WO2018159320A1 - Ejector module - Google Patents

Ejector module Download PDF

Info

Publication number
WO2018159320A1
WO2018159320A1 PCT/JP2018/005439 JP2018005439W WO2018159320A1 WO 2018159320 A1 WO2018159320 A1 WO 2018159320A1 JP 2018005439 W JP2018005439 W JP 2018005439W WO 2018159320 A1 WO2018159320 A1 WO 2018159320A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
ejector
pressure
nozzle
evaporator
Prior art date
Application number
PCT/JP2018/005439
Other languages
French (fr)
Japanese (ja)
Inventor
照之 堀田
達博 鈴木
尾形 豪太
陽一郎 河本
龍 福島
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018159320A1 publication Critical patent/WO2018159320A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/02Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid
    • F04F5/10Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid displacing liquids, e.g. containing solids, or liquids and elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series

Definitions

  • the present disclosure relates to an ejector module applied to an ejector refrigeration cycle.
  • an ejector type refrigeration cycle which is a refrigeration cycle apparatus including an ejector as a refrigerant decompression device, is known.
  • the pressure of the refrigerant sucked into the compressor can be made higher than the refrigerant evaporation pressure in the evaporator by the pressurizing action of the ejector.
  • the power consumption of a compressor can be reduced and the coefficient of performance (COP) of a cycle can be improved.
  • Patent Document 1 discloses an evaporator unit applied to an ejector refrigeration cycle.
  • the evaporator unit disclosed in Patent Document 1 includes a branching unit, an ejector, a fixed throttle, a first evaporator, a second evaporator, and the like among components constituting an ejector refrigeration cycle (in other words, unitized or modularized). ).
  • the branch part branches the flow of the high-pressure refrigerant that has flowed out of the radiator, and flows it out to the nozzle part side and the fixed throttle side of the ejector.
  • the second evaporator is a heat exchanger that evaporates the refrigerant flowing out from the diffuser portion of the ejector by exchanging heat with the blown air blown into the air-conditioning target space and evaporates the evaporated refrigerant to the suction port side of the compressor.
  • the first evaporator is a heat exchanger that evaporates the refrigerant decompressed by the fixed throttle by heat exchange with the blown air that has passed through the second evaporator, and flows the evaporated refrigerant to the refrigerant suction port side of the ejector.
  • the evaporator unit of Patent Document 1 employs a fixed throttle, and further employs a fixed nozzle portion whose passage cross-sectional area cannot be changed as the nozzle portion of the ejector. . For this reason, when load fluctuation occurs in the applied ejector refrigeration cycle and the flow rate of the refrigerant flowing into the nozzle portion changes, the energy conversion efficiency of the ejector may decrease.
  • Patent Document 1 may adopt a variable throttle mechanism configured to be able to change the passage cross-sectional area (that is, the throttle opening degree) instead of the fixed throttle, and the nozzle portion of the ejector. It is described that a variable nozzle portion configured to be able to change the passage cross-sectional area of the refrigerant passage in the nozzle portion may be adopted.
  • variable throttle mechanism when a variable throttle mechanism is used instead of the fixed throttle, a drive device for changing the throttle opening is required.
  • a variable nozzle portion is adopted as the nozzle portion of the ejector.
  • an object of the present disclosure is to provide an ejector module configured such that the cross-sectional area of the passage can be changed without increasing the size of the applied ejector refrigeration cycle.
  • An ejector module applied to a vapor compression refrigeration cycle apparatus includes a nozzle unit that decompresses and injects a refrigerant, a decompression unit that decompresses the refrigerant, and an injection injected from the nozzle unit
  • the drive mechanism part is comprised with the mechanical mechanism which has a deformation member which deform
  • the ejector module includes a nozzle part, a body part, a valve body part, and a drive mechanism part, an ejector having a variable nozzle part can be configured. Furthermore, since the ejector module includes a decompression section, a valve body section, and a drive mechanism section, a variable throttle mechanism can be configured.
  • the passage cross-sectional area of the nozzle part and the throttle opening of the pressure reducing part are adjusted by one common driving mechanism part and valve body part, it does not cause an increase in size compared to those equipped with a plurality of driving mechanisms.
  • the ejector having the variable nozzle portion and the variable aperture mechanism can be integrated.
  • the drive mechanism portion is composed of a mechanical mechanism, there is no need for electrical connection to displace the valve body portion.
  • An ejector module applied to a vapor compression refrigeration cycle apparatus is injected from a nozzle unit that decompresses and injects a refrigerant, a decompression unit that decompresses the refrigerant, and the nozzle unit.
  • the drive mechanism part is comprised with the mechanical mechanism which has a deformation member which deform
  • the ejector module can constitute an ejector having a variable nozzle portion and a variable aperture mechanism.
  • the ejector having the variable nozzle portion and the variable aperture mechanism can be integrated without increasing the size.
  • the drive mechanism unit includes an enclosed space forming member that forms an enclosed space in which a temperature-sensitive medium whose pressure changes with a change in temperature of the refrigerant downstream of the pressure increasing unit is enclosed.
  • the refrigerant on the downstream side of the pressurizing unit means the refrigerant that has flowed out of the pressurizing unit.
  • the compressor suction side is connected to the refrigerant outlet of the booster
  • the refrigerant downstream from the booster flows through the refrigerant flow path from the refrigerant outlet of the booster to the compressor inlet.
  • Refrigerant is included.
  • the refrigerant suction port side is connected to the refrigerant outlet of the boosting unit
  • the refrigerant flowing through the refrigerant flow path from the refrigerant outlet of the boosting unit to the refrigerant suction port is included in the refrigerant downstream of the boosting unit. included.
  • the ejector module 20 of the present embodiment is applied to an ejector refrigeration cycle 10 that is a vapor compression refrigeration cycle apparatus including an ejector as a refrigerant decompression device, as shown in the overall configuration diagram of FIG.
  • This ejector-type refrigeration cycle 10 is applied to a vehicle air conditioner, and fulfills a function of cooling blown air that is blown into a vehicle interior that is a space to be cooled. Therefore, the fluid to be cooled in the ejector refrigeration cycle 10 is blown air.
  • an HFC refrigerant (specifically, R134a) or an HFO refrigerant (specifically, R1234fy) is employed as the refrigerant, and the high pressure side refrigerant pressure of the cycle is equal to the critical pressure of the refrigerant.
  • the subcritical refrigeration cycle is not exceeded.
  • refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant. A part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • various compression mechanisms such as a scroll-type compression mechanism and a vane-type compression mechanism can be employed. Further, the operation (rotation speed) of the electric motor is controlled by a control signal output from an air conditioning control device (not shown), and either an AC motor or a DC motor may be adopted.
  • the radiator 12 is configured as a so-called receiver-integrated condenser having a condensing part 12a and a receiver part 12b.
  • the condensing unit 12a is a heat exchanging unit for condensation that exchanges heat between the high-pressure gas-phase refrigerant discharged from the compressor 11 and the outside air blown from the cooling fan 12c, and dissipates the high-pressure gas-phase refrigerant to condense.
  • the receiver unit 12b is a refrigerant container that separates the gas-liquid refrigerant flowing out from the condensing unit 12a and stores excess liquid-phase refrigerant.
  • the high-pressure inlet 21 a side provided in the body part 21 of the ejector module 20 is connected to the refrigerant outlet of the receiver part 12 b of the radiator 12.
  • the ejector module 20 is obtained by integrating (in other words, modularizing) a part of the cycle constituent devices constituting the ejector refrigeration cycle 10.
  • the branch part 14 branches the flow of the refrigerant that has flowed out of the radiator 12, injects one of the branched refrigerants from the nozzle part 15a of the ejector 15, and causes the other branched refrigerant to flow out to the variable throttle mechanism 16. Fulfill.
  • the branch portion 14 is formed by connecting a space formed in the body portion 21 of the ejector module 20 and a refrigerant passage.
  • the ejector 15 has a nozzle portion 15a that depressurizes and injects one of the refrigerants branched at the branching portion 14, and functions as a refrigerant decompression device. Further, the ejector 15 functions as a refrigerant circulation device that sucks and circulates the refrigerant from the outside by the suction action of the refrigerant injected from the refrigerant injection port 15b of the nozzle portion 15a. More specifically, the ejector 15 sucks the refrigerant that has flowed out of the first evaporator 17 described later.
  • the ejector 15 converts the kinetic energy of the mixed refrigerant of the refrigerant injected from the nozzle portion 15a and the refrigerant sucked from the refrigerant suction port 21b formed in the body portion 21 into pressure energy. It functions as an energy conversion device that boosts the pressure of the mixed refrigerant.
  • the ejector 15 causes the pressurized refrigerant to flow out to the refrigerant inlet side of the second evaporator 18 described later.
  • the nozzle portion 15a of the ejector 15 is configured such that the passage cross-sectional area can be changed.
  • the variable throttle mechanism 16 has a throttle passage 20a that depressurizes the other refrigerant branched by the branching section 14.
  • the variable throttle mechanism 16 is configured to be able to change the passage cross-sectional area (that is, the throttle opening) of the throttle passage 20a.
  • the variable throttle mechanism 16 causes the decompressed refrigerant to flow out to the refrigerant inlet side of the first evaporator 17.
  • the ejector module 20 includes a body part 21, a composite valve body part 22, a drive mechanism part 23, and the like.
  • the body portion 21 forms an outer shell of the ejector module 20 and forms part of constituent members such as the ejector 15 and the variable aperture mechanism 16.
  • the body part 21 is formed by combining a plurality of constituent members such as the main body part 211, the nozzle body 212, and the diffuser body 213.
  • the body section 21 is provided with a plurality of refrigerant inlets and outlets such as a high pressure inlet 21a, a refrigerant suction port 21b, an ejector side outlet 21c, a throttle side outlet 21d, a low pressure inlet 21e, and a low pressure outlet 21f.
  • the high-pressure inlet 21 a is a refrigerant inlet through which high-pressure refrigerant that has flowed out from the refrigerant outlet of the receiver 12 b of the radiator 12 flows into the ejector module 20. Accordingly, the high-pressure inlet 21 a serves as a refrigerant inlet for the branch portion 14.
  • the refrigerant suction port 21 b is a refrigerant inlet that sucks the refrigerant flowing out of the first evaporator 17.
  • the ejector-side outlet 21c is a refrigerant outlet that causes the refrigerant whose pressure has been increased by the diffuser portion 15c of the ejector 15 to flow out to the inlet side of the second evaporator 18.
  • the throttle-side outlet 21 d is a refrigerant outlet that allows the refrigerant decompressed by the variable throttle mechanism 16 to flow out to the inlet side of the first evaporator 17.
  • the low-pressure inlet 21e is a refrigerant inlet through which the refrigerant that has flowed out of the second evaporator 18 flows.
  • the low-pressure outlet 21f is a refrigerant outlet that allows the refrigerant flowing into the ejector module 20 from the low-pressure inlet 21e to flow out to the suction port side of the compressor 11.
  • the high pressure inlet 21a, the refrigerant suction port 21b, the throttle side outlet 21d, the low pressure inlet 21e, and the low pressure outlet 21f are provided in the main body 211.
  • the ejector side outlet 21 c is provided in the diffuser body 213.
  • the main body 211 is formed of a columnar or prismatic metal (in this embodiment, aluminum). A plurality of refrigerant passages are formed inside the main body 211.
  • the main body 211 may be made of resin.
  • the nozzle body 212 is formed of a cylindrical metal (in this embodiment, stainless alloy or brass) that tapers in the refrigerant flow direction.
  • the nozzle body 212 is fixed inside the diffuser body 213 by means such as press fitting.
  • the outer peripheral side of the diffuser body 213 is fixed to the main body 211 by means such as press fitting.
  • the nozzle body 212 forms an inflow space 20d for allowing a high-pressure refrigerant to flow therein, and also forms a nozzle portion 15a for injecting the refrigerant by isentropically reducing the pressure.
  • the cylindrical side surfaces of the nozzle body 212 and the diffuser body 213 are formed with inlet holes that allow the high-pressure refrigerant that has flowed out of the radiator 12 to flow into the inflow space 20d by communicating the inflow space 20d with the high-pressure inlet 21a.
  • the inflow space 20d is formed in a cylindrical shape.
  • the nozzle portion 15 a is provided on one end side in the axial direction of the nozzle body 212.
  • the refrigerant passage of the nozzle portion 15a is formed with a throat portion that reduces the refrigerant passage cross-sectional area, and a divergent portion in which the passage cross-sectional area gradually increases as it goes from the throat to the refrigerant injection port 15b that injects the refrigerant. Yes. That is, the nozzle portion 15a is configured as a Laval nozzle.
  • nozzle portion 15a a nozzle set so that the flow rate of the injected refrigerant injected from the refrigerant injection port 15b is equal to or higher than the sonic speed during normal operation of the ejector refrigeration cycle 10 is employed.
  • the throttle passage 20a is a decompression section that decompresses the refrigerant by reducing the passage cross-sectional area.
  • the throttle passage 20a is formed in a rotating body shape such as a columnar shape or a truncated cone shape. That is, the decompression part of this embodiment is formed integrally with the body part 21.
  • an orifice formed as a separate member with respect to the body portion 21 may be adopted as the pressure reducing portion and fixed to the body portion 21 by means such as press fitting.
  • the central axis of the inflow space 20d, the central axis of the nozzle portion 15a, and the central axis of the throttle passage 20a are arranged coaxially with each other. Accordingly, the nozzle portion 15a and the throttle passage 20a of the present embodiment are arranged side by side in the axial direction of the nozzle portion 15a.
  • the diffuser body 213 is made of a cylindrical metal (in this embodiment, aluminum).
  • the diffuser body 213 forms a diffuser portion 15c that is a pressure increasing portion for increasing the pressure of the mixed refrigerant of the injected refrigerant and the suction refrigerant.
  • the cylindrical side surface of the diffuser body 213 is formed with a suction hole for allowing the refrigerant flowing out from the first evaporator 17 to flow into the diffuser portion 15c by communicating the diffuser portion 15c with the refrigerant suction port 21b.
  • the suction refrigerant sucked from the refrigerant suction port 21b is guided to a space on the outer peripheral side of the nozzle portion 15a of the nozzle body 212.
  • the diffuser portion 15c is a refrigerant passage formed in a substantially truncated cone shape in which the passage cross-sectional area gradually increases as it goes downstream of the refrigerant flow. In the diffuser portion 15c, the kinetic energy of the mixed refrigerant can be converted into pressure energy by such a passage shape.
  • the composite valve body portion 22 is a valve body portion that changes both the passage sectional area of the nozzle portion 15a and the passage sectional area of the throttle passage 20a.
  • the composite valve body portion 22 is formed in a columnar shape with the same metal as the nozzle portion 15a.
  • the central axis of the composite valve body 22 is arranged coaxially with the central axis of the nozzle portion 15a and the central axis of the throttle passage 20a.
  • the composite valve body portion 22 includes a needle valve portion 22a, a throttle valve portion 22b, and a connecting portion 22c.
  • Needle valve portion 22a is a portion that changes the passage cross-sectional area of nozzle portion 15a.
  • the needle valve portion 22a is formed in a needle shape (or a shape in which a conical shape and a cylindrical shape are combined), and in the inflow space 20d of the nozzle portion 15a and in the refrigerant passage, in the direction of the central axis of the nozzle portion 15a. It is arranged to extend.
  • the needle valve portion 22a is displaced toward the side closer to the refrigerant injection port 15b, thereby reducing the passage cross-sectional area of the nozzle portion 15a.
  • the throttle valve portion 22b is formed in a truncated cone shape whose outer diameter on the bottom side is larger than the outer diameter of the needle valve portion 22a, and is on the downstream side of the refrigerant flow in the throttle passage 20a (that is, the refrigerant injection port more than the throttle passage 20a). 15b).
  • the throttle valve portion 22b, together with the needle valve portion 22a, is displaced toward the side closer to the refrigerant injection port 15b, thereby reducing the passage cross-sectional area (that is, the throttle opening) of the throttle passage 20a.
  • the nozzle part 15a can also be obstruct
  • the throttle passage 20a may be closed by bringing the throttle valve portion 22b into contact with the outlet of the throttle passage 20a. Further, both the nozzle portion 15a and the throttle passage 20a may be closed.
  • the connecting portion 22c is formed in a columnar shape whose outer diameter is smaller than the outer diameter of the throttle valve portion 22b, and extends in a direction away from the nozzle portion 15a than the throttle valve portion 22b.
  • the drive mechanism 23 is connected to the end of the connecting portion 22c opposite to the nozzle portion 15a.
  • the drive mechanism section 23 displaces the composite valve body section 22 in the direction of the central axis of the nozzle section 15a.
  • the drive mechanism unit 23 is configured by a mechanical mechanism.
  • the drive mechanism unit 23 includes a temperature sensing unit 23a having a diaphragm 23b that is a deforming member that deforms according to the temperature and pressure of the refrigerant flowing out from the second evaporator 18.
  • the deformation of the diaphragm 23b is transmitted to the connecting portion 22c of the composite valve body portion 22 so that the composite valve body portion 22 is displaced.
  • the temperature sensing part 23a has a case 23c which is a sealed space forming member that forms a sealed space 23d together with the diaphragm 23b.
  • a temperature-sensitive medium that changes in pressure with changes in temperature is enclosed in the enclosed space 23d.
  • the temperature-sensitive medium is mainly composed of a refrigerant circulating in the ejector refrigeration cycle 10.
  • the case 23c and the diaphragm 23b are formed in an annular shape around the central axis of the nozzle portion 15a. Therefore, the enclosed space 23d is also formed in an annular shape similar to the case 23c and the diaphragm 23b.
  • the temperature sensing part 23 a is disposed in the accommodation space 20 b formed in the main body part 211.
  • the accommodation space 20b communicates with the outflow side passage 20c that connects the low pressure inlet 21e and the low pressure outlet 21f.
  • the diaphragm 23b is made of a material that is rich in elasticity and excellent in pressure resistance and airtightness. Therefore, in the present embodiment, an annular metal thin plate made of stainless steel (SUS304) is employed as the diaphragm 23b. Furthermore, as the diaphragm 23b, rubber made of EPDM (ethylene propylene diene rubber) or HNBR (hydrogenated nitrile rubber) containing a base fabric (polyester) may be employed.
  • EPDM ethylene propylene diene rubber
  • HNBR hydrogenated nitrile rubber
  • the enclosed space 23d is disposed closer to the nozzle portion 15a than the diaphragm 23b.
  • the connecting portion 22 c of the composite valve body portion 22 is connected to the surface on the opposite side of the nozzle portion 15 a of the diaphragm 23 b via the connecting member 24.
  • the saturation pressure of the temperature sensitive medium in the enclosed space 23d rises, and the outflow side passage from the pressure of the temperature sensitive medium in the enclosed space 23d.
  • the pressure difference obtained by subtracting the pressure of the low-pressure refrigerant flowing through 20c increases.
  • the diaphragm 23b is deformed to the side away from the nozzle portion 15a (the side on which the enclosed space 23d swells).
  • the composite valve body portion 22 expands the passage cross-sectional area of the nozzle portion 15a and displaces the throttle passage 20a toward the side that increases the throttle opening.
  • the saturation pressure of the temperature sensitive medium in the enclosed space 23d decreases, and the outflow side passage is determined from the pressure of the temperature sensitive medium in the enclosed space 23d.
  • the pressure difference obtained by subtracting the pressure of the low-pressure refrigerant flowing through 20c becomes small.
  • the diaphragm 23b is deformed to the side approaching the nozzle portion 15a (the side where the enclosed space 23d is contracted).
  • the composite valve body 22 is displaced to reduce the passage cross-sectional area of the nozzle portion 15a and to reduce the throttle opening of the throttle passage 20a.
  • the drive mechanism portion 23 can displace the composite valve body portion 22 according to the temperature and pressure of the refrigerant that has flowed out of the second evaporator 18. Therefore, the drive mechanism portion 23 of the present embodiment moves the composite valve body portion 22 so that the superheat degree of the refrigerant on the outlet side of the second evaporator 18 approaches a predetermined reference superheat degree (specifically, 1 ° C.). Displace.
  • a predetermined reference superheat degree specifically, 1 ° C.
  • the drive mechanism 23 reduces the passage cross-sectional area of the nozzle portion 15a and a coil spring 23e, which is an elastic member that applies a load that reduces the throttle opening of the throttle passage 20a. have.
  • the reference superheat degree can be adjusted by changing the load of the coil spring 23e.
  • the ejector 15 having the variable nozzle portion configured to change the passage cross-sectional area of the nozzle portion 15a is configured by the drive mechanism portion 23 and the like.
  • the cross-sectional area of the throttle passage 20a (that is, the throttle opening) is changed by the throttle passage 20a of the main body 211, the throttle valve portion 22b of the composite valve body portion 22, the drive mechanism portion 23, and the like.
  • a variable aperture mechanism 16 configured to be capable of being configured.
  • both the passage sectional area of the nozzle part 15a and the passage sectional area of the throttle passage 20a change in conjunction with each other.
  • the nozzle portion 15a and the needle valve portion are set so that the passage area ratio between the passage cross-sectional area of the nozzle portion 15a and the passage cross-sectional area of the throttle passage 20a is an appropriate value determined according to the load fluctuation.
  • the shapes of 22a, the throttle passage 20a, and the throttle valve portion 22b are set.
  • the second evaporator 18 shown in FIG. 1 includes the blown air blown from the blower 18a toward the vehicle interior and the ejector side outlet 21c of the ejector module 20 (that is, the refrigerant outlet of the diffuser portion 15c of the ejector 15). It is a heat-absorbing heat exchanger that cools blown air by exchanging heat with the low-pressure refrigerant that has flowed out of the air and evaporating the low-pressure refrigerant to exert its endothermic action.
  • the blower 18a is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the air conditioning control device.
  • the refrigerant outlet of the second evaporator 18 is connected to the low pressure inlet 21 e side of the ejector module 20.
  • the first evaporator 17 exchanges heat between the blown air that has passed through the second evaporator 18 and the low-pressure refrigerant that has flowed out from the throttle-side outlet 21d of the ejector module 20 (that is, the refrigerant outlet of the variable throttle mechanism 16).
  • This is an endothermic heat exchanger that cools blown air by evaporating the refrigerant to exhibit an endothermic effect.
  • the refrigerant outlet of the first evaporator 17 is connected to the refrigerant suction port 21 b side of the ejector module 20.
  • first evaporator 17 and the second evaporator 18 of the present embodiment are integrally configured.
  • each of the first evaporator 17 and the second evaporator 18 includes a plurality of tubes that circulate the refrigerant, and a collection or distribution of refrigerants that are arranged on both ends of the plurality of tubes and circulate through the tubes.
  • a so-called tank-and-tube heat exchanger having a pair of collective distribution tanks.
  • the first evaporator 17 and the second evaporator 18 are integrated by forming the collective distribution tank of the first evaporator 17 and the second evaporator 18 with the same member.
  • the first evaporator 17 and the second evaporator 18 are changed to the blown air flow so that the second evaporator 18 is arranged on the upstream side of the blower air flow with respect to the first evaporator 17.
  • they are arranged in series. Accordingly, the blown air flows as shown by the arrows drawn by the two-dot chain line in FIG.
  • the air conditioning control device includes an inside air temperature sensor that detects the temperature inside the vehicle, an outside air temperature sensor that detects the outside air temperature, a solar radiation sensor that detects the amount of solar radiation in the vehicle interior, and the temperature of the air blown out from the first evaporator 17.
  • Sensor groups such as an evaporator temperature sensor for detecting (evaporator temperature) are connected, and detection values of these air conditioning sensor groups are input.
  • an operation panel (not shown) is connected to the input side of the air conditioning control device, and operation signals from various operation switches provided on the operation panel are input to the air conditioning control device.
  • an air conditioning operation switch that requests air conditioning
  • a vehicle interior temperature setting switch that sets the vehicle interior temperature, and the like are provided.
  • the air conditioning control device of the present embodiment is configured such that a control unit that controls the operation of various control target devices connected to the output side is integrally configured.
  • a configuration (hardware and software) for controlling the operation of the device constitutes a control unit of each control target device.
  • operation of the compressor 11 comprises the discharge capability control part.
  • the air conditioning control device operates the compressor 11, the cooling fan 12c, the blower 18a, and the like.
  • the compressor 11 sucks the refrigerant, compresses it, and discharges it.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the radiator 12.
  • the refrigerant flowing into the radiator 12 is condensed by exchanging heat with the outside air blown from the cooling fan 12c in the condensing unit 12a.
  • the refrigerant cooled by the condensing unit 12a is gas-liquid separated by the receiver unit 12b.
  • the liquid phase refrigerant separated by the receiver unit 12b flows into the high-pressure inlet 21a of the ejector module 20.
  • the refrigerant that has flowed into the ejector module 20 is branched at the branching section 14.
  • One of the branched refrigerant flows into the nozzle portion 15a of the ejector 15, is isentropically decompressed, and is ejected from the refrigerant ejection port 15b.
  • coolant which flowed out from the 1st evaporator 17 is attracted
  • coolant is
  • the drive mechanism unit 23 causes the superheat degree of the refrigerant flowing through the outflow side passage 20c (in other words, the refrigerant on the outlet side of the second evaporator 18) to approach the reference superheat degree (specifically, 1 ° C.).
  • the composite valve body 22 is displaced.
  • the injection refrigerant injected from the refrigerant injection port 15b of the nozzle portion 15a and the suction refrigerant sucked from the refrigerant suction port 21b flow into the diffuser portion 15c.
  • the velocity energy of the refrigerant is converted into pressure energy by expanding the refrigerant passage area.
  • the pressure of the mixed refrigerant of the injection refrigerant and the suction refrigerant increases.
  • the refrigerant whose pressure has been increased in the diffuser portion 15c flows out from the ejector side outlet 21c.
  • the refrigerant that has flowed out of the ejector side outlet 21c flows into the second evaporator 18.
  • the refrigerant flowing into the second evaporator 18 absorbs heat from the blown air blown by the blower 18a and evaporates. Thereby, the blowing air blown by the blower 18a is cooled.
  • the refrigerant that has flowed out of the second evaporator 18 is sucked into the compressor 11 through the outflow side passage 20c of the ejector module 20 and compressed again.
  • the other refrigerant branched by the branching section 14 flows into the throttle passage 20a of the variable throttle mechanism 16 and is decompressed in an enthalpy manner.
  • the refrigerant decompressed by the variable throttle mechanism 16 flows out from the throttle-side outlet 21d and flows into the first evaporator 17.
  • the refrigerant flowing into the first evaporator 17 absorbs heat from the blown air after passing through the second evaporator 18 and evaporates. Thereby, the blown air after passing through the second evaporator 18 is further cooled.
  • the first evaporator since the shapes of the nozzle portion 15a, the needle valve portion 22a, the throttle passage 20a, and the throttle valve portion 22b are set so that the passage area ratio becomes an appropriate value, the first evaporator The dryness of the refrigerant flowing out from 17 is about 0 °. The refrigerant flowing out from the first evaporator 17 is sucked from the refrigerant suction port 21b.
  • the blown air blown into the vehicle compartment can be cooled by the first evaporator 17 and the second evaporator 18.
  • the refrigerant evaporation pressure in the second evaporator 18 is set to the refrigerant pressure increased by the diffuser unit 15c, and the refrigerant evaporation pressure in the first evaporator 17 is set by the nozzle unit 15a.
  • a low refrigerant pressure immediately after depressurization can be achieved. Therefore, the temperature difference between the refrigerant evaporation temperature and the blown air in each evaporator can be secured and the blown air can be efficiently cooled.
  • the passage area ratio between the passage sectional area of the nozzle portion 15a and the passage sectional area of the throttle passage 20a is set to an appropriate value, the flow rate of refrigerant flowing into the nozzle portion 15a and the variable throttle mechanism The flow rate of the refrigerant flowing into 16 can be adjusted appropriately. As a result, the ejector refrigeration cycle 10 can exhibit a high COP regardless of load fluctuations.
  • the passage area ratio can be adjusted to an appropriate value.
  • the refrigerant can be reliably supplied to the first evaporator 17 and the second evaporator 18 by using the suction and discharge action of the compressor 11. As a result, the first evaporator 17 and the second evaporator 18 can reliably exhibit the refrigerating capacity.
  • the ejector module 20 of the present embodiment since the branch portion 14, the ejector 15 having the variable nozzle portion, and the variable throttle mechanism 16 are integrated in the cycle configuration mechanism, the entire ejector refrigeration cycle 10 is integrated. As a result, it is possible to aim for miniaturization and productivity improvement.
  • a drive device in this embodiment, the drive mechanism portion 23 for changing the passage sectional area or the throttle opening is required.
  • Such a drive device is relatively large. For this reason, it becomes difficult to obtain the downsizing effect of the ejector module 20 as a whole.
  • the passage sectional area of the nozzle portion 15a of the ejector 15 and the aperture opening of the variable throttle mechanism 16 are opened.
  • the degree is integrated so as to be adjusted by one common drive mechanism portion 23 and composite valve body portion 22.
  • the applied ejector refrigeration cycle 10 is not enlarged even if the passage cross-sectional area is configured to be changeable.
  • the outflow side passage 20c is formed in the body portion 211 of the body portion 21, and the temperature sensing portion 23a of the drive mechanism portion 23 is in a space communicating with the outflow side passage 20c. Is arranged. According to this, the temperature sensing part 23a and the outflow side passage 20c can be brought close to each other.
  • the temperature and pressure of the refrigerant flowing through the outflow side passage 20c can be accurately transmitted to the temperature sensing portion 23a without causing the ejector module 20 to become large.
  • a seal member (specifically, an O-ring) is interposed between the cylindrical outer peripheral surface of the nozzle body 212 and the inner peripheral surface of the diffuser body 213, and refrigerant does not leak from the gap between these members.
  • the refrigerant suction port 21 b is provided in the diffuser body 213.
  • the ejector module 201 includes an orifice member 25 formed of a bottomed cylindrical metal (aluminum in this embodiment) having a throttle passage 20a provided in the center.
  • the orifice member 25 is disposed in a cylindrical internal space formed inside the main body 211 so as to be slidable in the direction of the central axis of the nozzle portion 15a.
  • a seal member (specifically, an O-ring) is interposed between the cylindrical outer peripheral surface of the orifice member 25 and the inner peripheral surface of the main body 211, and the refrigerant leaks from the gap between these members. Absent. Furthermore, the orifice member 25 is connected to the diaphragm 23b of the drive mechanism unit 23 through the connecting member 24 and a plate member 23f formed of a disk-like metal.
  • the drive mechanism 23 of the ejector module 201 employs a case 23c and a diaphragm 23b that are formed in a circular shape when viewed from the central axis direction of the nozzle portion 15a. Further, the enclosed space 23d is disposed on the side farther from the nozzle portion 15a than the diaphragm 23b.
  • the orifice member 25 is connected to the surface of the diaphragm 23b on the nozzle portion 15a side.
  • the drive mechanism portion 23 of the ejector module 201 can displace the nozzle portion 15a and the throttle passage 20a according to the temperature and pressure of the refrigerant flowing out from the second evaporator 18. And the drive mechanism part 23 can change both the passage cross-sectional area of the nozzle part 15a and the passage cross-sectional area of the throttle passage 20a by displacing the nozzle part 15a and the throttle passage 20a.
  • the increase in the passage sectional area of the nozzle portion 15a can be delayed with respect to the throttle passage 20a.
  • the refrigerant flow is branched upstream of the nozzle portion 15a, and one of the branched refrigerants flows into the nozzle portion 15a to be branched.
  • This is effective in a cycle configuration in which the other refrigerant is sucked from the refrigerant suction port 21b of the ejector 15 through the throttle mechanism and the evaporator.
  • the drive mechanism portion 23 of the present embodiment employs the diaphragm 23b formed in a circular shape, it is easy to ensure the amount of displacement in the central axis direction of the nozzle body 212 and the nozzle portion 15a of the orifice member 25. Therefore, the passage cross-sectional area can be changed sufficiently without causing the nozzle portion 15a and the throttle passage 20a to expand in the radial direction.
  • the ejector module 202 shown in FIG. 4 employs the drive mechanism portion 23 having a case 23c and a diaphragm 23b formed in a circular shape when viewed from the central axis direction of the nozzle portion 15a.
  • ejector module 201 Other configurations of the ejector module 201 are the same as those of the ejector module 20 described in the first embodiment.
  • the saturation pressure of the temperature sensitive medium in the enclosed space 23d decreases, and the outflow side passage is determined from the pressure of the temperature sensitive medium in the enclosed space 23d.
  • the pressure difference obtained by subtracting the pressure of the low-pressure refrigerant flowing through 20c becomes small.
  • the diaphragm 23b is deformed and the enclosed space 23d is contracted.
  • the composite valve element 22 together with the case 23c is displaced toward the side where the passage sectional area of the nozzle portion 15a is reduced and the throttle opening of the throttle passage 20a is reduced.
  • the drive mechanism portion 23 of the present embodiment employs a circular diaphragm 23b, as in the second embodiment, the nozzle portion 15a and the throttle passage 20a are expanded in the radial direction.
  • the passage cross-sectional area can be sufficiently changed without any problem.
  • the ejector module 20 according to the present disclosure is applied to the ejector refrigeration cycle 10 mounted on a vehicle, but the application of the ejector module 20 is not limited thereto.
  • the present invention may be applied to an ejector-type refrigeration cycle used in a stationary air conditioner, a cold / hot storage, or the like.
  • the ejector modules 20, 201, and 202 are not limited to those disclosed in the above-described embodiment.
  • the deformable member is not limited to this.
  • a bottomed cylindrical bellows formed of a bottomed cylindrical (cup-shaped) metal as the deformable member and having a bellows part that can be expanded and contracted in the displacement direction of the composite valve body part 22 may be employed.
  • the above-mentioned embodiment demonstrated the example which employ
  • coolant which flowed out from the 2nd evaporator 18 as a drive mechanism part
  • the mechanism is not limited to this.
  • the drive mechanism part one that deforms the deformable member with a thermo wax that changes in volume according to the temperature change of the refrigerant, or one that has a deformable member formed of a shape memory alloy that deforms according to the temperature change of the refrigerant is adopted. Also good.
  • an intermediate pressure depressurization device is added to the ejector refrigeration cycle 10 to depressurize the refrigerant flowing out of the radiator 12 until it becomes an intermediate pressure refrigerant in a gas-liquid two-phase state and to flow out to the high pressure inlet 21a side of the ejector module. Also good.
  • the gas-liquid mixed state refrigerant in which the gas-phase refrigerant and the liquid-phase refrigerant are homogeneously mixed can be flowed into the high-pressure inlet 21a of the ejector module. Therefore, the fluctuation of the flow rate ratio of the refrigerant flow branched at the branching portion 14 is suppressed when the refrigerant in which the gas-phase refrigerant and the liquid-phase refrigerant are unevenly mixed and inhomogeneously mixed flows into the high-pressure inlet 21a. Can do.
  • the ejector refrigeration cycle 30 includes a compressor 11 that compresses and discharges a refrigerant, a radiator 12 that dissipates heat from the refrigerant discharged from the compressor 11, and a gas-liquid separator 31 that separates the gas and liquid of the refrigerant.
  • the decompression device 32 that decompresses the liquid-phase refrigerant separated by the gas-liquid separator 31, the first evaporator 17 that evaporates the refrigerant decompressed by the decompression device 32, and the refrigerant decompressed by the decompression unit are evaporated
  • the second evaporator 18, and the merge section 33 that merges the gas-phase refrigerant separated by the gas-liquid separator 31 and the refrigerant that has flowed out of the second evaporator 18 to flow out to the suction side of the compressor 11. ing.
  • heat exchange is performed between the low-pressure refrigerant decompressed by the decompression device 32 and the blown air blown from the first blower 17a.
  • heat exchange is performed between the low-pressure refrigerant decompressed by the variable throttle mechanism 16 and the blown air blown from the second blower 18a.
  • the refrigerant outlet of the junction 33 is directly connected to the suction side of the compressor 11, the refrigerant outlet of the first evaporator 17 is connected to the low pressure inlet 21e side, and the low pressure outlet 21f is sucked of refrigerant. You may connect to the port 21b. According to this, the superheat degree of the 1st evaporator 17 exit side refrigerant
  • coolant can be adjusted.
  • Each component device constituting the ejector refrigeration cycle 10, 30 is not limited to that disclosed in the above-described embodiment.
  • an electric compressor is employed as the compressor 11
  • the compressor 11 is driven by a rotational driving force transmitted from a vehicle traveling engine via a pulley, a belt, or the like.
  • An engine driven compressor may be employed.
  • the variable capacity compressor that can adjust the refrigerant discharge capacity by changing the discharge capacity, or the refrigerant discharge capacity can be adjusted by changing the operating rate of the compressor by intermittently connecting the electromagnetic clutch A fixed-capacity compressor can be employed.
  • the radiator 12 has a supercooling unit that supercools the liquid-phase refrigerant flowing out from the receiver unit 12b.
  • a so-called subcool condenser may be employed.
  • R134a or R1234yf is adopted as the refrigerant
  • the refrigerant is not limited to this.
  • R600a, R410A, R404A, R32, R407C, etc. may be adopted.
  • a supercritical refrigeration cycle in which carbon dioxide is employed as the refrigerant and the high-pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant may be configured.
  • the example in which the first evaporator 17 and the second evaporator 18 are integrally configured has been described. However, as in the ejector refrigeration cycle 30, the first evaporator 17 and the second evaporator 17 are configured.
  • the vessel 18 may be configured separately. In the first evaporator 17 and the second evaporator 18, different refrigerant target fluids may be cooled in different temperature zones.
  • the means and components disclosed in the above-described embodiments may be appropriately combined within a feasible range.
  • the ejector modules 201 and 202 described in the second and third embodiments may be applied to the ejector refrigeration cycle 30 described in FIG.

Abstract

An ejector module applied to a steam-compression-type refrigeration cycle device is provided with a nozzle unit (15a) for decompressing a refrigerant and ejecting the refrigerant, a decompression unit (20a) for decompressing the refrigerant, a body part (21) provided with a pressure-raising unit (15c) and a refrigerant inlet (21b) of an ejector, a valve body part (22) for changing both the channel cross-section area of the nozzle unit and the channel cross-section area of the decompression unit, and a driving mechanism unit (23) for displacing the valve body part. The driving mechanism unit is configured from a mechanical mechanism having a deformation member (23b) that deforms in response to a change in the pressure and/or the temperature of the refrigerant.

Description

エジェクタモジュールEjector module 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2017年3月2日に出願された日本特許出願2017-039253号を基にしている。 This application is based on Japanese Patent Application No. 2017-039253 filed on Mar. 2, 2017, the disclosure of which is incorporated herein by reference.
 本開示は、エジェクタ式冷凍サイクルに適用されるエジェクタモジュールに関する。 The present disclosure relates to an ejector module applied to an ejector refrigeration cycle.
 従来、冷媒減圧装置としてエジェクタを備える冷凍サイクル装置であるエジェクタ式冷凍サイクルが知られている。この種のエジェクタ式冷凍サイクルでは、エジェクタの昇圧作用によって、圧縮機へ吸入される冷媒の圧力を、蒸発器における冷媒蒸発圧力よりも上昇させることができる。これにより、エジェクタ式冷凍サイクルでは、圧縮機の消費動力を低減させてサイクルの成績係数(COP)を向上させることができる。 Conventionally, an ejector type refrigeration cycle, which is a refrigeration cycle apparatus including an ejector as a refrigerant decompression device, is known. In this type of ejector-type refrigeration cycle, the pressure of the refrigerant sucked into the compressor can be made higher than the refrigerant evaporation pressure in the evaporator by the pressurizing action of the ejector. Thereby, in an ejector type refrigeration cycle, the power consumption of a compressor can be reduced and the coefficient of performance (COP) of a cycle can be improved.
 さらに、特許文献1には、エジェクタ式冷凍サイクルに適用される蒸発器ユニットが開示されている。この特許文献1の蒸発器ユニットは、エジェクタ式冷凍サイクルの構成機器のうち、分岐部、エジェクタ、固定絞り、第1蒸発器、第2蒸発器等を一体化(換言すると、ユニット化あるいはモジュール化)させたものである。 Furthermore, Patent Document 1 discloses an evaporator unit applied to an ejector refrigeration cycle. The evaporator unit disclosed in Patent Document 1 includes a branching unit, an ejector, a fixed throttle, a first evaporator, a second evaporator, and the like among components constituting an ejector refrigeration cycle (in other words, unitized or modularized). ).
 より詳細には、分岐部は、放熱器から流出した高圧冷媒の流れを分岐して、エジェクタのノズル部側および固定絞り側へ流出させる。第2蒸発器は、エジェクタのディフューザ部から流出した冷媒を空調対象空間へ送風される送風空気と熱交換させて蒸発させる熱交換器であり、蒸発させた冷媒を圧縮機の吸入口側へ流出させる。第1蒸発器は、固定絞りにて減圧された冷媒を第2蒸発器通過後の送風空気と熱交換させて蒸発させる熱交換器であり、蒸発させた冷媒をエジェクタの冷媒吸引口側へ流出させる。 More specifically, the branch part branches the flow of the high-pressure refrigerant that has flowed out of the radiator, and flows it out to the nozzle part side and the fixed throttle side of the ejector. The second evaporator is a heat exchanger that evaporates the refrigerant flowing out from the diffuser portion of the ejector by exchanging heat with the blown air blown into the air-conditioning target space and evaporates the evaporated refrigerant to the suction port side of the compressor. Let The first evaporator is a heat exchanger that evaporates the refrigerant decompressed by the fixed throttle by heat exchange with the blown air that has passed through the second evaporator, and flows the evaporated refrigerant to the refrigerant suction port side of the ejector. Let
 特許文献1の蒸発器ユニットでは、上記の如く、サイクル構成機器の一部を一体化させることによって、適用されたエジェクタ式冷凍サイクル全体としての小型化、および生産性の向上を図っている。 In the evaporator unit of Patent Document 1, as described above, a part of the cycle component equipment is integrated to reduce the size and productivity of the applied ejector refrigeration cycle as a whole.
特許第4259531号公報Japanese Patent No. 4259531
 本開示の発明者らの検討によると、特許文献1の蒸発器ユニットでは、固定絞りを採用し、さらに、エジェクタのノズル部として通路断面積を変更することのできない固定ノズル部を採用している。このため、適用されたエジェクタ式冷凍サイクルに負荷変動が生じて、ノズル部へ流入する冷媒流量が変化すると、エジェクタのエネルギ変換効率が低下してしまうことがある。 According to the study of the inventors of the present disclosure, the evaporator unit of Patent Document 1 employs a fixed throttle, and further employs a fixed nozzle portion whose passage cross-sectional area cannot be changed as the nozzle portion of the ejector. . For this reason, when load fluctuation occurs in the applied ejector refrigeration cycle and the flow rate of the refrigerant flowing into the nozzle portion changes, the energy conversion efficiency of the ejector may decrease.
 従って、エジェクタ式冷凍サイクルに負荷変動が生じると、エジェクタが充分な昇圧作用を発揮できなくなってしまうことや、エジェクタの吸引作用が低下して蒸発器に適切な流量の冷媒を供給できなくなってしまうことがある。その結果、特許文献1の蒸発器ユニットでは、エジェクタ式冷凍サイクルに負荷変動が生じると、上述したCOP向上効果を充分に得ることができなくなってしまう。 Therefore, when a load change occurs in the ejector refrigeration cycle, the ejector cannot exhibit a sufficient boosting action, or the suction action of the ejector is reduced, and an appropriate flow rate of refrigerant cannot be supplied to the evaporator. Sometimes. As a result, in the evaporator unit of Patent Document 1, when the load fluctuation occurs in the ejector refrigeration cycle, the above-described COP improvement effect cannot be obtained sufficiently.
 これに対して、特許文献1には、固定絞りに代えて通路断面積(すなわち、絞り開度)を変更可能に構成された可変絞り機構を採用してもよいこと、並びに、エジェクタのノズル部としてノズル部内の冷媒通路の通路断面積を変更可能に構成された可変ノズル部を採用してもよいことが記載されている。 On the other hand, Patent Document 1 may adopt a variable throttle mechanism configured to be able to change the passage cross-sectional area (that is, the throttle opening degree) instead of the fixed throttle, and the nozzle portion of the ejector. It is described that a variable nozzle portion configured to be able to change the passage cross-sectional area of the refrigerant passage in the nozzle portion may be adopted.
 しかしながら、固定絞りに代えて可変絞り機構を採用すると、絞り開度を変化させるための駆動装置が必要となる。このことは、エジェクタのノズル部として可変ノズル部を採用した場合も同様である。 However, when a variable throttle mechanism is used instead of the fixed throttle, a drive device for changing the throttle opening is required. The same applies to the case where a variable nozzle portion is adopted as the nozzle portion of the ejector.
 この種の駆動装置は、比較的体格が大きい。このため、可変絞り機構あるいは可変ノズル部を有するエジェクタを含む構成機器を一体化させたユニット(あるいは、モジュール)は、大型化しやすい。その結果、構成機器を一体化したことによるエジェクタ式冷凍サイクル全体としての小型化効果が損なわれてしまう。 This type of drive is relatively large. For this reason, a unit (or module) in which constituent devices including a variable throttle mechanism or an ejector having a variable nozzle portion are integrated is likely to be large. As a result, the downsizing effect of the ejector refrigeration cycle as a whole due to the integration of the components is impaired.
 本開示は、上記点に鑑み、適用されたエジェクタ式冷凍サイクルの大型化を招くことなく、通路断面積を変更可能に構成されたエジェクタモジュールを提供することを目的とする。 In view of the above points, an object of the present disclosure is to provide an ejector module configured such that the cross-sectional area of the passage can be changed without increasing the size of the applied ejector refrigeration cycle.
本開示の一つ特徴例による、蒸気圧縮式の冷凍サイクル装置に適用されるエジェクタモジュールは、冷媒を減圧させて噴射するノズル部と、冷媒を減圧させる減圧部と、ノズル部から噴射された噴射冷媒の吸引作用によって外部から冷媒を吸引する冷媒吸引口、および噴射冷媒と冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させる昇圧部が形成されたボデー部と、ノズル部の通路断面積および減圧部の通路断面積の双方を変化させる弁体部と、弁体部を変位させる駆動機構部と、を備える。さらに、駆動機構部は、冷媒の温度および圧力の少なくとも一方の変化に応じて変形する変形部材を有する機械的機構で構成されている。 An ejector module applied to a vapor compression refrigeration cycle apparatus according to a feature example of the present disclosure includes a nozzle unit that decompresses and injects a refrigerant, a decompression unit that decompresses the refrigerant, and an injection injected from the nozzle unit A body part formed with a refrigerant suction port for sucking the refrigerant from outside by a suction action of the refrigerant, and a pressure increasing unit for boosting the mixed refrigerant of the injected refrigerant and the suction refrigerant sucked from the refrigerant suction port; A valve body section that changes both the area and the passage cross-sectional area of the decompression section; and a drive mechanism section that displaces the valve body section. Furthermore, the drive mechanism part is comprised with the mechanical mechanism which has a deformation member which deform | transforms according to the change of at least one of the temperature and pressure of a refrigerant | coolant.
 エジェクタモジュールは、ノズル部、ボデー部、弁体部、および駆動機構部を備えているので、可変ノズル部を有するエジェクタを構成することができる。さらに、エジェクタモジュールは、減圧部、弁体部、および駆動機構部を備えているので、可変絞り機構を構成することができる。 Since the ejector module includes a nozzle part, a body part, a valve body part, and a drive mechanism part, an ejector having a variable nozzle part can be configured. Furthermore, since the ejector module includes a decompression section, a valve body section, and a drive mechanism section, a variable throttle mechanism can be configured.
 従って、適用されたエジェクタ式冷凍サイクルの負荷変動に応じて、弁体部を変位させて、ノズル部の通路断面積、および可変絞り機構の絞り開度を連動させて変化させることができる。その結果、負荷変動によらずエジェクタ式冷凍サイクルに高いCOPを発揮させることができる。 Therefore, according to the load fluctuation of the applied ejector type refrigeration cycle, the valve body portion can be displaced, and the passage sectional area of the nozzle portion and the throttle opening of the variable throttle mechanism can be changed in conjunction with each other. As a result, a high COP can be exhibited in the ejector refrigeration cycle regardless of load fluctuations.
 さらに、ノズル部の通路断面積および減圧部の絞り開度を、共通する1つの駆動機構部および弁体部で調整するので、複数の駆動機構を備えるものに対して、大型化を招くことなく、可変ノズル部を有するエジェクタおよび可変絞り機構を一体化させることができる。 Furthermore, since the passage cross-sectional area of the nozzle part and the throttle opening of the pressure reducing part are adjusted by one common driving mechanism part and valve body part, it does not cause an increase in size compared to those equipped with a plurality of driving mechanisms. In addition, the ejector having the variable nozzle portion and the variable aperture mechanism can be integrated.
 これに加えて、駆動機構部として、機械的機構で構成されたものを採用しているので、弁体部を変位させるために電気的な接続を必要とすることもない。 In addition to this, since the drive mechanism portion is composed of a mechanical mechanism, there is no need for electrical connection to displace the valve body portion.
 そのために、適用されたエジェクタ式冷凍サイクルの大型化を招くことなく、通路断面積を変更可能に構成されたエジェクタモジュールを提供することができる。 Therefore, it is possible to provide an ejector module configured such that the cross-sectional area of the passage can be changed without increasing the size of the applied ejector refrigeration cycle.
 本開示のもう一つの特徴例による、蒸気圧縮式の冷凍サイクル装置に適用されるエジェクタモジュールは、冷媒を減圧させて噴射するノズル部と、冷媒を減圧させる減圧部と、ノズル部から噴射された噴射冷媒の吸引作用によって外部から冷媒を吸引する冷媒吸引口、および噴射冷媒と冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させる昇圧部が形成されたボデー部と、ノズル部の通路断面積および減圧部の通路断面積の双方を変化させる弁体部と、ノズル部および減圧部を変位させる駆動機構部と、を備える。さらに、駆動機構部は、冷媒の温度および圧力の少なくとも一方の変化に応じて変形する変形部材を有する機械的機構で構成されている。 An ejector module applied to a vapor compression refrigeration cycle apparatus according to another characteristic example of the present disclosure is injected from a nozzle unit that decompresses and injects a refrigerant, a decompression unit that decompresses the refrigerant, and the nozzle unit. A body part formed with a refrigerant suction port for sucking the refrigerant from the outside by the suction action of the injected refrigerant, and a pressure increasing unit for boosting the mixed refrigerant of the injected refrigerant and the suction refrigerant sucked from the refrigerant suction port, and a passage of the nozzle part A valve body portion that changes both the cross-sectional area and the passage cross-sectional area of the pressure reducing portion; and a drive mechanism portion that displaces the nozzle portion and the pressure reducing portion. Furthermore, the drive mechanism part is comprised with the mechanical mechanism which has a deformation member which deform | transforms according to the change of at least one of the temperature and pressure of a refrigerant | coolant.
 そのために、エジェクタモジュールは、可変ノズル部を有するエジェクタ、および可変絞り機構を構成することができる。 Therefore, the ejector module can constitute an ejector having a variable nozzle portion and a variable aperture mechanism.
 従って、適用されたエジェクタ式冷凍サイクルの負荷変動に応じて、ノズル部および減圧部を変位させて、ノズル部の通路断面積、および可変絞り機構の絞り開度を連動させて変化させることができる。その結果、負荷変動によらずエジェクタ式冷凍サイクルに高いCOPを発揮させることができる。 Accordingly, the nozzle section and the pressure reducing section can be displaced according to the load fluctuation of the applied ejector refrigeration cycle, and the passage sectional area of the nozzle section and the throttle opening of the variable throttle mechanism can be changed in conjunction with each other. . As a result, a high COP can be exhibited in the ejector refrigeration cycle regardless of load fluctuations.
 そのために、大型化を招くことなく、可変ノズル部を有するエジェクタおよび可変絞り機構を一体化することができる。 Therefore, the ejector having the variable nozzle portion and the variable aperture mechanism can be integrated without increasing the size.
 よって、適用されたエジェクタ式冷凍サイクルの大型化を招くことなく、通路断面積を変更可能に構成されたエジェクタモジュールを提供することができる。 Therefore, it is possible to provide an ejector module configured such that the passage cross-sectional area can be changed without increasing the size of the applied ejector refrigeration cycle.
 例えば、駆動機構部として、昇圧部よりも下流側の冷媒の温度変化に伴って圧力変化する感温媒体が封入される封入空間を形成する封入空間形成部材を有し、変形部材は、感温媒体の圧力に応じて変形するものを採用してもよい。 For example, the drive mechanism unit includes an enclosed space forming member that forms an enclosed space in which a temperature-sensitive medium whose pressure changes with a change in temperature of the refrigerant downstream of the pressure increasing unit is enclosed. You may employ | adopt what deform | transforms according to the pressure of a medium.
 ここで、昇圧部よりも下流側の冷媒とは、昇圧部から流出した冷媒を意味している。 Here, the refrigerant on the downstream side of the pressurizing unit means the refrigerant that has flowed out of the pressurizing unit.
 従って、昇圧部の冷媒出口に圧縮機の吸入側が接続される冷凍サイクル装置では、昇圧部よりも下流側の冷媒には、昇圧部の冷媒出口から圧縮機の吸入口へ至る冷媒流路を流通する冷媒が含まれる。さらに、昇圧部の冷媒出口に冷媒吸引口側が接続される冷凍サイクル装置では、昇圧部よりも下流側の冷媒には、昇圧部の冷媒出口から冷媒吸引口へ至る冷媒流路を流通する冷媒が含まれる。 Therefore, in a refrigeration cycle apparatus in which the compressor suction side is connected to the refrigerant outlet of the booster, the refrigerant downstream from the booster flows through the refrigerant flow path from the refrigerant outlet of the booster to the compressor inlet. Refrigerant is included. Further, in the refrigeration cycle apparatus in which the refrigerant suction port side is connected to the refrigerant outlet of the boosting unit, the refrigerant flowing through the refrigerant flow path from the refrigerant outlet of the boosting unit to the refrigerant suction port is included in the refrigerant downstream of the boosting unit. included.
第1実施形態のエジェクタ式冷凍サイクルの全体構成図である。It is a whole block diagram of the ejector-type refrigerating cycle of 1st Embodiment. 第1実施形態のエジェクタモジュールの軸方向断面図である。It is an axial sectional view of the ejector module of the first embodiment. 第2実施形態のエジェクタモジュールの軸方向断面図である。It is an axial sectional view of the ejector module of the second embodiment. 第3実施形態のエジェクタモジュールの軸方向断面図である。It is an axial sectional view of an ejector module of a 3rd embodiment. 他の実施形態のエジェクタ式冷凍サイクルの全体構成図である。It is a whole block diagram of the ejector-type refrigerating cycle of other embodiment.
 (第1実施形態)
 図1、図2を用いて、本開示の第1実施形態を説明する。本実施形態のエジェクタモジュール20は、図1の全体構成図に示すように、冷媒減圧装置としてエジェクタを備える蒸気圧縮式の冷凍サイクル装置であるエジェクタ式冷凍サイクル10に適用されている。このエジェクタ式冷凍サイクル10は、車両用空調装置に適用されており、冷却対象空間である車室内へ送風される送風空気を冷却する機能を果たす。従って、エジェクタ式冷凍サイクル10の冷却対象流体は、送風空気である。
(First embodiment)
A first embodiment of the present disclosure will be described with reference to FIGS. 1 and 2. The ejector module 20 of the present embodiment is applied to an ejector refrigeration cycle 10 that is a vapor compression refrigeration cycle apparatus including an ejector as a refrigerant decompression device, as shown in the overall configuration diagram of FIG. This ejector-type refrigeration cycle 10 is applied to a vehicle air conditioner, and fulfills a function of cooling blown air that is blown into a vehicle interior that is a space to be cooled. Therefore, the fluid to be cooled in the ejector refrigeration cycle 10 is blown air.
 エジェクタ式冷凍サイクル10では、冷媒としてHFC系冷媒(具体的には、R134a)あるいはHFO系冷媒(具体的には、R1234fy)を採用しており、サイクルの高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。さらに、冷媒には圧縮機11を潤滑するための冷凍機油が混入されている。冷凍機油の一部は冷媒とともにサイクルを循環している。 In the ejector refrigeration cycle 10, an HFC refrigerant (specifically, R134a) or an HFO refrigerant (specifically, R1234fy) is employed as the refrigerant, and the high pressure side refrigerant pressure of the cycle is equal to the critical pressure of the refrigerant. The subcritical refrigeration cycle is not exceeded. Furthermore, refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant. A part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
 エジェクタ式冷凍サイクル10の構成機器のうち、圧縮機11は、冷媒を吸入して高圧冷媒となるまで圧縮して吐出するものである。より具体的には、本実施形態の圧縮機11は、1つのハウジング内に固定容量型の圧縮機構、および圧縮機構を駆動する電動モータを収容して構成された電動圧縮機である。 Among the constituent devices of the ejector refrigeration cycle 10, the compressor 11 sucks the refrigerant and compresses and discharges it until it becomes a high-pressure refrigerant. More specifically, the compressor 11 of the present embodiment is an electric compressor that is configured by housing a fixed capacity type compression mechanism and an electric motor that drives the compression mechanism in one housing.
 この圧縮機構としては、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用することができる。また、電動モータは、図示しない空調制御装置から出力される制御信号によって、その作動(回転数)が制御されるもので、交流モータ、直流モータのいずれの形式のものを採用してもよい。 As this compression mechanism, various compression mechanisms such as a scroll-type compression mechanism and a vane-type compression mechanism can be employed. Further, the operation (rotation speed) of the electric motor is controlled by a control signal output from an air conditioning control device (not shown), and either an AC motor or a DC motor may be adopted.
 圧縮機11の吐出口には、放熱器12の凝縮部12aの冷媒入口側が接続されている。放熱器12は、圧縮機11から吐出された高圧側冷媒と冷却ファン12cから送風された車室外空気(外気)を熱交換させることによって、高圧冷媒を放熱させて冷却する放熱用熱交換器である。 The refrigerant inlet side of the condenser 12 a of the radiator 12 is connected to the discharge port of the compressor 11. The radiator 12 is a heat dissipation heat exchanger that radiates and cools the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the outside air (outside air) blown from the cooling fan 12c. is there.
 より具体的には、放熱器12は、凝縮部12aおよびレシーバ部12bを有する、いわゆるレシーバ一体型の凝縮器として構成されている。凝縮部12aは、圧縮機11から吐出された高圧気相冷媒と冷却ファン12cから送風された外気とを熱交換させて、高圧気相冷媒を放熱させて凝縮させる凝縮用の熱交換部である。レシーバ部12bは、凝縮部12aから流出した冷媒の気液を分離して余剰液相冷媒を蓄える冷媒容器である。 More specifically, the radiator 12 is configured as a so-called receiver-integrated condenser having a condensing part 12a and a receiver part 12b. The condensing unit 12a is a heat exchanging unit for condensation that exchanges heat between the high-pressure gas-phase refrigerant discharged from the compressor 11 and the outside air blown from the cooling fan 12c, and dissipates the high-pressure gas-phase refrigerant to condense. . The receiver unit 12b is a refrigerant container that separates the gas-liquid refrigerant flowing out from the condensing unit 12a and stores excess liquid-phase refrigerant.
 冷却ファン12cは、空調制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動送風機である。 The cooling fan 12c is an electric blower whose number of rotations (amount of blown air) is controlled by a control voltage output from the air conditioning control device.
 放熱器12のレシーバ部12bの冷媒出口には、エジェクタモジュール20のボデー部21に設けられた高圧入口21a側が接続されている。エジェクタモジュール20は、エジェクタ式冷凍サイクル10を構成するサイクル構成機器の一部を一体化(換言すると、モジュール化)させたものである。 The high-pressure inlet 21 a side provided in the body part 21 of the ejector module 20 is connected to the refrigerant outlet of the receiver part 12 b of the radiator 12. The ejector module 20 is obtained by integrating (in other words, modularizing) a part of the cycle constituent devices constituting the ejector refrigeration cycle 10.
 より具体的には、本実施形態のエジェクタモジュール20は、サイクル構成機器のうち、分岐部14、エジェクタ15、可変絞り機構16等を一体化させたものである。 More specifically, the ejector module 20 of the present embodiment is obtained by integrating the branching unit 14, the ejector 15, the variable throttle mechanism 16 and the like among the cycle constituent devices.
 分岐部14は、放熱器12から流出した冷媒の流れを分岐し、分岐された一方の冷媒をエジェクタ15のノズル部15aから噴射させ、分岐された他方の冷媒を可変絞り機構16へ流出させる機能を果たす。分岐部14は、エジェクタモジュール20のボデー部21内に形成された空間および冷媒通路を接続することによって形成されている。 The branch part 14 branches the flow of the refrigerant that has flowed out of the radiator 12, injects one of the branched refrigerants from the nozzle part 15a of the ejector 15, and causes the other branched refrigerant to flow out to the variable throttle mechanism 16. Fulfill. The branch portion 14 is formed by connecting a space formed in the body portion 21 of the ejector module 20 and a refrigerant passage.
 エジェクタ15は、分岐部14にて分岐された一方の冷媒を減圧させて噴射するノズル部15aを有し、冷媒減圧装置としての機能を果たす。さらに、エジェクタ15は、ノズル部15aの冷媒噴射口15bから噴射された噴射冷媒の吸引作用によって、外部から冷媒を吸引して循環させる冷媒循環装置としての機能を果たす。より具体的には、エジェクタ15は、後述する第1蒸発器17から流出した冷媒を吸引する。 The ejector 15 has a nozzle portion 15a that depressurizes and injects one of the refrigerants branched at the branching portion 14, and functions as a refrigerant decompression device. Further, the ejector 15 functions as a refrigerant circulation device that sucks and circulates the refrigerant from the outside by the suction action of the refrigerant injected from the refrigerant injection port 15b of the nozzle portion 15a. More specifically, the ejector 15 sucks the refrigerant that has flowed out of the first evaporator 17 described later.
 これに加えて、エジェクタ15は、ノズル部15aから噴射された噴射冷媒とボデー部21に形成された冷媒吸引口21bから吸引された吸引冷媒との混合冷媒の運動エネルギを圧力エネルギに変換して、混合冷媒を昇圧させるエネルギ変換装置としての機能を果たす。エジェクタ15は、昇圧させた冷媒を後述する第2蒸発器18の冷媒入口側へ流出させる。エジェクタ15のノズル部15aは、通路断面積を変更可能に構成されている。 In addition, the ejector 15 converts the kinetic energy of the mixed refrigerant of the refrigerant injected from the nozzle portion 15a and the refrigerant sucked from the refrigerant suction port 21b formed in the body portion 21 into pressure energy. It functions as an energy conversion device that boosts the pressure of the mixed refrigerant. The ejector 15 causes the pressurized refrigerant to flow out to the refrigerant inlet side of the second evaporator 18 described later. The nozzle portion 15a of the ejector 15 is configured such that the passage cross-sectional area can be changed.
 可変絞り機構16は、分岐部14にて分岐された他方の冷媒を減圧させる絞り通路20aを有している。可変絞り機構16は、絞り通路20aの通路断面積(すなわち、絞り開度)を変更可能に構成されている。可変絞り機構16は、減圧させた冷媒を第1蒸発器17の冷媒入口側へ流出させる。 The variable throttle mechanism 16 has a throttle passage 20a that depressurizes the other refrigerant branched by the branching section 14. The variable throttle mechanism 16 is configured to be able to change the passage cross-sectional area (that is, the throttle opening) of the throttle passage 20a. The variable throttle mechanism 16 causes the decompressed refrigerant to flow out to the refrigerant inlet side of the first evaporator 17.
 次に、図2を用いて、エジェクタモジュール20の詳細構成を説明する。エジェクタモジュール20は、ボデー部21、複合弁体部22、駆動機構部23等を有している。 Next, the detailed configuration of the ejector module 20 will be described with reference to FIG. The ejector module 20 includes a body part 21, a composite valve body part 22, a drive mechanism part 23, and the like.
 ボデー部21は、エジェクタモジュール20の外殻を形成するとともに、エジェクタ15、可変絞り機構16等の構成部材の一部を形成するものである。ボデー部21は、本体部211、ノズルボデー212、ディフューザボデー213等の複数の構成部材を組み合わせることによって形成されている。 The body portion 21 forms an outer shell of the ejector module 20 and forms part of constituent members such as the ejector 15 and the variable aperture mechanism 16. The body part 21 is formed by combining a plurality of constituent members such as the main body part 211, the nozzle body 212, and the diffuser body 213.
 ボデー部21には、高圧入口21a、冷媒吸引口21b、エジェクタ側出口21c、絞り側出口21d、低圧入口21e、および低圧出口21fといった複数の冷媒出入口が設けられている。 The body section 21 is provided with a plurality of refrigerant inlets and outlets such as a high pressure inlet 21a, a refrigerant suction port 21b, an ejector side outlet 21c, a throttle side outlet 21d, a low pressure inlet 21e, and a low pressure outlet 21f.
 高圧入口21aは、放熱器12のレシーバ部12bの冷媒出口から流出した高圧冷媒をエジェクタモジュール20の内部へ流入させる冷媒入口である。従って、高圧入口21aは、分岐部14の冷媒入口となる。冷媒吸引口21bは、第1蒸発器17から流出した冷媒を吸引する冷媒入口である。 The high-pressure inlet 21 a is a refrigerant inlet through which high-pressure refrigerant that has flowed out from the refrigerant outlet of the receiver 12 b of the radiator 12 flows into the ejector module 20. Accordingly, the high-pressure inlet 21 a serves as a refrigerant inlet for the branch portion 14. The refrigerant suction port 21 b is a refrigerant inlet that sucks the refrigerant flowing out of the first evaporator 17.
 エジェクタ側出口21cは、エジェクタ15のディフューザ部15cにて昇圧された冷媒を第2蒸発器18の入口側へ流出させる冷媒出口である。絞り側出口21dは、可変絞り機構16にて減圧された冷媒を、第1蒸発器17の入口側へ流出させる冷媒出口である。 The ejector-side outlet 21c is a refrigerant outlet that causes the refrigerant whose pressure has been increased by the diffuser portion 15c of the ejector 15 to flow out to the inlet side of the second evaporator 18. The throttle-side outlet 21 d is a refrigerant outlet that allows the refrigerant decompressed by the variable throttle mechanism 16 to flow out to the inlet side of the first evaporator 17.
 低圧入口21eは、第2蒸発器18から流出した冷媒を流入させる冷媒入口である。低圧出口21fは、低圧入口21eからエジェクタモジュール20の内部へ流入した冷媒を、圧縮機11の吸入口側へ流出させる冷媒出口である。 The low-pressure inlet 21e is a refrigerant inlet through which the refrigerant that has flowed out of the second evaporator 18 flows. The low-pressure outlet 21f is a refrigerant outlet that allows the refrigerant flowing into the ejector module 20 from the low-pressure inlet 21e to flow out to the suction port side of the compressor 11.
 これらの冷媒出入口のうち、高圧入口21a、冷媒吸引口21b、絞り側出口21d、低圧入口21e、および低圧出口21fは、本体部211に設けられている。エジェクタ側出口21cは、ディフューザボデー213に設けられている。 Among these refrigerant inlets and outlets, the high pressure inlet 21a, the refrigerant suction port 21b, the throttle side outlet 21d, the low pressure inlet 21e, and the low pressure outlet 21f are provided in the main body 211. The ejector side outlet 21 c is provided in the diffuser body 213.
 本体部211は、円柱状あるいは角柱状の金属(本実施形態では、アルミニウム)で形成されている。本体部211の内部には複数の冷媒通路が形成されている。本体部211は、樹脂にて形成されていてもよい。 The main body 211 is formed of a columnar or prismatic metal (in this embodiment, aluminum). A plurality of refrigerant passages are formed inside the main body 211. The main body 211 may be made of resin.
 ノズルボデー212は、冷媒の流れ方向に向かって先細る円筒状の金属(本実施形態では、ステンレス合金または真鍮)で形成されている。ノズルボデー212は、圧入等の手段によりディフューザボデー213の内部に固定されている。さらに、ディフューザボデー213の外周側は、圧入等の手段により本体部211に固定されている。 The nozzle body 212 is formed of a cylindrical metal (in this embodiment, stainless alloy or brass) that tapers in the refrigerant flow direction. The nozzle body 212 is fixed inside the diffuser body 213 by means such as press fitting. Furthermore, the outer peripheral side of the diffuser body 213 is fixed to the main body 211 by means such as press fitting.
 ノズルボデー212は、内部に高圧冷媒を流入させるための流入空間20dを形成するとともに、冷媒を等エントロピ的に減圧させて噴射するノズル部15aを形成している。ノズルボデー212およびディフューザボデー213の筒状側面には、流入空間20dと高圧入口21aとを連通させて、放熱器12から流出した高圧冷媒を流入空間20dへ流入させる入口穴が形成されている。流入空間20dは、円柱状に形成されている。 The nozzle body 212 forms an inflow space 20d for allowing a high-pressure refrigerant to flow therein, and also forms a nozzle portion 15a for injecting the refrigerant by isentropically reducing the pressure. The cylindrical side surfaces of the nozzle body 212 and the diffuser body 213 are formed with inlet holes that allow the high-pressure refrigerant that has flowed out of the radiator 12 to flow into the inflow space 20d by communicating the inflow space 20d with the high-pressure inlet 21a. The inflow space 20d is formed in a cylindrical shape.
 ノズル部15aは、ノズルボデー212の軸方向一端側に設けられている。ノズル部15aの冷媒通路には、冷媒通路断面積を縮小させる喉部、および喉部から冷媒を噴射する冷媒噴射口15bへ向かうに伴って通路断面積が徐々に拡大する末広部が形成されている。つまり、ノズル部15aは、ラバールノズルとして構成されている。 The nozzle portion 15 a is provided on one end side in the axial direction of the nozzle body 212. The refrigerant passage of the nozzle portion 15a is formed with a throat portion that reduces the refrigerant passage cross-sectional area, and a divergent portion in which the passage cross-sectional area gradually increases as it goes from the throat to the refrigerant injection port 15b that injects the refrigerant. Yes. That is, the nozzle portion 15a is configured as a Laval nozzle.
 さらに、本実施形態では、ノズル部15aとして、エジェクタ式冷凍サイクル10の通常運転時に、冷媒噴射口15bから噴射される噴射冷媒の流速が音速以上となるように設定されたものが採用されている。もちろん、ノズル部15aを先細ノズルで構成してもよい。 Further, in the present embodiment, as the nozzle portion 15a, a nozzle set so that the flow rate of the injected refrigerant injected from the refrigerant injection port 15b is equal to or higher than the sonic speed during normal operation of the ejector refrigeration cycle 10 is employed. . Of course, you may comprise the nozzle part 15a with a tapered nozzle.
 ノズルボデー212の流入空間20dの軸方向他端側には、本体部211に形成された絞り通路20aの入口が開口している。このため、高圧入口21aからノズルボデー212の流入空間20dへ流入した高圧冷媒は、流入空間20dからノズル部15aおよび絞り通路20aの双方へ流入する。つまり、本実施形態では、ノズルボデー212の流入空間20d内に、分岐部14が形成されている。 At the other end side in the axial direction of the inflow space 20d of the nozzle body 212, an inlet of the throttle passage 20a formed in the main body 211 is opened. For this reason, the high-pressure refrigerant that has flowed into the inflow space 20d of the nozzle body 212 from the high-pressure inlet 21a flows into both the nozzle portion 15a and the throttle passage 20a from the inflow space 20d. That is, in the present embodiment, the branch portion 14 is formed in the inflow space 20d of the nozzle body 212.
 絞り通路20aは、通路断面積を縮小させることによって、冷媒を減圧させる減圧部である。絞り通路20aは、円柱形状や円錐台形状等の回転体形状等に形成されている。つまり、本実施形態の減圧部は、ボデー部21と一体的に形成されている。もちろん、減圧部として、ボデー部21に対して別部材で形成されたオリフィスを採用して、圧入等の手段によってボデー部21に固定してもよい。 The throttle passage 20a is a decompression section that decompresses the refrigerant by reducing the passage cross-sectional area. The throttle passage 20a is formed in a rotating body shape such as a columnar shape or a truncated cone shape. That is, the decompression part of this embodiment is formed integrally with the body part 21. Of course, an orifice formed as a separate member with respect to the body portion 21 may be adopted as the pressure reducing portion and fixed to the body portion 21 by means such as press fitting.
 さらに、流入空間20dの中心軸、ノズル部15aの中心軸、および絞り通路20aの中心軸は、互いに同軸上に配置されている。従って、本実施形態のノズル部15aと絞り通路20aは、ノズル部15aの軸方向に並んで配置されている。 Furthermore, the central axis of the inflow space 20d, the central axis of the nozzle portion 15a, and the central axis of the throttle passage 20a are arranged coaxially with each other. Accordingly, the nozzle portion 15a and the throttle passage 20a of the present embodiment are arranged side by side in the axial direction of the nozzle portion 15a.
 ディフューザボデー213は、円筒状の金属(本実施形態では、アルミニウム)で形成されている。ディフューザボデー213は、噴射冷媒と吸引冷媒との混合冷媒を昇圧させる昇圧部であるディフューザ部15cを形成している。ディフューザボデー213の筒状側面には、ディフューザ部15cと冷媒吸引口21bとを連通させて、第1蒸発器17から流出した冷媒をディフューザ部15cへ流入させる吸引穴が形成されている。 The diffuser body 213 is made of a cylindrical metal (in this embodiment, aluminum). The diffuser body 213 forms a diffuser portion 15c that is a pressure increasing portion for increasing the pressure of the mixed refrigerant of the injected refrigerant and the suction refrigerant. The cylindrical side surface of the diffuser body 213 is formed with a suction hole for allowing the refrigerant flowing out from the first evaporator 17 to flow into the diffuser portion 15c by communicating the diffuser portion 15c with the refrigerant suction port 21b.
 冷媒吸引口21bから吸引された吸引冷媒は、ノズルボデー212のノズル部15aの外周側の空間に導かれる。ディフューザ部15cは、冷媒流れ下流側に向かうに伴って通路断面積が徐々に拡大する略円錐台形状に形成された冷媒通路である。ディフューザ部15cでは、このような通路形状によって、混合冷媒の運動エネルギを圧力エネルギに変換することができる。 The suction refrigerant sucked from the refrigerant suction port 21b is guided to a space on the outer peripheral side of the nozzle portion 15a of the nozzle body 212. The diffuser portion 15c is a refrigerant passage formed in a substantially truncated cone shape in which the passage cross-sectional area gradually increases as it goes downstream of the refrigerant flow. In the diffuser portion 15c, the kinetic energy of the mixed refrigerant can be converted into pressure energy by such a passage shape.
 複合弁体部22は、ノズル部15aの通路断面積、および絞り通路20aの通路断面積の双方を変化させる弁体部である。複合弁体部22は、ノズル部15aと同じ材質の金属で円柱状に形成されている。複合弁体部22の中心軸は、ノズル部15aの中心軸および絞り通路20aの中心軸と、同軸上に配置されている。複合弁体部22は、ニードル弁部22a、絞り弁部22b、および連結部22cを有している。 The composite valve body portion 22 is a valve body portion that changes both the passage sectional area of the nozzle portion 15a and the passage sectional area of the throttle passage 20a. The composite valve body portion 22 is formed in a columnar shape with the same metal as the nozzle portion 15a. The central axis of the composite valve body 22 is arranged coaxially with the central axis of the nozzle portion 15a and the central axis of the throttle passage 20a. The composite valve body portion 22 includes a needle valve portion 22a, a throttle valve portion 22b, and a connecting portion 22c.
 ニードル弁部22aは、ノズル部15aの通路断面積を変化させる部位である。ニードル弁部22aは、針状(あるいは、円錐形状と円柱形状とを組み合わせた形状)に形成されており、ノズル部15aの流入空間20d内および冷媒通路内に、ノズル部15aの中心軸方向に延びるように配置されている。ニードル弁部22aは、冷媒噴射口15bへ近づく側へ変位することによって、ノズル部15aの通路断面積を縮小させる。 Needle valve portion 22a is a portion that changes the passage cross-sectional area of nozzle portion 15a. The needle valve portion 22a is formed in a needle shape (or a shape in which a conical shape and a cylindrical shape are combined), and in the inflow space 20d of the nozzle portion 15a and in the refrigerant passage, in the direction of the central axis of the nozzle portion 15a. It is arranged to extend. The needle valve portion 22a is displaced toward the side closer to the refrigerant injection port 15b, thereby reducing the passage cross-sectional area of the nozzle portion 15a.
 絞り弁部22bは、底面側の外径がニードル弁部22aの外径よりも大きい円錐台形状に形成されており、絞り通路20aの冷媒流れ下流側(すなわち、絞り通路20aよりも冷媒噴射口15bから遠い側)に配置されている。絞り弁部22bは、ニードル弁部22aとともに、冷媒噴射口15bへ近づく側へ変位することによって、絞り通路20aの通路断面積(すなわち、絞り開度)を縮小させる。 The throttle valve portion 22b is formed in a truncated cone shape whose outer diameter on the bottom side is larger than the outer diameter of the needle valve portion 22a, and is on the downstream side of the refrigerant flow in the throttle passage 20a (that is, the refrigerant injection port more than the throttle passage 20a). 15b). The throttle valve portion 22b, together with the needle valve portion 22a, is displaced toward the side closer to the refrigerant injection port 15b, thereby reducing the passage cross-sectional area (that is, the throttle opening) of the throttle passage 20a.
 さらに、本実施形態では、ニードル弁部22aを、ノズル部15aの喉部に当接させることによって、ノズル部15aを閉塞させることもできる。もちろん、絞り弁部22bを、絞り通路20aの出口部に当接させることによって、絞り通路20aを閉塞させるようにしてもよい。また、ノズル部15aおよび絞り通路20aの双方を閉塞させるようにしてもよい。 Furthermore, in this embodiment, the nozzle part 15a can also be obstruct | occluded by making the needle valve part 22a contact | abut to the throat part of the nozzle part 15a. Of course, the throttle passage 20a may be closed by bringing the throttle valve portion 22b into contact with the outlet of the throttle passage 20a. Further, both the nozzle portion 15a and the throttle passage 20a may be closed.
連結部22cは、外径が絞り弁部22bの外径よりも小さい円柱状に形成されており、絞り弁部22bよりもノズル部15aから離れる方向に延びている。連結部22cのノズル部15aの反対側の端部には、駆動機構部23が連結されている。 The connecting portion 22c is formed in a columnar shape whose outer diameter is smaller than the outer diameter of the throttle valve portion 22b, and extends in a direction away from the nozzle portion 15a than the throttle valve portion 22b. The drive mechanism 23 is connected to the end of the connecting portion 22c opposite to the nozzle portion 15a.
 駆動機構部23は、複合弁体部22をノズル部15aの中心軸方向へ変位させるものである。駆動機構部23は、機械的機構で構成されている。 The drive mechanism section 23 displaces the composite valve body section 22 in the direction of the central axis of the nozzle section 15a. The drive mechanism unit 23 is configured by a mechanical mechanism.
 より具体的には、駆動機構部23は、第2蒸発器18から流出した冷媒の温度および圧力に応じて変形する変形部材であるダイヤフラム23bを有する感温部23aを備えている。そして、このダイヤフラム23bの変形を複合弁体部22の連結部22cに伝達することによって、複合弁体部22を変位させる。 More specifically, the drive mechanism unit 23 includes a temperature sensing unit 23a having a diaphragm 23b that is a deforming member that deforms according to the temperature and pressure of the refrigerant flowing out from the second evaporator 18. The deformation of the diaphragm 23b is transmitted to the connecting portion 22c of the composite valve body portion 22 so that the composite valve body portion 22 is displaced.
 感温部23aは、ダイヤフラム23bとともに封入空間23dを形成する封入空間形成部材であるケース23cを有している。封入空間23dには、温度変化に伴って圧力変化する感温媒体が封入されている。本実施形態では、感温媒体として、エジェクタ式冷凍サイクル10を循環する冷媒を主成分とするものを採用している。 The temperature sensing part 23a has a case 23c which is a sealed space forming member that forms a sealed space 23d together with the diaphragm 23b. A temperature-sensitive medium that changes in pressure with changes in temperature is enclosed in the enclosed space 23d. In the present embodiment, the temperature-sensitive medium is mainly composed of a refrigerant circulating in the ejector refrigeration cycle 10.
 ケース23cとダイヤフラム23bは、ノズル部15aの中心軸周りに円環状に形成されている。従って、封入空間23dも、ケース23cおよびダイヤフラム23bと同様の円環状に形成されている。感温部23aは、本体部211内に形成された収容空間20b内に配置されている。収容空間20bは、低圧入口21eと低圧出口21fとを接続する流出側通路20cに連通している。 The case 23c and the diaphragm 23b are formed in an annular shape around the central axis of the nozzle portion 15a. Therefore, the enclosed space 23d is also formed in an annular shape similar to the case 23c and the diaphragm 23b. The temperature sensing part 23 a is disposed in the accommodation space 20 b formed in the main body part 211. The accommodation space 20b communicates with the outflow side passage 20c that connects the low pressure inlet 21e and the low pressure outlet 21f.
 このため、封入空間23d内の感温媒体の圧力は、流出側通路20cを流通する低圧冷媒(すなわち、第2蒸発器18から流出した冷媒)の温度に応じて変化する。そして、ダイヤフラム23bは、流出側通路20cを流通する低圧冷媒の圧力と封入空間23d内の感温媒体の圧力との圧力差に応じて変形する。 For this reason, the pressure of the temperature-sensitive medium in the enclosed space 23d varies depending on the temperature of the low-pressure refrigerant flowing through the outflow side passage 20c (that is, the refrigerant flowing out of the second evaporator 18). And the diaphragm 23b deform | transforms according to the pressure difference of the pressure of the low pressure refrigerant | coolant which distribute | circulates the outflow side channel | path 20c, and the pressure of the temperature sensitive medium in the enclosure space 23d.
 従って、ダイヤフラム23bは弾性に富み、かつ耐圧性および気密性に優れる材質で形成されていることが望ましい。そこで、本実施形態では、ダイヤフラム23bとして、ステンレス(SUS304)製の円環形状の金属薄板を採用している。さらに、ダイヤフラム23bとして、基布(ポリエステル)入りのEPDM(エチレンプロピレンジエンゴム)やHNBR(水素添加ニトリルゴム)等のゴム製のものを採用してもよい。 Therefore, it is desirable that the diaphragm 23b is made of a material that is rich in elasticity and excellent in pressure resistance and airtightness. Therefore, in the present embodiment, an annular metal thin plate made of stainless steel (SUS304) is employed as the diaphragm 23b. Furthermore, as the diaphragm 23b, rubber made of EPDM (ethylene propylene diene rubber) or HNBR (hydrogenated nitrile rubber) containing a base fabric (polyester) may be employed.
 また、本実施形態では、封入空間23dがダイヤフラム23bよりも、ノズル部15aに近い側に配置されている。さらに、複合弁体部22の連結部22cは、連結部材24を介してダイヤフラム23bのノズル部15aの反対側の面に連結されている。 In the present embodiment, the enclosed space 23d is disposed closer to the nozzle portion 15a than the diaphragm 23b. Further, the connecting portion 22 c of the composite valve body portion 22 is connected to the surface on the opposite side of the nozzle portion 15 a of the diaphragm 23 b via the connecting member 24.
 従って、流出側通路20cを流通する低圧冷媒の温度(過熱度)が上昇すると、封入空間23d内の感温媒体の飽和圧力が上昇し、封入空間23d内の感温媒体の圧力から流出側通路20cを流通する低圧冷媒の圧力を減算した圧力差が大きくなる。これにより、ダイヤフラム23bがノズル部15aから離れる側(封入空間23dが膨らむ側)に変形する。その結果、複合弁体部22がノズル部15aの通路断面積を拡大させるとともに、絞り通路20aの絞り開度を増加させる側に変位する。 Therefore, when the temperature (superheat degree) of the low-pressure refrigerant flowing through the outflow side passage 20c rises, the saturation pressure of the temperature sensitive medium in the enclosed space 23d rises, and the outflow side passage from the pressure of the temperature sensitive medium in the enclosed space 23d. The pressure difference obtained by subtracting the pressure of the low-pressure refrigerant flowing through 20c increases. As a result, the diaphragm 23b is deformed to the side away from the nozzle portion 15a (the side on which the enclosed space 23d swells). As a result, the composite valve body portion 22 expands the passage cross-sectional area of the nozzle portion 15a and displaces the throttle passage 20a toward the side that increases the throttle opening.
 一方、流出側通路20cを流通する低圧冷媒の温度(過熱度)が低下すると、封入空間23d内の感温媒体の飽和圧力が低下し、封入空間23d内の感温媒体の圧力から流出側通路20cを流通する低圧冷媒の圧力を減算した圧力差が小さくなる。これにより、ダイヤフラム23bがノズル部15aへ近づく側(封入空間23dが縮まる側)に変形する。その結果、複合弁体部22がノズル部15aの通路断面積を縮小させるとともに、絞り通路20aの絞り開度を減少させる側に変位する。 On the other hand, when the temperature (superheat degree) of the low-pressure refrigerant flowing through the outflow side passage 20c decreases, the saturation pressure of the temperature sensitive medium in the enclosed space 23d decreases, and the outflow side passage is determined from the pressure of the temperature sensitive medium in the enclosed space 23d. The pressure difference obtained by subtracting the pressure of the low-pressure refrigerant flowing through 20c becomes small. As a result, the diaphragm 23b is deformed to the side approaching the nozzle portion 15a (the side where the enclosed space 23d is contracted). As a result, the composite valve body 22 is displaced to reduce the passage cross-sectional area of the nozzle portion 15a and to reduce the throttle opening of the throttle passage 20a.
 つまり、駆動機構部23は、第2蒸発器18から流出した冷媒の温度および圧力に応じて、複合弁体部22を変位させることができる。そこで、本実施形態の駆動機構部23は、第2蒸発器18出口側冷媒の過熱度が予め定めた基準過熱度(具体的には、1℃)に近づくように、複合弁体部22を変位させる。 That is, the drive mechanism portion 23 can displace the composite valve body portion 22 according to the temperature and pressure of the refrigerant that has flowed out of the second evaporator 18. Therefore, the drive mechanism portion 23 of the present embodiment moves the composite valve body portion 22 so that the superheat degree of the refrigerant on the outlet side of the second evaporator 18 approaches a predetermined reference superheat degree (specifically, 1 ° C.). Displace.
 また、駆動機構部23は、複合弁体部22に対して、ノズル部15aの通路断面積を縮小させるとともに、絞り通路20aの絞り開度を減少させる側の荷重をかける弾性部材であるコイルバネ23eを有している。基準過熱度は、このコイルバネ23eの荷重を変更することによって、調整することができる。 The drive mechanism 23 reduces the passage cross-sectional area of the nozzle portion 15a and a coil spring 23e, which is an elastic member that applies a load that reduces the throttle opening of the throttle passage 20a. have. The reference superheat degree can be adjusted by changing the load of the coil spring 23e.
 以上の説明から明らかなように、エジェクタモジュール20では、ノズルボデー212のノズル部15a、本体部211の冷媒吸引口21b、ディフューザボデー213内のディフューザ部15c、複合弁体部22のニードル弁部22a、および駆動機構部23等によって、ノズル部15aの通路断面積を変更可能に構成された可変ノズル部を有するエジェクタ15が構成されている。 As is clear from the above description, in the ejector module 20, the nozzle part 15a of the nozzle body 212, the refrigerant suction port 21b of the main body part 211, the diffuser part 15c in the diffuser body 213, the needle valve part 22a of the composite valve body part 22, The ejector 15 having the variable nozzle portion configured to change the passage cross-sectional area of the nozzle portion 15a is configured by the drive mechanism portion 23 and the like.
 また、エジェクタモジュール20では、本体部211の絞り通路20a、複合弁体部22の絞り弁部22b、および駆動機構部23等によって、絞り通路20aの通路断面積(すなわち、絞り開度)を変更可能に構成された可変絞り機構16が構成されている。 Further, in the ejector module 20, the cross-sectional area of the throttle passage 20a (that is, the throttle opening) is changed by the throttle passage 20a of the main body 211, the throttle valve portion 22b of the composite valve body portion 22, the drive mechanism portion 23, and the like. A variable aperture mechanism 16 configured to be capable of being configured.
 そして、駆動機構部23が複合弁体部22を変位させることによって、ノズル部15aの通路断面積および絞り通路20aの通路断面積の双方が連動して変化する。本実施形態では、ノズル部15aの通路断面積と絞り通路20aの通路断面積との通路面積比が、負荷変動に応じて決定される適切な値となるように、ノズル部15a、ニードル弁部22a、絞り通路20a、絞り弁部22bの形状が設定されている。 And when the drive mechanism part 23 displaces the composite valve body part 22, both the passage sectional area of the nozzle part 15a and the passage sectional area of the throttle passage 20a change in conjunction with each other. In the present embodiment, the nozzle portion 15a and the needle valve portion are set so that the passage area ratio between the passage cross-sectional area of the nozzle portion 15a and the passage cross-sectional area of the throttle passage 20a is an appropriate value determined according to the load fluctuation. The shapes of 22a, the throttle passage 20a, and the throttle valve portion 22b are set.
 次に、図1に示す第2蒸発器18は、送風機18aから車室内へ向けて送風された送風空気とエジェクタモジュール20のエジェクタ側出口21c(すなわち、エジェクタの15のディフューザ部15cの冷媒出口)から流出した低圧冷媒とを熱交換させ、この低圧冷媒を蒸発させて吸熱作用を発揮させることによって送風空気を冷却する吸熱用熱交換器である。 Next, the second evaporator 18 shown in FIG. 1 includes the blown air blown from the blower 18a toward the vehicle interior and the ejector side outlet 21c of the ejector module 20 (that is, the refrigerant outlet of the diffuser portion 15c of the ejector 15). It is a heat-absorbing heat exchanger that cools blown air by exchanging heat with the low-pressure refrigerant that has flowed out of the air and evaporating the low-pressure refrigerant to exert its endothermic action.
 送風機18aは、空調制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動送風機である。第2蒸発器18の冷媒出口には、エジェクタモジュール20の低圧入口21e側が接続されている。 The blower 18a is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the air conditioning control device. The refrigerant outlet of the second evaporator 18 is connected to the low pressure inlet 21 e side of the ejector module 20.
 第1蒸発器17は、第2蒸発器18を通過した送風空気とエジェクタモジュール20の絞り側出口21d(すなわち、可変絞り機構16の冷媒出口)から流出した低圧冷媒とを熱交換させ、この低圧冷媒を蒸発させて吸熱作用を発揮させることによって送風空気を冷却する吸熱用熱交換器である。第1蒸発器17の冷媒出口には、エジェクタモジュール20の冷媒吸引口21b側が接続されている。 The first evaporator 17 exchanges heat between the blown air that has passed through the second evaporator 18 and the low-pressure refrigerant that has flowed out from the throttle-side outlet 21d of the ejector module 20 (that is, the refrigerant outlet of the variable throttle mechanism 16). This is an endothermic heat exchanger that cools blown air by evaporating the refrigerant to exhibit an endothermic effect. The refrigerant outlet of the first evaporator 17 is connected to the refrigerant suction port 21 b side of the ejector module 20.
 また、本実施形態の第1蒸発器17および第2蒸発器18は、一体的に構成されている。具体的には、第1蒸発器17および第2蒸発器18は、いずれも冷媒を流通させる複数本のチューブと、この複数のチューブの両端側に配置されてチューブを流通する冷媒の集合あるいは分配を行う一対の集合分配用タンクとを有する、いわゆるタンクアンドチューブ型の熱交換器で構成されている。 Further, the first evaporator 17 and the second evaporator 18 of the present embodiment are integrally configured. Specifically, each of the first evaporator 17 and the second evaporator 18 includes a plurality of tubes that circulate the refrigerant, and a collection or distribution of refrigerants that are arranged on both ends of the plurality of tubes and circulate through the tubes. And a so-called tank-and-tube heat exchanger having a pair of collective distribution tanks.
 そして、第1蒸発器17および第2蒸発器18の集合分配用タンクを同一部材にて形成することによって、第1蒸発器17および第2蒸発器18を一体化させている。この際、本実施形態では、第2蒸発器18が第1蒸発器17に対して送風空気流れ上流側に配置されるように、第1蒸発器17および第2蒸発器18を送風空気流れに対して直列に配置している。従って、送風空気は図1の二点鎖線で描いた矢印で示すように流れる。 The first evaporator 17 and the second evaporator 18 are integrated by forming the collective distribution tank of the first evaporator 17 and the second evaporator 18 with the same member. At this time, in the present embodiment, the first evaporator 17 and the second evaporator 18 are changed to the blown air flow so that the second evaporator 18 is arranged on the upstream side of the blower air flow with respect to the first evaporator 17. In contrast, they are arranged in series. Accordingly, the blown air flows as shown by the arrows drawn by the two-dot chain line in FIG.
 次に、本実施形態のエジェクタ式冷凍サイクル10の電気制御部について説明する。図示しない空調制御装置は、CPU、ROM、RAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器11、12c、18a等の作動を制御する。 Next, the electric control unit of the ejector refrigeration cycle 10 of this embodiment will be described. An air conditioning control device (not shown) is composed of a well-known microcomputer including a CPU, ROM, RAM, etc. and its peripheral circuits, and performs various calculations and processing based on a control program stored in the ROM, and is connected to the output side. The operation of the various controlled devices 11, 12c, 18a and the like is controlled.
 また、空調制御装置には、車室内温度を検出する内気温センサ、外気温を検出する外気温センサ、車室内の日射量を検出する日射センサ、第1蒸発器17から吹き出される吹出空気温度(蒸発器温度)を検出する蒸発器温度センサ等のセンサ群が接続され、これらの空調用センサ群の検出値が入力される。 Further, the air conditioning control device includes an inside air temperature sensor that detects the temperature inside the vehicle, an outside air temperature sensor that detects the outside air temperature, a solar radiation sensor that detects the amount of solar radiation in the vehicle interior, and the temperature of the air blown out from the first evaporator 17. Sensor groups such as an evaporator temperature sensor for detecting (evaporator temperature) are connected, and detection values of these air conditioning sensor groups are input.
 さらに、空調制御装置の入力側には、図示しない操作パネルが接続され、この操作パネルに設けられた各種操作スイッチからの操作信号が空調制御装置へ入力される。操作パネルに設けられた各種操作スイッチとしては、空調を行うことを要求する空調作動スイッチ、車室内温度を設定する車室内温度設定スイッチ等が設けられている。 Furthermore, an operation panel (not shown) is connected to the input side of the air conditioning control device, and operation signals from various operation switches provided on the operation panel are input to the air conditioning control device. As various operation switches provided on the operation panel, an air conditioning operation switch that requests air conditioning, a vehicle interior temperature setting switch that sets the vehicle interior temperature, and the like are provided.
 なお、本実施形態の空調制御装置は、その出力側に接続された各種の制御対象機器の作動を制御する制御部が一体に構成されたものであるが、空調制御装置のうち、各制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が各制御対象機器の制御部を構成している。例えば、本実施形態では、圧縮機11の作動を制御する構成が、吐出能力制御部を構成している。 Note that the air conditioning control device of the present embodiment is configured such that a control unit that controls the operation of various control target devices connected to the output side is integrally configured. A configuration (hardware and software) for controlling the operation of the device constitutes a control unit of each control target device. For example, in this embodiment, the structure which controls the action | operation of the compressor 11 comprises the discharge capability control part.
 次に、上記構成における本実施形態のエジェクタ式冷凍サイクル10の作動について説明する。操作パネルの空調作動スイッチが投入(ON)されると、空調制御装置が、圧縮機11、冷却ファン12c、送風機18a等を作動させる。 Next, the operation of the ejector refrigeration cycle 10 of the present embodiment having the above configuration will be described. When the air conditioning operation switch on the operation panel is turned on (ON), the air conditioning control device operates the compressor 11, the cooling fan 12c, the blower 18a, and the like.
 これにより、圧縮機11が冷媒を吸入し、圧縮して吐出する。圧縮機11から吐出された高温高圧冷媒は、放熱器12へ流入する。放熱器12へ流入した冷媒は、凝縮部12aにて冷却ファン12cから送風された外気と熱交換して凝縮する。凝縮部12aにて冷却された冷媒は、レシーバ部12bにて気液分離される。 Thereby, the compressor 11 sucks the refrigerant, compresses it, and discharges it. The high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the radiator 12. The refrigerant flowing into the radiator 12 is condensed by exchanging heat with the outside air blown from the cooling fan 12c in the condensing unit 12a. The refrigerant cooled by the condensing unit 12a is gas-liquid separated by the receiver unit 12b.
 レシーバ部12bにて分離された液相冷媒は、エジェクタモジュール20の高圧入口21aへ流入する。エジェクタモジュール20の内部へ流入した冷媒は、分岐部14にて分岐される。分岐された一方の冷媒は、エジェクタ15のノズル部15aへ流入して等エントロピ的に減圧されて冷媒噴射口15bから噴射される。そして、この噴射冷媒の吸引作用によって、第1蒸発器17から流出した冷媒が、冷媒吸引口21bから吸引される。 The liquid phase refrigerant separated by the receiver unit 12b flows into the high-pressure inlet 21a of the ejector module 20. The refrigerant that has flowed into the ejector module 20 is branched at the branching section 14. One of the branched refrigerant flows into the nozzle portion 15a of the ejector 15, is isentropically decompressed, and is ejected from the refrigerant ejection port 15b. And the refrigerant | coolant which flowed out from the 1st evaporator 17 is attracted | sucked from the refrigerant | coolant suction port 21b by the suction effect | action of this injection refrigerant | coolant.
 この際、駆動機構部23は、流出側通路20cを流通する冷媒(換言すると、第2蒸発器18出口側冷媒)の過熱度が、基準過熱度(具体的には、1℃)に近づくように、複合弁体部22を変位させる。 At this time, the drive mechanism unit 23 causes the superheat degree of the refrigerant flowing through the outflow side passage 20c (in other words, the refrigerant on the outlet side of the second evaporator 18) to approach the reference superheat degree (specifically, 1 ° C.). Next, the composite valve body 22 is displaced.
 ノズル部15aの冷媒噴射口15bから噴射された噴射冷媒および冷媒吸引口21bから吸引された吸引冷媒は、ディフューザ部15cへ流入する。ディフューザ部15cでは、冷媒通路面積の拡大により、冷媒の速度エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒との混合冷媒の圧力が上昇する。ディフューザ部15cにて昇圧された冷媒は、エジェクタ側出口21cから流出する。 The injection refrigerant injected from the refrigerant injection port 15b of the nozzle portion 15a and the suction refrigerant sucked from the refrigerant suction port 21b flow into the diffuser portion 15c. In the diffuser portion 15c, the velocity energy of the refrigerant is converted into pressure energy by expanding the refrigerant passage area. Thereby, the pressure of the mixed refrigerant of the injection refrigerant and the suction refrigerant increases. The refrigerant whose pressure has been increased in the diffuser portion 15c flows out from the ejector side outlet 21c.
 エジェクタ側出口21cから流出した冷媒は、第2蒸発器18へ流入する。第2蒸発器18へ流入した冷媒は、送風機18aによって送風された送風空気から吸熱して蒸発する。これにより、送風機18aによって送風された送風空気が冷却される。第2蒸発器18から流出した冷媒は、エジェクタモジュール20の流出側通路20cを介して、圧縮機11へ吸入されて再び圧縮される。 The refrigerant that has flowed out of the ejector side outlet 21c flows into the second evaporator 18. The refrigerant flowing into the second evaporator 18 absorbs heat from the blown air blown by the blower 18a and evaporates. Thereby, the blowing air blown by the blower 18a is cooled. The refrigerant that has flowed out of the second evaporator 18 is sucked into the compressor 11 through the outflow side passage 20c of the ejector module 20 and compressed again.
 一方、分岐部14にて分岐された他方の冷媒は、可変絞り機構16の絞り通路20aへ流入して等エンタルピ的に減圧される。可変絞り機構16にて減圧された冷媒は、絞り側出口21dから流出して、第1蒸発器17へ流入する。第1蒸発器17へ流入した冷媒は、第2蒸発器18通過後の送風空気から吸熱して蒸発する。これにより、第2蒸発器18通過後の送風空気がさらに冷却される。 On the other hand, the other refrigerant branched by the branching section 14 flows into the throttle passage 20a of the variable throttle mechanism 16 and is decompressed in an enthalpy manner. The refrigerant decompressed by the variable throttle mechanism 16 flows out from the throttle-side outlet 21d and flows into the first evaporator 17. The refrigerant flowing into the first evaporator 17 absorbs heat from the blown air after passing through the second evaporator 18 and evaporates. Thereby, the blown air after passing through the second evaporator 18 is further cooled.
 この際、本実施形態では、通路面積比が適切な値となるように、ノズル部15a、ニードル弁部22a、絞り通路20a、絞り弁部22bの形状が設定されているので、第1蒸発器17から流出する冷媒の乾き度が0°程度となる。第1蒸発器17から流出した冷媒は、冷媒吸引口21bから吸引される。 In this case, in the present embodiment, since the shapes of the nozzle portion 15a, the needle valve portion 22a, the throttle passage 20a, and the throttle valve portion 22b are set so that the passage area ratio becomes an appropriate value, the first evaporator The dryness of the refrigerant flowing out from 17 is about 0 °. The refrigerant flowing out from the first evaporator 17 is sucked from the refrigerant suction port 21b.
 以上の如く、本実施形態のエジェクタ式冷凍サイクル10によれば、第1蒸発器17および第2蒸発器18にて、車室内へ送風される送風空気を冷却することができる。 As described above, according to the ejector refrigeration cycle 10 of the present embodiment, the blown air blown into the vehicle compartment can be cooled by the first evaporator 17 and the second evaporator 18.
 さらに、本実施形態のエジェクタ式冷凍サイクル10では、第2蒸発器18下流側の冷媒、すなわちエジェクタ15のディフューザ部15cにて昇圧された冷媒を圧縮機11へ吸入させることができる。従って、エジェクタ式冷凍サイクル10では、蒸発器における冷媒蒸発圧力と吸入冷媒の圧力が同等となる通常の冷凍サイクル装置よりも、圧縮機11の消費動力を低減させて、サイクルの成績係数(COP)の向上させることができる。 Furthermore, in the ejector refrigeration cycle 10 of the present embodiment, the refrigerant on the downstream side of the second evaporator 18, that is, the refrigerant whose pressure has been increased by the diffuser portion 15 c of the ejector 15 can be sucked into the compressor 11. Therefore, in the ejector-type refrigeration cycle 10, the power consumption of the compressor 11 is reduced and the coefficient of performance (COP) of the cycle is reduced as compared with a normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the evaporator is equal to the suction refrigerant pressure. Can be improved.
 また、本実施形態のエジェクタ式冷凍サイクル10では、第2蒸発器18における冷媒蒸発圧力をディフューザ部15cにて昇圧された冷媒圧力とし、第1蒸発器17における冷媒蒸発圧力をノズル部15aにて減圧された直後の低い冷媒圧力とすることができる。従って、各蒸発器における冷媒蒸発温度と送風空気との温度差を確保して、送風空気を効率的に冷却することができる。 In the ejector refrigeration cycle 10 of the present embodiment, the refrigerant evaporation pressure in the second evaporator 18 is set to the refrigerant pressure increased by the diffuser unit 15c, and the refrigerant evaporation pressure in the first evaporator 17 is set by the nozzle unit 15a. A low refrigerant pressure immediately after depressurization can be achieved. Therefore, the temperature difference between the refrigerant evaporation temperature and the blown air in each evaporator can be secured and the blown air can be efficiently cooled.
 また、本実施形態のエジェクタモジュール20では、可変ノズル部を有するエジェクタ15、および可変絞り機構16を備えている。従って、エジェクタ式冷凍サイクル10の負荷変動に応じて、エジェクタ15のノズル部15aの通路断面積、および可変絞り機構16の絞り開度を連動させて変化させることができる。 Further, the ejector module 20 of the present embodiment includes an ejector 15 having a variable nozzle portion and a variable aperture mechanism 16. Accordingly, the passage sectional area of the nozzle portion 15a of the ejector 15 and the throttle opening of the variable throttle mechanism 16 can be changed in conjunction with each other according to the load fluctuation of the ejector refrigeration cycle 10.
 この際、ノズル部15aの通路断面積と絞り通路20aの通路断面積との通路面積比が、適切な値となるように設定されているので、ノズル部15aへ流入する冷媒流量および可変絞り機構16へ流入する冷媒流量を適切に調整することができる。その結果、負荷変動によらずエジェクタ式冷凍サイクル10に高いCOPを発揮させることができる。 At this time, since the passage area ratio between the passage sectional area of the nozzle portion 15a and the passage sectional area of the throttle passage 20a is set to an appropriate value, the flow rate of refrigerant flowing into the nozzle portion 15a and the variable throttle mechanism The flow rate of the refrigerant flowing into 16 can be adjusted appropriately. As a result, the ejector refrigeration cycle 10 can exhibit a high COP regardless of load fluctuations.
 さらに、通路面積比を適切な値に調整できることは、本実施形態のエジェクタ式冷凍サイクル10のように、ノズル部15aよりも冷媒流れ上流側で冷媒の流れを分岐し、分岐された一方の冷媒をノズル部15aへ流入させ、分岐された他方の冷媒を絞り機構および蒸発器を介してエジェクタ15の冷媒吸引口21bから吸引させるサイクル構成では有効である。 Further, the passage area ratio can be adjusted to an appropriate value, as in the ejector refrigeration cycle 10 of the present embodiment, the refrigerant flow is branched upstream of the nozzle portion 15a, and one of the branched refrigerants This is effective in a cycle configuration in which the refrigerant flows into the nozzle portion 15a and the other branched refrigerant is sucked from the refrigerant suction port 21b of the ejector 15 through the throttle mechanism and the evaporator.
 その理由は、このようなサイクル構成では、低負荷運転時のように、サイクルを循環する循環冷媒流量が低下すると、エジェクタ15の冷媒吸引能力が低下して、第1蒸発器17へ冷媒を供給しにくくなってしまうからである。 The reason for this is that, in such a cycle configuration, when the flow rate of the circulating refrigerant circulating in the cycle decreases, such as during low-load operation, the refrigerant suction capacity of the ejector 15 decreases and the refrigerant is supplied to the first evaporator 17. Because it becomes difficult to do.
 これに対して、本実施形態のエジェクタモジュール20によれば、通路面積比を適正な値に調整することができる。さらに、本実施形態のエジェクタ式冷凍サイクル10によれば、圧縮機11の吸入吐出作用を利用して、第1蒸発器17および第2蒸発器18へ確実に冷媒を供給することができる。その結果、第1蒸発器17および第2蒸発器18にて、確実に冷凍能力を発揮させるができる。 On the other hand, according to the ejector module 20 of the present embodiment, the passage area ratio can be adjusted to an appropriate value. Furthermore, according to the ejector refrigeration cycle 10 of the present embodiment, the refrigerant can be reliably supplied to the first evaporator 17 and the second evaporator 18 by using the suction and discharge action of the compressor 11. As a result, the first evaporator 17 and the second evaporator 18 can reliably exhibit the refrigerating capacity.
 また、本実施形態のエジェクタモジュール20によれば、サイクル構成機構のうち、分岐部14、可変ノズル部を有するエジェクタ15、および可変絞り機構16を一体化させているので、エジェクタ式冷凍サイクル10全体としての小型化、および生産性の向上を狙うことができる。 In addition, according to the ejector module 20 of the present embodiment, since the branch portion 14, the ejector 15 having the variable nozzle portion, and the variable throttle mechanism 16 are integrated in the cycle configuration mechanism, the entire ejector refrigeration cycle 10 is integrated. As a result, it is possible to aim for miniaturization and productivity improvement.
 ところが、可変ノズル部を有するエジェクタ15および可変絞り機構16では、通路断面積あるいは絞り開度を変化させるための駆動装置(本実施形態では、駆動機構部23)が必要となる。このような駆動装置は、比較的体格が大きい。このため、上述したエジェクタモジュール20全体としての小型化効果を得にくくなってしまう。 However, in the ejector 15 having the variable nozzle portion and the variable throttle mechanism 16, a drive device (in this embodiment, the drive mechanism portion 23) for changing the passage sectional area or the throttle opening is required. Such a drive device is relatively large. For this reason, it becomes difficult to obtain the downsizing effect of the ejector module 20 as a whole.
 これに対して、本実施形態のエジェクタモジュール20によれば、エジェクタ15と可変絞り機構16とを一体化させる際に、エジェクタ15のノズル部15aの通路断面積、および可変絞り機構16の絞り開度を、共通する1つの駆動機構部23および複合弁体部22で調整するように一体化させている。 On the other hand, according to the ejector module 20 of the present embodiment, when the ejector 15 and the variable throttle mechanism 16 are integrated, the passage sectional area of the nozzle portion 15a of the ejector 15 and the aperture opening of the variable throttle mechanism 16 are opened. The degree is integrated so as to be adjusted by one common drive mechanism portion 23 and composite valve body portion 22.
 従って、ノズル部15a用の駆動機構部と可変絞り機構16用の駆動機構部の2つの駆動機構を備えるエジェクタモジュールと比較して、大型化を招くことなくエジェクタ15と可変絞り機構16とを一体化させることができる。さらに、駆動機構部23として、機械的機構で構成されたものを採用しているので、複合弁体部22を変位させるために電気的な接続を必要とすることもない。 Therefore, the ejector 15 and the variable aperture mechanism 16 are integrated with each other without causing an increase in size as compared with an ejector module having two drive mechanisms: a drive mechanism for the nozzle portion 15a and a drive mechanism for the variable aperture mechanism 16. It can be made. Further, since the drive mechanism portion 23 is configured by a mechanical mechanism, no electrical connection is required to displace the composite valve body portion 22.
 その結果、本実施形態のエジェクタモジュール20によれば、通路断面積を変更可能に構成されていても、適用されたエジェクタ式冷凍サイクル10の大型化を招くことがない。 As a result, according to the ejector module 20 of the present embodiment, the applied ejector refrigeration cycle 10 is not enlarged even if the passage cross-sectional area is configured to be changeable.
 また、本実施形態のエジェクタモジュール20では、ノズル部15aの中心軸および絞り通路20aの中心軸が同軸上に配置されている。従って、複合弁体部22として、ノズル部15aの中心軸方向に延びる柱状のものを採用することができる。これによれば、複合弁体部22を容易に形成できるとともに、ノズル部15aの通路断面積および可変絞り機構16の絞り開度を同時に変化させる弁体部を容易に実現することができる。 Further, in the ejector module 20 of the present embodiment, the central axis of the nozzle portion 15a and the central axis of the throttle passage 20a are arranged coaxially. Therefore, a columnar member extending in the central axis direction of the nozzle portion 15a can be adopted as the composite valve body portion 22. According to this, while being able to form the composite valve body part 22 easily, the valve body part which changes the passage sectional area of the nozzle part 15a and the throttle opening degree of the variable throttle mechanism 16 simultaneously can be easily realized.
 また、本実施形態のエジェクタモジュール20では、ボデー部21の本体部211に、流出側通路20cが形成されており、駆動機構部23の感温部23aが流出側通路20cに連通する空間内に配置されている。これによれば、感温部23aと流出側通路20cとを近づけることができる。 In the ejector module 20 of the present embodiment, the outflow side passage 20c is formed in the body portion 211 of the body portion 21, and the temperature sensing portion 23a of the drive mechanism portion 23 is in a space communicating with the outflow side passage 20c. Is arranged. According to this, the temperature sensing part 23a and the outflow side passage 20c can be brought close to each other.
 従って、エジェクタモジュール20の大型化を招くことなく、感温部23aに流出側通路20cを流通する冷媒の温度および圧力を、精度良く伝達することができる。 Therefore, the temperature and pressure of the refrigerant flowing through the outflow side passage 20c can be accurately transmitted to the temperature sensing portion 23a without causing the ejector module 20 to become large.
 (第2実施形態)
 本実施形態では、第1実施形態に対して、図3に示すエジェクタモジュール201を採用した例を説明する。なお、図3では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。
(Second Embodiment)
In the present embodiment, an example in which the ejector module 201 shown in FIG. 3 is employed with respect to the first embodiment will be described. In FIG. 3, the same or equivalent parts as those in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
 エジェクタモジュール201のボデー部21では、本体部211とディフューザボデー213が互いに固定されている。そして、本体部211とディフューザボデー213との内部に形成された回転体形状の内部空間に、ノズルボデー212がノズル部15aの中心軸方向へ摺動可能に配置されている。 In the body part 21 of the ejector module 201, the main body part 211 and the diffuser body 213 are fixed to each other. The nozzle body 212 is slidably disposed in the central axis direction of the nozzle portion 15a in the internal space of the rotating body formed inside the main body portion 211 and the diffuser body 213.
 ノズルボデー212の筒状外周面とディフューザボデー213の内周面との間には、シール部材(具体的には、Oリング)が介在されており、これらの部材の隙間から冷媒が漏れることはない。さらに、本実施形態では、冷媒吸引口21bがディフューザボデー213に設けられている。 A seal member (specifically, an O-ring) is interposed between the cylindrical outer peripheral surface of the nozzle body 212 and the inner peripheral surface of the diffuser body 213, and refrigerant does not leak from the gap between these members. . Further, in the present embodiment, the refrigerant suction port 21 b is provided in the diffuser body 213.
 また、エジェクタモジュール201は、中心部に絞り通路20aが設けられた有底円筒状の金属(本実施形態では、アルミニウム)で形成されたオリフィス部材25を備えている。オリフィス部材25は、本体部211の内部に形成された円柱形状の内部空間に、ノズル部15aの中心軸方向へ摺動可能に配置されている。 Further, the ejector module 201 includes an orifice member 25 formed of a bottomed cylindrical metal (aluminum in this embodiment) having a throttle passage 20a provided in the center. The orifice member 25 is disposed in a cylindrical internal space formed inside the main body 211 so as to be slidable in the direction of the central axis of the nozzle portion 15a.
 オリフィス部材25の筒状外周面と本体部211の内周面との間には、シール部材(具体的には、Oリング)が介在されており、これらの部材の隙間から冷媒が漏れることはない。さらに、オリフィス部材25は、連結部材24および円板状の金属で形成されたプレート部材23fを介して、駆動機構部23のダイヤフラム23bに連結されている。 A seal member (specifically, an O-ring) is interposed between the cylindrical outer peripheral surface of the orifice member 25 and the inner peripheral surface of the main body 211, and the refrigerant leaks from the gap between these members. Absent. Furthermore, the orifice member 25 is connected to the diaphragm 23b of the drive mechanism unit 23 through the connecting member 24 and a plate member 23f formed of a disk-like metal.
 また、エジェクタモジュール201の複合弁体部22は、支持部材を介して、本体部211に固定されている。従って、エジェクタモジュール201の複合弁体部22は、本体部211に対して変位しない。さらに、ノズル部15aの中心軸、絞り通路20aの中心軸、オリフィス部材25の中心軸、および複合弁体部22の中心軸は、互いに同軸上に配置されている。 Further, the composite valve body portion 22 of the ejector module 201 is fixed to the main body portion 211 via a support member. Therefore, the composite valve body portion 22 of the ejector module 201 is not displaced with respect to the main body portion 211. Further, the central axis of the nozzle portion 15a, the central axis of the throttle passage 20a, the central axis of the orifice member 25, and the central axis of the composite valve body portion 22 are arranged coaxially with each other.
 また、エジェクタモジュール201の駆動機構部23では、ノズル部15aの中心軸方向から見たときに円形状に形成されたケース23cおよびダイヤフラム23bを採用している。さらに、封入空間23dがダイヤフラム23bよりも、ノズル部15aから遠い側に配置されている。また、オリフィス部材25は、ダイヤフラム23bのノズル部15a側の面に連結されている。 Further, the drive mechanism 23 of the ejector module 201 employs a case 23c and a diaphragm 23b that are formed in a circular shape when viewed from the central axis direction of the nozzle portion 15a. Further, the enclosed space 23d is disposed on the side farther from the nozzle portion 15a than the diaphragm 23b. The orifice member 25 is connected to the surface of the diaphragm 23b on the nozzle portion 15a side.
 従って、流出側通路20cを流通する低圧冷媒の温度(過熱度)が上昇すると、封入空間23d内の感温媒体の飽和圧力が上昇し、封入空間23d内の感温媒体の圧力から流出側通路20cを流通する低圧冷媒の圧力を減算した圧力差が大きくなる。これにより、ダイヤフラム23bがノズル部15aへ近づく側(封入空間23dが膨らむ側)に変形する。その結果、ノズルボデー212およびオリフィス部材25が、ノズル部15aの通路断面積を拡大させるとともに、絞り通路20aの絞り開度を増加させる側に変位する。 Therefore, when the temperature (superheat degree) of the low-pressure refrigerant flowing through the outflow side passage 20c rises, the saturation pressure of the temperature sensitive medium in the enclosed space 23d rises, and the outflow side passage from the pressure of the temperature sensitive medium in the enclosed space 23d. The pressure difference obtained by subtracting the pressure of the low-pressure refrigerant flowing through 20c increases. Thereby, the diaphragm 23b deform | transforms into the side (side where the enclosure space 23d swells) which approaches the nozzle part 15a. As a result, the nozzle body 212 and the orifice member 25 are displaced to enlarge the passage cross-sectional area of the nozzle portion 15a and increase the throttle opening of the throttle passage 20a.
 一方、流出側通路20cを流通する低圧冷媒の温度(過熱度)が低下すると、封入空間23d内の感温媒体の飽和圧力が低下し、封入空間23d内の感温媒体の圧力から流出側通路20cを流通する低圧冷媒の圧力を減算した圧力差が小さくなる。これにより、ダイヤフラム23bがノズル部15aから離れる側(封入空間23dが凹む側)に変形する。その結果、ノズルボデー212およびオリフィス部材25が、ノズル部15aの通路断面積を縮小させるとともに、絞り通路20aの絞り開度を減少させる側に変位する。 On the other hand, when the temperature (superheat degree) of the low-pressure refrigerant flowing through the outflow side passage 20c decreases, the saturation pressure of the temperature sensitive medium in the enclosed space 23d decreases, and the outflow side passage is determined from the pressure of the temperature sensitive medium in the enclosed space 23d. The pressure difference obtained by subtracting the pressure of the low-pressure refrigerant flowing through 20c becomes small. As a result, the diaphragm 23b is deformed to the side away from the nozzle portion 15a (the side in which the enclosed space 23d is recessed). As a result, the nozzle body 212 and the orifice member 25 are displaced to reduce the passage cross-sectional area of the nozzle portion 15a and reduce the throttle opening of the throttle passage 20a.
 つまり、エジェクタモジュール201の駆動機構部23は、第2蒸発器18から流出した冷媒の温度および圧力に応じて、ノズル部15aおよび絞り通路20aを変位させることができる。そして、駆動機構部23が、ノズル部15aおよび絞り通路20aを変位させることによって、ノズル部15aの通路断面積および絞り通路20aの通路断面積の双方を連動して変化させることができる。 That is, the drive mechanism portion 23 of the ejector module 201 can displace the nozzle portion 15a and the throttle passage 20a according to the temperature and pressure of the refrigerant flowing out from the second evaporator 18. And the drive mechanism part 23 can change both the passage cross-sectional area of the nozzle part 15a and the passage cross-sectional area of the throttle passage 20a by displacing the nozzle part 15a and the throttle passage 20a.
 ここで、本実施形態のノズルボデー212とオリフィス部材25との間には、ノズル部15aの中心軸方向に隙間が形成されている。 Here, a gap is formed between the nozzle body 212 and the orifice member 25 of the present embodiment in the central axis direction of the nozzle portion 15a.
 このため、流出側通路20cを流通する低圧冷媒の温度(過熱度)が上昇すると、駆動機構部23は、まず、オリフィス部材25を絞り通路20aの絞り開度を増加させる側に変位させる。そして、オリフィス部材25がノズルボデー212に当接すると、駆動機構部23は、オリフィス部材25とともにノズルボデー212をノズル部15aの通路断面積を増加させる側に変位させる。 Therefore, when the temperature (superheat degree) of the low-pressure refrigerant flowing through the outflow side passage 20c rises, the drive mechanism unit 23 first displaces the orifice member 25 to the side that increases the throttle opening of the throttle passage 20a. When the orifice member 25 comes into contact with the nozzle body 212, the drive mechanism 23 displaces the nozzle body 212 together with the orifice member 25 to the side that increases the passage cross-sectional area of the nozzle portion 15a.
 つまり、エジェクタモジュール201では、絞り通路20aの絞り開度を増加させる際に、絞り通路20aに対して、ノズル部15aの通路断面積の増加を遅らせることができる。 That is, in the ejector module 201, when the throttle opening degree of the throttle passage 20a is increased, the increase in the passage sectional area of the nozzle portion 15a can be delayed with respect to the throttle passage 20a.
 このことは、本実施形態のエジェクタ式冷凍サイクル10のように、ノズル部15aよりも冷媒流れ上流側で冷媒の流れを分岐し、分岐された一方の冷媒をノズル部15aへ流入させ、分岐された他方の冷媒を絞り機構および蒸発器を介してエジェクタ15の冷媒吸引口21bから吸引させるサイクル構成では有効である。 This is because, like the ejector refrigeration cycle 10 of the present embodiment, the refrigerant flow is branched upstream of the nozzle portion 15a, and one of the branched refrigerants flows into the nozzle portion 15a to be branched. This is effective in a cycle configuration in which the other refrigerant is sucked from the refrigerant suction port 21b of the ejector 15 through the throttle mechanism and the evaporator.
 その理由は、このようなサイクル構成では、低負荷運転時のように、サイクルを循環する循環冷媒流量が低下すると、エジェクタ15の冷媒吸引能力が低下して、第1蒸発器17へ冷媒を供給しにくくなってしまうからである。 The reason for this is that, in such a cycle configuration, when the flow rate of the circulating refrigerant circulating in the cycle decreases, such as during low-load operation, the refrigerant suction capacity of the ejector 15 decreases and the refrigerant is supplied to the first evaporator 17. Because it becomes difficult to do.
 従って、低負荷運転時には、ノズル部15aを閉塞させて、圧縮機11の吸入吐出作用を利用して、圧縮機11→放熱器12→エジェクタモジュール20(具体的には、分岐部14→可変絞り機構16)→第1蒸発器17→エジェクタモジュール20(具体的には、ディフューザ部15c)→第2蒸発器18→エジェクタモジュール20(具体的には、流出側通路20c)→圧縮機11の順に冷媒を循環させて、第1蒸発器17および第2蒸発器18へ確実に冷媒を供給するようにしてもよい。 Therefore, at the time of low load operation, the nozzle portion 15a is closed, and the compressor 11 → the radiator 12 → the ejector module 20 (specifically, the branch portion 14 → the variable throttle) by using the suction / discharge action of the compressor 11. Mechanism 16) → first evaporator 17 → ejector module 20 (specifically, diffuser portion 15c) → second evaporator 18 → ejector module 20 (specifically, outflow side passage 20c) → compressor 11 in this order. The refrigerant may be circulated to reliably supply the refrigerant to the first evaporator 17 and the second evaporator 18.
 もちろん、エジェクタ式冷凍サイクル10の負荷変動によらず、エジェクタ15が充分な冷媒吸引能力を発揮できるサイクルでは、ノズルボデー212とオリフィス部材25との間に軸方向の隙間を設けることなく、ノズル部15aおよび絞り通路20aを一体的に変位させてもよい。 Of course, in a cycle in which the ejector 15 can exhibit a sufficient refrigerant suction capacity regardless of the load fluctuation of the ejector refrigeration cycle 10, the nozzle portion 15a is not provided with an axial gap between the nozzle body 212 and the orifice member 25. Further, the throttle passage 20a may be displaced integrally.
 その他のエジェクタ式冷凍サイクル10の作動および構成は、第1実施形態と同様である。従って、本実施形態のエジェクタモジュール201およびエジェクタ式冷凍サイクル10においても、第1実施形態と同様の効果を得ることができる。 Other operations and configurations of the ejector refrigeration cycle 10 are the same as those in the first embodiment. Therefore, also in the ejector module 201 and the ejector type refrigeration cycle 10 of the present embodiment, the same effect as that of the first embodiment can be obtained.
 さらに、本実施形態の駆動機構部23では、円形状に形成されたダイヤフラム23bを採用しているので、ノズルボデー212およびオリフィス部材25のノズル部15aの中心軸方向の変位量を確保しやすい。従って、ノズル部15aおよび絞り通路20aを径方向への拡大を招くことなく、充分に通路断面積を変化させることができる。 Furthermore, since the drive mechanism portion 23 of the present embodiment employs the diaphragm 23b formed in a circular shape, it is easy to ensure the amount of displacement in the central axis direction of the nozzle body 212 and the nozzle portion 15a of the orifice member 25. Therefore, the passage cross-sectional area can be changed sufficiently without causing the nozzle portion 15a and the throttle passage 20a to expand in the radial direction.
 (第3実施形態)
 本実施形態では、第1実施形態に対して、図4に示すエジェクタモジュール202を採用した例を説明する。エジェクタモジュール202では、第2実施形態と同様に、ノズル部15aの中心軸方向から見たときに円形状に形成されたケース23cおよびダイヤフラム23bを有する駆動機構部23を採用している。
(Third embodiment)
In the present embodiment, an example in which the ejector module 202 shown in FIG. 4 is employed with respect to the first embodiment will be described. As in the second embodiment, the ejector module 202 employs the drive mechanism portion 23 having a case 23c and a diaphragm 23b formed in a circular shape when viewed from the central axis direction of the nozzle portion 15a.
 エジェクタモジュール202の駆動機構部23では、封入空間23dがダイヤフラム23bよりも、ノズル部15aから遠い側に配置されている。ダイヤフラム23bは、プレート部材23fおよび支持部材を介して、本体部211に固定されている。さらに、複合弁体部22は、連結部材24を介してケース23cに連結されている。 In the drive mechanism portion 23 of the ejector module 202, the enclosed space 23d is disposed on the side farther from the nozzle portion 15a than the diaphragm 23b. The diaphragm 23b is fixed to the main body 211 via a plate member 23f and a support member. Further, the composite valve body portion 22 is connected to the case 23 c via the connecting member 24.
 その他のエジェクタモジュール201の構成は、第1実施形態で説明したエジェクタモジュール20と同様である。 Other configurations of the ejector module 201 are the same as those of the ejector module 20 described in the first embodiment.
 従って、流出側通路20cを流通する低圧冷媒の温度(過熱度)が上昇すると、封入空間23d内の感温媒体の飽和圧力が上昇し、封入空間23d内の感温媒体の圧力から流出側通路20cを流通する低圧冷媒の圧力を減算した圧力差が大きくなる。これにより、ダイヤフラム23bが変形し封入空間23dが膨らむ。その結果、ケース23cとともに複合弁体部22が、ノズル部15aの通路断面積を拡大させるとともに、絞り通路20aの絞り開度を増加させる側に変位する。 Therefore, when the temperature (superheat degree) of the low-pressure refrigerant flowing through the outflow side passage 20c rises, the saturation pressure of the temperature sensitive medium in the enclosed space 23d rises, and the outflow side passage from the pressure of the temperature sensitive medium in the enclosed space 23d. The pressure difference obtained by subtracting the pressure of the low-pressure refrigerant flowing through 20c increases. As a result, the diaphragm 23b is deformed and the enclosed space 23d is expanded. As a result, the composite valve body portion 22 together with the case 23c is displaced toward the side that increases the passage sectional area of the nozzle portion 15a and increases the throttle opening of the throttle passage 20a.
 一方、流出側通路20cを流通する低圧冷媒の温度(過熱度)が低下すると、封入空間23d内の感温媒体の飽和圧力が低下し、封入空間23d内の感温媒体の圧力から流出側通路20cを流通する低圧冷媒の圧力を減算した圧力差が小さくなる。これにより、ダイヤフラム23bが変形し封入空間23dが縮む。その結果、ケース23cとともに複合弁体部22が、ノズル部15aの通路断面積を縮小させるとともに、絞り通路20aの絞り開度を減少させる側に変位する。 On the other hand, when the temperature (superheat degree) of the low-pressure refrigerant flowing through the outflow side passage 20c decreases, the saturation pressure of the temperature sensitive medium in the enclosed space 23d decreases, and the outflow side passage is determined from the pressure of the temperature sensitive medium in the enclosed space 23d. The pressure difference obtained by subtracting the pressure of the low-pressure refrigerant flowing through 20c becomes small. As a result, the diaphragm 23b is deformed and the enclosed space 23d is contracted. As a result, the composite valve element 22 together with the case 23c is displaced toward the side where the passage sectional area of the nozzle portion 15a is reduced and the throttle opening of the throttle passage 20a is reduced.
 つまり、エジェクタモジュール202の駆動機構部23は、第1実施形態と同様に、第2蒸発器18から流出した冷媒の温度および圧力に応じて、複合弁体部22を変位させることができる。そして、駆動機構部23が、ノズル部15aの通路断面積および絞り通路20aの通路断面積の双方を連動して変化させることができる。 That is, the drive mechanism portion 23 of the ejector module 202 can displace the composite valve body portion 22 according to the temperature and pressure of the refrigerant flowing out from the second evaporator 18 as in the first embodiment. The drive mechanism 23 can change both the passage cross-sectional area of the nozzle portion 15a and the passage cross-sectional area of the throttle passage 20a in conjunction with each other.
 その他のエジェクタ式冷凍サイクル10の構成および作動は、第1実施形態と同様である。従って、本実施形態のエジェクタモジュール201およびエジェクタ式冷凍サイクル10においても、第1実施形態と同様の効果を得ることができる。 Other configurations and operations of the ejector refrigeration cycle 10 are the same as those in the first embodiment. Therefore, also in the ejector module 201 and the ejector type refrigeration cycle 10 of the present embodiment, the same effect as that of the first embodiment can be obtained.
 さらに、本実施形態の駆動機構部23では、円形状に形成されたダイヤフラム23bを採用しているので、第2実施形態と同様に、ノズル部15aおよび絞り通路20aを径方向への拡大を招くことなく、充分に通路断面積を変化させることができる。 Furthermore, since the drive mechanism portion 23 of the present embodiment employs a circular diaphragm 23b, as in the second embodiment, the nozzle portion 15a and the throttle passage 20a are expanded in the radial direction. The passage cross-sectional area can be sufficiently changed without any problem.
 (他の実施形態)
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure.
 (1)上述の各実施形態では、本開示に係るエジェクタモジュール20を車両に搭載されるエジェクタ式冷凍サイクル10に適用した例を説明したが、エジェクタモジュール20の適用はこれに限定されない。例えば、定置型の空調装置、冷温保存庫等に用いられるエジェクタ式冷凍サイクルに適用してもよい。 (1) In each of the above-described embodiments, the example in which the ejector module 20 according to the present disclosure is applied to the ejector refrigeration cycle 10 mounted on a vehicle has been described, but the application of the ejector module 20 is not limited thereto. For example, the present invention may be applied to an ejector-type refrigeration cycle used in a stationary air conditioner, a cold / hot storage, or the like.
 (2)エジェクタモジュール20、201、202は、上述の実施形態に開示されたものに限定されない。 (2) The ejector modules 20, 201, and 202 are not limited to those disclosed in the above-described embodiment.
 例えば、上述の実施形態では、変形部材として薄板状に形成されたダイヤフラム23bを採用した例を説明したが、変形部材はこれに限定されない。変形部材として有底円筒状(カップ状)の金属にて形成されて、複合弁体部22の変位方向に伸縮自在の蛇腹部を有する有底円筒状のベローズを採用してもよい。また、変形部材として有底円筒状のゴムにて形成されたベロフラムを採用してもよい。 For example, in the above-described embodiment, the example in which the diaphragm 23b formed in a thin plate shape is employed as the deformable member has been described, but the deformable member is not limited to this. A bottomed cylindrical bellows formed of a bottomed cylindrical (cup-shaped) metal as the deformable member and having a bellows part that can be expanded and contracted in the displacement direction of the composite valve body part 22 may be employed. Moreover, you may employ | adopt the bellophram formed with the bottomed cylindrical rubber as a deformation | transformation member.
 また、上述の実施形態では、駆動機構部として、第2蒸発器18から流出した冷媒の温度および圧力に応じて、複合弁体部22等を変位させるものを採用した例を説明したが、駆動機構部はこれに限定されない。駆動機構部として、冷媒の温度変化に応じて体積変化するサーモワックスによって変形部材を変形させるものや、冷媒の温度変化に応じて変形する形状記憶合金によって形成された変形部材を有するもの採用してもよい。 Moreover, although the above-mentioned embodiment demonstrated the example which employ | adopted what displaces the composite valve body part 22 grade | etc., According to the temperature and pressure of the refrigerant | coolant which flowed out from the 2nd evaporator 18 as a drive mechanism part, The mechanism is not limited to this. As the drive mechanism part, one that deforms the deformable member with a thermo wax that changes in volume according to the temperature change of the refrigerant, or one that has a deformable member formed of a shape memory alloy that deforms according to the temperature change of the refrigerant is adopted. Also good.
 (3)エジェクタモジュール20、201、202を適用可能なエジェクタ式冷凍サイクルは、上述の実施形態で開示されたものに限定されない。 (3) The ejector refrigeration cycle to which the ejector modules 20, 201, 202 can be applied is not limited to that disclosed in the above-described embodiment.
 例えば、エジェクタ式冷凍サイクル10に、放熱器12から流出した冷媒を気液二相状態の中間圧冷媒となるまで減圧させてエジェクタモジュールの高圧入口21a側へ流出させる中間圧減圧装置を追加してもよい。 For example, an intermediate pressure depressurization device is added to the ejector refrigeration cycle 10 to depressurize the refrigerant flowing out of the radiator 12 until it becomes an intermediate pressure refrigerant in a gas-liquid two-phase state and to flow out to the high pressure inlet 21a side of the ejector module. Also good.
 これによれば、エジェクタモジュールの高圧入口21aへ気相冷媒と液相冷媒が均質に混合した気液混合状態の冷媒を流入させることができる。従って、高圧入口21aへ気相冷媒と液相冷媒が偏在して不均質に混合した冷媒を流入させる場合に対して、分岐部14にて分岐される冷媒流量の流量比の変動を抑制することができる。 According to this, the gas-liquid mixed state refrigerant in which the gas-phase refrigerant and the liquid-phase refrigerant are homogeneously mixed can be flowed into the high-pressure inlet 21a of the ejector module. Therefore, the fluctuation of the flow rate ratio of the refrigerant flow branched at the branching portion 14 is suppressed when the refrigerant in which the gas-phase refrigerant and the liquid-phase refrigerant are unevenly mixed and inhomogeneously mixed flows into the high-pressure inlet 21a. Can do.
 また、エジェクタ式冷凍サイクル10に、第2蒸発器18から流出した冷媒の気液を分離して、分離された気相冷媒を圧縮機の吸入側へ流出させる低圧アキュムレータを追加してもよい。 Further, a low-pressure accumulator that separates the gas-liquid refrigerant flowing out of the second evaporator 18 and flows out the separated gas-phase refrigerant to the suction side of the compressor may be added to the ejector refrigeration cycle 10.
 また、図5の全体構成図に示すエジェクタ式冷凍サイクル30に、エジェクタモジュール20、201、202を適用してもよい。 Further, the ejector modules 20, 201, 202 may be applied to the ejector refrigeration cycle 30 shown in the overall configuration diagram of FIG.
 具体的には、エジェクタ式冷凍サイクル30は、冷媒を圧縮して吐出する圧縮機11、圧縮機11から吐出された冷媒を放熱させる放熱器12、冷媒の気液を分離する気液分離器31、気液分離器31にて分離された液相冷媒を減圧させる減圧装置32、減圧装置32にて減圧された冷媒を蒸発させる第1蒸発器17、減圧部にて減圧された冷媒を蒸発させる第2蒸発器18、および気液分離器31にて分離された気相冷媒と第2蒸発器18から流出した冷媒とを合流させて圧縮機11の吸入側へ流出させる合流部33を有している。 Specifically, the ejector refrigeration cycle 30 includes a compressor 11 that compresses and discharges a refrigerant, a radiator 12 that dissipates heat from the refrigerant discharged from the compressor 11, and a gas-liquid separator 31 that separates the gas and liquid of the refrigerant. The decompression device 32 that decompresses the liquid-phase refrigerant separated by the gas-liquid separator 31, the first evaporator 17 that evaporates the refrigerant decompressed by the decompression device 32, and the refrigerant decompressed by the decompression unit are evaporated The second evaporator 18, and the merge section 33 that merges the gas-phase refrigerant separated by the gas-liquid separator 31 and the refrigerant that has flowed out of the second evaporator 18 to flow out to the suction side of the compressor 11. ing.
 エジェクタ式冷凍サイクル30では、エジェクタモジュール20の高圧入口21aには、放熱器12の出口側が接続され、冷媒吸引口21bには、第1蒸発器17の冷媒出口側が接続され、エジェクタ側出口21cには、気液分離器31の入口側が接続され、絞り側出口21dには、第2蒸発器18の冷媒入口側が接続されている。 In the ejector refrigeration cycle 30, the outlet side of the radiator 12 is connected to the high pressure inlet 21a of the ejector module 20, the refrigerant outlet side of the first evaporator 17 is connected to the refrigerant suction port 21b, and the ejector side outlet 21c is connected. The inlet side of the gas-liquid separator 31 is connected, and the refrigerant inlet side of the second evaporator 18 is connected to the throttle side outlet 21d.
 さらに、エジェクタ式冷凍サイクル30の第1蒸発器17では、減圧装置32にて減圧された低圧冷媒と第1送風機17aから送風された送風空気とを熱交換させる。第2蒸発器18では、可変絞り機構16にて減圧された低圧冷媒と第2送風機18aから送風された送風空気とを熱交換させる。 Furthermore, in the first evaporator 17 of the ejector-type refrigeration cycle 30, heat exchange is performed between the low-pressure refrigerant decompressed by the decompression device 32 and the blown air blown from the first blower 17a. In the second evaporator 18, heat exchange is performed between the low-pressure refrigerant decompressed by the variable throttle mechanism 16 and the blown air blown from the second blower 18a.
 また、エジェクタ式冷凍サイクル30において、合流部33の冷媒出口を圧縮機11の吸入側へ直接接続し、第1蒸発器17の冷媒出口を低圧入口21e側へ接続し、低圧出口21fを冷媒吸引口21bへ接続してもよい。これによれば、第1蒸発器17出口側冷媒の過熱度を調整することができる。 Further, in the ejector refrigeration cycle 30, the refrigerant outlet of the junction 33 is directly connected to the suction side of the compressor 11, the refrigerant outlet of the first evaporator 17 is connected to the low pressure inlet 21e side, and the low pressure outlet 21f is sucked of refrigerant. You may connect to the port 21b. According to this, the superheat degree of the 1st evaporator 17 exit side refrigerant | coolant can be adjusted.
 (4)エジェクタ式冷凍サイクル10、30を構成する各構成機器は、上述の実施形態に開示されたものに限定されない。 (4) Each component device constituting the ejector refrigeration cycle 10, 30 is not limited to that disclosed in the above-described embodiment.
 例えば、上述の実施形態では、圧縮機11として、電動圧縮機を採用した例を説明したが、圧縮機11として、プーリ、ベルト等を介して車両走行用エンジンから伝達される回転駆動力によって駆動されるエンジン駆動式の圧縮機を採用してもよい。さらに、エンジン駆動式の圧縮機としては、吐出容量の変化により冷媒吐出能力を調整可能な可変容量型圧縮機、あるいは電磁クラッチの断続により圧縮機の稼働率を変化させて冷媒吐出能力を調整可能な固定容量型圧縮機を採用することができる。 For example, in the above-described embodiment, an example in which an electric compressor is employed as the compressor 11 has been described. However, the compressor 11 is driven by a rotational driving force transmitted from a vehicle traveling engine via a pulley, a belt, or the like. An engine driven compressor may be employed. Furthermore, as an engine-driven compressor, the variable capacity compressor that can adjust the refrigerant discharge capacity by changing the discharge capacity, or the refrigerant discharge capacity can be adjusted by changing the operating rate of the compressor by intermittently connecting the electromagnetic clutch A fixed-capacity compressor can be employed.
 また、上述の実施形態では、放熱器12として、レシーバ一体型の凝縮器を採用した例を説明したが、さらに、レシーバ部12bから流出した液相冷媒を過冷却する過冷却部を有して構成される、いわゆるサブクール型の凝縮器を採用してもよい。この他にも、凝縮部12aのみからなる放熱器12、および放熱器12から流出した冷媒の気液を分離して、分離された液相冷媒を下流側へ流出させる受液器(レシーバ)を採用してもよい。 In the above-described embodiment, an example in which a receiver-integrated condenser is employed as the radiator 12 has been described. Further, the radiator 12 has a supercooling unit that supercools the liquid-phase refrigerant flowing out from the receiver unit 12b. A so-called subcool condenser may be employed. In addition, a radiator 12 including only the condensing unit 12a, and a receiver (receiver) that separates the gas-liquid refrigerant flowing out of the radiator 12 and flows the separated liquid-phase refrigerant downstream. It may be adopted.
 また、上述の実施形態では、冷媒としてR134aあるいはR1234yfを採用した例を説明したが、冷媒はこれに限定されない。例えば、R600a、R410A、R404A、R32、R407C、等を採用してもよい。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。さらに、冷媒として二酸化炭素を採用して、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成してもよい。 In the above-described embodiment, the example in which R134a or R1234yf is adopted as the refrigerant has been described, but the refrigerant is not limited to this. For example, R600a, R410A, R404A, R32, R407C, etc. may be adopted. Or you may employ | adopt the mixed refrigerant | coolant etc. which mixed multiple types among these refrigerant | coolants. Furthermore, a supercritical refrigeration cycle in which carbon dioxide is employed as the refrigerant and the high-pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant may be configured.
 また、エジェクタ式冷凍サイクル10では、第1蒸発器17および第2蒸発器18を一体的に構成した例を説明したが、エジェクタ式冷凍サイクル30のように、第1蒸発器17および第2蒸発器18を別体で構成されていてもよい。そして、第1蒸発器17および第2蒸発器18にて、異なる冷媒対象流体を異なる温度帯で冷却するようにしてもよい。 In the ejector refrigeration cycle 10, the example in which the first evaporator 17 and the second evaporator 18 are integrally configured has been described. However, as in the ejector refrigeration cycle 30, the first evaporator 17 and the second evaporator 17 are configured. The vessel 18 may be configured separately. In the first evaporator 17 and the second evaporator 18, different refrigerant target fluids may be cooled in different temperature zones.
 (5)また、上述の各実施形態に開示された手段、構成要素は、実施可能な範囲で適宜組み合わせてもよい。例えば、第2、第3実施形態で説明したエジェクタモジュール201、202を、上述の図5で説明したエジェクタ式冷凍サイクル30に適用してもよい。

 
(5) Further, the means and components disclosed in the above-described embodiments may be appropriately combined within a feasible range. For example, the ejector modules 201 and 202 described in the second and third embodiments may be applied to the ejector refrigeration cycle 30 described in FIG.

Claims (5)

  1.  蒸気圧縮式の冷凍サイクル装置に適用されるエジェクタモジュールであって、
     冷媒を減圧させて噴射するノズル部(15a)と、
     冷媒を減圧させる減圧部(20a)と、
     前記ノズル部から噴射された噴射冷媒の吸引作用によって外部から冷媒を吸引する冷媒吸引口(21b)、および前記噴射冷媒と前記冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させる昇圧部(15c)が設けられたボデー部(21)と、
     前記ノズル部の通路断面積および前記減圧部の通路断面積の双方を変化させる弁体部(22)と、
     前記弁体部を変位させる駆動機構部(23)と、を備え、
     前記駆動機構部は、冷媒の温度および圧力の少なくとも一方の変化に応じて変形する変形部材(23b)を有する機械的機構で構成されているエジェクタモジュール。
    An ejector module applied to a vapor compression refrigeration cycle apparatus,
    A nozzle part (15a) for injecting the refrigerant under reduced pressure;
    A decompression section (20a) for decompressing the refrigerant;
    A refrigerant suction port (21b) that sucks the refrigerant from the outside by the suction action of the jetted refrigerant jetted from the nozzle unit, and a boosting unit that boosts the mixed refrigerant of the jetted refrigerant and the sucked refrigerant sucked from the refrigerant suction port A body part (21) provided with (15c);
    A valve body portion (22) for changing both the passage sectional area of the nozzle portion and the passage sectional area of the pressure reducing portion;
    A drive mechanism (23) for displacing the valve body,
    The drive mechanism section is an ejector module configured with a mechanical mechanism having a deformable member (23b) that deforms in response to a change in at least one of temperature and pressure of the refrigerant.
  2.  蒸気圧縮式の冷凍サイクル装置に適用されるエジェクタモジュールであって、
     冷媒を減圧させて噴射するノズル部(15a)と、
     冷媒を減圧させる減圧部(20a)と、
     前記ノズル部から噴射された噴射冷媒の吸引作用によって外部から冷媒を吸引する冷媒吸引口(21b)、および前記噴射冷媒と前記冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させる昇圧部(15c)が設けられたボデー部(21)と、
     前記ノズル部の通路断面積および前記減圧部の通路断面積の双方を変化させる弁体部(22)と、
     前記ノズル部および前記減圧部を変位させる駆動機構部(23)と、を備え、
     前記駆動機構部は、冷媒の温度および圧力の少なくとも一方の変化に応じて変形する変形部材(23b)を有する機械的機構で構成されているエジェクタモジュール。
    An ejector module applied to a vapor compression refrigeration cycle apparatus,
    A nozzle part (15a) for injecting the refrigerant under reduced pressure;
    A decompression section (20a) for decompressing the refrigerant;
    A refrigerant suction port (21b) that sucks the refrigerant from the outside by the suction action of the jetted refrigerant jetted from the nozzle unit, and a boosting unit that boosts the mixed refrigerant of the jetted refrigerant and the sucked refrigerant sucked from the refrigerant suction port A body part (21) provided with (15c);
    A valve body portion (22) for changing both the passage sectional area of the nozzle portion and the passage sectional area of the pressure reducing portion;
    A drive mechanism section (23) for displacing the nozzle section and the decompression section,
    The drive mechanism section is an ejector module configured with a mechanical mechanism having a deformable member (23b) that deforms in response to a change in at least one of temperature and pressure of the refrigerant.
  3.  前記駆動機構部は、前記昇圧部よりも下流側の冷媒の温度変化に伴って圧力変化する感温媒体が封入される封入空間(23d)を形成する封入空間形成部材(23c)を有し、
     前記変形部材は、前記感温媒体の圧力に応じて変形するものである請求項1または2に記載のエジェクタモジュール。
    The drive mechanism has an enclosed space forming member (23c) that forms an enclosed space (23d) in which a temperature-sensitive medium whose pressure changes with a change in temperature of the refrigerant downstream of the booster is enclosed,
    The ejector module according to claim 1, wherein the deformable member is deformed according to a pressure of the temperature sensitive medium.
  4.  前記弁体部は、前記ノズル部の軸方向に伸びる形状に形成されており、
     前記ノズル部および前記減圧部は、前記軸方向に並んで配置されている請求項1ないし3のいずれか1つに記載のエジェクタモジュール。
    The valve body portion is formed in a shape extending in the axial direction of the nozzle portion,
    The ejector module according to claim 1, wherein the nozzle part and the pressure reducing part are arranged side by side in the axial direction.
  5.  前記冷凍サイクル装置は、冷媒を圧縮して吐出する圧縮機(11)、前記圧縮機から吐出された冷媒を放熱させる放熱器(12)、冷媒を蒸発させる第1蒸発器(17)、および冷媒を蒸発させて前記圧縮機の吸入側へ流出させる第2蒸発器(18)を有し、
     前記ノズル部および前記減圧部へ冷媒を流入させる高圧入口(21a)には、前記放熱器の出口側が接続され、
     前記冷媒吸引口には、前記第1蒸発器の冷媒出口側が接続され、
     前記昇圧部から冷媒を流出させるエジェクタ側出口(21c)には、前記第2蒸発器の冷媒入口側が接続され、
     前記減圧部から冷媒を流出させる絞り側出口(21d)には、前記第1蒸発器の冷媒入口側が接続されている請求項1ないし4のいずれか1つに記載のエジェクタモジュール。

     
    The refrigeration cycle apparatus includes a compressor (11) that compresses and discharges a refrigerant, a radiator (12) that dissipates the refrigerant discharged from the compressor, a first evaporator (17) that evaporates the refrigerant, and a refrigerant Having a second evaporator (18) that evaporates and flows out to the suction side of the compressor,
    The outlet side of the radiator is connected to the high-pressure inlet (21a) through which the refrigerant flows into the nozzle part and the decompression part,
    A refrigerant outlet side of the first evaporator is connected to the refrigerant suction port;
    A refrigerant inlet side of the second evaporator is connected to an ejector side outlet (21c) for allowing the refrigerant to flow out from the pressure increasing unit,
    The ejector module according to any one of claims 1 to 4, wherein a refrigerant inlet side of the first evaporator is connected to a throttle-side outlet (21d) through which the refrigerant flows out from the decompression unit.

PCT/JP2018/005439 2017-03-02 2018-02-16 Ejector module WO2018159320A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-039253 2017-03-02
JP2017039253A JP6717234B2 (en) 2017-03-02 2017-03-02 Ejector module

Publications (1)

Publication Number Publication Date
WO2018159320A1 true WO2018159320A1 (en) 2018-09-07

Family

ID=63370005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005439 WO2018159320A1 (en) 2017-03-02 2018-02-16 Ejector module

Country Status (2)

Country Link
JP (1) JP6717234B2 (en)
WO (1) WO2018159320A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113058759A (en) * 2020-01-02 2021-07-02 杭州三花研究院有限公司 Injection device
US11480197B2 (en) 2017-03-02 2022-10-25 Denso Corporation Ejector module
EP4325142A1 (en) 2022-08-15 2024-02-21 Danfoss A/S Ejector having an actuation mechanism with a pilot valve and an equalization passage between two cylinder chambers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023966A (en) * 2005-07-20 2007-02-01 Denso Corp Ejector and ejector cycle
JP2016217213A (en) * 2015-05-18 2016-12-22 株式会社デンソー Ejector
JP2017025841A (en) * 2015-07-24 2017-02-02 株式会社デンソー Ejector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4661449B2 (en) * 2005-08-17 2011-03-30 株式会社デンソー Ejector refrigeration cycle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023966A (en) * 2005-07-20 2007-02-01 Denso Corp Ejector and ejector cycle
JP2016217213A (en) * 2015-05-18 2016-12-22 株式会社デンソー Ejector
JP2017025841A (en) * 2015-07-24 2017-02-02 株式会社デンソー Ejector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11480197B2 (en) 2017-03-02 2022-10-25 Denso Corporation Ejector module
CN113058759A (en) * 2020-01-02 2021-07-02 杭州三花研究院有限公司 Injection device
EP4325142A1 (en) 2022-08-15 2024-02-21 Danfoss A/S Ejector having an actuation mechanism with a pilot valve and an equalization passage between two cylinder chambers
WO2024038014A1 (en) 2022-08-15 2024-02-22 Danfoss A/S Ejector having an actuation mechanism with a pilot valve and an equalization passage between two cylinder chambers

Also Published As

Publication number Publication date
JP2018146141A (en) 2018-09-20
JP6717234B2 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
US10029538B2 (en) Refrigeration cycle
JP6350108B2 (en) Ejector and ejector refrigeration cycle
JP2015224861A (en) Ejector type refrigeration cycle
WO2018159320A1 (en) Ejector module
JP6610313B2 (en) Ejector, ejector manufacturing method, and ejector refrigeration cycle
JP2018146219A (en) Ejector module
WO2018159322A1 (en) Ejector module and ejector-type refrigeration cycle
JP6512071B2 (en) Ejector type refrigeration cycle
JP2019020063A (en) Ejector-type refrigeration cycle
WO2016143292A1 (en) Ejector-type refrigeration cycle
WO2016143300A1 (en) Ejector, method for producing ejector, and ejector-type refrigeration cycle
WO2018016219A1 (en) Ejector-type refrigeration cycle
WO2018159323A1 (en) Ejector module and evaporator unit
WO2018159321A1 (en) Ejector module
JP6740931B2 (en) Ejector type refrigeration cycle
WO2017179321A1 (en) Ejector
JP6380122B2 (en) Ejector
JP6327088B2 (en) Ejector refrigeration cycle
JP6572745B2 (en) Ejector refrigeration cycle
JP2019138614A (en) Ejector-type refrigeration cycle and flow rate regulation valve
JP6717276B2 (en) Ejector module
JP2017089963A (en) Ejector type refrigeration cycle
US11460049B2 (en) Ejector
JP2017031975A (en) Ejector
JP6638607B2 (en) Ejector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760658

Country of ref document: EP

Kind code of ref document: A1