入口部を僅かに開くことによって、減圧作用を発揮する絞り状態となる。 When the pressure difference ΔP becomes equal to or less than the reference pressure difference KΔP, as shown in FIG. 3, the valve body portion 17a is connected to the first passage 16a and the second passage 16b by the load of the coil spring 17b. Displace to. Then, by slightly opening the inlet portion of the second passage 16b, a throttle state in which a pressure reducing action is exerted is achieved.
 さらに、圧力差ΔPの縮小に伴って、絞り開度を増加させる。そして、図4に示すように、第2通路16bの入口部の通路断面積が最大となるまで弁体部17aを変位させて、バイパス通路16を全開させる全開状態とする。 Furthermore, as the pressure difference ΔP decreases, the throttle opening is increased. Then, as shown in FIG. 4, the valve body portion 17a is displaced until the passage cross-sectional area of the inlet portion of the second passage 16b is maximized, so that the bypass passage 16 is fully opened.
 本実施形態では、吸引側減圧装置15から流出する冷媒の流量Ge1が基準流量KGe1となる圧力差ΔPを基準圧力差KΔPに設定している。このため、可変絞り装置17は、吸引側減圧装置15から流出する冷媒の流量Ge1が基準流量KGe1以下となっている際に、バイパス通路16を開くようになっている。また、基準圧力差KΔPは、コイルバネ17bの荷重を変更することによって調整することができる。 In this embodiment, the pressure difference ΔP at which the flow rate Ge1 of the refrigerant flowing out from the suction-side decompression device 15 becomes the reference flow rate KGe1 is set to the reference pressure difference KΔP. For this reason, the variable throttle device 17 opens the bypass passage 16 when the flow rate Ge1 of the refrigerant flowing out from the suction side pressure reducing device 15 is equal to or less than the reference flow rate KGe1. The reference pressure difference KΔP can be adjusted by changing the load of the coil spring 17b.
 流量調整弁20の蒸発器側出口21bには、図1に示すように、吸引側蒸発器19の冷媒入口側が接続されている。吸引側蒸発器19は、流量調整弁20の蒸発器側出口21bから流出した冷媒と流出側蒸発器18を通過した送風空気とを熱交換させ、冷媒を蒸発させて吸熱作用を発揮させることによって送風空気を冷却する吸熱用熱交換器である。 As shown in FIG. 1, the refrigerant inlet side of the suction side evaporator 19 is connected to the evaporator side outlet 21 b of the flow rate adjusting valve 20. The suction-side evaporator 19 exchanges heat between the refrigerant that has flowed out of the evaporator-side outlet 21b of the flow rate adjustment valve 20 and the blown air that has passed through the outflow-side evaporator 18, and evaporates the refrigerant to exert a heat absorption effect. An endothermic heat exchanger that cools blown air.
 吸引側蒸発器19の冷媒出口には、流量調整弁20の蒸発器側入口21c側が接続されている。前述の如く、流量調整弁20の低圧出口21dには、エジェクタ14の冷媒吸引口14c側が接続されている。つまり、吸引側蒸発器19の冷媒出口には、流量調整弁20の感温通路20bを介して、エジェクタ14の冷媒吸引口14c側が接続されている。 The refrigerant outlet of the suction side evaporator 19 is connected to the evaporator side inlet 21c side of the flow rate adjustment valve 20. As described above, the refrigerant suction port 14 c side of the ejector 14 is connected to the low pressure outlet 21 d of the flow rate adjusting valve 20. In other words, the refrigerant outlet of the suction side evaporator 19 is connected to the refrigerant suction port 14 c side of the ejector 14 via the temperature sensing passage 20 b of the flow rate adjusting valve 20.
 また、本実施形態の流出側蒸発器18および吸引側蒸発器19は、一体的に構成されている。具体的には、流出側蒸発器18および吸引側蒸発器19は、いずれも冷媒を流通させる複数本のチューブと、この複数のチューブの両端側に配置されてチューブを流通する冷媒の集合あるいは分配を行う一対の集合分配用タンクとを有する、いわゆるタンクアンドチューブ型の熱交換器で構成されている。 Further, the outflow side evaporator 18 and the suction side evaporator 19 of the present embodiment are integrally configured. Specifically, each of the outflow side evaporator 18 and the suction side evaporator 19 includes a plurality of tubes that circulate the refrigerant, and a collection or distribution of refrigerants that are arranged at both ends of the plurality of tubes and circulate through the tubes. And a so-called tank-and-tube heat exchanger having a pair of collective distribution tanks.
 そして、流出側蒸発器18および吸引側蒸発器19の集合分配用タンクを同一部材にて形成することによって、流出側蒸発器18および吸引側蒸発器19を一体化させている。本実施形態では、流出側蒸発器18が吸引側蒸発器19に対して送風空気流れ上流側に配置されるように、流出側蒸発器18および吸引側蒸発器19を送風空気流れに対して直列に配置している。従って、送風空気は図1の二点鎖線で描いた矢印で示すように流れる。 Further, the outflow side evaporator 18 and the suction side evaporator 19 are integrated by forming the collective distribution tank of the outflow side evaporator 18 and the suction side evaporator 19 with the same member. In the present embodiment, the outflow side evaporator 18 and the suction side evaporator 19 are connected in series with the blowing air flow so that the outflow side evaporator 18 is arranged upstream of the blowing air flow with respect to the suction side evaporator 19. Is arranged. Accordingly, the blown air flows as shown by the arrows drawn by the two-dot chain line in FIG.
 次に、本実施形態のエジェクタ式冷凍サイクル10の電気制御部について説明する。図示しない空調制御装置40は、CPU、ROM、RAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器11、12a、18aの作動を制御する。 Next, the electric control unit of the ejector refrigeration cycle 10 of this embodiment will be described. The air conditioning control device 40 (not shown) is composed of a well-known microcomputer including a CPU, ROM, RAM, etc. and its peripheral circuits, and performs various calculations and processing based on an air conditioning control program stored in the ROM. The operation of the various control target devices 11, 12a, 18a connected to is controlled.
 空調制御装置40の入力側には、車室内温度Trを検出する内気温センサ、外気温Tamを検出する外気温センサ、車室内の日射量Asを検出する日射センサ、吸引側蒸発器19から吹き出される吹出空気温度(蒸発器温度)Tefinを検出する蒸発器温度センサ等の空調制御用のセンサ群が接続され、これらの空調用センサ群の検出値が入力される。 On the input side of the air-conditioning control device 40, an inside air temperature sensor that detects the vehicle interior temperature Tr, an outside air temperature sensor that detects the outside air temperature Tam, a solar radiation sensor that detects the amount of solar radiation As in the vehicle interior, and a blowout from the suction-side evaporator 19. A group of sensors for air conditioning control such as an evaporator temperature sensor for detecting the blown air temperature (evaporator temperature) Tefin is connected, and detection values of these air conditioning sensor groups are input.
 さらに、空調制御装置40の入力側には、図示しない操作パネルが接続され、この操作パネルに設けられた各種操作スイッチからの操作信号が空調制御装置40へ入力される。操作パネルに設けられた各種操作スイッチとしては、空調を行うことを要求する空調作動スイッチ、車室内温度を設定する車室内温度設定スイッチ等が設けられている。 Further, an operation panel (not shown) is connected to the input side of the air conditioning control device 40, and operation signals from various operation switches provided on the operation panel are input to the air conditioning control device 40. As various operation switches provided on the operation panel, an air conditioning operation switch that requests air conditioning, a vehicle interior temperature setting switch that sets the vehicle interior temperature, and the like are provided.
 なお、本実施形態の空調制御装置40は、その出力側に接続された各種の制御対象機器の作動を制御する制御部が一体に構成されたものであるが、空調制御装置40のうち、各制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が各制御対象機器の制御部を構成している。例えば、圧縮機11の作動を制御する構成が、吐出能力制御部を構成している。 Note that the air conditioning control device 40 of the present embodiment is configured such that a control unit that controls the operation of various devices to be controlled connected to the output side is integrally configured. A configuration (hardware and software) for controlling the operation of the control target device constitutes a control unit of each control target device. For example, the configuration for controlling the operation of the compressor 11 constitutes a discharge capacity control unit.
 次に、上記構成における本実施形態のエジェクタ式冷凍サイクル10の作動について説明する。操作パネルの空調作動スイッチが投入(ON)されると、空調制御装置40が、予め記憶している空調制御プログラムを実行して、各種制御対象機器11、12a、18aの作動を制御する。 Next, the operation of the ejector refrigeration cycle 10 of the present embodiment having the above configuration will be described. When the air-conditioning operation switch on the operation panel is turned on (ON), the air-conditioning control device 40 executes an air-conditioning control program stored in advance to control the operations of the various control target devices 11, 12a, and 18a.
 この空調制御プログラムでは、空調制御用のセンサ群の検出信号および操作パネルからの操作信号に基づいて、車室内へ送風される送風空気の目標吹出温度TAOを算定する。そして、目標吹出温度TAO等に基づいて、各制御対象機器の作動状態を決定する。例えば、圧縮機11については、目標吹出温度TAOの上昇に伴って、冷媒吐出能力(本実施形態では、回転数)を低下させるように決定する。 In this air conditioning control program, the target blowing temperature TAO of the blown air blown into the vehicle interior is calculated based on the detection signal of the sensor group for air conditioning control and the operation signal from the operation panel. And based on the target blowing temperature TAO etc., the operating state of each control object apparatus is determined. For example, about the compressor 11, it determines so that a refrigerant | coolant discharge capability (in this embodiment, rotation speed) may be reduced with the raise of the target blowing temperature TAO.
 ここで、目標吹出温度TAOは、車室内を所望の温度に保つためにエジェクタ式冷凍サイクルが生じさせる必要のある熱量(換言すると、エジェクタ式冷凍サイクル10の熱負荷)に相関を有する値である。従って、車室内の冷房を行う際に、目標吹出温度TAOの上昇に伴って、圧縮機11の冷媒吐出能力を低下させることは、冷房熱負荷の減少に伴って圧縮機11の冷媒吐出能力を低下させることを意味している。 Here, the target blowing temperature TAO is a value having a correlation with the amount of heat that the ejector refrigeration cycle needs to generate in order to keep the passenger compartment at a desired temperature (in other words, the heat load of the ejector refrigeration cycle 10). . Therefore, when cooling the passenger compartment, reducing the refrigerant discharge capacity of the compressor 11 as the target blowing temperature TAO increases increases the refrigerant discharge capacity of the compressor 11 as the cooling heat load decreases. It means to lower.
 そして、空調制御装置40が、冷房熱負荷の減少に伴って圧縮機11の冷媒吐出能力を低下させると、サイクルを循環する循環冷媒流量が低下して、吸引側減圧装置15から流出する冷媒の流量Ge1も低下する。さらに、冷房熱負荷の減少に伴って圧縮機11の冷媒吐出能力を低下させると、入口側圧力Priが低下して、圧力差ΔPも縮小する。 When the air conditioning control device 40 decreases the refrigerant discharge capacity of the compressor 11 as the cooling heat load decreases, the flow rate of the circulating refrigerant that circulates in the cycle decreases, and the refrigerant flowing out of the suction-side decompression device 15 decreases. The flow rate Ge1 also decreases. Further, when the refrigerant discharge capacity of the compressor 11 is lowered with a decrease in the cooling heat load, the inlet side pressure Pri is lowered and the pressure difference ΔP is also reduced.
 そこで、本実施形態では、冷房熱負荷が比較的高くなっており、吸引側減圧装置15から流出する冷媒の流量Ge1が基準流量KGe1より多くなっている運転条件を通常運転と定義する。通常運転は、例えば、夏季のように外気温が比較的高くなっている際に実行される。 Therefore, in this embodiment, the operating condition in which the cooling heat load is relatively high and the flow rate Ge1 of the refrigerant flowing out from the suction-side decompression device 15 is larger than the reference flow rate KGe1 is defined as normal operation. The normal operation is performed when the outside air temperature is relatively high, for example, in summer.
 また、冷房熱負荷が比較的低くなっており、吸引側減圧装置15から流出する冷媒の流量Ge1が基準流量KGe1以下となっている運転条件を低負荷運転と定義する。低負荷運転は、例えば、春季や秋季のように外気温が比較的低くなっている際や、低外気温時に車窓の防曇を行う際に実行される。 Further, an operation condition in which the cooling heat load is relatively low and the refrigerant flow rate Ge1 flowing out from the suction-side decompression device 15 is equal to or lower than the reference flow rate KGe1 is defined as low load operation. The low load operation is executed, for example, when the outside air temperature is relatively low, such as in spring or autumn, or when anti-fogging of the vehicle window is performed at the low outside air temperature.
 空調制御装置40が圧縮機11を作動させると、圧縮機11から吐出された高温高圧冷媒が、放熱器12へ流入する。放熱器12へ流入した冷媒は、冷却ファン12aから送風された外気と熱交換して、冷却されて凝縮する。放熱器12から流出した冷媒の流れは、分岐部13にて分岐される。分岐部13にて分岐された一方の冷媒は、エジェクタ14のノズル部14aへ流入する。 When the air conditioning control device 40 operates the compressor 11, the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the radiator 12. The refrigerant flowing into the radiator 12 exchanges heat with the outside air blown from the cooling fan 12a, and is cooled and condensed. The flow of the refrigerant flowing out of the radiator 12 is branched at the branching section 13. One refrigerant branched by the branch part 13 flows into the nozzle part 14 a of the ejector 14.
 エジェクタ14のノズル部14aへ流入した冷媒は、ノズル部14aにて等エントロピ的に減圧されてノズル部14aの冷媒噴射口から噴射される。そして、噴射冷媒の吸引作用によって、吸引側蒸発器19から流出した冷媒が、流量調整弁20の感温通路20bを介して、冷媒吸引口14cから吸引される。 The refrigerant that has flowed into the nozzle portion 14a of the ejector 14 is decompressed in an isentropic manner at the nozzle portion 14a and is injected from the refrigerant injection port of the nozzle portion 14a. Then, the refrigerant that has flowed out of the suction-side evaporator 19 by the suction action of the injected refrigerant is sucked from the refrigerant suction port 14 c through the temperature sensing passage 20 b of the flow rate adjustment valve 20.
 ノズル部14aの冷媒噴射口から噴射された噴射冷媒、および冷媒吸引口14cから吸引された吸引冷媒は、ディフューザ部14dへ流入する。ディフューザ部14dでは、冷媒通路面積の拡大により、冷媒の速度エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒との混合冷媒の圧力が上昇する。ディフューザ部14dにて昇圧された冷媒は、流出側蒸発器18へ流入する。 The injection refrigerant injected from the refrigerant injection port of the nozzle portion 14a and the suction refrigerant sucked from the refrigerant suction port 14c flow into the diffuser portion 14d. In the diffuser portion 14d, the velocity energy of the refrigerant is converted into pressure energy by expanding the refrigerant passage area. Thereby, the pressure of the mixed refrigerant of the injection refrigerant and the suction refrigerant increases. The refrigerant whose pressure has been increased in the diffuser section 14d flows into the outflow side evaporator 18.
 流出側蒸発器18へ流入した冷媒は、室内送風機18aによって送風された送風空気から吸熱して蒸発する。これにより、室内送風機18aによって送風された送風空気が冷却される。流出側蒸発器18から流出した冷媒は、圧縮機11へ吸入されて再び圧縮される。 The refrigerant that has flowed into the outflow evaporator 18 absorbs heat from the air blown by the indoor blower 18a and evaporates. Thereby, the blowing air blown by the indoor blower 18a is cooled. The refrigerant flowing out from the outflow side evaporator 18 is sucked into the compressor 11 and compressed again.
 一方、分岐部13にて分岐された他方の冷媒は、流量調整弁20の冷媒入口21aへ流入する。ここで、通常運転時には、可変絞り装置17がバイパス通路16を閉じているので、流量調整弁20の冷媒入口21aへ流入した冷媒の全流量が吸引側減圧装置15にて減圧されて、流量調整弁20の蒸発器側出口21bから流出する。 On the other hand, the other refrigerant branched at the branching section 13 flows into the refrigerant inlet 21 a of the flow rate adjusting valve 20. Here, during the normal operation, since the variable throttle device 17 closes the bypass passage 16, the total flow rate of the refrigerant flowing into the refrigerant inlet 21 a of the flow rate adjusting valve 20 is reduced by the suction side pressure reducing device 15 to adjust the flow rate. It flows out from the evaporator side outlet 21b of the valve 20.
 また、低負荷運転時には、可変絞り装置17がバイパス通路16を開いているので、流量調整弁20の冷媒入口21aへ流入した冷媒は、吸引側減圧装置15およびバイパス通路16の双方にて減圧されて、流量調整弁20の蒸発器側出口21bから流出する。 During low load operation, the variable throttle device 17 opens the bypass passage 16, so that the refrigerant flowing into the refrigerant inlet 21 a of the flow rate adjustment valve 20 is decompressed by both the suction side decompression device 15 and the bypass passage 16. Then, it flows out from the evaporator side outlet 21b of the flow rate adjusting valve 20.
 この際、吸引側減圧装置15では、負荷変動によらず、通常運転時においても、低負荷運転時においても、吸引側蒸発器19の出口側の冷媒の過熱度SH1が基準過熱度KSH1に近づくように、絞り開度を調整する。 At this time, in the suction-side decompression device 15, the superheat degree SH1 of the refrigerant on the outlet side of the suction-side evaporator 19 approaches the reference superheat degree KSH1 during normal operation and low load operation regardless of load fluctuations. As described above, the throttle opening is adjusted.
 流量調整弁20の蒸発器側出口21bから流出した冷媒は、吸引側蒸発器19へ流入する。吸引側蒸発器19へ流入した冷媒は、流出側蒸発器18通過後の送風空気から吸熱して蒸発する。これにより、流出側蒸発器18通過後の送風空気がさらに冷却される。吸引側蒸発器19から流出した冷媒は、冷媒吸引口14cから吸引される。 The refrigerant that has flowed out of the evaporator side outlet 21 b of the flow rate adjusting valve 20 flows into the suction side evaporator 19. The refrigerant flowing into the suction side evaporator 19 absorbs heat from the blown air after passing through the outflow side evaporator 18 and evaporates. Thereby, the blast air after passing the outflow side evaporator 18 is further cooled. The refrigerant that has flowed out of the suction side evaporator 19 is sucked from the refrigerant suction port 14c.
 従って、本実施形態のエジェクタ式冷凍サイクル10によれば、負荷変動によらず、通常運転時においても、低負荷運転時においても、流出側蒸発器18および吸引側蒸発器19にて、車室内へ送風される送風空気を冷却することができる。 Therefore, according to the ejector-type refrigeration cycle 10 of the present embodiment, the outflow side evaporator 18 and the suction side evaporator 19 can be used in the vehicle interior during normal operation and low load operation regardless of load fluctuations. It is possible to cool the blown air sent to the air.
 さらに、本実施形態のエジェクタ式冷凍サイクル10では、エジェクタ14のディフューザ部14dにて昇圧された冷媒を、流出側蒸発器18を介して圧縮機11へ吸入させている。これによれば、蒸発器における冷媒蒸発圧力と圧縮機へ吸入される吸入冷媒の圧力が略同等となる通常の冷凍サイクル装置よりも、圧縮機11の消費動力を低減させて、サイクルの成績係数(COP)の向上を図ることができる。 Furthermore, in the ejector refrigeration cycle 10 of the present embodiment, the refrigerant whose pressure has been increased by the diffuser portion 14d of the ejector 14 is sucked into the compressor 11 via the outflow side evaporator 18. According to this, the consumption power of the compressor 11 is reduced and the coefficient of performance of the cycle is reduced compared to the normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the evaporator and the pressure of the suction refrigerant sucked into the compressor are substantially equal. (COP) can be improved.
 また、本実施形態のエジェクタ式冷凍サイクル10では、通常運転時に、流量調整弁20の可変絞り装置17がバイパス通路16を閉じる。従って、通常運転時には、吸引側減圧装置15が絞り開度を調整することによって、吸引側蒸発器19の出口側の冷媒を、過熱度を有する気相冷媒とすることができる。 In the ejector refrigeration cycle 10 of the present embodiment, the variable throttle device 17 of the flow rate adjusting valve 20 closes the bypass passage 16 during normal operation. Therefore, during normal operation, the suction side decompression device 15 adjusts the throttle opening, so that the refrigerant on the outlet side of the suction side evaporator 19 can be a gas phase refrigerant having a superheat degree.
 これによれば、エジェクタ14の冷媒吸引口14cから吸引される冷媒の流量が不必要に増加してしまうことを抑制して、ディフューザ部14dにおける昇圧量が減少してしまうことを抑制することができる。すなわち、サイクルのCOPが低下してしまうことを抑制することができる。 According to this, it can suppress that the flow volume of the refrigerant | coolant suck | inhaled from the refrigerant | coolant suction port 14c of the ejector 14 increases unnecessarily, and suppresses that the pressure | voltage rise amount in the diffuser part 14d decreases. it can. That is, it can suppress that the COP of a cycle falls.
 ところが、低負荷運転時にも、吸引側減圧装置15が通常運転時と同様に絞り開度を調整すると、吸引側蒸発器19へ流入する冷媒の流量が減少してしまうので、吸引側蒸発器19にて冷却された送風空気に生じる温度分布が拡大してしまう。つまり、吸引側蒸発器19の出口側の冷媒の過熱度SH1が基準過熱度KSH1に近づくように吸引側減圧装置15の絞り開度を調整しても、サイクルの負荷変動に応じて、吸引側蒸発器19へ流入する冷媒の流量を適切に調整することができない。 However, since the flow rate of the refrigerant flowing into the suction side evaporator 19 decreases when the suction side pressure reducing device 15 adjusts the throttle opening degree during the low load operation as in the normal operation, the suction side evaporator 19 is reduced. The temperature distribution generated in the blown air cooled by the air will expand. That is, even if the throttle opening degree of the suction-side decompressor 15 is adjusted so that the superheat degree SH1 of the refrigerant on the outlet side of the suction-side evaporator 19 approaches the reference superheat degree KSH1, the suction side The flow rate of the refrigerant flowing into the evaporator 19 cannot be adjusted appropriately.
 これに対して、本実施形態のエジェクタ式冷凍サイクル10では、低負荷運転時に、流量調整弁20の可変絞り装置17がバイパス通路16を開くので、吸引側減圧装置15が絞り開度を縮小させたとしても、バイパス通路16を通過した冷媒を確実に吸引側蒸発器19の入口側へ流出させることができる。従って、低負荷運転時に、吸引側蒸発器19へ流入する冷媒の流量が不足してしまうことを抑制することができる。 On the other hand, in the ejector refrigeration cycle 10 of the present embodiment, the variable throttle device 17 of the flow rate adjustment valve 20 opens the bypass passage 16 during low load operation, so the suction side pressure reducing device 15 reduces the throttle opening. Even so, the refrigerant that has passed through the bypass passage 16 can surely flow out to the inlet side of the suction side evaporator 19. Therefore, it is possible to suppress a shortage of the flow rate of the refrigerant flowing into the suction side evaporator 19 during the low load operation.
 すなわち、本実施形態の流量調整弁20によれば、エジェクタ式冷凍サイクル10に適用された際に、サイクルの負荷変動に応じて、吸引側蒸発器19へ流入する冷媒の流量を適切に調整することができる。換言すると、本実施形態のエジェクタ式冷凍サイクル10によれば、流量調整弁20を備えているので、サイクルの負荷変動に応じて、吸引側蒸発器19へ流入する冷媒の流量を適切に調整することができる。 That is, according to the flow rate adjustment valve 20 of the present embodiment, when applied to the ejector refrigeration cycle 10, the flow rate of the refrigerant flowing into the suction-side evaporator 19 is appropriately adjusted according to cycle load fluctuations. be able to. In other words, according to the ejector refrigeration cycle 10 of the present embodiment, the flow rate adjustment valve 20 is provided, so that the flow rate of the refrigerant flowing into the suction-side evaporator 19 is appropriately adjusted according to the cycle load fluctuation. be able to.
 また、本実施形態の流量調整弁20の可変絞り装置17は、圧力差ΔPの縮小に伴って、絞り開度を増加させる。従って、吸引側減圧装置15から流出する冷媒の流量Ge1の低下に伴って、バイパス通路16を介して吸引側蒸発器19の入口側へ流出させる冷媒の流量を増加させることができる。これによれば、吸引側蒸発器19へ流入する冷媒の流量を、サイクルの負荷変動に応じて、より一層適切に調整することができる。 In addition, the variable throttle device 17 of the flow rate adjusting valve 20 of the present embodiment increases the throttle opening as the pressure difference ΔP decreases. Therefore, the flow rate of the refrigerant flowing out to the inlet side of the suction side evaporator 19 through the bypass passage 16 can be increased with the decrease in the flow rate Ge1 of the refrigerant flowing out from the suction side decompression device 15. According to this, the flow rate of the refrigerant flowing into the suction side evaporator 19 can be more appropriately adjusted according to the cycle load fluctuation.
 (第2実施形態)
 本実施形態では、第1実施形態に対して、図5に示すように、流量調整弁20の構成を変更した例を説明する。図5は、第1実施形態で説明した図4と同様に、本実施形態の可変絞り装置17がバイパス通路16を全開状態としている図面である。また、図5では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。
(Second Embodiment)
This embodiment demonstrates the example which changed the structure of the flow regulating valve 20 with respect to 1st Embodiment, as shown in FIG. FIG. 5 is a view in which the variable throttle device 17 of the present embodiment opens the bypass passage 16 in the fully open state, similarly to FIG. 4 described in the first embodiment. In FIG. 5, the same or equivalent parts as those in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
 より具体的には、本実施形態の流量調整弁20では、バイパス通路16の第1通路16aの一端部は、吸引側減圧装置15の入口側(具体的には、絞り通路20aの入口側)に連通しているものの、第1通路16aの他端部は、感温通路20bには連通していない。 More specifically, in the flow rate adjustment valve 20 of the present embodiment, one end portion of the first passage 16a of the bypass passage 16 is the inlet side of the suction side pressure reducing device 15 (specifically, the inlet side of the throttle passage 20a). However, the other end of the first passage 16a does not communicate with the temperature sensing passage 20b.
 さらに、本実施形態では、コイルバネ17bが収容されるバネ室17c内の圧力Pspが、絞り通路20aの出口側の冷媒圧力と等しくなるように、第1通路16aの内周面と弁体部17aの外周面との隙間に介在されるシール部材の一部を省略している。このため、本実施形態の弁体部17aは、入口側圧力Priからバネ室17c内の圧力Pspを減算した圧力差と、コイルバネ17bから受ける荷重に応じて変位する。 Furthermore, in the present embodiment, the inner peripheral surface of the first passage 16a and the valve body portion 17a so that the pressure Psp in the spring chamber 17c in which the coil spring 17b is accommodated is equal to the refrigerant pressure on the outlet side of the throttle passage 20a. A part of the sealing member interposed in the gap with the outer peripheral surface of is omitted. For this reason, the valve body part 17a of this embodiment is displaced according to the pressure difference which subtracted the pressure Psp in the spring chamber 17c from the inlet side pressure Pri and the load received from the coil spring 17b.
 ここで、第1通路16aの内壁面と弁体部17aとの隙間は比較的小さいので、バネ室17c内の圧力Pspは、絞り通路20a出口側の冷媒圧力の変化に応じて高い応答性で変化するものではなく略一定の値となる。このため、本実施形態の弁体部17aは、実質的に、入口側圧力Priによって生じる荷重、およびコイルバネ17bから受ける荷重に応じて変位する。 Here, since the gap between the inner wall surface of the first passage 16a and the valve body portion 17a is relatively small, the pressure Psp in the spring chamber 17c is highly responsive in accordance with the change in the refrigerant pressure on the outlet side of the throttle passage 20a. It does not change and becomes a substantially constant value. For this reason, the valve body 17a of the present embodiment is displaced substantially according to the load generated by the inlet side pressure Pri and the load received from the coil spring 17b.
 より具体的には、入口側圧力Priが予め定めた基準圧力KPriより大きくなっている際には、コイルバネ17bを押し縮める側へ弁体部17aを変位させて、バイパス通路16を全閉状態とする。 More specifically, when the inlet side pressure Pri is larger than a predetermined reference pressure KPri, the valve body 17a is displaced toward the side where the coil spring 17b is compressed and the bypass passage 16 is fully closed. To do.
 入口側圧力Priが基準圧力KPri以下になった際には、コイルバネ17bの荷重によって、弁体部17aを第1通路16aと第2通路16bとを連通させる位置に変位させて、バイパス通路16を絞り状態とする。 When the inlet pressure Pri becomes equal to or lower than the reference pressure KPri, the valve body 17a is displaced to a position where the first passage 16a and the second passage 16b are communicated with each other by the load of the coil spring 17b. Set to the aperture state.
 さらに、入口側圧力Priの低下に伴って、絞り開度を増加させる。そして、図5に示すように、第2通路16bの入口部の通路断面積が最大となるまで弁体部17aを変位させて、バイパス通路16を全開状態とする。 Furthermore, the throttle opening is increased as the inlet pressure Pri decreases. And as shown in FIG. 5, the valve body part 17a is displaced until the channel | path cross-sectional area of the inlet_port | entrance part of the 2nd channel | path 16b becomes the maximum, and the bypass channel | path 16 is made into a full open state.
 また、本実施形態では、吸引側減圧装置15から流出する冷媒の流量Ge1が基準流量KGe1となる入口側圧力Priを基準圧力KPriに設定している。これにより、可変絞り装置17は、吸引側減圧装置15から流出する冷媒の流量Ge1が基準流量KGe1以下となっている際に、バイパス通路16を開くようになっている。基準圧力KPriは、コイルバネ17bの荷重を変更することによって調整することができる。 Further, in the present embodiment, the inlet side pressure Pri at which the flow rate Ge1 of the refrigerant flowing out from the suction side pressure reducing device 15 becomes the reference flow rate KGe1 is set to the reference pressure KPri. Thereby, the variable throttle device 17 opens the bypass passage 16 when the flow rate Ge1 of the refrigerant flowing out from the suction side pressure reducing device 15 is equal to or lower than the reference flow rate KGe1. The reference pressure KPri can be adjusted by changing the load of the coil spring 17b.
 その他の流量調整弁20およびエジェクタ式冷凍サイクル10の構成および作動は、第1実施形態と同様である。つまり、エジェクタ式冷凍サイクル10の通常運転時には、流量調整弁20の可変絞り装置17がバイパス通路16を閉じる。さらに、エジェクタ式冷凍サイクル10の低負荷運転時には、流量調整弁20の可変絞り装置17がバイパス通路16を開く。 Other configurations and operations of the flow rate adjusting valve 20 and the ejector refrigeration cycle 10 are the same as those in the first embodiment. That is, during normal operation of the ejector refrigeration cycle 10, the variable throttle device 17 of the flow rate adjustment valve 20 closes the bypass passage 16. Further, during the low load operation of the ejector refrigeration cycle 10, the variable throttle device 17 of the flow rate adjustment valve 20 opens the bypass passage 16.
 従って、本実施形態の流量調整弁20によれば、第1実施形態と同様に、エジェクタ式冷凍サイクル10に適用された際に、サイクルの負荷変動に応じて、吸引側蒸発器19へ流入する冷媒の流量を適切に調整することができる。換言すると、本実施形態のエジェクタ式冷凍サイクル10によれば、流量調整弁20を備えているので、サイクルの負荷変動に応じて、吸引側蒸発器19へ流入する冷媒の流量を適切に調整することができる。 Therefore, according to the flow rate adjusting valve 20 of the present embodiment, when applied to the ejector refrigeration cycle 10, the flow rate adjusting valve 20 flows into the suction-side evaporator 19 according to the load fluctuation of the cycle, as in the first embodiment. The flow rate of the refrigerant can be adjusted appropriately. In other words, according to the ejector refrigeration cycle 10 of the present embodiment, the flow rate adjustment valve 20 is provided, so that the flow rate of the refrigerant flowing into the suction-side evaporator 19 is appropriately adjusted according to the cycle load fluctuation. be able to.
 また、本実施形態の流量調整弁20の可変絞り装置17は、入口側圧力Priの低下に伴って、絞り開度を増加させる。従って、吸引側減圧装置15から流出する冷媒の流量Ge1の低下に伴って、バイパス通路16を介して吸引側蒸発器19の入口側へ流出させる冷媒の流量を増加させることができる。これによれば、吸引側蒸発器19へ流入する冷媒の流量を、サイクルの負荷変動に応じて、より一層適切に調整することができる。 Further, the variable throttle device 17 of the flow rate adjusting valve 20 of the present embodiment increases the throttle opening as the inlet side pressure Pri decreases. Therefore, the flow rate of the refrigerant flowing out to the inlet side of the suction side evaporator 19 through the bypass passage 16 can be increased with the decrease in the flow rate Ge1 of the refrigerant flowing out from the suction side decompression device 15. According to this, the flow rate of the refrigerant flowing into the suction side evaporator 19 can be more appropriately adjusted according to the cycle load fluctuation.
 (第3実施形態)
 本実施形態では、図6に示すように、流量調整弁20の構成を変更した例を説明する。図6は、第1実施形態で説明した図4と同様に、本実施形態の可変絞り装置17がバイパス通路16を全開状態としている図面である。本実施形態の流量調整弁20の可変絞り装置17では、入口側圧力Priの低下に伴って、第2実施形態よりも高い精度で、絞り開度を増加させることができるようになっている。
(Third embodiment)
In the present embodiment, an example in which the configuration of the flow rate adjustment valve 20 is changed as shown in FIG. 6 will be described. FIG. 6 is a view in which the variable throttle device 17 of the present embodiment opens the bypass passage 16 in the fully open state, similarly to FIG. 4 described in the first embodiment. In the variable throttle device 17 of the flow rate adjusting valve 20 of the present embodiment, the throttle opening can be increased with higher accuracy than the second embodiment as the inlet pressure Pri decreases.
 より具体的には、本実施形態の流量調整弁20では、バイパス通路16の第1通路16aの一部が、絞り通路20aと同様の半球形状や円錐台形状等の回転体形状に形成されている。さらに、弁体部17dとして、絞り弁51と同様の球状のものを採用している。弁体部17dは、コイルバネ17bから、第1通路16aの一部の通路断面積を縮小させる側の荷重を受けている。 More specifically, in the flow regulating valve 20 of the present embodiment, a part of the first passage 16a of the bypass passage 16 is formed in a rotating body shape such as a hemispherical shape or a truncated cone shape similar to the throttle passage 20a. Yes. Furthermore, the same spherical body as the throttle valve 51 is adopted as the valve body portion 17d. The valve body portion 17d receives a load on the side of reducing the partial cross-sectional area of the first passage 16a from the coil spring 17b.
 本実施形態の流量調整弁20では、弁体部17dを変位させることによって、第1通路16aの最小通路断面積(すなわち、絞り開度)を変化させることができる。さらに、弁体部17dを第1通路16aに当接させることによって、第1通路16aを閉塞させることもできる。 In the flow rate adjustment valve 20 of the present embodiment, the minimum passage sectional area (that is, the throttle opening) of the first passage 16a can be changed by displacing the valve body portion 17d. Further, the first passage 16a can be closed by bringing the valve body portion 17d into contact with the first passage 16a.
 また、本実施形態の流量調整弁20は、弁体部17dを駆動変位させる駆動部として、可変絞り装置17用の駆動機構71を有している。可変絞り装置17用の駆動機構71の基本的な構成は、駆動機構52と同様である。 Further, the flow rate adjusting valve 20 of the present embodiment has a drive mechanism 71 for the variable throttle device 17 as a drive unit that drives and displaces the valve body portion 17d. The basic configuration of the drive mechanism 71 for the variable aperture device 17 is the same as that of the drive mechanism 52.
 従って、駆動機構71は、感温部72を有している。感温部72は、感温部72内の空間を封入空間72cと導入空間72dとに仕切る変形部材であるダイヤフラム72bを有している。駆動機構71の封入空間72c内には、不活性ガス(本実施形態では、窒素ガス)が封入されている。駆動機構71の導入空間72dは、吸引側減圧装置15(具体的には、絞り通路20a)の入口側に連通するようにボデー部21に固定されている。 Therefore, the drive mechanism 71 has a temperature sensing part 72. The temperature sensing unit 72 includes a diaphragm 72b that is a deformable member that partitions the space in the temperature sensing unit 72 into an enclosed space 72c and an introduction space 72d. An inert gas (in this embodiment, nitrogen gas) is sealed in the sealed space 72c of the drive mechanism 71. The introduction space 72d of the drive mechanism 71 is fixed to the body portion 21 so as to communicate with the inlet side of the suction side pressure reducing device 15 (specifically, the throttle passage 20a).
 このため、ダイヤフラム72bは、吸引側減圧装置15の入口側の冷媒の圧力と封入空間72c内の不活性ガスの圧力との圧力差に応じて変形する。さらに、駆動機構71では、ダイヤフラム72bの変形を作動棒73を介して弁体部17dに伝達することによって、弁体部17dを変位させる。 For this reason, the diaphragm 72b deforms according to the pressure difference between the pressure of the refrigerant on the inlet side of the suction-side decompression device 15 and the pressure of the inert gas in the enclosed space 72c. Further, the drive mechanism 71 displaces the valve body portion 17d by transmitting the deformation of the diaphragm 72b to the valve body portion 17d via the operating rod 73.
 ここで、不活性ガスの温度による体積変化は比較的小さい。このため、導入空間72dへ導入される吸引側減圧装置15の入口側の冷媒の温度や外気温が変化しても、封入空間72c内の不活性ガスの圧力は略一定となる。従って、本実施形態の可変絞り装置17では、第2実施形態よりも高い精度で、入口側圧力Priの低下に伴って絞り開度を増加させることができる。 Here, the volume change due to the temperature of the inert gas is relatively small. For this reason, even if the temperature and the outside air temperature of the inlet side of the suction side decompression device 15 introduced into the introduction space 72d change, the pressure of the inert gas in the enclosed space 72c becomes substantially constant. Therefore, in the variable throttle device 17 of the present embodiment, the throttle opening can be increased with a decrease in the inlet-side pressure Pri with higher accuracy than in the second embodiment.
 その他の流量調整弁20およびエジェクタ式冷凍サイクル10の構成および作動は、第2実施形態と同様である。従って、本実施形態の流量調整弁20およびエジェクタ式冷凍サイクル10においても、第2実施形態と同様の効果を得ることができる。 Other configurations and operations of the flow rate adjusting valve 20 and the ejector refrigeration cycle 10 are the same as those in the second embodiment. Therefore, also in the flow regulating valve 20 and the ejector type refrigeration cycle 10 of the present embodiment, the same effect as in the second embodiment can be obtained.
 (第4実施形態)
 本実施形態では、第1実施形態に対して、図7に示すように、流量調整弁20の構成を変更した例を説明する。具体的には、本実施形態の流量調整弁20では、可変絞り装置17が廃止されている。このため、本実施形態の流量調整弁20では、バイパス通路16の通路断面積等が、サイクルの負荷変動に応じて、吸引側蒸発器19へ流入する冷媒の流量を適切に調整することできるように設定されている。
(Fourth embodiment)
This embodiment demonstrates the example which changed the structure of the flow regulating valve 20 with respect to 1st Embodiment, as shown in FIG. Specifically, the variable throttle device 17 is abolished in the flow rate adjustment valve 20 of the present embodiment. For this reason, in the flow rate adjusting valve 20 of the present embodiment, the passage cross-sectional area of the bypass passage 16 and the like can appropriately adjust the flow rate of the refrigerant flowing into the suction side evaporator 19 according to the cycle load fluctuation. Is set to
 具体的には、本実施形態では、流量調整弁20の感温通路20bを流通して低圧出口21dから流出する冷媒の圧力(すなわち、出口側圧力Peo)から予め定めた基準媒体温度(本実施形態では、0℃)における感温媒体の飽和圧力を減算した値を開弁設定圧Yと定義する。なお、開弁設定圧Yの詳細な測定方法については、後述する。 Specifically, in this embodiment, a reference medium temperature (this embodiment) determined in advance from the pressure of the refrigerant flowing through the temperature sensing passage 20b of the flow rate adjusting valve 20 and flowing out from the low-pressure outlet 21d (that is, outlet-side pressure Peo). In the embodiment, a value obtained by subtracting the saturation pressure of the temperature sensitive medium at 0 ° C.) is defined as the valve opening set pressure Y. A detailed method for measuring the valve opening set pressure Y will be described later.
 また、吸引側減圧装置15の通路断面積の最大値を最大絞り断面積Aexと定義し、バイパス通路16の通路断面積の最小値を最小通路断面積Aptと定義する。さらに、最大絞り断面積Aexに対する最大通路断面積Aptの比(Apt/Aex)を面積比Xと定義する。 Further, the maximum value of the passage sectional area of the suction side pressure reducing device 15 is defined as the maximum throttle sectional area Aex, and the minimum value of the passage sectional area of the bypass passage 16 is defined as the minimum passage sectional area Apt. Furthermore, the ratio (Apt / Aex) of the maximum passage sectional area Apt to the maximum throttle sectional area Aex is defined as an area ratio X.
 ここで、最大絞り断面積Aexは、サイクルを循環する冷媒の最大循環流量に基づいて、決定することができる。従って、流量調整弁20では、主に最小通路断面積Aptを変化させることによって面積比Xを変化させることができる。 Here, the maximum throttle cross-sectional area Aex can be determined based on the maximum circulation flow rate of the refrigerant circulating in the cycle. Therefore, in the flow regulating valve 20, the area ratio X can be changed mainly by changing the minimum passage sectional area Apt.
 さらに、面積比Xが大きくなるに伴って、バイパス通路16を介して吸引側蒸発器19へ流入する冷媒の流量の割合が増加しやすい。このため、面積比Xを大きく設定すると、通常運転時に、吸引側減圧装置15が絞り開度を変化させても、吸引側蒸発器19の出口側の冷媒の過熱度SH1を基準過熱度KSH1に近づけにくくなるおそれがある。 Furthermore, as the area ratio X increases, the ratio of the flow rate of the refrigerant flowing into the suction side evaporator 19 via the bypass passage 16 tends to increase. For this reason, if the area ratio X is set to be large, the superheat degree SH1 of the refrigerant on the outlet side of the suction side evaporator 19 is changed to the reference superheat degree KSH1 even if the suction side pressure reducing device 15 changes the throttle opening during normal operation. There is a risk that it will be difficult to approach.
 一方、面積比Xが小さくなるに伴って、バイパス通路16を介して吸引側蒸発器19へ流入する冷媒の流量の割合が減少する。このため、面積比Xを小さく設定すると、低負荷運転時に、吸引側減圧装置15が絞り開度を縮小させた際に、吸引側蒸発器19へ流入させる冷媒の流量が不足してしまうおそれがある。 On the other hand, as the area ratio X decreases, the ratio of the flow rate of the refrigerant flowing into the suction side evaporator 19 via the bypass passage 16 decreases. For this reason, if the area ratio X is set to a small value, the flow rate of the refrigerant flowing into the suction side evaporator 19 may be insufficient when the suction side pressure reducing device 15 reduces the throttle opening degree during low load operation. is there.
 このことから、通常運転時にも低負荷運転時にも、適切な流量の冷媒を吸引側蒸発器19へ流入させるためには、面積比Xを所定の範囲に調整する必要がある。ところが、実際にエジェクタ式冷凍サイクル10に要求される冷却能力に応じて、適切な面積比Xを精度良く設定することは難しい。 Therefore, it is necessary to adjust the area ratio X to a predetermined range in order to allow an appropriate flow rate of refrigerant to flow into the suction-side evaporator 19 during normal operation and low load operation. However, it is difficult to accurately set an appropriate area ratio X according to the cooling capacity actually required for the ejector refrigeration cycle 10.
 そこで、本発明者らは、流量調整弁20の開弁設定圧Yが、流量調整弁20から吸引側蒸発器19へ流入する冷媒の流量に関係していることに着眼し、開弁設定圧Yとの関係で、面積比Xを制度良く決定する検討を行った。 Accordingly, the present inventors have noted that the valve opening set pressure Y of the flow rate adjusting valve 20 is related to the flow rate of the refrigerant flowing from the flow rate adjusting valve 20 to the suction side evaporator 19, and the valve opening set pressure is set. In relation to Y, we examined how to determine the area ratio X systematically.
 ここで、本実施形態における開弁設定圧Yとは、「日本冷凍空調工業会標準規格」の「自動車空調装置用膨張弁の静止過熱度試験方法」における「膨張弁出口圧」から、予め定めた基準媒体温度(本実施形態では、0℃)における封入空間52c内の感温媒体の飽和圧力を減算した圧力に相当する。 Here, the valve opening set pressure Y in the present embodiment is determined in advance from the “expansion valve outlet pressure” in the “Testing method for static superheat of expansion valves for automobile air conditioners” in the “Standard of the Japan Refrigeration and Air Conditioning Industry Association”. This corresponds to a pressure obtained by subtracting the saturation pressure of the temperature-sensitive medium in the enclosed space 52c at the reference medium temperature (0 ° C. in the present embodiment).
 より具体的には、本実施形態では、図8に示すように、流量調整弁20の低圧出口21dから流出する冷媒の圧力Pyを測定し、この値を用いて開弁設定圧Yを決定している。まず、流量調整弁20の冷媒入口21aへ試験用基準圧力KTPa(本実施形態では、KTPa=1.03±0.05MPa)の空気を流入させる。 More specifically, in this embodiment, as shown in FIG. 8, the pressure Py of the refrigerant flowing out from the low pressure outlet 21d of the flow rate adjustment valve 20 is measured, and the valve opening set pressure Y is determined using this value. ing. First, air having a test reference pressure KTPa (KTPa = 1.03 ± 0.05 MPa in this embodiment) is caused to flow into the refrigerant inlet 21 a of the flow rate adjusting valve 20.
 流量調整弁20の蒸発器側出口21bには、圧力容器BTの入口部が接続され、圧力容器BTの出口部には、流量調整弁20の蒸発器側入口21cが接続されている。圧力容器BTは、吸引側蒸発器19に対応するバッファ空間を形成するものである。本実施形態では、バッファ空間の内容積が0.001m3の圧力容器BTを採用している。 The inlet side of the pressure vessel BT is connected to the evaporator side outlet 21b of the flow rate adjusting valve 20, and the evaporator side inlet 21c of the flow rate adjusting valve 20 is connected to the outlet side of the pressure vessel BT. The pressure vessel BT forms a buffer space corresponding to the suction side evaporator 19. In this embodiment, a pressure vessel BT having an internal volume of the buffer space of 0.001 m 3 is employed.
 そして、封入空間52c内の感温媒体の温度を基準媒体温度として流量調整弁20の低圧出口21dから流出する空気の圧力Pyを測定する。低圧出口21dの下流側には、圧力Pyを測定するために所定の圧力損失を生じさせるオリフィスが配置されている。圧力Pyは、実質的に、エジェクタ式冷凍サイクル10の作動時に吸引側蒸発器から流出した冷媒の圧力である出口側圧力Peoに相当する圧力である。さらに、圧力Pyから基準媒体温度となっている感温媒体の飽和圧力を減算した値を開弁設定圧Yに決定する。 Then, the pressure Py of the air flowing out from the low pressure outlet 21d of the flow rate adjusting valve 20 is measured using the temperature of the temperature sensitive medium in the enclosed space 52c as the reference medium temperature. On the downstream side of the low-pressure outlet 21d, an orifice that causes a predetermined pressure loss is measured in order to measure the pressure Py. The pressure Py is substantially a pressure corresponding to the outlet-side pressure Peo that is the pressure of the refrigerant that has flowed out of the suction-side evaporator when the ejector refrigeration cycle 10 is operated. Further, the valve opening set pressure Y is determined by subtracting the saturation pressure of the temperature sensitive medium that is the reference medium temperature from the pressure Py.
 開弁設定圧Yは、基準過熱度KSH1と同様に、コイルバネ52eの荷重を変更することによって調整される。 The valve opening set pressure Y is adjusted by changing the load of the coil spring 52e, similarly to the reference superheat degree KSH1.
 このため、基準過熱度KSH1を決定する際に、開弁設定圧Yが高い値に設定されるに伴って、吸引側減圧装置15の絞り開度が増加する。従って、開弁設定圧Yが高い値に設定されるに伴って、面積比Xを低下させればよい。一方、開弁設定圧Yが低い値に設定されるに伴って、吸引側減圧装置15の絞り開度が減少する。従って、開弁設定圧Yが低い値に設定されるに伴って、面積比Xを上昇させればよい。 For this reason, when the reference superheat degree KSH1 is determined, as the valve opening set pressure Y is set to a high value, the throttle opening of the suction side pressure reducing device 15 increases. Therefore, the area ratio X may be decreased as the valve opening set pressure Y is set to a high value. On the other hand, as the valve opening set pressure Y is set to a low value, the throttle opening of the suction side pressure reducing device 15 decreases. Therefore, the area ratio X may be increased as the valve opening set pressure Y is set to a low value.
 その結果、本発明者らは、図9に示すように、通常運転時には、以下数式F1、F2を満足するように、面積比Xおよび開弁設定圧Yを設定することで、適切な流量の冷媒を吸引側蒸発器19へ供給可能であることを確認した。 As a result, as shown in FIG. 9, the present inventors set the area ratio X and the valve opening set pressure Y so as to satisfy the following formulas F1 and F2 during normal operation, so that an appropriate flow rate can be obtained. It was confirmed that the refrigerant could be supplied to the suction side evaporator 19.
 -170X+3≧Y
 …(F1)
 Y≧-175X-60
 …(F2)
 一方、低負荷運転時には、以下数式F3を満足するように、面積比Xおよび開弁設定圧Yを設定することで、適切な流量の冷媒を吸引側蒸発器19へ供給可能であることを確認した。
-170X + 3 ≧ Y
... (F1)
Y ≧ −175X-60
... (F2)
On the other hand, during low-load operation, it is confirmed that an appropriate flow rate of refrigerant can be supplied to the suction-side evaporator 19 by setting the area ratio X and the valve opening set pressure Y so as to satisfy the following formula F3. did.
 Y≧-350X-9
 …(F3)
 そして、本発明者らは、実用上有効な範囲として、数式F1、F3を満足するように(図9の網掛けハッチング領域に入るように)、面積比Xおよび開弁設定圧Yを決定している。換言すると、数式F1、F3を満足するように、最大絞り断面積Aex、最小通路断面積Apt、およびコイルバネ52eの荷重を調整している。
Y ≧ −350X-9
... (F3)
Then, the present inventors determine the area ratio X and the valve opening set pressure Y so as to satisfy the formulas F1 and F3 (so as to enter the shaded hatched region in FIG. 9) as a practically effective range. ing. In other words, the maximum throttle cross-sectional area Aex, the minimum passage cross-sectional area Apt, and the load of the coil spring 52e are adjusted so as to satisfy the expressions F1 and F3.
 つまり、数式F1を満足させることで、通常運転時に、バイパス通路16を介して吸引側蒸発器19へ流入する冷媒の流量の割合が不必要に増加しないように、面積比Xおよび開弁設定圧Yを決定している。さらに、数式F3を満足させることで、低負荷運転時に、吸引側蒸発器19へ流入させる冷媒の流量が不足しないように、面積比Xおよび開弁設定圧Yを決定している。 That is, by satisfying Formula F1, the area ratio X and the valve opening set pressure are set so that the ratio of the flow rate of the refrigerant flowing into the suction-side evaporator 19 via the bypass passage 16 does not unnecessarily increase during normal operation. Y is determined. Furthermore, by satisfying Formula F3, the area ratio X and the valve opening set pressure Y are determined so that the flow rate of the refrigerant flowing into the suction-side evaporator 19 is not insufficient during low load operation.
 その他の流量調整弁20およびエジェクタ式冷凍サイクル10の構成は、第1実施形態と同様である。 Other configurations of the flow rate adjusting valve 20 and the ejector refrigeration cycle 10 are the same as those in the first embodiment.
 従って、本実施形態のエジェクタ式冷凍サイクル10を作動させると、負荷変動によらず、通常運転時であっても、低負荷運転時であっても、吸引側減圧装置15にて減圧された冷媒とバイパス通路16を通過した冷媒との双方の冷媒を蒸発器側出口21bから流出させて、吸引側蒸発器19へ流入させることができる。 Therefore, when the ejector refrigeration cycle 10 of this embodiment is operated, the refrigerant decompressed by the suction-side decompression device 15 regardless of load fluctuations, whether during normal operation or during low load operation. And the refrigerant that has passed through the bypass passage 16 can flow out from the evaporator-side outlet 21 b and flow into the suction-side evaporator 19.
 ここで、通常運転時にように、吸引側蒸発器19へ流入させる冷媒の流量が比較的多くなる運転条件時には、吸引側減圧装置15が絞り開度を増加させる。このため、吸引側蒸発器19へ流入する冷媒の流量のうち、吸引側減圧装置15を介して吸引側蒸発器19へ流入する冷媒の流量の割合が増加する。換言すると、吸引側蒸発器19へ流入する冷媒の流量変化については、吸引側減圧装置15の絞り開度変化の影響度合が大きくなる。 Here, under the operating condition in which the flow rate of the refrigerant flowing into the suction side evaporator 19 is relatively large as in the normal operation, the suction side pressure reducing device 15 increases the throttle opening. For this reason, the ratio of the flow rate of the refrigerant flowing into the suction side evaporator 19 via the suction side pressure reducing device 15 in the flow rate of the refrigerant flowing into the suction side evaporator 19 increases. In other words, regarding the change in the flow rate of the refrigerant flowing into the suction-side evaporator 19, the degree of influence of the change in the throttle opening degree of the suction-side decompression device 15 increases.
 さらに、本実施形態では、上記数式F1を満足するように、面積比Xおよび開弁設定圧Yが設定されている。従って、バイパス通路16が閉じられていなくても、吸引側減圧装置15が絞り開度を変化させることによって、吸引側蒸発器19の出口側の冷媒の過熱度が基準過熱度に近づくように、吸引側蒸発器19へ流入する冷媒の流量を調整することができる。 Furthermore, in the present embodiment, the area ratio X and the valve opening set pressure Y are set so as to satisfy the above formula F1. Therefore, even if the bypass passage 16 is not closed, the suction side pressure reducing device 15 changes the throttle opening so that the superheat degree of the refrigerant on the outlet side of the suction side evaporator 19 approaches the reference superheat degree. The flow rate of the refrigerant flowing into the suction side evaporator 19 can be adjusted.
 一方、低負荷運転時のように吸引側蒸発器19へ流入させる冷媒の流量が比較的少なくなる運転条件時には、吸引側減圧装置15が絞り開度を減少させる。このため、吸引側蒸発器19へ流入する冷媒の流量のうち、バイパス通路16を通過した冷媒の流量の割合が増加する。換言すると、低負荷運転時における吸引側蒸発器19へ流入する冷媒の流量変化については、吸引側減圧装置15の絞り開度変化の影響度合が小さくなる。 On the other hand, the suction-side pressure reducing device 15 decreases the throttle opening degree under the operating condition in which the flow rate of the refrigerant flowing into the suction-side evaporator 19 is relatively small as in the low-load operation. For this reason, the ratio of the flow rate of the refrigerant that has passed through the bypass passage 16 in the flow rate of the refrigerant flowing into the suction side evaporator 19 increases. In other words, regarding the change in the flow rate of the refrigerant flowing into the suction-side evaporator 19 during the low load operation, the degree of influence of the change in the throttle opening degree of the suction-side decompression device 15 becomes small.
 さらに、本実施形態では、上記数式F3を満足するように、面積比Xおよび開弁設定圧Yが設定されている。従って、低負荷運転時には、吸引側減圧装置15が絞り開度を縮小させたとしても、バイパス通路16を通過した冷媒を確実に吸引側蒸発器19へ流入させることができる。これにより、吸引側蒸発器19へ流入する冷媒の流量が不足してしまうことを抑制することができる。 Furthermore, in the present embodiment, the area ratio X and the valve opening set pressure Y are set so as to satisfy the above formula F3. Therefore, at the time of low load operation, even if the suction side pressure reducing device 15 reduces the throttle opening, the refrigerant that has passed through the bypass passage 16 can surely flow into the suction side evaporator 19. Thereby, it can suppress that the flow volume of the refrigerant | coolant which flows in into the suction side evaporator 19 runs short.
 すなわち、本実施形態の流量調整弁20によれば、エジェクタ式冷凍サイクル10に適用された際に、サイクルの負荷変動に応じて、吸引側蒸発器19へ流入する冷媒の流量を適切に調整することができる。換言すると、本実施形態のエジェクタ式冷凍サイクル10によれば、流量調整弁20を備えているので、サイクルの負荷変動に応じて、吸引側蒸発器19へ流入する冷媒の流量を適切に調整することができる。 That is, according to the flow rate adjustment valve 20 of the present embodiment, when applied to the ejector refrigeration cycle 10, the flow rate of the refrigerant flowing into the suction-side evaporator 19 is appropriately adjusted according to cycle load fluctuations. be able to. In other words, according to the ejector refrigeration cycle 10 of the present embodiment, the flow rate adjustment valve 20 is provided, so that the flow rate of the refrigerant flowing into the suction-side evaporator 19 is appropriately adjusted according to the cycle load fluctuation. be able to.
 また、本発明者等の検討によれば、上記数式F1、F2では、無次元数である面積比X、および出口側圧力Peoから冷媒の物性で決定される飽和圧力を減算した差圧である開弁設定圧Yを用いているので、R1234yfに限定されることなく、幅広い冷媒に適用可能であることも確認されている。 Further, according to studies by the present inventors, the above formulas F1 and F2 are differential pressures obtained by subtracting the area ratio X, which is a dimensionless number, and the saturation pressure determined by the physical properties of the refrigerant from the outlet side pressure Peo. Since the valve opening set pressure Y is used, it is also confirmed that the present invention is applicable to a wide range of refrigerants without being limited to R1234yf.
 つまり、上記数式F1、F2を満足するように面積比Xおよび開弁設定圧Yを設定することで、幅広い冷媒を採用するエジェクタ式冷凍サイクル10において、通常運転時にも低負荷運転時にも、適切な流量の冷媒を吸引側蒸発器19へ流入させることができる。 That is, by setting the area ratio X and the valve opening set pressure Y so as to satisfy the above formulas F1 and F2, the ejector refrigeration cycle 10 that employs a wide variety of refrigerants is suitable for both normal operation and low load operation. It is possible to allow a refrigerant having a proper flow rate to flow into the suction side evaporator 19.
 なお、上述の実施形態では、第1実施形態と同様に、吸引側減圧装置15の入口側の冷媒を、吸引側減圧装置15を迂回させて、吸引側減圧装置15の出口側へ導くように、バイパス通路16を配置した例を説明したが、バイパス通路16の配置はこれに限定されない。 In the above-described embodiment, similarly to the first embodiment, the refrigerant on the inlet side of the suction-side decompression device 15 is led to the outlet side of the suction-side decompression device 15 by bypassing the suction-side decompression device 15. The example in which the bypass passage 16 is arranged has been described, but the arrangement of the bypass passage 16 is not limited to this.
 つまり、吸引側減圧装置15において、実際に冷媒が減圧される部位は、絞り通路20aの最小通路断面積部の近傍である。従って、図10の変形例に示すように、絞り通路20aの最小通路断面積部よりも上流側と絞り通路20aの最小通路断面積部よりも下流側とを接続することによって、バイパス通路16を短縮化させてもよい。 That is, in the suction side decompression device 15, the part where the refrigerant is actually decompressed is in the vicinity of the minimum passage cross-sectional area of the throttle passage 20a. Therefore, as shown in the modification of FIG. 10, by connecting the upstream side of the minimum passage sectional area of the throttle passage 20a and the downstream side of the minimum passage sectional area of the throttle passage 20a, the bypass passage 16 is formed. It may be shortened.
 (第5実施形態)
 本実施形態では、第1実施形態に対して、図11の全体構成図に示すように、エジェクタ式冷凍サイクル10にノズル側減圧装置25を追加した例を説明する。ノズル側減圧装置25は、分岐部13で分岐された冷媒をノズル部14aの上流側で減圧させる可変絞り機構である。さらに、ノズル側減圧装置25は、ノズル部14aへ流入する冷媒の流量を調整する流量調整装置としての機能を果たす。
(Fifth embodiment)
In the present embodiment, an example in which a nozzle side pressure reducing device 25 is added to the ejector refrigeration cycle 10 will be described as shown in the overall configuration diagram of FIG. 11 with respect to the first embodiment. The nozzle side pressure reducing device 25 is a variable throttle mechanism that reduces the pressure of the refrigerant branched by the branching portion 13 on the upstream side of the nozzle portion 14a. Further, the nozzle-side pressure reducing device 25 functions as a flow rate adjusting device that adjusts the flow rate of the refrigerant flowing into the nozzle portion 14a.
 ノズル側減圧装置25の基本的構成は、第1実施形態で説明した吸引側減圧装置15と同様の温度式膨張弁である。ノズル側減圧装置25では、流出側蒸発器18の出口側の冷媒(すなわち、圧縮機11へ吸入される吸入冷媒)の過熱度SHが予め定めたノズル側基準過熱度KSH(本実施形態では、1℃)に近づくように、絞り開度を変位させる。 The basic configuration of the nozzle side pressure reducing device 25 is the same temperature type expansion valve as the suction side pressure reducing device 15 described in the first embodiment. In the nozzle side decompression device 25, the superheat degree SH of the refrigerant on the outlet side of the outflow side evaporator 18 (that is, the suction refrigerant sucked into the compressor 11) is a predetermined nozzle side reference superheat degree KSH (in this embodiment, The throttle opening is displaced so as to approach 1 ° C.
 その他のエジェクタ式冷凍サイクル10の構成および作動は、第1実施形態と同様である。従って、本実施形態の流量調整弁20およびエジェクタ式冷凍サイクル10においても、第1実施形態と同様の効果を得ることができる。さらに、本実施形態のエジェクタ式冷凍サイクル10では、ノズル側減圧装置25を備えているので、圧縮機11の液圧縮を確実に抑制することができる。 Other configurations and operations of the ejector refrigeration cycle 10 are the same as those in the first embodiment. Therefore, also in the flow regulating valve 20 and the ejector type refrigeration cycle 10 of the present embodiment, the same effect as in the first embodiment can be obtained. Furthermore, since the ejector refrigeration cycle 10 of the present embodiment includes the nozzle-side decompression device 25, liquid compression of the compressor 11 can be reliably suppressed.
 (第6実施形態)
 本実施形態では、第1実施形態に対して、図12の全体構成図に示すように、エジェクタ式冷凍サイクル10に中間圧減圧装置26を追加した例を説明する。中間圧減圧装置26は、放熱器12から流出した冷媒を分岐部13の上流側で中間圧冷媒となるまで減圧させる可変絞り機構である。さらに、中間圧減圧装置26は、分岐部13へ流入する冷媒の流量を調整する流量調整装置としての機能を果たす。
(Sixth embodiment)
In the present embodiment, an example will be described in which an intermediate pressure reducing device 26 is added to the ejector refrigeration cycle 10 as shown in the overall configuration diagram of FIG. 12 with respect to the first embodiment. The intermediate pressure depressurization device 26 is a variable throttle mechanism that depressurizes the refrigerant flowing out of the radiator 12 until it becomes an intermediate pressure refrigerant on the upstream side of the branch portion 13. Further, the intermediate pressure reducing device 26 functions as a flow rate adjusting device that adjusts the flow rate of the refrigerant flowing into the branch portion 13.
 中間圧減圧装置26の基本的構成は、第1実施形態で説明した吸引側減圧装置15と同様の温度式膨張弁である。中間圧減圧装置26では、流出側蒸発器18の出口側の冷媒(すなわち、圧縮機11へ吸入される吸入冷媒)の過熱度SHが予め定めたノズル側基準過熱度KSH(本実施形態では、1℃)に近づくように、絞り開度を変位させる。 The basic configuration of the intermediate pressure reducing device 26 is the same temperature type expansion valve as the suction side reducing device 15 described in the first embodiment. In the intermediate pressure reducing device 26, the superheat degree SH of the refrigerant on the outlet side of the outflow side evaporator 18 (that is, the suction refrigerant sucked into the compressor 11) is a predetermined nozzle side reference superheat degree KSH (in this embodiment, The throttle opening is displaced so as to approach 1 ° C.
 その他のエジェクタ式冷凍サイクル10の構成および作動は、第1実施形態と同様である。従って、本実施形態の流量調整弁20およびエジェクタ式冷凍サイクル10においても、第1実施形態と同様の効果を得ることができる。さらに、本実施形態のエジェクタ式冷凍サイクル10では、中間圧減圧装置26を備えているので、圧縮機11の液圧縮を確実に抑制することができる。 Other configurations and operations of the ejector refrigeration cycle 10 are the same as those in the first embodiment. Therefore, also in the flow regulating valve 20 and the ejector type refrigeration cycle 10 of the present embodiment, the same effect as in the first embodiment can be obtained. Furthermore, since the ejector refrigeration cycle 10 of the present embodiment includes the intermediate pressure reducing device 26, liquid compression of the compressor 11 can be reliably suppressed.
 (第7実施形態)
 本実施形態では、上述の実施形態で説明した流量調整弁20を、図13の全体構成図に示すエジェクタ式冷凍サイクル10aに適用した例を説明する。
(Seventh embodiment)
In the present embodiment, an example in which the flow rate adjustment valve 20 described in the above-described embodiment is applied to the ejector refrigeration cycle 10a illustrated in the overall configuration diagram of FIG. 13 will be described.
 エジェクタ式冷凍サイクル10aでは、第1実施形態で説明したエジェクタ式冷凍サイクル10に対して、分岐部13および流出側蒸発器18が廃止されて、気液分離器27を備えている。気液分離器27は、ディフューザ部14dから流出した冷媒の気液を分離して分離された余剰液相冷媒を蓄える気液分離部である。 In the ejector refrigeration cycle 10a, the branching section 13 and the outflow side evaporator 18 are eliminated from the ejector refrigeration cycle 10 described in the first embodiment, and a gas-liquid separator 27 is provided. The gas-liquid separator 27 is a gas-liquid separator that stores the excess liquid-phase refrigerant separated by separating the gas-liquid of the refrigerant that has flowed out of the diffuser portion 14d.
 さらに、エジェクタ式冷凍サイクル10aでは、放熱器12の出口に、エジェクタ14のノズル部14aの入口側が接続されている。また、気液分離器27の気相冷媒出口には、圧縮機11の吸入口側が接続され、気液分離器27の液相冷媒出口には、流量調整弁20の冷媒入口21a側が接続されている。 Furthermore, in the ejector type refrigeration cycle 10 a, the inlet side of the nozzle portion 14 a of the ejector 14 is connected to the outlet of the radiator 12. The gas-phase refrigerant outlet of the gas-liquid separator 27 is connected to the suction port side of the compressor 11, and the liquid-phase refrigerant outlet of the gas-liquid separator 27 is connected to the refrigerant inlet 21 a side of the flow rate adjusting valve 20. Yes.
 その他のエジェクタ式冷凍サイクル10aの構成は、第1実施形態で説明したエジェクタ式冷凍サイクル10と同様である。 Other configurations of the ejector refrigeration cycle 10a are the same as those of the ejector refrigeration cycle 10 described in the first embodiment.
 次に、上記構成におけるエジェクタ式冷凍サイクル10aの作動について説明する。空調制御装置40が圧縮機11を作動させると、圧縮機11から吐出された高温高圧冷媒が、放熱器12へ流入する。放熱器12へ流入した冷媒は、冷却ファン12aから送風された外気と熱交換して、冷却されて凝縮する。放熱器12から流出した冷媒は、エジェクタ14のノズル部14aへ流入する。 Next, the operation of the ejector refrigeration cycle 10a in the above configuration will be described. When the air conditioning control device 40 operates the compressor 11, the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the radiator 12. The refrigerant flowing into the radiator 12 exchanges heat with the outside air blown from the cooling fan 12a, and is cooled and condensed. The refrigerant that has flowed out of the radiator 12 flows into the nozzle portion 14 a of the ejector 14.
 エジェクタ14のノズル部14aへ流入した冷媒は、ノズル部14aにて等エントロピ的に減圧されてノズル部14aの冷媒噴射口から噴射される。そして、噴射冷媒の吸引作用によって、吸引側蒸発器19から流出した冷媒が、流量調整弁20の感温通路20bを介して、冷媒吸引口14cから吸引される。 The refrigerant that has flowed into the nozzle portion 14a of the ejector 14 is decompressed in an isentropic manner at the nozzle portion 14a and is injected from the refrigerant injection port of the nozzle portion 14a. Then, the refrigerant that has flowed out of the suction-side evaporator 19 by the suction action of the injected refrigerant is sucked from the refrigerant suction port 14 c through the temperature sensing passage 20 b of the flow rate adjustment valve 20.
 ノズル部14aの冷媒噴射口から噴射された噴射冷媒、および冷媒吸引口14cから吸引された吸引冷媒は、ディフューザ部14dへ流入する。ディフューザ部14dにて昇圧された冷媒は、気液分離器27へ流入する。気液分離器27にて分離された気相冷媒は、圧縮機11へ吸入されて再び圧縮される。一方、気液分離器27にて分離された液相冷媒は、流量調整弁20の冷媒入口21aへ流入する。 The injection refrigerant injected from the refrigerant injection port of the nozzle portion 14a and the suction refrigerant sucked from the refrigerant suction port 14c flow into the diffuser portion 14d. The refrigerant whose pressure has been increased in the diffuser section 14 d flows into the gas-liquid separator 27. The gas-phase refrigerant separated by the gas-liquid separator 27 is sucked into the compressor 11 and compressed again. On the other hand, the liquid phase refrigerant separated by the gas-liquid separator 27 flows into the refrigerant inlet 21 a of the flow rate adjustment valve 20.
 この際、第1実施形態と同様に、通常運転時には、吸引側減圧装置15にて減圧された冷媒が、流量調整弁20の蒸発器側出口21bから流出して、吸引側蒸発器19へ流入する。また、低負荷運転時には、吸引側減圧装置15にて減圧された冷媒およびバイパス通路16を通過した冷媒が、流量調整弁20の蒸発器側出口21bから流出して、吸引側蒸発器19へ流入する。 At this time, as in the first embodiment, during normal operation, the refrigerant decompressed by the suction side decompression device 15 flows out from the evaporator side outlet 21b of the flow rate adjustment valve 20 and flows into the suction side evaporator 19. To do. Further, during low load operation, the refrigerant decompressed by the suction side decompression device 15 and the refrigerant that has passed through the bypass passage 16 flow out from the evaporator side outlet 21 b of the flow rate adjustment valve 20 and flow into the suction side evaporator 19. To do.
 吸引側蒸発器19へ流入した冷媒は、室内送風機18aによって送風された送風空気から吸熱して蒸発する。これにより、室内送風機18aによって送風された送風空気が冷却される。吸引側蒸発器19から流出した冷媒は、冷媒吸引口14cから吸引される。 The refrigerant flowing into the suction side evaporator 19 absorbs heat from the blown air blown by the indoor blower 18a and evaporates. Thereby, the blowing air blown by the indoor blower 18a is cooled. The refrigerant that has flowed out of the suction side evaporator 19 is sucked from the refrigerant suction port 14c.
 従って、本実施形態のエジェクタ式冷凍サイクル10aによれば、負荷変動によらず、通常運転時においても、低負荷運転時においても、吸引側蒸発器19にて、車室内へ送風される送風空気を冷却することができる。そして、第1実施形態で説明したエジェクタ式冷凍サイクル10と同様の効果を得ることができる。 Therefore, according to the ejector refrigeration cycle 10a of the present embodiment, the blown air blown into the vehicle interior by the suction-side evaporator 19 during normal operation and low load operation regardless of load fluctuations. Can be cooled. And the effect similar to the ejector-type refrigerating cycle 10 demonstrated in 1st Embodiment can be acquired.
 すなわち、流量調整弁20は、エジェクタ式冷凍サイクル10aに適用しても、吸引側蒸発器19へ流入する冷媒の流量を適切に調整することができる。換言すると、本実施形態のエジェクタ式冷凍サイクル10aによれば、流量調整弁20を備えているので、サイクルの負荷変動に応じて、吸引側蒸発器19へ流入する冷媒の流量を適切に調整することができる。 That is, the flow rate adjusting valve 20 can appropriately adjust the flow rate of the refrigerant flowing into the suction side evaporator 19 even when applied to the ejector refrigeration cycle 10a. In other words, according to the ejector refrigeration cycle 10a of the present embodiment, the flow rate adjustment valve 20 is provided, so that the flow rate of the refrigerant flowing into the suction-side evaporator 19 is appropriately adjusted according to the cycle load fluctuation. be able to.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiment, and various modifications can be made as follows without departing from the spirit of the present disclosure.
 上述の実施形態では、吸引側減圧装置15、バイパス通路16、および可変絞り装置17を、流量調整弁20として一体化させた例を説明したが、これに限定されない。例えば、エジェクタ式冷凍サイクル10、10aが、吸引側減圧装置15、バイパス通路16、および可変絞り装置17を、それぞれ別の構成機器として備えていても同様の効果を得ることができる。さらに、流量調整弁20に対して、分岐部13、エジェクタ14等を一体化させてもよい。 In the above-described embodiment, the example in which the suction side pressure reducing device 15, the bypass passage 16, and the variable throttle device 17 are integrated as the flow rate adjusting valve 20 has been described, but the present invention is not limited to this. For example, the same effect can be obtained even if the ejector refrigeration cycle 10, 10a includes the suction side pressure reducing device 15, the bypass passage 16, and the variable throttle device 17 as separate components. Further, the branching unit 13, the ejector 14, and the like may be integrated with the flow rate adjusting valve 20.
 上述の第2実施形態では、バネ室17cの圧力Pspを絞り通路20aの出口側の冷媒圧力とした例を説明したが、これに限定されない。例えば、バネ室17cを外気と連通させて、バネ室17cの圧力Pspを外気圧としてもよい。また、バネ室17cを真空としてもよい。この場合は、第1実施形態と同様に、第1通路16aの内壁面と弁体部17aとの隙間にシール部材を配置すればよい。 In the second embodiment described above, the example in which the pressure Psp of the spring chamber 17c is the refrigerant pressure on the outlet side of the throttle passage 20a has been described, but the present invention is not limited to this. For example, the spring chamber 17c may be communicated with the outside air, and the pressure Psp of the spring chamber 17c may be set to the external pressure. The spring chamber 17c may be evacuated. In this case, as in the first embodiment, a seal member may be disposed in the gap between the inner wall surface of the first passage 16a and the valve body portion 17a.
 上述の第4実施形態では、図7に示すように、バイパス通路16を配置した例を説明したが、これに限定されない。例えば、絞り通路20aの直前から絞り通路20aの下流側へ延びる比較的短い距離のバイパス通路16であってもよい。また、ボデー21のうち絞り通路20aを形成する部位の内周面の一部を切り欠くことによって、バイパス通路16を形成してもよい。 In the above-described fourth embodiment, the example in which the bypass passage 16 is disposed as illustrated in FIG. 7 has been described, but the present invention is not limited to this. For example, the bypass passage 16 may be a relatively short distance extending from immediately before the throttle passage 20a to the downstream side of the throttle passage 20a. Further, the bypass passage 16 may be formed by cutting out a part of the inner peripheral surface of the portion of the body 21 where the throttle passage 20a is formed.
 エジェクタ式冷凍サイクル10を構成する各構成機器は、上述の実施形態に開示されたものに限定されない。 Each component device constituting the ejector refrigeration cycle 10 is not limited to that disclosed in the above-described embodiment.
 例えば、上述の実施形態では、圧縮機11として、電動圧縮機を採用した例を説明したが、圧縮機11として、プーリ、ベルト等を介して車両走行用エンジンから伝達される回転駆動力によって駆動されるエンジン駆動式の圧縮機を採用してもよい。さらに、エンジン駆動式の圧縮機としては、吐出容量の変化により冷媒吐出能力を調整可能な可変容量型圧縮機、あるいは電磁クラッチの断続により圧縮機の稼働率を変化させて冷媒吐出能力を調整可能な固定容量型圧縮機を採用することができる。 For example, in the above-described embodiment, an example in which an electric compressor is employed as the compressor 11 has been described. However, the compressor 11 is driven by a rotational driving force transmitted from a vehicle traveling engine via a pulley, a belt, or the like. An engine driven compressor may be employed. Furthermore, as an engine-driven compressor, the variable capacity compressor that can adjust the refrigerant discharge capacity by changing the discharge capacity, or the refrigerant discharge capacity can be adjusted by changing the operating rate of the compressor by intermittently connecting the electromagnetic clutch A fixed-capacity compressor can be employed.
 また、上述の実施形態では、放熱器12の詳細構成について言及していないが、放熱器12として、凝縮させた冷媒を蓄えるレシーバ部(換言すると、受液器)を有するレシーバ一体型の凝縮器を採用してもよい。さらに、レシーバ部から流出した液相冷媒を過冷却する過冷却部を有して構成される、いわゆるサブクール型の凝縮器を採用してもよい。 Moreover, in the above-mentioned embodiment, although the detailed structure of the heat radiator 12 is not mentioned, the receiver integrated condenser which has the receiver part (in other words, liquid receiver) which stores the condensed refrigerant | coolant as the heat radiator 12. FIG. May be adopted. Furthermore, you may employ | adopt what is called a subcool type | mold condenser comprised including the supercooling part which supercools the liquid-phase refrigerant | coolant which flowed out from the receiver part.
 また、上述の実施形態では、分岐部13として三方継手構造のものを採用した例を説明したが、分岐部13はこれに限定されない。例えば、分岐部13として、分岐部13として、遠心分離方式の気液分離器構造のものを採用してもよい。この場合は、旋回中心側の比較的乾き度の高い冷媒をエジェクタ14のノズル部14a側へ流出させ、外周側の比較的乾き度の低い冷媒を流量調整弁20の冷媒入口21a側へ流出させてもよい。 Further, in the above-described embodiment, the example in which the three-way joint structure is adopted as the branch portion 13 has been described, but the branch portion 13 is not limited to this. For example, as the branching section 13, a centrifugal type gas-liquid separator structure may be adopted as the branching section 13. In this case, the refrigerant having a relatively high dryness on the turning center side is caused to flow out to the nozzle portion 14a side of the ejector 14, and the refrigerant having a relatively low dryness on the outer peripheral side is caused to flow out to the refrigerant inlet 21a side of the flow rate adjusting valve 20. May be.
 また、上述の実施形態では、流出側蒸発器18および吸引側蒸発器19を一体的に構成した例を説明したが、流出側蒸発器18および吸引側蒸発器19を別体で構成されていてもよい。そして、流出側蒸発器18および吸引側蒸発器19にて、異なる冷媒対象流体を異なる温度帯で冷却するようにしてもよい。 In the above-described embodiment, the example in which the outflow side evaporator 18 and the suction side evaporator 19 are integrally configured has been described. However, the outflow side evaporator 18 and the suction side evaporator 19 are configured separately. Also good. And in the outflow side evaporator 18 and the suction side evaporator 19, different refrigerant target fluids may be cooled in different temperature zones.
 また、上述の実施形態では、冷媒としてR1234yfを採用した例を説明したが、冷媒はこれに限定されない。例えば、R134a、R600a、R410A、R404A、R32、R407C、等を採用してもよい。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。さらに、冷媒として二酸化炭素を採用して、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成してもよい。 In the above-described embodiment, the example in which R1234yf is adopted as the refrigerant has been described, but the refrigerant is not limited to this. For example, R134a, R600a, R410A, R404A, R32, R407C, etc. may be adopted. Or you may employ | adopt the mixed refrigerant | coolant etc. which mixed multiple types among these refrigerant | coolants. Furthermore, a supercritical refrigeration cycle in which carbon dioxide is employed as the refrigerant and the high-pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant may be configured.
 上述の各実施形態では、本開示に係るエジェクタ式冷凍サイクル10を車両用空調装置に適用したが、エジェクタ式冷凍サイクル10の適用はこれに限定されない。例えば、据置型空調装置、冷温保存庫、その他の冷却加熱装置等に適用してもよい。 In each of the above-described embodiments, the ejector refrigeration cycle 10 according to the present disclosure is applied to a vehicle air conditioner, but application of the ejector refrigeration cycle 10 is not limited thereto. For example, the present invention may be applied to stationary air conditioners, cold storages, other cooling and heating devices, and the like.
 また、上記各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。例えば、第2~第4実施形態で説明した流量調整弁20を、第5~第7実施形態で説明したエジェクタ式冷凍サイクル10、10aに適用してもよい。 Further, the means disclosed in each of the above embodiments may be appropriately combined within a practicable range. For example, the flow rate adjusting valve 20 described in the second to fourth embodiments may be applied to the ejector refrigeration cycles 10 and 10a described in the fifth to seventh embodiments.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態が本開示に示されているが、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, although various combinations and forms are shown in the present disclosure, other combinations and forms including only one element, more or less than them are also included in the scope and concept of the present disclosure. Is.

Claims (9)

  1.  冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機から吐出された冷媒を放熱させる放熱器(12)と、
     前記放熱器から流出した冷媒を減圧させるノズル部(14a)から噴射される噴射冷媒の吸引作用によって冷媒吸引口(14c)から冷媒を吸引し、前記噴射冷媒と前記冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させるエジェクタ(14)と、
     冷媒を減圧させる吸引側減圧部(15)と、
     前記吸引側減圧部にて減圧された冷媒を蒸発させて前記冷媒吸引口側へ流出させる吸引側蒸発器(19)と、
     前記吸引側減圧部の入口側の冷媒を、前記吸引側減圧部を迂回させて前記吸引側蒸発器の入口側へ導くバイパス通路(16)と、
     前記バイパス通路を流通する冷媒の流量を調整する可変絞り機構部(17)と、を備え、
     前記吸引側減圧部は、前記吸引側蒸発器の出口側の冷媒の過熱度(SH1)が予め定めた基準過熱度(KSH1)に近づくように絞り開度を変化させるものであり、
     前記可変絞り機構部は、前記バイパス通路を開閉する機能を有し、前記吸引側減圧部から流出する冷媒の流量(Ge1)が予め定めた基準流量(KGe1)以下となっている際に、前記バイパス通路を開くものであるエジェクタ式冷凍サイクル。
    A compressor (11) for compressing and discharging the refrigerant;
    A radiator (12) for dissipating heat from the refrigerant discharged from the compressor;
    The refrigerant sucked from the refrigerant suction port (14c) by the suction action of the jetted refrigerant jetted from the nozzle part (14a) for depressurizing the refrigerant flowing out of the radiator, and sucked from the jetted refrigerant and the refrigerant suction port An ejector (14) for increasing the pressure of the refrigerant mixed with the refrigerant;
    A suction side decompression section (15) for decompressing the refrigerant;
    A suction-side evaporator (19) for evaporating the refrigerant decompressed by the suction-side decompression unit and causing the refrigerant to flow out to the refrigerant suction port side;
    A bypass passage (16) for guiding the refrigerant on the inlet side of the suction-side decompression unit to bypass the suction-side decompression unit to the inlet side of the suction-side evaporator;
    A variable throttle mechanism (17) for adjusting the flow rate of the refrigerant flowing through the bypass passage,
    The suction side decompression unit changes the throttle opening so that the superheat degree (SH1) of the refrigerant on the outlet side of the suction side evaporator approaches a predetermined reference superheat degree (KSH1),
    The variable throttle mechanism has a function of opening and closing the bypass passage, and when the flow rate (Ge1) of the refrigerant flowing out from the suction-side decompression unit is equal to or lower than a predetermined reference flow rate (KGe1), An ejector-type refrigeration cycle that opens the bypass passage.
  2.  前記可変絞り機構部は、前記吸引側減圧部の入口側の冷媒の圧力である入口側圧力(Pri)から前記吸引側蒸発器から流出した冷媒の圧力である出口側圧力(Peo)を減算した圧力差(ΔP)の縮小に伴って、絞り開度を増加させるものである請求項1に記載のエジェクタ式冷凍サイクル。 The variable throttle mechanism subtracts the outlet side pressure (Peo), which is the pressure of the refrigerant flowing out from the suction side evaporator, from the inlet side pressure (Pri), which is the pressure of the refrigerant on the inlet side of the suction side decompression unit. 2. The ejector refrigeration cycle according to claim 1, wherein the throttle opening is increased as the pressure difference (ΔP) is reduced.
  3.  前記可変絞り機構部は、前記吸引側減圧部の入口側の冷媒の圧力である入口側圧力(Pri)の低下に伴って、絞り開度を増加させるものである請求項1に記載のエジェクタ式冷凍サイクル。 2. The ejector type according to claim 1, wherein the variable throttle mechanism increases the throttle opening as the inlet side pressure (Pri), which is the pressure of the refrigerant on the inlet side of the suction side pressure reducing unit, decreases. Refrigeration cycle.
  4.  冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機から吐出された冷媒を放熱させる放熱器(12)と、
     前記放熱器から流出した冷媒を減圧させるノズル部(14a)から噴射される噴射冷媒の吸引作用によって冷媒吸引口(14c)から冷媒を吸引し、前記噴射冷媒と前記冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させるエジェクタ(14)と、
     冷媒を減圧させる吸引側減圧部(15)と、
     前記吸引側減圧部にて減圧された冷媒を蒸発させて前記冷媒吸引口側へ流出させる吸引側蒸発器(19)と、
     前記吸引側減圧部の入口側の冷媒を、前記吸引側減圧部を迂回させて前記吸引側蒸発器の入口側へ導くバイパス通路(16)と、を備え、
     前記吸引側減圧部は、前記吸引側蒸発器の出口側の冷媒の温度変化に伴って圧力変化する感温媒体が封入された封入空間(52c)、および前記感温媒体の圧力に応じて変位する絞り弁(51)を有し、前記吸引側蒸発器の出口側の冷媒の過熱度(SH1)が予め定めた基準過熱度(KSH1)に近づくように絞り開度を変化させるものであり、
     前記吸引側蒸発器から流出した冷媒の圧力である出口側圧力から予め定めた基準媒体温度における前記感温媒体の飽和圧力を減算した値を開弁設定圧(Y)と定義し、前記吸引側減圧部の最大通路断面積(Aex)に対する前記バイパス通路の最小通路断面積(Apt)の比(Apt/Aex)を面積比Xと定義したときに、
     -170X+3≧Y
     かつ、
     Y≧-350X-9
     となっているエジェクタ式冷凍サイクル。
    A compressor (11) for compressing and discharging the refrigerant;
    A radiator (12) for dissipating heat from the refrigerant discharged from the compressor;
    The refrigerant sucked from the refrigerant suction port (14c) by the suction action of the jetted refrigerant jetted from the nozzle part (14a) for depressurizing the refrigerant flowing out of the radiator, and sucked from the jetted refrigerant and the refrigerant suction port An ejector (14) for increasing the pressure of the refrigerant mixed with the refrigerant;
    A suction side decompression section (15) for decompressing the refrigerant;
    A suction-side evaporator (19) for evaporating the refrigerant decompressed by the suction-side decompression unit and causing the refrigerant to flow out to the refrigerant suction port side;
    A bypass passage (16) for guiding the refrigerant on the inlet side of the suction-side decompression unit to bypass the suction-side decompression unit to the inlet side of the suction-side evaporator,
    The suction-side decompression unit is displaced according to the enclosed space (52c) in which a temperature-sensitive medium whose pressure changes with the temperature change of the refrigerant on the outlet side of the suction-side evaporator is enclosed, and the pressure of the temperature-sensitive medium A throttle valve (51) that changes the throttle opening so that the superheat degree (SH1) of the refrigerant on the outlet side of the suction side evaporator approaches a predetermined reference superheat degree (KSH1),
    A value obtained by subtracting the saturation pressure of the temperature sensitive medium at a predetermined reference medium temperature from the outlet side pressure, which is the pressure of the refrigerant flowing out of the suction side evaporator, is defined as a valve opening set pressure (Y), and the suction side When the ratio (Apt / Aex) of the minimum passage sectional area (Apt) of the bypass passage to the maximum passage sectional area (Aex) of the decompression unit is defined as an area ratio X,
    -170X + 3 ≧ Y
    And,
    Y ≧ −350X-9
    Ejector type refrigeration cycle.
  5.  前記放熱器から流出した冷媒の流れを分岐する分岐部(13)を備え、
     前記分岐部(13)の一方の流出口には、前記ノズル部の入口側が接続されており、
     前記分岐部(13)の他方の流出口には、前記吸引側減圧部の入口側が接続されている請求項1ないし4のいずれか1つに記載のエジェクタ式冷凍サイクル。
    A branch part (13) for branching the flow of the refrigerant flowing out of the radiator,
    The inlet side of the nozzle part is connected to one outlet of the branch part (13),
    The ejector-type refrigeration cycle according to any one of claims 1 to 4, wherein an inlet side of the suction side pressure reducing unit is connected to the other outlet of the branch part (13).
  6.  冷媒を減圧させるノズル部(14a)から噴射される噴射冷媒の吸引作用によって冷媒吸引口(14c)から冷媒を吸引し、前記噴射冷媒と前記冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させるエジェクタ(14)、および冷媒を蒸発させて前記冷媒吸引口側へ流出させる吸引側蒸発器(19)を有するエジェクタ式冷凍サイクル(10、10a)に適用される流量調整弁であって、
     前記吸引側蒸発器の出口側の冷媒の過熱度(SH1)が予め定めた基準過熱度(KSH1)に近づくように絞り開度を変化させる吸引側減圧部(15)と、
     前記吸引側減圧部の入口側の冷媒を、前記吸引側減圧部を迂回させて前記吸引側減圧部の出口側へ導くバイパス通路(16)と、
     前記バイパス通路を流通する冷媒の流量を調整する可変絞り機構部(17)と、を備え、
     前記吸引側減圧部にて減圧された冷媒を流出させる蒸発器側出口(21b)には、前記吸引側蒸発器の冷媒入口側が接続されており、
     前記可変絞り機構部は、前記バイパス通路を開閉する機能を有し、前記吸引側減圧部から前記吸引側蒸発器の冷媒入口側へ流出させる冷媒の流量(Ge1)が予め定めた基準流量(KGe1)以下となっている際に、前記バイパス通路を開くものである流量調整弁。
    The refrigerant is sucked from the refrigerant suction port (14c) by the suction action of the jetted refrigerant jetted from the nozzle part (14a) for depressurizing the refrigerant, and the mixed refrigerant of the jetted refrigerant and the sucked refrigerant sucked from the refrigerant suction port is A flow rate adjusting valve applied to an ejector refrigeration cycle (10, 10a) having an ejector (14) for boosting pressure, and a suction side evaporator (19) for evaporating a refrigerant to flow out to the refrigerant suction port side,
    A suction side decompression section (15) for changing the throttle opening so that the superheat degree (SH1) of the refrigerant on the outlet side of the suction side evaporator approaches a predetermined reference superheat degree (KSH1);
    A bypass passage (16) for guiding the refrigerant on the inlet side of the suction side decompression unit to the outlet side of the suction side decompression unit by bypassing the suction side decompression unit;
    A variable throttle mechanism (17) for adjusting the flow rate of the refrigerant flowing through the bypass passage,
    A refrigerant inlet side of the suction-side evaporator is connected to an evaporator-side outlet (21b) through which the refrigerant decompressed by the suction-side decompression unit flows out,
    The variable throttle mechanism has a function of opening and closing the bypass passage, and a refrigerant flow rate (Ge1) flowing out from the suction-side decompression unit to a refrigerant inlet side of the suction-side evaporator is a predetermined reference flow rate (KGe1). ) A flow rate adjustment valve that opens the bypass passage when
  7.  前記可変絞り機構部は、前記吸引側減圧部の入口側の冷媒の圧力である入口側圧力(Pri)から、前記吸引側蒸発器から流出した冷媒の圧力である出口側圧力(Peo)を減算した圧力差(ΔP)の縮小に伴って、絞り開度を増加させるものである請求項6に記載の流量調整弁。 The variable throttle mechanism subtracts an outlet side pressure (Peo), which is a pressure of the refrigerant flowing out from the suction side evaporator, from an inlet side pressure (Pri), which is a pressure of the refrigerant on the inlet side of the suction side decompression unit. The flow rate adjusting valve according to claim 6, wherein the throttle opening is increased as the pressure difference (ΔP) is reduced.
  8.  前記可変絞り機構部は、前記吸引側減圧部の入口側の冷媒の圧力である入口側圧力(Pri)の低下に伴って、絞り開度を増加させるものである請求項6に記載の流量調整弁。 7. The flow rate adjustment according to claim 6, wherein the variable throttle mechanism increases the throttle opening as the inlet side pressure (Pri), which is the pressure of the refrigerant on the inlet side of the suction side pressure reducing unit, decreases. valve.
  9.  冷媒を減圧させるノズル部(14a)から噴射される噴射冷媒の吸引作用によって冷媒吸引口(14c)から冷媒を吸引し、前記噴射冷媒と前記冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させるエジェクタ(14)、および冷媒を蒸発させて前記冷媒吸引口側へ流出させる吸引側蒸発器(19)を有するエジェクタ式冷凍サイクル(10、10a)に適用される流量調整弁であって、
     前記吸引側蒸発器の出口側の冷媒の過熱度(SH1)が予め定めた基準過熱度(KSH1)に近づくように絞り開度を変化させる吸引側減圧部(15)と、
     前記吸引側減圧部の入口側の冷媒を、前記吸引側減圧部を迂回させて前記吸引側減圧部の出口側へ導くバイパス通路(16)と、を備え、
     前記吸引側減圧部は、前記吸引側蒸発器の出口側の冷媒の温度変化に伴って圧力変化する感温媒体が封入された封入空間(52c)、および前記感温媒体の圧力に応じて変位する絞り弁(51)を有し、
     前記吸引側減圧部にて減圧された冷媒を流出させる蒸発器側出口(21b)には、前記吸引側蒸発器の冷媒入口側が接続されており、
     前記吸引側蒸発器から流出した冷媒の圧力である出口側圧力から予め定めた基準媒体温度における前記感温媒体の飽和圧力を減算した値を開弁設定圧(Y)と定義し、前記吸引側減圧部の最大通路断面積(Aex)に対する前記バイパス通路の最小通路断面積(Apt)の比(Apt/Aex)を面積比Xと定義したときに、
     -170X+3≧Y
     かつ、
     Y≧-350X-9
     となっている流量調整弁。
    The refrigerant is sucked from the refrigerant suction port (14c) by the suction action of the jetted refrigerant jetted from the nozzle part (14a) for depressurizing the refrigerant, and the mixed refrigerant of the jetted refrigerant and the sucked refrigerant sucked from the refrigerant suction port is A flow rate adjusting valve applied to an ejector refrigeration cycle (10, 10a) having an ejector (14) for boosting pressure, and a suction side evaporator (19) for evaporating a refrigerant to flow out to the refrigerant suction port side,
    A suction side decompression section (15) for changing the throttle opening so that the superheat degree (SH1) of the refrigerant on the outlet side of the suction side evaporator approaches a predetermined reference superheat degree (KSH1);
    A bypass passage (16) for guiding the refrigerant on the inlet side of the suction side decompression unit to the outlet side of the suction side decompression unit by bypassing the suction side decompression unit,
    The suction-side decompression unit is displaced according to the enclosed space (52c) in which a temperature-sensitive medium whose pressure changes with the temperature change of the refrigerant on the outlet side of the suction-side evaporator is enclosed, and the pressure of the temperature-sensitive medium A throttle valve (51)
    A refrigerant inlet side of the suction-side evaporator is connected to an evaporator-side outlet (21b) through which the refrigerant decompressed by the suction-side decompression unit flows out,
    A value obtained by subtracting the saturation pressure of the temperature sensitive medium at a predetermined reference medium temperature from the outlet side pressure, which is the pressure of the refrigerant flowing out of the suction side evaporator, is defined as a valve opening set pressure (Y), and the suction side When the ratio (Apt / Aex) of the minimum passage sectional area (Apt) of the bypass passage to the maximum passage sectional area (Aex) of the decompression unit is defined as an area ratio X,
    -170X + 3 ≧ Y
    And,
    Y ≧ −350X-9
    The flow rate adjustment valve.
PCT/JP2019/000270 2018-02-08 2019-01-09 Ejector refrigeration cycle, and flow rate adjustment valve WO2019155805A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018020762 2018-02-08
JP2018-020762 2018-02-08
JP2018-091449 2018-05-10
JP2018091449A JP7031482B2 (en) 2018-02-08 2018-05-10 Ejector refrigeration cycle and flow control valve

Publications (1)

Publication Number Publication Date
WO2019155805A1 true WO2019155805A1 (en) 2019-08-15

Family

ID=67548938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000270 WO2019155805A1 (en) 2018-02-08 2019-01-09 Ejector refrigeration cycle, and flow rate adjustment valve

Country Status (1)

Country Link
WO (1) WO2019155805A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199864A1 (en) * 2020-04-03 2021-10-07 株式会社デンソー Expansion valve mounting structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118849A (en) * 2004-09-22 2006-05-11 Denso Corp Ejector type refrigeration cycle
JP2007040586A (en) * 2005-08-02 2007-02-15 Denso Corp Ejector type refrigeration cycle
JP2007078339A (en) * 2005-06-30 2007-03-29 Denso Corp Ejector type refrigerating cycle
JP2009162444A (en) * 2008-01-08 2009-07-23 Denso Corp Vapor compression type cycle
JP2017219262A (en) * 2016-06-08 2017-12-14 株式会社デンソー Ejector type refrigeration cycle device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118849A (en) * 2004-09-22 2006-05-11 Denso Corp Ejector type refrigeration cycle
JP2007078339A (en) * 2005-06-30 2007-03-29 Denso Corp Ejector type refrigerating cycle
JP2007040586A (en) * 2005-08-02 2007-02-15 Denso Corp Ejector type refrigeration cycle
JP2009162444A (en) * 2008-01-08 2009-07-23 Denso Corp Vapor compression type cycle
JP2017219262A (en) * 2016-06-08 2017-12-14 株式会社デンソー Ejector type refrigeration cycle device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199864A1 (en) * 2020-04-03 2021-10-07 株式会社デンソー Expansion valve mounting structure
JP2021160680A (en) * 2020-04-03 2021-10-11 株式会社デンソー Expansion valve fitting structure
JP7447644B2 (en) 2020-04-03 2024-03-12 株式会社デンソー Expansion valve mounting structure

Similar Documents

Publication Publication Date Title
US10500925B2 (en) Refrigeration cycle device
JP6304407B2 (en) Integrated valve and heat pump cycle
US10132526B2 (en) Ejector refrigeration cycle
US10378795B2 (en) Ejector and ejector refrigeration cycle
JP4285060B2 (en) Vapor compression refrigerator
CN110382880B (en) Injector assembly
WO2018198609A1 (en) Ejector refrigeration cycle
WO2018159320A1 (en) Ejector module
WO2019155805A1 (en) Ejector refrigeration cycle, and flow rate adjustment valve
JP7031482B2 (en) Ejector refrigeration cycle and flow control valve
WO2019208428A1 (en) Ejector-type refrigeration cycle
WO2018016219A1 (en) Ejector-type refrigeration cycle
JP6720934B2 (en) Ejector module
JP2017089964A (en) Ejector type refrigeration cycle
WO2017217142A1 (en) Refrigeration cycle device
JP6740931B2 (en) Ejector type refrigeration cycle
WO2018159321A1 (en) Ejector module
JP7119785B2 (en) Ejector refrigeration cycle and ejector module
WO2018159323A1 (en) Ejector module and evaporator unit
WO2019155806A1 (en) Ejector-type refrigeration cycle, and ejector module
WO2017179321A1 (en) Ejector
JP6079475B2 (en) Differential pressure valve for heat pump
JP6638607B2 (en) Ejector
JP6572745B2 (en) Ejector refrigeration cycle
JP6717276B2 (en) Ejector module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19751280

Country of ref document: EP

Kind code of ref document: A1