WO2018159322A1 - Ejector module and ejector-type refrigeration cycle - Google Patents

Ejector module and ejector-type refrigeration cycle Download PDF

Info

Publication number
WO2018159322A1
WO2018159322A1 PCT/JP2018/005441 JP2018005441W WO2018159322A1 WO 2018159322 A1 WO2018159322 A1 WO 2018159322A1 JP 2018005441 W JP2018005441 W JP 2018005441W WO 2018159322 A1 WO2018159322 A1 WO 2018159322A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
ejector
nozzle
evaporator
refrigeration cycle
Prior art date
Application number
PCT/JP2018/005441
Other languages
French (fr)
Japanese (ja)
Inventor
達博 鈴木
陽一郎 河本
照之 堀田
尾形 豪太
龍 福島
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018159322A1 publication Critical patent/WO2018159322A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • F04F5/20Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids for evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/48Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series

Definitions

  • the present disclosure relates to an ejector module in which a plurality of devices including an ejector are integrated, and an ejector refrigeration cycle including the ejector.
  • an ejector type refrigeration cycle which is a refrigeration cycle apparatus including an ejector as a refrigerant decompression device, is known.
  • the pressure of the refrigerant sucked into the compressor can be made higher than the refrigerant evaporation pressure in the evaporator by the pressurizing action of the ejector.
  • the power consumption of a compressor can be reduced and the coefficient of performance (COP) of a cycle can be improved.
  • Patent Document 1 discloses an evaporator unit applied to an ejector refrigeration cycle.
  • the evaporator unit disclosed in Patent Document 1 includes a branching unit, an ejector, a fixed throttle, a first evaporator, a second evaporator, and the like among components constituting an ejector refrigeration cycle (in other words, unitized or modularized). ).
  • the branch part branches the flow of the high-pressure refrigerant that has flowed out of the radiator, and flows it out to the nozzle part side and the fixed throttle side of the ejector.
  • the second evaporator is a heat exchanger that evaporates the refrigerant flowing out from the diffuser portion of the ejector by exchanging heat with the blown air blown into the air-conditioning target space and evaporates the evaporated refrigerant to the suction port side of the compressor.
  • the first evaporator is a heat exchanger that evaporates the refrigerant decompressed by the fixed throttle by heat exchange with the blown air that has passed through the second evaporator, and flows the evaporated refrigerant to the refrigerant suction port side of the ejector.
  • the evaporator unit of Patent Document 1 employs a fixed throttle, and further employs a fixed nozzle portion that cannot change the passage cross-sectional area of the refrigerant passage as the nozzle portion of the ejector. For this reason, when load fluctuation occurs in the applied ejector refrigeration cycle and the flow rate of the refrigerant flowing into the nozzle portion changes, the energy conversion efficiency of the ejector may decrease.
  • Patent Document 1 may adopt a variable throttle mechanism configured to be able to change the passage cross-sectional area (that is, the throttle opening degree) instead of the fixed throttle, and the nozzle portion of the ejector. It is described that a variable nozzle part configured to change the passage cross-sectional area may be employed.
  • variable throttle mechanism when a variable throttle mechanism is used instead of the fixed throttle, a drive device for changing the throttle opening is required.
  • a variable nozzle portion is adopted as the nozzle portion of the ejector.
  • the flow rate of the refrigerant injected from the variable nozzle portion decreases during low load operation of the ejector refrigeration cycle. There is. When such a decrease in the flow rate of the injected refrigerant occurs, the ejector may not be able to exhibit a sufficient suction action and may not be able to supply a sufficient flow rate of refrigerant to the evaporator.
  • This disclosure has a first object to provide an ejector module configured such that the cross-sectional area of the passage can be changed without increasing the size of the applied ejector refrigeration cycle.
  • a second object of the present disclosure is to provide an ejector refrigeration cycle that operates properly when a load change occurs or at startup.
  • the ejector module according to the first aspect of the present disclosure is applied to an ejector refrigeration cycle.
  • the ejector module includes a nozzle part, a pressure reducing part, a body part, a nozzle side valve body part, a pressure reducing side valve body part, and a drive mechanism part.
  • a nozzle part decompresses and injects a refrigerant.
  • the decompression unit decompresses the refrigerant.
  • the body portion has a refrigerant suction port that sucks the refrigerant from the outside by a suction action of the jetted refrigerant jetted from the nozzle portion, and a pressure boosting unit that boosts the mixed refrigerant of the jetted refrigerant and the sucked refrigerant sucked from the refrigerant suction port .
  • the nozzle side valve body changes the passage cross-sectional area of the nozzle.
  • the pressure reducing side valve body portion changes the passage cross-sectional area of the pressure reducing portion.
  • the drive mechanism displaces the nozzle side valve body and the pressure reducing side valve body.
  • the drive mechanism portion closes the nozzle portion and the pressure reducing portion from the opened state
  • the drive mechanism portion closes the nozzle portion before the pressure reducing portion, and further, when the nozzle portion and the pressure reducing portion are opened from the closed state.
  • the decompression part is opened before the nozzle part.
  • an ejector having a variable nozzle part can be configured. Furthermore, since the pressure reducing part, the pressure reducing side valve body part, and the drive mechanism part are provided, a variable throttle mechanism can be configured.
  • the ejector having the variable nozzle portion and the variable aperture mechanism can be integrated.
  • the passage cross-sectional area of the nozzle part and the throttle opening of the pressure reducing part are adjusted by one common driving mechanism part, so that it can be changed without increasing the size of the one having a plurality of driving mechanism parts.
  • the ejector having the nozzle portion and the variable aperture mechanism can be integrated.
  • the drive mechanism portion closes the nozzle portion and the pressure reducing portion, the nozzle portion is closed before the pressure reducing portion, and when the nozzle portion and the pressure reducing portion are opened, the pressure reducing portion is preceded by the nozzle portion. open.
  • the ejector-type refrigeration cycle including the ejector module according to the first aspect it is possible to switch to a normal refrigeration cycle apparatus that does not cause the ejector to function during an operating condition in which the ejector cannot exhibit a sufficient suction action or boosting action due to load fluctuations. And it can be operated appropriately as a normal refrigeration cycle apparatus.
  • the first aspect it is possible to provide an ejector module configured such that the passage cross-sectional area can be changed without increasing the size of the applied ejector-type refrigeration cycle. Furthermore, it is possible to provide an ejector refrigeration cycle that operates properly even when load fluctuation occurs.
  • the ejector refrigeration cycle includes a compressor, a radiator, a branching unit, an ejector, a variable throttle mechanism, an ejector control unit, and a stop condition determination unit.
  • the compressor compresses and discharges the refrigerant.
  • the radiator dissipates heat from the refrigerant discharged from the compressor.
  • a branch part branches the flow of the refrigerant
  • the ejector sucks the refrigerant from the refrigerant suction port by the suction action of the jet refrigerant ejected from the variable nozzle portion that depressurizes one of the refrigerant branched at the branch portion, and sucked refrigerant sucked from the jet refrigerant and the refrigerant suction port And pressurize the mixed refrigerant.
  • the variable throttle mechanism depressurizes the other refrigerant branched at the branch portion.
  • the first evaporator evaporates the refrigerant decompressed by the variable throttle mechanism and causes the refrigerant to flow out to the refrigerant suction port side.
  • the second evaporator evaporates the refrigerant that has flowed out of the ejector and flows it out to the suction side of the compressor.
  • the ejector control unit controls the passage sectional area of the variable nozzle unit.
  • the stop condition determination unit determines that a predetermined ejector stop condition is satisfied.
  • the ejector control unit closes the variable nozzle unit when the stop condition determining unit determines that the ejector stop condition is satisfied.
  • the ejector control unit closes the variable nozzle unit. Therefore, it is possible to switch to a normal refrigeration cycle apparatus that does not cause the ejector to function during an operating condition in which the ejector cannot exhibit a sufficient suction action or boosting action due to load fluctuations. And it can be operated appropriately as a normal refrigeration cycle apparatus.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3.
  • FIG. 5 is a VV cross-sectional view of FIG. 3.
  • It is a control characteristic figure which shows the relationship between the opening degree of the nozzle part of at least 1 embodiment, and the opening degree of a throttle path.
  • It is a block diagram of the electric control unit of the ejector refrigeration cycle of at least one embodiment. It is a flowchart which shows the control processing of the ejector-type refrigeration cycle of at least 1 embodiment.
  • the ejector module 20 of the present embodiment is applied to an ejector refrigeration cycle 10 that is a vapor compression refrigeration cycle apparatus including an ejector as a refrigerant decompression device, as shown in the overall configuration diagram of FIG.
  • This ejector-type refrigeration cycle 10 is applied to a vehicle air conditioner, and fulfills a function of cooling blown air that is blown into a vehicle interior that is a space to be cooled. Therefore, the fluid to be cooled in the ejector refrigeration cycle 10 is blown air.
  • the ejector refrigeration cycle 10 employs an HFC refrigerant (specifically, R134a) as a refrigerant, and constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure of the cycle does not exceed the critical pressure of the refrigerant. Furthermore, refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant. As the refrigerating machine oil, a PAG oil having compatibility with a liquid phase refrigerant is employed. A part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the compressor 11 sucks the refrigerant and compresses and discharges it until it becomes a high-pressure refrigerant. More specifically, the compressor 11 of the present embodiment is an electric compressor that is configured by housing a fixed capacity type compression mechanism and an electric motor that drives the compression mechanism in one housing.
  • various compression mechanisms such as a scroll-type compression mechanism and a vane-type compression mechanism can be employed. Further, the operation (rotation speed) of the electric motor is controlled by a control signal output from the air conditioning control device 40, and either an AC motor or a DC motor may be adopted.
  • the refrigerant inlet side of the condenser 12 a of the radiator 12 is connected to the discharge port of the compressor 11.
  • the radiator 12 is a heat dissipation heat exchanger that radiates and cools the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the outside air (outside air) blown from the cooling fan 12c. is there.
  • the radiator 12 is configured as a so-called receiver-integrated condenser having a condensing part 12a and a receiver part 12b.
  • the condensing unit 12a is a heat exchanging unit for condensation that exchanges heat between the high-pressure gas-phase refrigerant discharged from the compressor 11 and the outside air blown from the cooling fan 12c, and dissipates the high-pressure gas-phase refrigerant to condense.
  • the receiver unit 12b is a refrigerant container that separates the gas-liquid refrigerant flowing out from the condensing unit 12a and stores excess liquid-phase refrigerant.
  • the cooling fan 12c is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the air conditioning control device 40.
  • the refrigerant outlet of the receiver section 12 b of the radiator 12 is connected to the high pressure inlet 21 a side provided in the body section 21 of the ejector module 20.
  • the ejector module 20 is obtained by integrating (in other words, modularizing) a part of the cycle constituent devices constituting the ejector refrigeration cycle 10. More specifically, the ejector module 20 of the present embodiment is obtained by integrating the branching unit 14, the ejector 15, the variable throttle mechanism 16 and the like among the cycle constituent devices.
  • the branch part 14 branches the flow of the refrigerant that has flowed out of the radiator 12, injects one of the branched refrigerants from the nozzle part 15a of the ejector 15, and causes the other branched refrigerant to flow out to the variable throttle mechanism 16. Fulfill.
  • the branch portion 14 is formed by connecting a space formed in the body portion 21 of the ejector module 20 and a refrigerant passage.
  • the ejector 15 has a nozzle portion 15a that depressurizes and injects one of the refrigerants branched at the branching portion 14, and functions as a refrigerant decompression device. Further, the ejector 15 functions as a refrigerant circulation device that sucks and circulates the refrigerant from outside by the suction action of the refrigerant injected from the refrigerant injection port of the nozzle portion 15a. More specifically, the ejector 15 sucks the refrigerant that has flowed out of the first evaporator 17 described later.
  • the ejector 15 converts the kinetic energy of the mixed refrigerant of the refrigerant injected from the nozzle portion 15a and the refrigerant sucked from the refrigerant suction port 21b formed in the body portion 21 into pressure energy. It functions as an energy conversion device that boosts the pressure of the mixed refrigerant.
  • the ejector 15 causes the pressurized refrigerant to flow out to the refrigerant inlet side of the second evaporator 18 described later.
  • the nozzle portion 15a of the ejector 15 is configured such that the passage cross-sectional area can be changed.
  • the variable throttle mechanism 16 has a throttle passage 20b that depressurizes the other refrigerant branched by the branching section 14.
  • the variable throttle mechanism 16 is configured to be able to change the passage cross-sectional area (that is, the throttle opening) of the throttle passage 20b.
  • the variable throttle mechanism 16 causes the decompressed refrigerant to flow out to the refrigerant inlet side of the first evaporator 17.
  • the ejector module 20 includes a body part 21, a needle valve 22, a throttle valve 23, a drive mechanism part 24, and the like.
  • the body part 21 is formed by combining a plurality of structural members made of metal (in this embodiment, made of aluminum).
  • the body portion 21 forms an outer shell of the ejector module 20 and forms part of components such as the ejector 15 and the variable aperture mechanism 16.
  • the body part 21 may be formed of resin.
  • the body section 21 is provided with a plurality of refrigerant inlets and outlets such as a high-pressure inlet 21a, a refrigerant suction port 21b, an ejector side outlet 21c, and a throttle side outlet 21d.
  • the high-pressure inlet 21 a is a refrigerant inlet through which the refrigerant that has flowed out from the refrigerant outlet of the receiver unit 12 b of the radiator 12 flows into the ejector module 20. Accordingly, the high-pressure inlet 21 a serves as a refrigerant inlet for the branch portion 14.
  • the refrigerant suction port 21 b is a refrigerant inlet that sucks the refrigerant flowing out of the first evaporator 17. The suction refrigerant sucked from the refrigerant suction port 21b merges with the jet refrigerant jetted from the nozzle portion 15a.
  • the ejector side outlet 21c is a refrigerant outlet through which the refrigerant whose pressure has been increased by the ejector 15 (specifically, a diffuser portion 15b described later) flows out to the inlet side of the second evaporator 18.
  • the throttle-side outlet 21 d is a refrigerant outlet that allows the refrigerant decompressed by the variable throttle mechanism 16 to flow out to the inlet side of the first evaporator 17.
  • a turning space 20a is formed inside the body portion 21.
  • the swirling space 20a is formed in a columnar shape, and is a space that swirls the refrigerant flow that has flowed in from the high-pressure inlet 21a around the central axis.
  • the refrigerant passage connecting the high-pressure inlet 21a and the swirl space 20a allows the refrigerant flowing into the swirl space 20a when viewed from the central axis direction of the swirl space 20a to flow into the inner wall surface of the swirl space 20a. It is formed to flow along. Thereby, the refrigerant flowing into the swirling space 20a swirls around the central axis of the swirling space 20a.
  • the nozzle portion 15 a of the ejector 15 is disposed on one end side in the axial direction of the swirling space 20 a of the body portion 21.
  • the inlet of the nozzle portion 15a opens into the swirling space 20a.
  • the refrigerant passage of the nozzle portion 15a is formed with a throat portion that reduces the refrigerant passage cross-sectional area, and a divergent portion in which the passage cross-sectional area gradually increases as it goes from the throat to the refrigerant injection port that injects the refrigerant. .
  • the nozzle portion 15a is configured as a Laval nozzle. Further, in the present embodiment, the nozzle portion 15a is set such that the flow rate of the injected refrigerant injected from the refrigerant injection port during the normal operation of the ejector refrigeration cycle 10 is equal to or higher than the sound speed. Of course, you may comprise the nozzle part 15a with a tapered nozzle.
  • the entrance of the throttle passage 20b is open on the other axial end side of the swirling space 20a. For this reason, the high-pressure refrigerant flowing into the swirling space 20a from the high-pressure inlet 21a flows into both the nozzle portion 15a and the throttle passage 20b from the swirling space 20a. That is, in this embodiment, the branch part 14 is formed in the turning space 20a.
  • the throttle passage 20b is a decompression unit that decompresses the refrigerant by reducing the cross-sectional area of the passage.
  • the throttle passage 20b is formed in a rotating body shape such as a columnar shape or a truncated cone shape.
  • an orifice formed as a separate member with respect to the body portion 21 is employed as the throttle passage 20b, and is fixed to the body portion 21 by means such as press fitting.
  • the central axis of the swirl space 20a, the central axis of the nozzle portion 15a, and the central axis of the throttle passage 20b are arranged coaxially with each other. Accordingly, the nozzle portion 15a and the throttle passage 20b of the present embodiment are arranged side by side in the axial direction of the nozzle portion 15a.
  • a diffuser portion 15b is disposed on the downstream side of the refrigerant flow of the nozzle portion 15a of the body portion 21.
  • the diffuser unit 15b is a pressure increasing unit that increases the pressure of the mixed refrigerant.
  • the diffuser portion 15b is formed of a cylindrical metal (in this embodiment, aluminum).
  • a refrigerant suction port 21b is formed on the cylindrical side surface of the diffuser portion 15b so as to penetrate the inside and outside of the diffuser portion 15b.
  • the diffuser portion 15b Inside the diffuser portion 15b, there are formed a space in which the nozzle portion 15a is accommodated, a refrigerant passage through which the mixed refrigerant of the injected refrigerant and the suction refrigerant circulates, and the like.
  • the refrigerant passage is formed in a substantially truncated cone shape whose passage cross-sectional area gradually increases toward the downstream side of the refrigerant flow.
  • the kinetic energy of the mixed refrigerant can be converted into pressure energy by such a passage shape.
  • the needle valve 22 is a nozzle-side valve body portion that is disposed in a refrigerant passage formed inside the nozzle portion 15a and changes the passage cross-sectional area of the refrigerant passage.
  • the needle valve 22 is made of a needle-like (or a shape obtained by combining a conical shape, a cylindrical shape, or the like) metal (in this embodiment, stainless steel).
  • the central axis of the needle valve 22 is arranged coaxially with the central axis of the nozzle portion 15a, the central axis of the refrigerant passage of the diffuser portion 15b, and the like.
  • the needle valve 22 is displaced in the central axis direction to change the passage cross-sectional area of the nozzle portion 15a. Furthermore, the needle valve 22 can also close the nozzle portion 15a by contacting the throat portion.
  • a plurality of support portions 15c for slidably supporting the outer peripheral surface of the needle valve 22 are formed on the inner peripheral surface of the nozzle portion 15a.
  • a coil spring 22c is disposed in the swirling space 20a.
  • the coil spring 22c is an elastic member that applies a load to the needle valve 22 on the side that reduces (closes) the passage cross-sectional area of the nozzle portion 15a.
  • the throttle valve 23 is a decompression side valve body portion that is arranged on the refrigerant flow downstream side of the throttle passage 20b (that is, the side opposite to the nozzle portion 15a) and changes the passage cross-sectional area on the outlet side of the throttle passage 20b.
  • the throttle valve 23 is made of the same material as the needle valve 22.
  • the throttle valve 23 is formed in a truncated cone shape whose outer diameter on the bottom side is larger than the outer diameter of the needle valve 22.
  • the inlet of the throttle passage 20b formed in an annular shape around the throttle valve 23 is formed on the outer peripheral side of the central axis rather than the inlet of the nozzle portion 15a formed in an annular shape around the needle valve 22. ing.
  • the central axis of the throttle valve 23 is arranged coaxially with the central axis of the needle valve 22.
  • the throttle valve 23 changes the passage cross-sectional area of the throttle passage 20b by being displaced in the central axis direction. Furthermore, the throttle valve 23 can also close the throttle passage 20b by contacting the outlet of the throttle passage 20b.
  • the driving mechanism 24 is connected to the opposite side of the nozzle portion 15a of the throttle valve 23.
  • the drive mechanism unit 24 displaces the needle valve 22 and the throttle valve 23 in the central axis direction, and is connected to the throttle valve 23.
  • the drive mechanism unit 24 is an electric actuator having a stepping motor. The operation of the drive mechanism unit 24 is controlled by a control voltage (control pulse) output from the air conditioning control device 40.
  • a connecting portion 23a connected to the needle valve 22 is provided at the center of the throttle valve 23 on the nozzle portion 15a side.
  • the connecting portion 23a has a thin shaft portion extending in the axial direction of the throttle valve 23, and a disk-shaped portion extending in the radial direction from the thin shaft portion.
  • the needle valve 22 is formed with an engagement hole 22a into which the disk-shaped portion of the connecting portion 23a is fitted from the radial direction.
  • the axial dimension W of the engagement hole 22a is formed larger than the axial thickness dimension T of the disk-shaped part of the connecting part 23a. Accordingly, a gap is formed in the axial direction between the connecting portion 23 a of the throttle valve 23 and the inner wall surface of the engagement hole 22 a of the needle valve 22. Furthermore, a contact portion 22b that contacts the connecting portion 23a is formed in the surface of the throttle valve 23 inside the engagement hole 22a.
  • the drive mechanism section 24 closes the nozzle section 15a before the throttle path 20b when both the nozzle section 15a and the throttle path 20b are closed. I have to. Further, when the drive mechanism 24 is opened from a state in which both the nozzle portion 15a and the throttle passage 20b are closed, the throttle passage 20b is opened before the nozzle portion 15a.
  • FIG. 6 shows the opening degree of the nozzle part 15a and the opening degree of the throttle passage 20b with respect to the count number of control pulses output to the stepping motor of the drive mechanism part 24.
  • the opening degree 0 means a state in which the nozzle portion 15a or the throttle passage 20b is closed.
  • the needle valve 22 when the drive mechanism 24 displaces the throttle valve 23 to the side of reducing the passage sectional area of the throttle passage 23b, the needle valve 22 also reduces the passage sectional area of the nozzle portion 15a by the action of the coil spring 22c. Displace to When the needle valve 22 comes into contact with the throat portion of the nozzle portion 15a, the nozzle portion 15a is closed (C2 in FIG. 6). At this time, the throttle valve 23 is not in contact with the outlet of the throttle passage 20b, and the throttle passage 20b is open.
  • the throttle valve 23 can be displaced to the side that reduces the cross-sectional area of the throttle passage 23b.
  • the throttle passage 20b is closed behind the nozzle portion 15a (C1 in FIG. 6).
  • the drive mechanism portion 24 reduces the passage sectional area of the throttle passage 20b.
  • the throttle valve 23 is displaced to the side to be enlarged, the throttle passage 20b is opened.
  • the nozzle portion 15a remains blocked by the action of the coil spring 22c until the connecting portion 23a of the throttle valve 23 contacts the contact portion 22b of the needle valve 22.
  • the driving mechanism 24 displaces the throttle valve 23 from the state in which the connecting portion 23a is in contact with the contact portion 22b to the side that enlarges the passage cross-sectional area of the throttle passage 20b
  • the needle valve 22 and the throttle valve 23 are moved together.
  • the nozzle portion 15a begins to open behind the throttle passage 20b (C2 in FIG. 6).
  • the needle valve 22 is displaced in conjunction with the throttle valve 23 when the connecting portion 23 a of the throttle valve 23 is in contact with the contact portion 22 b of the needle valve 22.
  • the passage sectional area of the nozzle portion 15a is constituted by the nozzle portion 15a, the refrigerant suction port 21b of the body portion 21, the diffuser portion 15b, the needle valve 22, the drive mechanism portion 24, and the like.
  • An ejector 15 having a variable nozzle portion configured to be changeable is configured.
  • variable throttle mechanism 16 configured such that the passage sectional area (that is, the throttle opening) of the throttle passage 20b can be changed by the throttle passage 20b, the throttle valve 23, the drive mechanism unit 24, and the like. Has been.
  • the second evaporator 18 shown in FIG. 1 includes the blown air blown from the blower 18a toward the vehicle interior and the ejector side outlet 21c of the ejector module 20 (that is, the refrigerant outlet of the diffuser portion 15b of the ejector 15). Heat exchange with the low-pressure refrigerant that has flowed out of the tank. And it is a heat exchanger for heat absorption which cools blowing air by evaporating this low-pressure refrigerant, and exhibiting an endothermic effect.
  • the blower 18a is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the air conditioning control device 40.
  • the refrigerant outlet of the second evaporator 18 is connected to the low pressure inlet 21 e side of the ejector module 20.
  • the first evaporator 17 exchanges heat between the blown air that has passed through the second evaporator 18 and the low-pressure refrigerant that has flowed out from the throttle-side outlet 21d of the ejector module 20 (that is, the refrigerant outlet of the variable throttle mechanism 16). And it is a heat exchanger for heat absorption which cools blowing air by evaporating this low-pressure refrigerant, and exhibiting an endothermic effect.
  • the refrigerant outlet of the second evaporator 18 is connected to the refrigerant suction port 21 b side of the ejector module 20.
  • first evaporator 17 and the second evaporator 18 of the present embodiment are integrally configured.
  • each of the first evaporator 17 and the second evaporator 18 includes a plurality of tubes that circulate the refrigerant, and a collection or distribution of refrigerants that are arranged on both ends of the plurality of tubes and circulate through the tubes.
  • a so-called tank-and-tube heat exchanger having a pair of collective distribution tanks.
  • the first evaporator 17 and the second evaporator 18 are integrated by forming the collective distribution tank of the first evaporator 17 and the second evaporator 18 with the same member.
  • the first evaporator 17 and the second evaporator 18 are changed to the blown air flow so that the second evaporator 18 is arranged on the upstream side of the blower air flow with respect to the first evaporator 17.
  • they are arranged in series. Accordingly, the blown air flows as shown by the arrows drawn by the two-dot chain line in FIG.
  • the air conditioning control device 40 is composed of a well-known microcomputer including a CPU, ROM, RAM, and its peripheral circuits, and performs various calculations and processing based on a control program stored in the ROM, and is connected to the output side. The operation of various control target devices 11, 12c, 18a, 20 and the like is controlled.
  • the inside air temperature sensor 41, the outside air temperature sensor 42, the solar radiation sensor 43, the discharge refrigerant pressure sensor 44, the intake refrigerant pressure sensor 45, and the intake refrigerant temperature sensor. 46, an evaporator temperature sensor 47 and the like are connected. And the detection signal of these sensor groups is input into the air-conditioning control apparatus 40.
  • FIG. 7 the inside air temperature sensor 41, the outside air temperature sensor 42, the solar radiation sensor 43, the discharge refrigerant pressure sensor 44, the intake refrigerant pressure sensor 45, and the intake refrigerant temperature sensor. 46, an evaporator temperature sensor 47 and the like are connected. And the detection signal of these sensor groups is input into the air-conditioning control apparatus 40.
  • the inside air temperature sensor 41 is an inside air temperature detecting unit that detects a vehicle interior temperature (inside air temperature) Tr.
  • the outside air temperature sensor 42 is an outside air temperature detecting unit that detects a vehicle compartment outside temperature (outside air temperature) Tam.
  • the solar radiation sensor 43 is a solar radiation amount detection unit that detects the solar radiation amount As irradiated into the vehicle interior.
  • the discharge refrigerant pressure sensor 44 is a discharge pressure detection unit that detects the discharge refrigerant pressure Pd of the discharge refrigerant discharged from the compressor 11.
  • the suction refrigerant pressure sensor 45 is a suction pressure detection unit that detects the suction refrigerant pressure Ps of the suction refrigerant sucked into the compressor 11.
  • the intake refrigerant temperature sensor 46 is an intake temperature detection unit that detects an intake refrigerant temperature Ts of the intake refrigerant sucked into the compressor 11.
  • the evaporator temperature sensor 47 is an evaporator temperature detector that detects the refrigerant evaporation temperature (evaporator temperature) Tefin in the first evaporator 17.
  • the evaporator temperature sensor 47 is formed by a plurality of temperature sensors. Therefore, the evaporator temperature sensor 47 can detect temperatures of a plurality of parts of the first evaporator 17.
  • At least one of the evaporator temperature sensors 47 detects the temperature of the refrigerant inlet portion of the first evaporator 17, and at least another one of the temperatures of the refrigerant outlet portion of the first evaporator 17. Is detected.
  • the average value of the detected values detected by the plurality of temperature sensors is set as the refrigerant evaporation temperature (evaporator temperature) Tefin. Further, the air conditioning control device 40 can detect the temperature difference ⁇ T obtained by subtracting the minimum temperature from the maximum temperature of these detection values as the temperature distribution of the blown air blown from the first evaporator 17.
  • the input side of the air conditioning control device 40 is connected to an operation panel 50 disposed near the instrument panel in the front part of the passenger compartment, and operation signals from various operation switches provided on the operation panel 50 are input.
  • the various operation switches provided on the operation panel 50 include an auto switch for setting or canceling the automatic control operation of the vehicle air conditioner, an air volume setting switch for manually setting the air volume of the blower 18a, and a target temperature in the passenger compartment. There is a temperature setting switch for setting Tset.
  • the air-conditioning control device 40 is configured such that a control unit that controls various control target devices connected to the output side thereof is integrally configured. However, the configuration controls the operation of each control target device. (Hardware and Software) constitutes a control unit that controls the operation of each control target device.
  • the configuration for controlling the refrigerant discharge capacity of the compressor 11 constitutes a discharge capacity control unit 40a.
  • the configuration for controlling the operation of the ejector module 20 constitutes an ejector control unit 40b.
  • each control step in the air conditioning control program constitutes a function realization unit included in the air conditioning control device.
  • the target blowing temperature TAO of the blown air blown into the vehicle interior is determined based on the detection signal of the air conditioning control sensor group and the operation signal from the operation panel. And the air-conditioning control apparatus 40 controls the action
  • the liquid phase refrigerant separated by the receiver unit 12b flows into the high-pressure inlet 21a of the ejector module 20.
  • the refrigerant that has flowed into the ejector module 20 is branched at the branching section 14.
  • One of the branched refrigerant flows into the nozzle portion 15a of the ejector 15 and is isentropically decompressed and injected.
  • coolant which flowed out from the 1st evaporator 17 is attracted
  • the air conditioning control device 40 calculates the superheat degree of the intake refrigerant based on the intake refrigerant pressure Ps detected by the intake refrigerant pressure sensor 45 and the intake refrigerant temperature Ts detected by the intake refrigerant temperature sensor 46.
  • the operation of the drive mechanism unit 24 of the ejector module 20 is controlled so that the superheated degree approaches the predetermined reference superheat degree (1 ° C. in the present embodiment).
  • the refrigerant injected from the nozzle portion 15a and the suction refrigerant sucked from the refrigerant suction port 21b flow into the diffuser portion 15b.
  • the velocity energy of the refrigerant is converted into pressure energy by expanding the refrigerant passage area.
  • the pressure of the mixed refrigerant of the injection refrigerant and the suction refrigerant increases.
  • the refrigerant whose pressure has been increased in the diffuser portion 15b flows out from the ejector side outlet 21c.
  • the refrigerant that has flowed out of the ejector side outlet 21c flows into the second evaporator 18.
  • the refrigerant flowing into the second evaporator 18 absorbs heat from the blown air blown by the blower 18a and evaporates. Thereby, the blowing air blown by the blower 18a is cooled.
  • the refrigerant flowing out from the second evaporator 18 is sucked into the compressor 11 and compressed again.
  • the other refrigerant branched at the branch portion 14 flows into the throttle passage 20b of the variable throttle mechanism 16 and is decompressed in an enthalpy manner.
  • the refrigerant decompressed by the variable throttle mechanism 16 flows out from the throttle-side outlet 21d and flows into the first evaporator 17.
  • the refrigerant flowing into the first evaporator 17 absorbs heat from the blown air after passing through the second evaporator 18 and evaporates. Thereby, the blown air after passing through the second evaporator 18 is further cooled.
  • the refrigerant flowing out from the first evaporator 17 is sucked from the refrigerant suction port 21b.
  • the blown air blown into the vehicle compartment can be cooled by the first evaporator 17 and the second evaporator 18.
  • the refrigerant on the downstream side of the second evaporator 18, that is, the refrigerant whose pressure has been increased by the diffuser portion 15 b of the ejector 15 can be sucked into the compressor 11. Therefore, in the ejector-type refrigeration cycle 10, the power consumption of the compressor 11 is reduced and the coefficient of performance (COP) of the cycle is reduced as compared with a normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the evaporator is equal to the suction refrigerant pressure. Can be improved.
  • COP coefficient of performance
  • the refrigerant evaporation pressure in the second evaporator 18 becomes the refrigerant pressure increased by the diffuser portion 15b, and the low refrigerant immediately after the refrigerant evaporation pressure in the first evaporator 17 is reduced by the nozzle portion 15a. It becomes pressure. Therefore, the temperature difference between the refrigerant evaporation temperature and the blown air in each evaporator can be secured and the blown air can be efficiently cooled.
  • the ejector refrigeration cycle 10 of the present embodiment includes the ejector module 20, the passage sectional area of the nozzle portion 15 a of the ejector 15 and the variable throttle mechanism 16 according to the load fluctuation of the ejector refrigeration cycle 10.
  • the throttle opening degree can be changed. Therefore, it is possible to suppress a decrease in COP of the ejector refrigeration cycle 10 even when load fluctuation occurs.
  • the passage cross-sectional area of the nozzle portion 15a and the throttle opening degree of the throttle passage 20b can be adjusted by a single common drive mechanism portion 24, so that a plurality of drive mechanism portions can be adjusted.
  • the ejector 15 having the variable nozzle portion and the variable aperture mechanism 16 can be integrated without increasing the size.
  • the applied ejector refrigeration cycle 10 is not enlarged even if the passage cross-sectional area is configured to be changeable.
  • the flow rate of the refrigerant flowing into the nozzle portion 15a of the ejector 15 decreases, and the flow rate of the injected refrigerant decreases.
  • the ejector 15 cannot exhibit a sufficient suction action, and a sufficient amount of refrigerant can be supplied to the first evaporator 17 and the second evaporator 18. It becomes impossible. As a result, not only the COP is lowered, but also a temperature distribution of the blown air cooled by the first evaporator 17 and the second evaporator 18 may be caused.
  • the air conditioning control device 40 executes the control process shown in FIG. 8 as a subroutine of the main routine described above. This control process is executed every predetermined control cycle.
  • step S1 of FIG. 8 it is determined whether or not a predetermined ejector stop condition is satisfied. Therefore, the control step S1 of this embodiment constitutes a stop condition determination unit. More specifically, in step S1 of the present embodiment, the ejector stop condition is satisfied when the temperature difference ⁇ T detected by the evaporator temperature sensor 47 is equal to or greater than a predetermined reference temperature difference K ⁇ T. judge.
  • step S1 When it is determined in step S1 that the ejector stop condition is satisfied, the process proceeds to step S2, and the ejector stop operation is executed. If it is not determined in step S1 that the ejector stop condition is satisfied, the process returns to the main routine and normal operation is performed.
  • the air conditioning control device 40 controls the operation of the ejector module 20 so as to close the nozzle portion 15a of the ejector 15 with the throttle passage 20b opened. More specifically, the drive mechanism of the ejector module 20 is set so that the superheat degree of the suction refrigerant approaches a predetermined reference superheat degree (1 ° C. in the present embodiment) within the range of C1 to C2 in FIG. The operation of the unit 24 is controlled.
  • the compressor 11 ⁇ the radiator 12 ⁇ the throttle passage 20b of the ejector module 20 ⁇ the first evaporator 17 ( ⁇ the diffuser portion 15b of the ejector module 20) ⁇ the second evaporator 18 ⁇ the compressor 11 in this order.
  • the refrigeration cycle in which the refrigerant circulates is configured. In this cycle configuration, since the refrigerant is not injected from the nozzle portion 15a of the ejector 15, the diffuser portion 15b functions as a refrigerant passage without exhibiting a pressure increasing action.
  • the ejector refrigeration cycle 10 is switched to a normal vapor compression refrigeration cycle apparatus that does not cause the ejector 15 to function. According to this, even under operating conditions in which the ejector 15 cannot exhibit a sufficient suction action or pressure increase action, a sufficient flow rate is supplied to the first evaporator 17 and the second evaporator 18 by the suction and discharge actions of the compressor 11.
  • the refrigerant can be supplied.
  • the ejector refrigeration cycle 10 can be appropriately operated even under operating conditions in which the ejector 15 cannot exhibit a sufficient suction action or pressure increase action, such as when a load fluctuates or during startup. .
  • the expansion of the temperature distribution of the blown air cooled by the first evaporator 17 and the second evaporator 18 can be suppressed.
  • the nozzle part 15a of the ejector 15 can be closed immediately after starting the cycle, the refrigerant passing sound passing through the nozzle 15a does not become annoying sound.
  • the refrigerant in the ejector stop operation, can be reliably circulated in the cycle by the suction and discharge action of the compressor 11, so that it is difficult to return the oil mixed in the refrigerant to the compressor. be able to.
  • the refrigerant flow is branched upstream of the nozzle portion 15a, and one of the branched refrigerants flows into the nozzle portion 15a to be branched.
  • This is effective in a cycle configuration in which the other refrigerant is sucked from the refrigerant suction port 21b of the ejector 15 through the throttle mechanism and the evaporator.
  • the ejector module 20 of the present embodiment includes a coil spring 22c that applies a load on the side of the needle valve 22 that reduces (closes) the passage cross-sectional area of the nozzle portion 15a, and includes a connecting portion 23a of the throttle valve 23 and An axial gap is formed between the inner wall surface of the engagement hole 22 a of the needle valve 22. Further, when the connecting portion 23a of the throttle valve 23 is in contact with the contact portion 22b of the needle valve 22, the needle valve 22 and the throttle valve 23 are displaced in conjunction with each other.
  • the inlet of the nozzle portion 15a and the inlet of the throttle passage 20b are open to the swirl space 20a, and the inlet of the throttle passage 20b is on the outer peripheral side of the central axis than the inlet of the nozzle portion 15a. Is open. Furthermore, in the swirling space 20a, since the refrigerant is swirling around the central axis, high-density liquid-phase refrigerant is unevenly distributed on the outer peripheral side by the action of centrifugal force.
  • the refrigerant having a relatively low dryness is supplied from the swirl space 20a to the throttle passage 20b, and the refrigerant having a relatively high dryness is supplied from the swirl space 20a to the nozzle portion 15a.
  • the refrigerant having a low dryness can be supplied to the first evaporator 17 side, the refrigeration capacity of the first evaporator 17 having a refrigerant evaporation temperature lower than that of the second evaporator 18 is increased, The blown air can be sufficiently cooled. Furthermore, since the refrigerant having a high degree of dryness can be supplied to the nozzle portion 15a, the amount of recovered energy in the ejector 15 can be increased, and the energy conversion efficiency of the ejector 15 can be improved.
  • the amount of energy recovered by the ejector applied to the refrigeration cycle apparatus is the amount of decrease in the enthalpy of the refrigerant when the refrigerant is isentropically depressurized at the nozzle portion (that is, the enthalpy of the inflowing refrigerant flowing into the nozzle portion). To the enthalpy difference obtained by subtracting the enthalpy of the injected refrigerant immediately after being injected from the nozzle portion.
  • a centrifugal gas-liquid separator structure can be employed as the branching portion 14 of the ejector refrigeration cycle 10a. Then, the refrigerant having a relatively high dryness on the turning center side is caused to flow out to the nozzle portion 15a side of the ejector 15, and the refrigerant having a relatively low dryness on the outer peripheral side is caused to flow out to the variable throttle mechanism 16 side.
  • an electric expansion valve can be adopted as the variable throttle mechanism 16 of the ejector refrigeration cycle 10a.
  • a suction refrigerant pressure sensor 48 and a suction refrigerant temperature sensor 49 are additionally connected to the input side of the air conditioning control device 40.
  • the suction refrigerant pressure sensor 48 is a suction pressure detection unit that detects the suction refrigerant pressure Pi of the refrigerant sucked into the refrigerant suction port 21 b of the ejector 15.
  • the suction refrigerant temperature sensor 49 is a suction temperature detection unit that detects the suction refrigerant temperature Ti of the refrigerant sucked into the refrigerant suction port 21b.
  • the ejector 15 and the variable throttle mechanism 16 are configured as separate bodies, each has a drive mechanism section that displaces the valve body section. Therefore, the structure which controls the action
  • the basic operation of the ejector refrigeration cycle 10a of this embodiment is the same as that of the first embodiment. More specifically, during normal operation, the air-conditioning control device 40 controls the variable nozzle portion of the ejector 15 so that the superheat degree of the suction refrigerant approaches a predetermined suction side reference superheat degree (1 ° C. in the present embodiment). Control the operation.
  • the air conditioning control device 40 is sucked from the refrigerant suction port 21b based on the suction refrigerant pressure Pi detected by the suction refrigerant pressure sensor 48 and the suction refrigerant temperature Ti detected by the suction refrigerant temperature sensor 49.
  • the degree of superheat of the refrigerant on the outlet side of the first evaporator 17 is calculated.
  • the operation of the variable throttle mechanism 16 is controlled so that the calculated superheat degree approaches a predetermined suction side reference superheat degree (0 ° C. in the present embodiment).
  • the air conditioning control device 40 closes the variable nozzle portion of the ejector 15. Further, the air conditioning control device 40 controls the operation of the variable throttle mechanism 16 so that the degree of superheat of the suction refrigerant approaches the suction side reference superheat degree.
  • Other operations during the ejector stop operation are the same as those in the first embodiment. Therefore, during the ejector stop operation, the ejector refrigeration cycle 10 can be appropriately operated as in the first embodiment.
  • the stop condition determination unit configured in the control step S1 determines that the ejector stop condition is satisfied when the temperature difference ⁇ T is equal to or greater than the reference temperature difference K ⁇ T.
  • the determination of the ejector stop condition in the stop condition determination unit is not limited to this.
  • the ejector stop condition is satisfied when the refrigerant discharge capacity of the compressor 11 is equal to or less than a predetermined reference discharge capacity. This is because when the refrigerant discharge capacity of the compressor 11 is less than or equal to the reference discharge capacity, the operation is low load, and the oil mixed in the refrigerant is difficult to return to the compressor.
  • the superheat degree of the refrigerant on the outlet side of the first evaporator 17 is equal to or lower than a predetermined reference superheat degree, it may be determined that the ejector stop condition is satisfied. This is because the refrigerant cannot sufficiently absorb heat from the blown air in the first evaporator 17 during low-load operation, and the liquid-phase refrigerant may flow out of the first evaporator 17.
  • the ejector stop condition is satisfied when the pressure of the suction refrigerant of the compressor 11 is equal to or lower than a predetermined reference suction refrigerant pressure. This is because during low-load operation, the density of the suction refrigerant decreases, and the pressure of the suction refrigerant may greatly decrease.
  • the ejector stop condition is satisfied until a predetermined reference time elapses after the cycle (that is, the compressor 11) is started. This is because when the cycle is started, the refrigerant suddenly flows into the nozzle portion 15a of the ejector 15, and the refrigerant passing sound passing through the nozzle 15a may be annoying to the user.
  • the ejector refrigeration cycle to which the ejector module 20 described in the first embodiment can be applied is not limited to that disclosed in the above-described embodiment.
  • the ejector module 20 may be applied to the ejector refrigeration cycle 10b shown in the overall configuration diagram of FIG.
  • the ejector refrigeration cycle 10b includes a compressor 11 that compresses and discharges a refrigerant, a radiator 12 that dissipates heat from the refrigerant discharged from the compressor 11, and a gas-liquid separator 31 that separates refrigerant gas and liquid.
  • the decompression device 32 that decompresses the liquid-phase refrigerant separated by the gas-liquid separator 31, the first evaporator 17 that evaporates the refrigerant decompressed by the decompression device 32, and the refrigerant decompressed by the decompression unit are evaporated
  • the second evaporator 18, and the merge section 33 that merges the gas-phase refrigerant separated by the gas-liquid separator 31 and the refrigerant that has flowed out of the second evaporator 18 to flow out to the suction side of the compressor 11. ing.
  • the outlet side of the radiator 12 is connected to the high pressure inlet 21a of the ejector module 20, the refrigerant outlet side of the first evaporator 17 is connected to the refrigerant suction port 21b, and the ejector side outlet 21c is connected.
  • the inlet side of the gas-liquid separator 31 is connected, and the refrigerant inlet side of the second evaporator 18 is connected to the throttle side outlet 21d.
  • heat exchange is performed between the low-pressure refrigerant decompressed by the decompression device 32 and the blown air blown from the first blower 17a.
  • heat exchange is performed between the low-pressure refrigerant decompressed by the variable throttle mechanism 16 and the blown air blown from the second blower 18a.
  • the refrigerant outlet of the junction 33 is directly connected to the suction side of the compressor 11, the refrigerant outlet of the first evaporator 17 is connected to the low pressure inlet 21e side, and the low pressure outlet 21f is sucked of refrigerant. You may connect to the port 21b.
  • the operation of the drive mechanism unit 24 may be controlled so that the superheat degree of the refrigerant on the outlet side of the first evaporator 17 approaches the suction side reference superheat degree (0 ° C. in this embodiment).
  • the operation of the drive mechanism 24 may be controlled so as to close the nozzle portion 15a of the ejector 15.
  • Each component device constituting the ejector refrigeration cycle 10 to 10b is not limited to the one disclosed in the above embodiment.
  • an electric compressor is employed as the compressor 11
  • the compressor 11 is driven by a rotational driving force transmitted from a vehicle traveling engine via a pulley, a belt, or the like.
  • An engine driven compressor may be employed.
  • the variable capacity compressor that can adjust the refrigerant discharge capacity by changing the discharge capacity, or the refrigerant discharge capacity can be adjusted by changing the operating rate of the compressor by intermittently connecting the electromagnetic clutch A fixed-capacity compressor can be employed.
  • the radiator 12 has a supercooling unit that supercools the liquid-phase refrigerant flowing out from the receiver unit 12b.
  • a so-called subcool condenser may be employed.
  • R134a is adopted as the refrigerant
  • the refrigerant is not limited to this.
  • R1234yf, R600a, R410A, R404A, R32, R407C, etc. may be adopted.
  • a supercritical refrigeration cycle in which carbon dioxide is employed as the refrigerant and the high-pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant may be configured.
  • the example in which the first evaporator 17 and the second evaporator 18 are integrally configured has been described.
  • the first evaporator 17 and the second evaporator The vessel 18 may be configured separately.
  • different refrigerant target fluids may be cooled in different temperature zones.
  • the ejector module 20 according to the present disclosure is applied to the ejector refrigeration cycles 10 to 10b mounted on a vehicle
  • the application of the ejector module 20 is not limited thereto.
  • the present invention may be applied to an ejector-type refrigeration cycle used in a stationary air conditioner, a cold / hot storage, or the like.

Abstract

This ejector module is provided with a nozzle part (15a), a depressurizing part (20b), a body part (21), a nozzle-side valve body part (22), a depressurizing-side valve body part (23), and a driving mechanism part (24). The nozzle part depressurizes and ejects a refrigerant. The depressurizing part depressurizes the refrigerant. The body part has: a refrigerant suction port (21b) which suctions the refrigerant from the outside by means of a suctioning action of an ejected refrigerant that is ejected from the nozzle part; and a pressure increasing part (15b) which increases the pressure of a refrigerant mixture of the ejected refrigerant and a suctioned refrigerant that is suctioned from the refrigerant suction port. The nozzle-side valve body part changes the cross-sectional area of the passage of the nozzle part. The depressurizing-side valve body part changes the cross-sectional area of the passage of the depressurizing part. The driving mechanism part displaces the nozzle-side valve body part and the depressurizing-side valve body part. The driving mechanism part closes the nozzle part earlier than the depressurizing part when closing the nozzle part and the depressurizing part from an open state, and opens the depressurizing part earlier than the nozzle part when opening the nozzle part and the depressurizing part from a closed state.

Description

エジェクタモジュール、およびエジェクタ式冷凍サイクルEjector module and ejector refrigeration cycle 関連出願の相互参照Cross-reference of related applications
 本出願は、2017年3月2日に出願された日本特許出願番号2017-039254号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2017-039254 filed on March 2, 2017, the contents of which are incorporated herein by reference.
 本開示は、エジェクタを含む複数の機器を一体化させたエジェクタモジュール、およびエジェクタを備えるエジェクタ式冷凍サイクルに関する。 The present disclosure relates to an ejector module in which a plurality of devices including an ejector are integrated, and an ejector refrigeration cycle including the ejector.
 従来、冷媒減圧装置としてエジェクタを備える冷凍サイクル装置であるエジェクタ式冷凍サイクルが知られている。この種のエジェクタ式冷凍サイクルでは、エジェクタの昇圧作用によって、圧縮機へ吸入される冷媒の圧力を、蒸発器における冷媒蒸発圧力よりも上昇させることができる。これにより、エジェクタ式冷凍サイクルでは、圧縮機の消費動力を低減させてサイクルの成績係数(COP)を向上させることができる。 Conventionally, an ejector type refrigeration cycle, which is a refrigeration cycle apparatus including an ejector as a refrigerant decompression device, is known. In this type of ejector-type refrigeration cycle, the pressure of the refrigerant sucked into the compressor can be made higher than the refrigerant evaporation pressure in the evaporator by the pressurizing action of the ejector. Thereby, in an ejector type refrigeration cycle, the power consumption of a compressor can be reduced and the coefficient of performance (COP) of a cycle can be improved.
 さらに、特許文献1には、エジェクタ式冷凍サイクルに適用される蒸発器ユニットが開示されている。この特許文献1の蒸発器ユニットは、エジェクタ式冷凍サイクルの構成機器のうち、分岐部、エジェクタ、固定絞り、第1蒸発器、第2蒸発器等を一体化(換言すると、ユニット化あるいはモジュール化)させたものである。 Furthermore, Patent Document 1 discloses an evaporator unit applied to an ejector refrigeration cycle. The evaporator unit disclosed in Patent Document 1 includes a branching unit, an ejector, a fixed throttle, a first evaporator, a second evaporator, and the like among components constituting an ejector refrigeration cycle (in other words, unitized or modularized). ).
 より詳細には、分岐部は、放熱器から流出した高圧冷媒の流れを分岐して、エジェクタのノズル部側および固定絞り側へ流出させる。第2蒸発器は、エジェクタのディフューザ部から流出した冷媒を空調対象空間へ送風される送風空気と熱交換させて蒸発させる熱交換器であり、蒸発させた冷媒を圧縮機の吸入口側へ流出させる。第1蒸発器は、固定絞りにて減圧された冷媒を第2蒸発器通過後の送風空気と熱交換させて蒸発させる熱交換器であり、蒸発させた冷媒をエジェクタの冷媒吸引口側へ流出させる。 More specifically, the branch part branches the flow of the high-pressure refrigerant that has flowed out of the radiator, and flows it out to the nozzle part side and the fixed throttle side of the ejector. The second evaporator is a heat exchanger that evaporates the refrigerant flowing out from the diffuser portion of the ejector by exchanging heat with the blown air blown into the air-conditioning target space and evaporates the evaporated refrigerant to the suction port side of the compressor. Let The first evaporator is a heat exchanger that evaporates the refrigerant decompressed by the fixed throttle by heat exchange with the blown air that has passed through the second evaporator, and flows the evaporated refrigerant to the refrigerant suction port side of the ejector. Let
 特許文献1の蒸発器ユニットでは、上記の如く、サイクル構成機器の一部を一体化させることによって、適用されたエジェクタ式冷凍サイクル全体としての小型化、および生産性の向上を図っている。 In the evaporator unit of Patent Document 1, as described above, a part of the cycle component equipment is integrated to reduce the size and productivity of the applied ejector refrigeration cycle as a whole.
特許第4259531号公報Japanese Patent No. 4259531
 特許文献1の蒸発器ユニットでは、固定絞りを採用し、さらに、エジェクタのノズル部として冷媒通路の通路断面積を変更することのできない固定ノズル部を採用している。このため、適用されたエジェクタ式冷凍サイクルに負荷変動が生じて、ノズル部へ流入する冷媒流量が変化すると、エジェクタのエネルギ変換効率が低下してしまうことがある。 The evaporator unit of Patent Document 1 employs a fixed throttle, and further employs a fixed nozzle portion that cannot change the passage cross-sectional area of the refrigerant passage as the nozzle portion of the ejector. For this reason, when load fluctuation occurs in the applied ejector refrigeration cycle and the flow rate of the refrigerant flowing into the nozzle portion changes, the energy conversion efficiency of the ejector may decrease.
 従って、特許文献1の蒸発器ユニットでは、エジェクタ式冷凍サイクルに負荷変動が生じると、エジェクタが充分な昇圧作用を発揮できなくなってしまい、上述したCOP向上効果を充分に得ることができなくなってしまうおそれがある。 Therefore, in the evaporator unit of Patent Document 1, when a load fluctuation occurs in the ejector-type refrigeration cycle, the ejector cannot exhibit a sufficient boosting action, and the above-described COP improvement effect cannot be obtained sufficiently. There is a fear.
 これに対して、特許文献1には、固定絞りに代えて通路断面積(すなわち、絞り開度)を変更可能に構成された可変絞り機構を採用してもよいこと、並びに、エジェクタのノズル部として通路断面積を変更可能に構成された可変ノズル部を採用してもよいことが記載されている。 On the other hand, Patent Document 1 may adopt a variable throttle mechanism configured to be able to change the passage cross-sectional area (that is, the throttle opening degree) instead of the fixed throttle, and the nozzle portion of the ejector. It is described that a variable nozzle part configured to change the passage cross-sectional area may be employed.
 これによれば、エジェクタ式冷凍サイクルの負荷変動に応じて可変絞り機構の絞り開度あるいは可変ノズル部の通路断面積を調整して、エジェクタのエネルギ変換効率の低下を抑制することができる。従って、負荷変動が生じてもエジェクタ式冷凍サイクルのCOPの低下を抑制することができる。 According to this, it is possible to suppress the decrease in the energy conversion efficiency of the ejector by adjusting the throttle opening of the variable throttle mechanism or the passage sectional area of the variable nozzle portion according to the load fluctuation of the ejector refrigeration cycle. Accordingly, it is possible to suppress a decrease in COP of the ejector refrigeration cycle even if load fluctuation occurs.
 しかしながら、固定絞りに代えて可変絞り機構を採用すると、絞り開度を変化させるための駆動装置が必要となる。このことは、エジェクタのノズル部として可変ノズル部を採用した場合も同様である。 However, when a variable throttle mechanism is used instead of the fixed throttle, a drive device for changing the throttle opening is required. The same applies to the case where a variable nozzle portion is adopted as the nozzle portion of the ejector.
 この種の駆動装置は、比較的体格が大きい。このため、可変絞り機構あるいは可変ノズル部を有するエジェクタを含む構成機器を一体化させたユニット(あるいは、モジュール)は、大型化しやすい。その結果、構成機器を一体化したことによるエジェクタ式冷凍サイクル全体としての小型化効果が損なわれてしまうおそれがある。 This type of drive is relatively large. For this reason, a unit (or module) in which constituent devices including a variable throttle mechanism or an ejector having a variable nozzle portion are integrated is likely to be large. As a result, there is a possibility that the downsizing effect of the ejector refrigeration cycle as a whole due to the integration of the components is impaired.
 さらに、可変絞り機構や可変ノズル部を有するエジェクタを一体化させたとしても、エジェクタ式冷凍サイクルの低負荷運転時等には、可変ノズル部から噴射される噴射冷媒の流速が低下してしまうことがある。このような噴射冷媒の流速の低下が生じると、エジェクタが充分な吸引作用を発揮できなくなり、蒸発器に充分な流量の冷媒を供給することができなくなってしまうおそれがある。 Furthermore, even if an ejector having a variable throttle mechanism and a variable nozzle portion is integrated, the flow rate of the refrigerant injected from the variable nozzle portion decreases during low load operation of the ejector refrigeration cycle. There is. When such a decrease in the flow rate of the injected refrigerant occurs, the ejector may not be able to exhibit a sufficient suction action and may not be able to supply a sufficient flow rate of refrigerant to the evaporator.
 その結果、COPの低下を招くだけでなく、エジェクタ式冷凍サイクルが不適切に作動してしまう。ここで、エジェクタ式冷凍サイクルの不適切な作動としては、蒸発器にて冷却される冷却対象流体に温度分布を生じさせてしまうこと、冷媒に混入されたオイルが圧縮機に戻り難くなってしまうこと等が挙げられる。 As a result, not only does the COP decrease, but the ejector refrigeration cycle operates improperly. Here, as an inappropriate operation of the ejector-type refrigeration cycle, a temperature distribution is generated in the fluid to be cooled that is cooled by the evaporator, and the oil mixed in the refrigerant becomes difficult to return to the compressor. And so on.
 さらに、エジェクタ式冷凍サイクルの起動時には、可変ノズル部に瞬間的に過剰な冷媒が流れてしまうことがある。この場合、ノズル部を通過する冷媒により生じる冷媒通過音が大きくなり、耳障りとなってしまう場合がある。このような冷媒通過音の発生もエジェクタ式冷凍サイクルの不適切な作動に該当する。 Furthermore, when the ejector-type refrigeration cycle is started, excessive refrigerant may instantaneously flow to the variable nozzle portion. In this case, the refrigerant passing sound generated by the refrigerant passing through the nozzle portion may be increased, which may be annoying. Generation | occurrence | production of such a refrigerant | coolant passage sound also corresponds to the improper operation | movement of an ejector type refrigeration cycle.
 本開示は、適用されたエジェクタ式冷凍サイクルの大型化を招くことなく、通路断面積を変更可能に構成されたエジェクタモジュールを提供することを第1の目的とする。 This disclosure has a first object to provide an ejector module configured such that the cross-sectional area of the passage can be changed without increasing the size of the applied ejector refrigeration cycle.
 また、本開示は、負荷変動が生じた場合や、起動時において、適切に作動するエジェクタ式冷凍サイクルを提供することを第2の目的とする。 Also, a second object of the present disclosure is to provide an ejector refrigeration cycle that operates properly when a load change occurs or at startup.
 本開示の第1態様によるエジェクタモジュールは、エジェクタ式冷凍サイクルに適用される。エジェクタモジュールは、ノズル部と、減圧部と、ボデー部と、ノズル側弁体部と、減圧側弁体部と、駆動機構部と、を備える。ノズル部は、冷媒を減圧させて噴射する。減圧部は、冷媒を減圧させる。ボデー部は、ノズル部から噴射された噴射冷媒の吸引作用によって外部から冷媒を吸引する冷媒吸引口、および噴射冷媒と冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させる昇圧部を有する。ノズル側弁体部は、ノズル部の通路断面積を変化させる。減圧側弁体部は、減圧部の通路断面積を変化させる。駆動機構部は、ノズル側弁体部および減圧側弁体部を変位させる。駆動機構部は、ノズル部および減圧部を開いた状態から閉塞させる際には、減圧部よりも先にノズル部を閉塞させ、さらに、ノズル部および減圧部を閉塞させた状態から開く際には、ノズル部よりも先に減圧部を開く。 The ejector module according to the first aspect of the present disclosure is applied to an ejector refrigeration cycle. The ejector module includes a nozzle part, a pressure reducing part, a body part, a nozzle side valve body part, a pressure reducing side valve body part, and a drive mechanism part. A nozzle part decompresses and injects a refrigerant. The decompression unit decompresses the refrigerant. The body portion has a refrigerant suction port that sucks the refrigerant from the outside by a suction action of the jetted refrigerant jetted from the nozzle portion, and a pressure boosting unit that boosts the mixed refrigerant of the jetted refrigerant and the sucked refrigerant sucked from the refrigerant suction port . The nozzle side valve body changes the passage cross-sectional area of the nozzle. The pressure reducing side valve body portion changes the passage cross-sectional area of the pressure reducing portion. The drive mechanism displaces the nozzle side valve body and the pressure reducing side valve body. When the drive mechanism portion closes the nozzle portion and the pressure reducing portion from the opened state, the drive mechanism portion closes the nozzle portion before the pressure reducing portion, and further, when the nozzle portion and the pressure reducing portion are opened from the closed state. The decompression part is opened before the nozzle part.
 これによれば、ノズル部、ボデー部、ノズル側弁体部、および駆動機構部を備えているので、可変ノズル部を有するエジェクタを構成することができる。さらに、減圧部、減圧側弁体部、および駆動機構部を備えているので、可変絞り機構を構成することができる。 According to this, since the nozzle part, the body part, the nozzle side valve body part, and the drive mechanism part are provided, an ejector having a variable nozzle part can be configured. Furthermore, since the pressure reducing part, the pressure reducing side valve body part, and the drive mechanism part are provided, a variable throttle mechanism can be configured.
 従って、可変ノズル部を有するエジェクタと可変絞り機構とを一体化させることができる。この際、ノズル部の通路断面積および減圧部の絞り開度を、共通する1つの駆動機構部によって調整するので、複数の駆動機構部を備えるものに対して、大型化を招くことなく、可変ノズル部を有するエジェクタおよび可変絞り機構を一体化させることができる。 Therefore, the ejector having the variable nozzle portion and the variable aperture mechanism can be integrated. At this time, the passage cross-sectional area of the nozzle part and the throttle opening of the pressure reducing part are adjusted by one common driving mechanism part, so that it can be changed without increasing the size of the one having a plurality of driving mechanism parts. The ejector having the nozzle portion and the variable aperture mechanism can be integrated.
 さらに、駆動機構部が、ノズル部および減圧部を閉塞させる際には、減圧部よりも先にノズル部を閉塞させ、ノズル部および減圧部を開く際には、ノズル部よりも先に減圧部を開く。 Further, when the drive mechanism portion closes the nozzle portion and the pressure reducing portion, the nozzle portion is closed before the pressure reducing portion, and when the nozzle portion and the pressure reducing portion are opened, the pressure reducing portion is preceded by the nozzle portion. open.
 従って第1態様に係るエジェクタモジュールを備えるエジェクタ式冷凍サイクルでは、負荷変動によってエジェクタが充分な吸引作用や昇圧作用を発揮できない運転条件時に、エジェクタを機能させない通常の冷凍サイクル装置に切り替えることができる。そして、通常の冷凍サイクル装置として適切に作動させることができる。 Therefore, in the ejector-type refrigeration cycle including the ejector module according to the first aspect, it is possible to switch to a normal refrigeration cycle apparatus that does not cause the ejector to function during an operating condition in which the ejector cannot exhibit a sufficient suction action or boosting action due to load fluctuations. And it can be operated appropriately as a normal refrigeration cycle apparatus.
 すなわち、第1態様によれば、適用されたエジェクタ式冷凍サイクルの大型化を招くことなく、通路断面積を変更可能に構成されたエジェクタモジュールを提供することができる。さらに、負荷変動が生じても適切に作動するエジェクタ式冷凍サイクルを提供することができる。 That is, according to the first aspect, it is possible to provide an ejector module configured such that the passage cross-sectional area can be changed without increasing the size of the applied ejector-type refrigeration cycle. Furthermore, it is possible to provide an ejector refrigeration cycle that operates properly even when load fluctuation occurs.
 本開示の第2態様によるエジェクタ式冷凍サイクルは、圧縮機と、放熱器と、分岐部と、エジェクタと、可変絞り機構と、エジェクタ制御部と、停止条件判定部と、を備える。圧縮機は、冷媒を圧縮して吐出する。放熱器は、圧縮機から吐出された冷媒を放熱させる。分岐部は、放熱器から流出した冷媒の流れを分岐する。エジェクタは、分岐部にて分岐された一方の冷媒を減圧させる可変ノズル部から噴射される噴射冷媒の吸引作用によって冷媒吸引口から冷媒を吸引し、噴射冷媒と冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させる。可変絞り機構は、分岐部にて分岐された他方の冷媒を減圧させる。第1蒸発器は、可変絞り機構にて減圧された冷媒を蒸発させて冷媒吸引口側へ流出させる。第2蒸発器は、エジェクタから流出した冷媒を蒸発させて圧縮機の吸入側へ流出させる。エジェクタ制御部は、可変ノズル部の通路断面積を制御する。停止条件判定部は、予め定めたエジェクタ停止条件が成立したことを判定する。エジェクタ制御部は、停止条件判定部によってエジェクタ停止条件が成立したと判定された際に、可変ノズル部を閉塞させる。 The ejector refrigeration cycle according to the second aspect of the present disclosure includes a compressor, a radiator, a branching unit, an ejector, a variable throttle mechanism, an ejector control unit, and a stop condition determination unit. The compressor compresses and discharges the refrigerant. The radiator dissipates heat from the refrigerant discharged from the compressor. A branch part branches the flow of the refrigerant | coolant which flowed out from the heat radiator. The ejector sucks the refrigerant from the refrigerant suction port by the suction action of the jet refrigerant ejected from the variable nozzle portion that depressurizes one of the refrigerant branched at the branch portion, and sucked refrigerant sucked from the jet refrigerant and the refrigerant suction port And pressurize the mixed refrigerant. The variable throttle mechanism depressurizes the other refrigerant branched at the branch portion. The first evaporator evaporates the refrigerant decompressed by the variable throttle mechanism and causes the refrigerant to flow out to the refrigerant suction port side. The second evaporator evaporates the refrigerant that has flowed out of the ejector and flows it out to the suction side of the compressor. The ejector control unit controls the passage sectional area of the variable nozzle unit. The stop condition determination unit determines that a predetermined ejector stop condition is satisfied. The ejector control unit closes the variable nozzle unit when the stop condition determining unit determines that the ejector stop condition is satisfied.
 これによれば、停止条件判定部によってエジェクタ停止条件が成立したと判定された際に、エジェクタ制御部が可変ノズル部を閉塞させる。従って、負荷変動によってエジェクタが充分な吸引作用や昇圧作用を発揮できない運転条件時に、エジェクタを機能させない通常の冷凍サイクル装置に切り替えることができる。そして、通常の冷凍サイクル装置として適切に作動させることができる。 According to this, when it is determined by the stop condition determining unit that the ejector stop condition is satisfied, the ejector control unit closes the variable nozzle unit. Therefore, it is possible to switch to a normal refrigeration cycle apparatus that does not cause the ejector to function during an operating condition in which the ejector cannot exhibit a sufficient suction action or boosting action due to load fluctuations. And it can be operated appropriately as a normal refrigeration cycle apparatus.
 すなわち、第2態様によれば、負荷変動が生じた場合や、起動時において、適切に作動するエジェクタ式冷凍サイクルを提供することができる。 That is, according to the second aspect, it is possible to provide an ejector-type refrigeration cycle that operates properly when a load change occurs or at startup.
少なくとも1つの実施形態のエジェクタ式冷凍サイクルの全体構成図である。It is a whole block diagram of the ejector-type refrigeration cycle of at least one embodiment. 少なくとも1つの実施形態のエジェクタモジュールの軸方向断面図である。It is an axial sectional view of the ejector module of at least one embodiment. 図2のIII部拡大図である。It is the III section enlarged view of FIG. 図3のIV-IV断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. 図3のV-V断面図である。FIG. 5 is a VV cross-sectional view of FIG. 3. 少なくとも1つの実施形態のノズル部の開度と絞り通路の開度との関係を示す制御特性図である。It is a control characteristic figure which shows the relationship between the opening degree of the nozzle part of at least 1 embodiment, and the opening degree of a throttle path. 少なくとも1つの実施形態のエジェクタ式冷凍サイクルの電気制御部をブロック図である。It is a block diagram of the electric control unit of the ejector refrigeration cycle of at least one embodiment. 少なくとも1つの実施形態のエジェクタ式冷凍サイクルの制御処理を示すフローチャートである。It is a flowchart which shows the control processing of the ejector-type refrigeration cycle of at least 1 embodiment. 少なくとも1つの実施形態のエジェクタ式冷凍サイクルの全体構成図である。It is a whole block diagram of the ejector-type refrigeration cycle of at least one embodiment. 少なくとも1つの実施形態のエジェクタ式冷凍サイクルの電気制御部をブロック図である。It is a block diagram of the electric control unit of the ejector refrigeration cycle of at least one embodiment. 少なくとも1つの実施形態のエジェクタ式冷凍サイクルの全体構成図である。It is a whole block diagram of the ejector-type refrigeration cycle of at least one embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not explicitly stated unless there is a problem with the combination. Is also possible.
 (第1実施形態)
 図1~図8を用いて、本開示の第1実施形態を説明する。本実施形態のエジェクタモジュール20は、図1の全体構成図に示すように、冷媒減圧装置としてエジェクタを備える蒸気圧縮式の冷凍サイクル装置であるエジェクタ式冷凍サイクル10に適用されている。このエジェクタ式冷凍サイクル10は、車両用空調装置に適用されており、冷却対象空間である車室内へ送風される送風空気を冷却する機能を果たす。従って、エジェクタ式冷凍サイクル10の冷却対象流体は、送風空気である。
(First embodiment)
1st Embodiment of this indication is described using FIGS. 1-8. The ejector module 20 of the present embodiment is applied to an ejector refrigeration cycle 10 that is a vapor compression refrigeration cycle apparatus including an ejector as a refrigerant decompression device, as shown in the overall configuration diagram of FIG. This ejector-type refrigeration cycle 10 is applied to a vehicle air conditioner, and fulfills a function of cooling blown air that is blown into a vehicle interior that is a space to be cooled. Therefore, the fluid to be cooled in the ejector refrigeration cycle 10 is blown air.
 エジェクタ式冷凍サイクル10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、サイクルの高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。さらに、冷媒には圧縮機11を潤滑するための冷凍機油が混入されている。冷凍機油としては、液相冷媒に相溶性を有するPAGオイルが採用されている。冷凍機油の一部は、冷媒とともにサイクルを循環している。 The ejector refrigeration cycle 10 employs an HFC refrigerant (specifically, R134a) as a refrigerant, and constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure of the cycle does not exceed the critical pressure of the refrigerant. Furthermore, refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant. As the refrigerating machine oil, a PAG oil having compatibility with a liquid phase refrigerant is employed. A part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
 エジェクタ式冷凍サイクル10の構成機器のうち、圧縮機11は、冷媒を吸入して高圧冷媒となるまで圧縮して吐出するものである。より具体的には、本実施形態の圧縮機11は、1つのハウジング内に固定容量型の圧縮機構、および圧縮機構を駆動する電動モータを収容して構成された電動圧縮機である。 Among the constituent devices of the ejector refrigeration cycle 10, the compressor 11 sucks the refrigerant and compresses and discharges it until it becomes a high-pressure refrigerant. More specifically, the compressor 11 of the present embodiment is an electric compressor that is configured by housing a fixed capacity type compression mechanism and an electric motor that drives the compression mechanism in one housing.
 この圧縮機構としては、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用することができる。また、電動モータは、空調制御装置40から出力される制御信号によって、その作動(回転数)が制御されるもので、交流モータ、直流モータのいずれの形式のものを採用してもよい。 As this compression mechanism, various compression mechanisms such as a scroll-type compression mechanism and a vane-type compression mechanism can be employed. Further, the operation (rotation speed) of the electric motor is controlled by a control signal output from the air conditioning control device 40, and either an AC motor or a DC motor may be adopted.
 圧縮機11の吐出口には、放熱器12の凝縮部12aの冷媒入口側が接続されている。放熱器12は、圧縮機11から吐出された高圧側冷媒と冷却ファン12cから送風された車室外空気(外気)を熱交換させることによって、高圧冷媒を放熱させて冷却する放熱用熱交換器である。 The refrigerant inlet side of the condenser 12 a of the radiator 12 is connected to the discharge port of the compressor 11. The radiator 12 is a heat dissipation heat exchanger that radiates and cools the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the outside air (outside air) blown from the cooling fan 12c. is there.
 より具体的には、放熱器12は、凝縮部12aおよびレシーバ部12bを有する、いわゆるレシーバ一体型の凝縮器として構成されている。凝縮部12aは、圧縮機11から吐出された高圧気相冷媒と冷却ファン12cから送風された外気とを熱交換させて、高圧気相冷媒を放熱させて凝縮させる凝縮用の熱交換部である。レシーバ部12bは、凝縮部12aから流出した冷媒の気液を分離して余剰液相冷媒を蓄える冷媒容器である。 More specifically, the radiator 12 is configured as a so-called receiver-integrated condenser having a condensing part 12a and a receiver part 12b. The condensing unit 12a is a heat exchanging unit for condensation that exchanges heat between the high-pressure gas-phase refrigerant discharged from the compressor 11 and the outside air blown from the cooling fan 12c, and dissipates the high-pressure gas-phase refrigerant to condense. . The receiver unit 12b is a refrigerant container that separates the gas-liquid refrigerant flowing out from the condensing unit 12a and stores excess liquid-phase refrigerant.
 冷却ファン12cは、空調制御装置40から出力される制御電圧によって回転数(送風空気量)が制御される電動送風機である。放熱器12のレシーバ部12bの冷媒出口には、エジェクタモジュール20のボデー部21に設けられた高圧入口21a側が接続されている。 The cooling fan 12c is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the air conditioning control device 40. The refrigerant outlet of the receiver section 12 b of the radiator 12 is connected to the high pressure inlet 21 a side provided in the body section 21 of the ejector module 20.
 エジェクタモジュール20は、エジェクタ式冷凍サイクル10を構成するサイクル構成機器の一部を一体化(換言すると、モジュール化)させたものである。より具体的には、本実施形態のエジェクタモジュール20は、サイクル構成機器のうち、分岐部14、エジェクタ15、可変絞り機構16等を一体化させたものである。 The ejector module 20 is obtained by integrating (in other words, modularizing) a part of the cycle constituent devices constituting the ejector refrigeration cycle 10. More specifically, the ejector module 20 of the present embodiment is obtained by integrating the branching unit 14, the ejector 15, the variable throttle mechanism 16 and the like among the cycle constituent devices.
 分岐部14は、放熱器12から流出した冷媒の流れを分岐し、分岐された一方の冷媒をエジェクタ15のノズル部15aから噴射させ、分岐された他方の冷媒を可変絞り機構16へ流出させる機能を果たす。分岐部14は、エジェクタモジュール20のボデー部21の内部に形成された空間および冷媒通路を接続することによって形成されている。 The branch part 14 branches the flow of the refrigerant that has flowed out of the radiator 12, injects one of the branched refrigerants from the nozzle part 15a of the ejector 15, and causes the other branched refrigerant to flow out to the variable throttle mechanism 16. Fulfill. The branch portion 14 is formed by connecting a space formed in the body portion 21 of the ejector module 20 and a refrigerant passage.
 エジェクタ15は、分岐部14にて分岐された一方の冷媒を減圧させて噴射するノズル部15aを有し、冷媒減圧装置としての機能を果たす。さらに、エジェクタ15は、ノズル部15aの冷媒噴射口から噴射された噴射冷媒の吸引作用によって、外部から冷媒を吸引して循環させる冷媒循環装置としての機能を果たす。より具体的には、エジェクタ15は、後述する第1蒸発器17から流出した冷媒を吸引する。 The ejector 15 has a nozzle portion 15a that depressurizes and injects one of the refrigerants branched at the branching portion 14, and functions as a refrigerant decompression device. Further, the ejector 15 functions as a refrigerant circulation device that sucks and circulates the refrigerant from outside by the suction action of the refrigerant injected from the refrigerant injection port of the nozzle portion 15a. More specifically, the ejector 15 sucks the refrigerant that has flowed out of the first evaporator 17 described later.
 これに加えて、エジェクタ15は、ノズル部15aから噴射された噴射冷媒とボデー部21に形成された冷媒吸引口21bから吸引された吸引冷媒との混合冷媒の運動エネルギを圧力エネルギに変換して、混合冷媒を昇圧させるエネルギ変換装置としての機能を果たす。エジェクタ15は、昇圧させた冷媒を後述する第2蒸発器18の冷媒入口側へ流出させる。エジェクタ15のノズル部15aは、通路断面積を変更可能に構成されている。 In addition, the ejector 15 converts the kinetic energy of the mixed refrigerant of the refrigerant injected from the nozzle portion 15a and the refrigerant sucked from the refrigerant suction port 21b formed in the body portion 21 into pressure energy. It functions as an energy conversion device that boosts the pressure of the mixed refrigerant. The ejector 15 causes the pressurized refrigerant to flow out to the refrigerant inlet side of the second evaporator 18 described later. The nozzle portion 15a of the ejector 15 is configured such that the passage cross-sectional area can be changed.
 可変絞り機構16は、分岐部14にて分岐された他方の冷媒を減圧させる絞り通路20bを有している。可変絞り機構16は、絞り通路20bの通路断面積(すなわち、絞り開度)を変更可能に構成されている。可変絞り機構16は、減圧させた冷媒を第1蒸発器17の冷媒入口側へ流出させる。 The variable throttle mechanism 16 has a throttle passage 20b that depressurizes the other refrigerant branched by the branching section 14. The variable throttle mechanism 16 is configured to be able to change the passage cross-sectional area (that is, the throttle opening) of the throttle passage 20b. The variable throttle mechanism 16 causes the decompressed refrigerant to flow out to the refrigerant inlet side of the first evaporator 17.
 次に、図2~図6を用いて、エジェクタモジュール20の詳細構成を説明する。まず、エジェクタモジュール20は、図2に示すように、ボデー部21、ニードル弁22、絞り弁23、駆動機構部24等を有している。 Next, the detailed configuration of the ejector module 20 will be described with reference to FIGS. First, as shown in FIG. 2, the ejector module 20 includes a body part 21, a needle valve 22, a throttle valve 23, a drive mechanism part 24, and the like.
 ボデー部21は、金属製(本実施形態では、アルミニウム製)の複数の構成部材を組み合わせることによって形成されている。ボデー部21は、エジェクタモジュール20の外殻を形成するとともに、エジェクタ15、可変絞り機構16等の構成機器の一部を形成するものである。ボデー部21は、樹脂にて形成されていてもよい。 The body part 21 is formed by combining a plurality of structural members made of metal (in this embodiment, made of aluminum). The body portion 21 forms an outer shell of the ejector module 20 and forms part of components such as the ejector 15 and the variable aperture mechanism 16. The body part 21 may be formed of resin.
 ボデー部21には、高圧入口21a、冷媒吸引口21b、エジェクタ側出口21c、絞り側出口21dといった複数の冷媒出入口が設けられている。 The body section 21 is provided with a plurality of refrigerant inlets and outlets such as a high-pressure inlet 21a, a refrigerant suction port 21b, an ejector side outlet 21c, and a throttle side outlet 21d.
 高圧入口21aは、放熱器12のレシーバ部12bの冷媒出口から流出した冷媒をエジェクタモジュール20の内部へ流入させる冷媒入口である。従って、高圧入口21aは、分岐部14の冷媒入口となる。冷媒吸引口21bは、第1蒸発器17から流出した冷媒を吸引する冷媒入口である。冷媒吸引口21bから吸引された吸引冷媒は、ノズル部15aから噴射された噴射冷媒と合流する。 The high-pressure inlet 21 a is a refrigerant inlet through which the refrigerant that has flowed out from the refrigerant outlet of the receiver unit 12 b of the radiator 12 flows into the ejector module 20. Accordingly, the high-pressure inlet 21 a serves as a refrigerant inlet for the branch portion 14. The refrigerant suction port 21 b is a refrigerant inlet that sucks the refrigerant flowing out of the first evaporator 17. The suction refrigerant sucked from the refrigerant suction port 21b merges with the jet refrigerant jetted from the nozzle portion 15a.
 エジェクタ側出口21cは、エジェクタ15(具体的には、後述するディフューザ部15b)にて昇圧された冷媒を第2蒸発器18の入口側へ流出させる冷媒出口である。絞り側出口21dは、可変絞り機構16にて減圧された冷媒を、第1蒸発器17の入口側へ流出させる冷媒出口である。 The ejector side outlet 21c is a refrigerant outlet through which the refrigerant whose pressure has been increased by the ejector 15 (specifically, a diffuser portion 15b described later) flows out to the inlet side of the second evaporator 18. The throttle-side outlet 21 d is a refrigerant outlet that allows the refrigerant decompressed by the variable throttle mechanism 16 to flow out to the inlet side of the first evaporator 17.
 ボデー部21の内部には、図3に示すように、旋回空間20aが形成されている。旋回空間20aは、円柱状に形成されており、高圧入口21aから流入した冷媒の流れを中心軸周りに旋回させる空間である。 As shown in FIG. 3, a turning space 20a is formed inside the body portion 21. The swirling space 20a is formed in a columnar shape, and is a space that swirls the refrigerant flow that has flowed in from the high-pressure inlet 21a around the central axis.
 高圧入口21aと旋回空間20aとを接続する冷媒通路は、図4に示すように、旋回空間20aの中心軸方向から見たときに旋回空間20aへ流入する冷媒を、旋回空間20aの内壁面に沿って流入させるように形成されている。これにより、旋回空間20aへ流入した冷媒は、旋回空間20aの中心軸周りに旋回する。 As shown in FIG. 4, the refrigerant passage connecting the high-pressure inlet 21a and the swirl space 20a allows the refrigerant flowing into the swirl space 20a when viewed from the central axis direction of the swirl space 20a to flow into the inner wall surface of the swirl space 20a. It is formed to flow along. Thereby, the refrigerant flowing into the swirling space 20a swirls around the central axis of the swirling space 20a.
 ボデー部21の旋回空間20aの軸方向一端側には、図2に示すように、エジェクタ15のノズル部15aが配置されている。ノズル部15aの入口は、旋回空間20aに開口している。ノズル部15aの冷媒通路には、冷媒通路断面積を縮小させる喉部、および喉部から冷媒を噴射する冷媒噴射口へ向かうに伴って通路断面積が徐々に拡大する末広部が形成されている。 As shown in FIG. 2, the nozzle portion 15 a of the ejector 15 is disposed on one end side in the axial direction of the swirling space 20 a of the body portion 21. The inlet of the nozzle portion 15a opens into the swirling space 20a. The refrigerant passage of the nozzle portion 15a is formed with a throat portion that reduces the refrigerant passage cross-sectional area, and a divergent portion in which the passage cross-sectional area gradually increases as it goes from the throat to the refrigerant injection port that injects the refrigerant. .
 つまり、ノズル部15aは、ラバールノズルとして構成されている。さらに、本実施形態では、ノズル部15aとして、エジェクタ式冷凍サイクル10の通常運転時に冷媒噴射口から噴射される噴射冷媒の流速が音速以上となるように設定されたものが採用されている。もちろん、ノズル部15aを先細ノズルで構成してもよい。 That is, the nozzle portion 15a is configured as a Laval nozzle. Further, in the present embodiment, the nozzle portion 15a is set such that the flow rate of the injected refrigerant injected from the refrigerant injection port during the normal operation of the ejector refrigeration cycle 10 is equal to or higher than the sound speed. Of course, you may comprise the nozzle part 15a with a tapered nozzle.
 旋回空間20aの軸方向他端側には、絞り通路20bの入口が開口している。このため、高圧入口21aから旋回空間20aへ流入した高圧冷媒は、旋回空間20aからノズル部15aおよび絞り通路20bの双方へ流入する。つまり、本実施形態では、旋回空間20a内に、分岐部14が形成されている。 The entrance of the throttle passage 20b is open on the other axial end side of the swirling space 20a. For this reason, the high-pressure refrigerant flowing into the swirling space 20a from the high-pressure inlet 21a flows into both the nozzle portion 15a and the throttle passage 20b from the swirling space 20a. That is, in this embodiment, the branch part 14 is formed in the turning space 20a.
 絞り通路20bは、通路断面積を縮小させることによって、冷媒を減圧させる減圧部である。絞り通路20bは、円柱形状や円錐台形状等の回転体形状等に形成されている。本実施形態では、絞り通路20bとして、ボデー部21に対して別部材で形成されたオリフィスを採用し、圧入等の手段によってボデー部21に固定している。 The throttle passage 20b is a decompression unit that decompresses the refrigerant by reducing the cross-sectional area of the passage. The throttle passage 20b is formed in a rotating body shape such as a columnar shape or a truncated cone shape. In the present embodiment, an orifice formed as a separate member with respect to the body portion 21 is employed as the throttle passage 20b, and is fixed to the body portion 21 by means such as press fitting.
 さらに、旋回空間20aの中心軸、ノズル部15aの中心軸、および絞り通路20bの中心軸は、互いに同軸上に配置されている。従って、本実施形態のノズル部15aと絞り通路20bは、ノズル部15aの軸方向に並んで配置されている。 Furthermore, the central axis of the swirl space 20a, the central axis of the nozzle portion 15a, and the central axis of the throttle passage 20b are arranged coaxially with each other. Accordingly, the nozzle portion 15a and the throttle passage 20b of the present embodiment are arranged side by side in the axial direction of the nozzle portion 15a.
 ボデー部21のノズル部15aの冷媒流れ下流側には、ディフューザ部15bが配置されている。ディフューザ部15bは、混合冷媒を昇圧させる昇圧部である。ディフューザ部15bは、円筒状の金属(本実施形態では、アルミニウム)で形成されている。ディフューザ部15bの筒状側面には、ディフューザ部15bの内外を貫通させるように冷媒吸引口21bが形成されている。 A diffuser portion 15b is disposed on the downstream side of the refrigerant flow of the nozzle portion 15a of the body portion 21. The diffuser unit 15b is a pressure increasing unit that increases the pressure of the mixed refrigerant. The diffuser portion 15b is formed of a cylindrical metal (in this embodiment, aluminum). A refrigerant suction port 21b is formed on the cylindrical side surface of the diffuser portion 15b so as to penetrate the inside and outside of the diffuser portion 15b.
 ディフューザ部15bの内部には、ノズル部15aが収容される空間、および噴射冷媒と吸引冷媒との混合冷媒を流通させる冷媒通路等が形成されている。この冷媒通路は、通路断面積が冷媒流れ下流側に向かって徐々に拡大する略円錐台形状に形成されている。ディフューザ部15bでは、このような通路形状によって、混合冷媒の運動エネルギを圧力エネルギに変換することができる。 Inside the diffuser portion 15b, there are formed a space in which the nozzle portion 15a is accommodated, a refrigerant passage through which the mixed refrigerant of the injected refrigerant and the suction refrigerant circulates, and the like. The refrigerant passage is formed in a substantially truncated cone shape whose passage cross-sectional area gradually increases toward the downstream side of the refrigerant flow. In the diffuser portion 15b, the kinetic energy of the mixed refrigerant can be converted into pressure energy by such a passage shape.
 ニードル弁22は、ノズル部15aの内部に形成された冷媒通路内に配置されて、この冷媒通路の通路断面積を変化させるノズル側弁体部である。ニードル弁22は、針状(あるいは、円錐形状、円柱形状等を組み合わせた形状)の金属(本実施形態では、ステンレス)で形成されている。 The needle valve 22 is a nozzle-side valve body portion that is disposed in a refrigerant passage formed inside the nozzle portion 15a and changes the passage cross-sectional area of the refrigerant passage. The needle valve 22 is made of a needle-like (or a shape obtained by combining a conical shape, a cylindrical shape, or the like) metal (in this embodiment, stainless steel).
 ニードル弁22の中心軸は、ノズル部15aの中心軸、ディフューザ部15bの冷媒通路の中心軸等と同軸上に配置されている。そして、ニードル弁22は、中心軸方向に変位することによって、ノズル部15aの通路断面積を変化させる。さらに、ニードル弁22は、喉部に当接することによって、ノズル部15aを閉塞させることもできる。 The central axis of the needle valve 22 is arranged coaxially with the central axis of the nozzle portion 15a, the central axis of the refrigerant passage of the diffuser portion 15b, and the like. The needle valve 22 is displaced in the central axis direction to change the passage cross-sectional area of the nozzle portion 15a. Furthermore, the needle valve 22 can also close the nozzle portion 15a by contacting the throat portion.
 ここで、ノズル部15aの内周面には、図5に示すように、ニードル弁22の外周面を摺動可能に支持する複数の支持部15cが形成されている。これにより、ニードル弁22が変位する際に、ニードル弁22の中心軸がノズル部15aの中心軸からずれてしまうことが抑制されている。旋回空間20aからノズル部15aへ流入した冷媒は、隣り合う支持部15cの間を流通する。 Here, as shown in FIG. 5, a plurality of support portions 15c for slidably supporting the outer peripheral surface of the needle valve 22 are formed on the inner peripheral surface of the nozzle portion 15a. Thereby, when the needle valve 22 is displaced, the center axis of the needle valve 22 is prevented from being displaced from the center axis of the nozzle portion 15a. The refrigerant that has flowed into the nozzle portion 15a from the swirling space 20a flows between the adjacent support portions 15c.
 また、旋回空間20a内には、コイルバネ22cが配置されている。コイルバネ22cは、ニードル弁22に対してノズル部15aの通路断面積を縮小(閉塞)させる側の荷重をかける弾性部材である。 Further, a coil spring 22c is disposed in the swirling space 20a. The coil spring 22c is an elastic member that applies a load to the needle valve 22 on the side that reduces (closes) the passage cross-sectional area of the nozzle portion 15a.
 絞り弁23は、絞り通路20bの冷媒流れ下流側(すなわち、ノズル部15aの反対側)に配置されて、絞り通路20bの出口側の通路断面積を変化させる減圧側弁体部である。絞り弁23は、ニードル弁22と同じ材質で形成されている。絞り弁23は、底面側の外径がニードル弁22の外径よりも大きい円錐台形状に形成されている。 The throttle valve 23 is a decompression side valve body portion that is arranged on the refrigerant flow downstream side of the throttle passage 20b (that is, the side opposite to the nozzle portion 15a) and changes the passage cross-sectional area on the outlet side of the throttle passage 20b. The throttle valve 23 is made of the same material as the needle valve 22. The throttle valve 23 is formed in a truncated cone shape whose outer diameter on the bottom side is larger than the outer diameter of the needle valve 22.
 これにより、絞り弁23の周囲に円環状に形成される絞り通路20bの入口は、ニードル弁22の周囲に円環状に形成されるノズル部15aの入口よりも、中心軸の外周側に形成されている。 Thereby, the inlet of the throttle passage 20b formed in an annular shape around the throttle valve 23 is formed on the outer peripheral side of the central axis rather than the inlet of the nozzle portion 15a formed in an annular shape around the needle valve 22. ing.
 絞り弁23の中心軸は、ニードル弁22の中心軸と同軸上に配置されている。絞り弁23は、中心軸方向に変位することによって、絞り通路20bの通路断面積を変化させる。さらに、絞り弁23は、絞り通路20bの出口に当接することによって、絞り通路20bを閉塞させることもできる。 The central axis of the throttle valve 23 is arranged coaxially with the central axis of the needle valve 22. The throttle valve 23 changes the passage cross-sectional area of the throttle passage 20b by being displaced in the central axis direction. Furthermore, the throttle valve 23 can also close the throttle passage 20b by contacting the outlet of the throttle passage 20b.
 絞り弁23のノズル部15aの反対側には、駆動機構部24が連結されている。駆動機構部24は、ニードル弁22および絞り弁23を中心軸方向に変位させるもので、絞り弁23に連結されている。駆動機構部24は、ステッピングモータを有する電動アクチュエータである。駆動機構部24は、空調制御装置40から出力される制御電圧(制御パルス)によって、その作動が制御される。 The driving mechanism 24 is connected to the opposite side of the nozzle portion 15a of the throttle valve 23. The drive mechanism unit 24 displaces the needle valve 22 and the throttle valve 23 in the central axis direction, and is connected to the throttle valve 23. The drive mechanism unit 24 is an electric actuator having a stepping motor. The operation of the drive mechanism unit 24 is controlled by a control voltage (control pulse) output from the air conditioning control device 40.
 絞り弁23のノズル部15a側の中心部には、図3に示すように、ニードル弁22に連結される連結部23aが設けられている。連結部23aは、絞り弁23の軸方向に延びる細軸部、および細軸部から径方向に広がる円板状部を有している。ニードル弁22には、連結部23aの円板状部が径方向から嵌め込まれる係合穴22aが形成されている。 As shown in FIG. 3, a connecting portion 23a connected to the needle valve 22 is provided at the center of the throttle valve 23 on the nozzle portion 15a side. The connecting portion 23a has a thin shaft portion extending in the axial direction of the throttle valve 23, and a disk-shaped portion extending in the radial direction from the thin shaft portion. The needle valve 22 is formed with an engagement hole 22a into which the disk-shaped portion of the connecting portion 23a is fitted from the radial direction.
 係合穴22aの軸方向寸法Wは、連結部23aの円板状部の軸方向厚み寸法Tよりも大きく形成されている。従って、絞り弁23の連結部23aとニードル弁22の係合穴22aの内壁面との間には、軸方向に隙間が形成される。さらに、係合穴22aの内部であって、絞り弁23側の面には、連結部23aと当接する当接部22bが形成されている。 The axial dimension W of the engagement hole 22a is formed larger than the axial thickness dimension T of the disk-shaped part of the connecting part 23a. Accordingly, a gap is formed in the axial direction between the connecting portion 23 a of the throttle valve 23 and the inner wall surface of the engagement hole 22 a of the needle valve 22. Furthermore, a contact portion 22b that contacts the connecting portion 23a is formed in the surface of the throttle valve 23 inside the engagement hole 22a.
 これにより、駆動機構部24は、図6に示すように、ノズル部15aおよび絞り通路20bの双方が開いた状態から閉塞させる際には、絞り通路20bよりも先にノズル部15aを閉塞させるようにしている。さらに、駆動機構部24は、ノズル部15aおよび絞り通路20bの双方を閉塞させた状態から開く際には、ノズル部15aよりも先に絞り通路20bを開くようにしている。 As a result, as shown in FIG. 6, the drive mechanism section 24 closes the nozzle section 15a before the throttle path 20b when both the nozzle section 15a and the throttle path 20b are closed. I have to. Further, when the drive mechanism 24 is opened from a state in which both the nozzle portion 15a and the throttle passage 20b are closed, the throttle passage 20b is opened before the nozzle portion 15a.
 ここで、図6は、駆動機構部24のステッピングモータに出力される制御パルスのカウント数に対するノズル部15aの開度および絞り通路20bの開度を示している。図6において、開度0とは、ノズル部15aあるいは絞り通路20bが閉塞されている状態を意味している。 Here, FIG. 6 shows the opening degree of the nozzle part 15a and the opening degree of the throttle passage 20b with respect to the count number of control pulses output to the stepping motor of the drive mechanism part 24. In FIG. 6, the opening degree 0 means a state in which the nozzle portion 15a or the throttle passage 20b is closed.
 より詳細には、絞り弁23が絞り通路20bを全開とし、かつ、ニードル弁22がノズル部15aを全開としている状態(図6のC3)では、コイルバネ22cの作用によって、ニードル弁22の当接部22bが絞り弁23の連結部23aに当接している。 More specifically, in the state where the throttle valve 23 fully opens the throttle passage 20b and the needle valve 22 fully opens the nozzle portion 15a (C3 in FIG. 6), the contact of the needle valve 22 by the action of the coil spring 22c. The portion 22 b is in contact with the connecting portion 23 a of the throttle valve 23.
 この状態から、駆動機構部24が絞り弁23を絞り通路23bの通路断面積を縮小させる側へ変位させると、コイルバネ22cの作用によって、ニードル弁22もノズル部15aの通路断面積を縮小させる側へ変位する。そして、ニードル弁22がノズル部15aの喉部に当接すると、ノズル部15aが閉塞される(図6のC2)。この際、絞り弁23は、絞り通路20bの出口に当接しておらず、絞り通路20bは開いている。 From this state, when the drive mechanism 24 displaces the throttle valve 23 to the side of reducing the passage sectional area of the throttle passage 23b, the needle valve 22 also reduces the passage sectional area of the nozzle portion 15a by the action of the coil spring 22c. Displace to When the needle valve 22 comes into contact with the throat portion of the nozzle portion 15a, the nozzle portion 15a is closed (C2 in FIG. 6). At this time, the throttle valve 23 is not in contact with the outlet of the throttle passage 20b, and the throttle passage 20b is open.
 絞り弁23の連結部23aとニードル弁22の係合穴22aとの間には、軸方向に隙間が形成されているので、ニードル弁22がノズル部15aの喉部に当接していても、絞り弁23は、絞り通路23bの通路断面積を縮小させる側へ変位することができる。そして、絞り弁23が絞り通路20bの出口に当接すると、絞り通路20bはノズル部15aに遅れて閉塞される(図6のC1)。 Since a gap is formed in the axial direction between the coupling portion 23a of the throttle valve 23 and the engagement hole 22a of the needle valve 22, even if the needle valve 22 is in contact with the throat portion of the nozzle portion 15a, The throttle valve 23 can be displaced to the side that reduces the cross-sectional area of the throttle passage 23b. When the throttle valve 23 comes into contact with the outlet of the throttle passage 20b, the throttle passage 20b is closed behind the nozzle portion 15a (C1 in FIG. 6).
 逆に、絞り弁23が絞り通路20bを閉塞し、かつ、ニードル弁22がノズル部15aを閉塞している状態(図6のC1)から、駆動機構部24が絞り通路20bの通路断面積を拡大させる側へ絞り弁23を変位させると、絞り通路20bが開く。この際、絞り弁23の連結部23aがニードル弁22の当接部22bに当接するまでは、コイルバネ22cの作用によって、ノズル部15aは閉塞されたままとなる。 Conversely, from the state (C1 in FIG. 6) in which the throttle valve 23 closes the throttle passage 20b and the needle valve 22 closes the nozzle portion 15a (C1 in FIG. 6), the drive mechanism portion 24 reduces the passage sectional area of the throttle passage 20b. When the throttle valve 23 is displaced to the side to be enlarged, the throttle passage 20b is opened. At this time, the nozzle portion 15a remains blocked by the action of the coil spring 22c until the connecting portion 23a of the throttle valve 23 contacts the contact portion 22b of the needle valve 22.
 そして、連結部23aが当接部22bに当接した状態から、駆動機構部24が絞り通路20bの通路断面積を拡大させる側へ絞り弁23を変位させると、ニードル弁22が絞り弁23とともに変位して、絞り通路20bに遅れてノズル部15aが開き始める(図6のC2)。換言すると、ニードル弁22は、絞り弁23の連結部23aがニードル弁22の当接部22bに当接している際に、絞り弁23と連動して変位する。 Then, when the driving mechanism 24 displaces the throttle valve 23 from the state in which the connecting portion 23a is in contact with the contact portion 22b to the side that enlarges the passage cross-sectional area of the throttle passage 20b, the needle valve 22 and the throttle valve 23 are moved together. As a result of the displacement, the nozzle portion 15a begins to open behind the throttle passage 20b (C2 in FIG. 6). In other words, the needle valve 22 is displaced in conjunction with the throttle valve 23 when the connecting portion 23 a of the throttle valve 23 is in contact with the contact portion 22 b of the needle valve 22.
 以上の説明から明らかなように、エジェクタモジュール20では、ノズル部15a、ボデー部21の冷媒吸引口21b、ディフューザ部15b、ニードル弁22、および駆動機構部24等によって、ノズル部15aの通路断面積を変更可能に構成された可変ノズル部を有するエジェクタ15が構成されている。 As is clear from the above description, in the ejector module 20, the passage sectional area of the nozzle portion 15a is constituted by the nozzle portion 15a, the refrigerant suction port 21b of the body portion 21, the diffuser portion 15b, the needle valve 22, the drive mechanism portion 24, and the like. An ejector 15 having a variable nozzle portion configured to be changeable is configured.
 また、エジェクタモジュール20では、絞り通路20b、絞り弁23、および駆動機構部24等によって、絞り通路20bの通路断面積(すなわち、絞り開度)を変更可能に構成された可変絞り機構16が構成されている。 Further, in the ejector module 20, the variable throttle mechanism 16 configured such that the passage sectional area (that is, the throttle opening) of the throttle passage 20b can be changed by the throttle passage 20b, the throttle valve 23, the drive mechanism unit 24, and the like. Has been.
 次に、図1に示す第2蒸発器18は、送風機18aから車室内へ向けて送風された送風空気とエジェクタモジュール20のエジェクタ側出口21c(すなわち、エジェクタの15のディフューザ部15bの冷媒出口)から流出した低圧冷媒とを熱交換させる。そして、この低圧冷媒を蒸発させて吸熱作用を発揮させることによって送風空気を冷却する吸熱用熱交換器である。 Next, the second evaporator 18 shown in FIG. 1 includes the blown air blown from the blower 18a toward the vehicle interior and the ejector side outlet 21c of the ejector module 20 (that is, the refrigerant outlet of the diffuser portion 15b of the ejector 15). Heat exchange with the low-pressure refrigerant that has flowed out of the tank. And it is a heat exchanger for heat absorption which cools blowing air by evaporating this low-pressure refrigerant, and exhibiting an endothermic effect.
 送風機18aは、空調制御装置40から出力される制御電圧によって回転数(送風空気量)が制御される電動送風機である。第2蒸発器18の冷媒出口には、エジェクタモジュール20の低圧入口21e側が接続されている。 The blower 18a is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the air conditioning control device 40. The refrigerant outlet of the second evaporator 18 is connected to the low pressure inlet 21 e side of the ejector module 20.
 第1蒸発器17は、第2蒸発器18を通過した送風空気とエジェクタモジュール20の絞り側出口21d(すなわち、可変絞り機構16の冷媒出口)から流出した低圧冷媒とを熱交換させる。そして、この低圧冷媒を蒸発させて吸熱作用を発揮させることによって送風空気を冷却する吸熱用熱交換器である。第2蒸発器18の冷媒出口には、エジェクタモジュール20の冷媒吸引口21b側が接続されている。 The first evaporator 17 exchanges heat between the blown air that has passed through the second evaporator 18 and the low-pressure refrigerant that has flowed out from the throttle-side outlet 21d of the ejector module 20 (that is, the refrigerant outlet of the variable throttle mechanism 16). And it is a heat exchanger for heat absorption which cools blowing air by evaporating this low-pressure refrigerant, and exhibiting an endothermic effect. The refrigerant outlet of the second evaporator 18 is connected to the refrigerant suction port 21 b side of the ejector module 20.
 また、本実施形態の第1蒸発器17および第2蒸発器18は、一体的に構成されている。具体的には、第1蒸発器17および第2蒸発器18は、いずれも冷媒を流通させる複数本のチューブと、この複数のチューブの両端側に配置されてチューブを流通する冷媒の集合あるいは分配を行う一対の集合分配用タンクとを有する、いわゆるタンクアンドチューブ型の熱交換器で構成されている。 Further, the first evaporator 17 and the second evaporator 18 of the present embodiment are integrally configured. Specifically, each of the first evaporator 17 and the second evaporator 18 includes a plurality of tubes that circulate the refrigerant, and a collection or distribution of refrigerants that are arranged on both ends of the plurality of tubes and circulate through the tubes. And a so-called tank-and-tube heat exchanger having a pair of collective distribution tanks.
 そして、第1蒸発器17および第2蒸発器18の集合分配用タンクを同一部材にて形成することによって、第1蒸発器17および第2蒸発器18を一体化させている。この際、本実施形態では、第2蒸発器18が第1蒸発器17に対して送風空気流れ上流側に配置されるように、第1蒸発器17および第2蒸発器18を送風空気流れに対して直列に配置している。従って、送風空気は図1の二点鎖線で描いた矢印で示すように流れる。 The first evaporator 17 and the second evaporator 18 are integrated by forming the collective distribution tank of the first evaporator 17 and the second evaporator 18 with the same member. At this time, in the present embodiment, the first evaporator 17 and the second evaporator 18 are changed to the blown air flow so that the second evaporator 18 is arranged on the upstream side of the blower air flow with respect to the first evaporator 17. In contrast, they are arranged in series. Accordingly, the blown air flows as shown by the arrows drawn by the two-dot chain line in FIG.
 次に、エジェクタ式冷凍サイクル10の電気制御部について説明する。空調制御装置40は、CPU、ROM、RAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器11、12c、18a、20等の作動を制御する。 Next, the electric control unit of the ejector refrigeration cycle 10 will be described. The air conditioning control device 40 is composed of a well-known microcomputer including a CPU, ROM, RAM, and its peripheral circuits, and performs various calculations and processing based on a control program stored in the ROM, and is connected to the output side. The operation of various control target devices 11, 12c, 18a, 20 and the like is controlled.
 空調制御装置40の入力側には、図7のブロック図に示すように、内気温センサ41、外気温センサ42、日射センサ43、吐出冷媒圧力センサ44、吸入冷媒圧力センサ45、吸入冷媒温度センサ46、蒸発器温度センサ47等が接続されている。そして、空調制御装置40には、これらのセンサ群の検出信号が入力される。 On the input side of the air conditioning control device 40, as shown in the block diagram of FIG. 7, the inside air temperature sensor 41, the outside air temperature sensor 42, the solar radiation sensor 43, the discharge refrigerant pressure sensor 44, the intake refrigerant pressure sensor 45, and the intake refrigerant temperature sensor. 46, an evaporator temperature sensor 47 and the like are connected. And the detection signal of these sensor groups is input into the air-conditioning control apparatus 40. FIG.
 内気温センサ41は、車室内温度(内気温)Trを検出する内気温検出部である。外気温センサ42は、車室外温度(外気温)Tamを検出する外気温検出部である。日射センサ43は、車室内へ照射される日射量Asを検出する日射量検出部である。 The inside air temperature sensor 41 is an inside air temperature detecting unit that detects a vehicle interior temperature (inside air temperature) Tr. The outside air temperature sensor 42 is an outside air temperature detecting unit that detects a vehicle compartment outside temperature (outside air temperature) Tam. The solar radiation sensor 43 is a solar radiation amount detection unit that detects the solar radiation amount As irradiated into the vehicle interior.
 吐出冷媒圧力センサ44は、圧縮機11から吐出された吐出冷媒の吐出冷媒圧力Pdを検出する吐出圧力検出部である。吸入冷媒圧力センサ45は、圧縮機11へ吸入される吸入冷媒の吸入冷媒圧力Psを検出する吸入圧力検出部である。吸入冷媒温度センサ46は、圧縮機11へ吸入される吸入冷媒の吸入冷媒温度Tsを検出する吸入温度検出部である。 The discharge refrigerant pressure sensor 44 is a discharge pressure detection unit that detects the discharge refrigerant pressure Pd of the discharge refrigerant discharged from the compressor 11. The suction refrigerant pressure sensor 45 is a suction pressure detection unit that detects the suction refrigerant pressure Ps of the suction refrigerant sucked into the compressor 11. The intake refrigerant temperature sensor 46 is an intake temperature detection unit that detects an intake refrigerant temperature Ts of the intake refrigerant sucked into the compressor 11.
 蒸発器温度センサ47は、第1蒸発器17における冷媒蒸発温度(蒸発器温度)Tefinを検出する蒸発器温度検出部である。蒸発器温度センサ47は、複数の温度センサによって形成されている。従って、蒸発器温度センサ47では、第1蒸発器17の複数の部位の温度を検出することができる。 The evaporator temperature sensor 47 is an evaporator temperature detector that detects the refrigerant evaporation temperature (evaporator temperature) Tefin in the first evaporator 17. The evaporator temperature sensor 47 is formed by a plurality of temperature sensors. Therefore, the evaporator temperature sensor 47 can detect temperatures of a plurality of parts of the first evaporator 17.
 より具体的には、蒸発器温度センサ47の少なくとも一つは第1蒸発器17の冷媒入口部の温度を検出しており、少なくとも別の一つは第1蒸発器17の冷媒出口部の温度を検出している。 More specifically, at least one of the evaporator temperature sensors 47 detects the temperature of the refrigerant inlet portion of the first evaporator 17, and at least another one of the temperatures of the refrigerant outlet portion of the first evaporator 17. Is detected.
 このため、空調制御装置40では、複数の温度センサによって検出された検出値の平均値を冷媒蒸発温度(蒸発器温度)Tefinとしている。さらに、空調制御装置40では、これらの検出値の最高温度から最低温度を減算した温度差ΔTを、第1蒸発器17から吹き出される吹出空気の温度分布として検出することができる。 For this reason, in the air conditioning control device 40, the average value of the detected values detected by the plurality of temperature sensors is set as the refrigerant evaporation temperature (evaporator temperature) Tefin. Further, the air conditioning control device 40 can detect the temperature difference ΔT obtained by subtracting the minimum temperature from the maximum temperature of these detection values as the temperature distribution of the blown air blown from the first evaporator 17.
 さらに、空調制御装置40の入力側には、車室内前部の計器盤付近に配置された操作パネル50が接続され、操作パネル50に設けられた各種操作スイッチからの操作信号が入力される。 Furthermore, the input side of the air conditioning control device 40 is connected to an operation panel 50 disposed near the instrument panel in the front part of the passenger compartment, and operation signals from various operation switches provided on the operation panel 50 are input.
 操作パネル50に設けられた各種操作スイッチとしては、具体的に、車両用空調装置の自動制御運転を設定あるいは解除するオートスイッチ、送風機18aの風量をマニュアル設定する風量設定スイッチ、車室内の目標温度Tsetを設定する温度設定スイッチ等がある。 Specifically, the various operation switches provided on the operation panel 50 include an auto switch for setting or canceling the automatic control operation of the vehicle air conditioner, an air volume setting switch for manually setting the air volume of the blower 18a, and a target temperature in the passenger compartment. There is a temperature setting switch for setting Tset.
 なお、本実施形態の空調制御装置40は、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されたものであるが、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。 The air-conditioning control device 40 according to the present embodiment is configured such that a control unit that controls various control target devices connected to the output side thereof is integrally configured. However, the configuration controls the operation of each control target device. (Hardware and Software) constitutes a control unit that controls the operation of each control target device.
 例えば、空調制御装置40のうち、圧縮機11の冷媒吐出能力(具体的には、圧縮機11の回転数)を制御する構成は、吐出能力制御部40aを構成している。エジェクタモジュール20(具体的には、駆動機構部24)の作動を制御する構成は、エジェクタ制御部40bを構成している。 For example, in the air-conditioning control device 40, the configuration for controlling the refrigerant discharge capacity of the compressor 11 (specifically, the rotational speed of the compressor 11) constitutes a discharge capacity control unit 40a. The configuration for controlling the operation of the ejector module 20 (specifically, the drive mechanism unit 24) constitutes an ejector control unit 40b.
 次に、上記構成における本実施形態の作動について説明する。本実施形態のエジェクタ式冷凍サイクル10では、通常運転とエジェクタ停止運転とを切り替えることができる。 Next, the operation of this embodiment in the above configuration will be described. In the ejector type refrigeration cycle 10 of the present embodiment, it is possible to switch between normal operation and ejector stop operation.
 これらの運転の切り替えは、空調制御装置40が、予め記憶回路に記憶している空調制御プログラムが実行されることによって行われる。この空調制御プログラムは、操作パネル50のオートスイッチが投入(ON)されると実行される。なお、空調制御プログラムにおける各制御ステップは、空調制御装置が有する機能実現部を構成している。 These operations are switched by the air conditioning control device 40 executing an air conditioning control program stored in advance in a storage circuit. This air conditioning control program is executed when the auto switch of the operation panel 50 is turned on. Note that each control step in the air conditioning control program constitutes a function realization unit included in the air conditioning control device.
 まず、通常運転について説明する。空調制御プログラムのメインルーチンでは、上述した空調制御用のセンサ群の検出信号および操作パネルからの操作信号に基づいて、車室内へ送風される送風空気の目標吹出温度TAOを決定する。そして、空調制御装置40は、目標吹出温度TAOに応じて、圧縮機11、送風機18a、エジェクタモジュール20等の作動を制御する。 First, normal operation will be described. In the main routine of the air conditioning control program, the target blowing temperature TAO of the blown air blown into the vehicle interior is determined based on the detection signal of the air conditioning control sensor group and the operation signal from the operation panel. And the air-conditioning control apparatus 40 controls the action | operation of the compressor 11, the air blower 18a, the ejector module 20, etc. according to the target blowing temperature TAO.
 レシーバ部12bにて分離された液相冷媒は、エジェクタモジュール20の高圧入口21aへ流入する。エジェクタモジュール20の内部へ流入した冷媒は、分岐部14にて分岐される。分岐された一方の冷媒は、エジェクタ15のノズル部15aへ流入して等エントロピ的に減圧されて噴射される。そして、この噴射冷媒の吸引作用によって、第1蒸発器17から流出した冷媒が、冷媒吸引口21bから吸引される。 The liquid phase refrigerant separated by the receiver unit 12b flows into the high-pressure inlet 21a of the ejector module 20. The refrigerant that has flowed into the ejector module 20 is branched at the branching section 14. One of the branched refrigerant flows into the nozzle portion 15a of the ejector 15 and is isentropically decompressed and injected. And the refrigerant | coolant which flowed out from the 1st evaporator 17 is attracted | sucked from the refrigerant | coolant suction port 21b by the suction effect | action of this injection refrigerant | coolant.
 この際、空調制御装置40は、吸入冷媒圧力センサ45によって検出された吸入冷媒圧力Psおよび吸入冷媒温度センサ46によって検出された吸入冷媒温度Tsに基づいて、吸入冷媒の過熱度を算定し、算定された過熱度が予め定めた基準過熱度(本実施形態では、1℃)に近づくように、エジェクタモジュール20の駆動機構部24の作動を制御する。 At this time, the air conditioning control device 40 calculates the superheat degree of the intake refrigerant based on the intake refrigerant pressure Ps detected by the intake refrigerant pressure sensor 45 and the intake refrigerant temperature Ts detected by the intake refrigerant temperature sensor 46. The operation of the drive mechanism unit 24 of the ejector module 20 is controlled so that the superheated degree approaches the predetermined reference superheat degree (1 ° C. in the present embodiment).
 ノズル部15aから噴射された噴射冷媒および冷媒吸引口21bから吸引された吸引冷媒は、ディフューザ部15bへ流入する。ディフューザ部15bでは、冷媒通路面積の拡大により、冷媒の速度エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒との混合冷媒の圧力が上昇する。ディフューザ部15bにて昇圧された冷媒は、エジェクタ側出口21cから流出する。 The refrigerant injected from the nozzle portion 15a and the suction refrigerant sucked from the refrigerant suction port 21b flow into the diffuser portion 15b. In the diffuser portion 15b, the velocity energy of the refrigerant is converted into pressure energy by expanding the refrigerant passage area. Thereby, the pressure of the mixed refrigerant of the injection refrigerant and the suction refrigerant increases. The refrigerant whose pressure has been increased in the diffuser portion 15b flows out from the ejector side outlet 21c.
 エジェクタ側出口21cから流出した冷媒は、第2蒸発器18へ流入する。第2蒸発器18へ流入した冷媒は、送風機18aによって送風された送風空気から吸熱して蒸発する。これにより、送風機18aによって送風された送風空気が冷却される。第2蒸発器18から流出した冷媒は、圧縮機11へ吸入されて再び圧縮される。 The refrigerant that has flowed out of the ejector side outlet 21c flows into the second evaporator 18. The refrigerant flowing into the second evaporator 18 absorbs heat from the blown air blown by the blower 18a and evaporates. Thereby, the blowing air blown by the blower 18a is cooled. The refrigerant flowing out from the second evaporator 18 is sucked into the compressor 11 and compressed again.
 一方、分岐部14にて分岐された他方の冷媒は、可変絞り機構16の絞り通路20bへ流入して等エンタルピ的に減圧される。可変絞り機構16にて減圧された冷媒は、絞り側出口21dから流出して、第1蒸発器17へ流入する。第1蒸発器17へ流入した冷媒は、第2蒸発器18通過後の送風空気から吸熱して蒸発する。これにより、第2蒸発器18通過後の送風空気がさらに冷却される。第1蒸発器17から流出した冷媒は、冷媒吸引口21bから吸引される。 On the other hand, the other refrigerant branched at the branch portion 14 flows into the throttle passage 20b of the variable throttle mechanism 16 and is decompressed in an enthalpy manner. The refrigerant decompressed by the variable throttle mechanism 16 flows out from the throttle-side outlet 21d and flows into the first evaporator 17. The refrigerant flowing into the first evaporator 17 absorbs heat from the blown air after passing through the second evaporator 18 and evaporates. Thereby, the blown air after passing through the second evaporator 18 is further cooled. The refrigerant flowing out from the first evaporator 17 is sucked from the refrigerant suction port 21b.
 以上の如く、通常運転時のエジェクタ式冷凍サイクル10では、第1蒸発器17および第2蒸発器18にて、車室内へ送風される送風空気を冷却することができる。 As described above, in the ejector-type refrigeration cycle 10 during normal operation, the blown air blown into the vehicle compartment can be cooled by the first evaporator 17 and the second evaporator 18.
 さらに、通常運転時には、第2蒸発器18下流側の冷媒、すなわちエジェクタ15のディフューザ部15bにて昇圧された冷媒を圧縮機11へ吸入させることができる。従って、エジェクタ式冷凍サイクル10では、蒸発器における冷媒蒸発圧力と吸入冷媒の圧力が同等となる通常の冷凍サイクル装置よりも、圧縮機11の消費動力を低減させて、サイクルの成績係数(COP)を向上させることができる。 Furthermore, during normal operation, the refrigerant on the downstream side of the second evaporator 18, that is, the refrigerant whose pressure has been increased by the diffuser portion 15 b of the ejector 15 can be sucked into the compressor 11. Therefore, in the ejector-type refrigeration cycle 10, the power consumption of the compressor 11 is reduced and the coefficient of performance (COP) of the cycle is reduced as compared with a normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the evaporator is equal to the suction refrigerant pressure. Can be improved.
 また、通常運転時には、第2蒸発器18における冷媒蒸発圧力がディフューザ部15bにて昇圧された冷媒圧力となり、第1蒸発器17における冷媒蒸発圧力がノズル部15aにて減圧された直後の低い冷媒圧力となる。従って、各蒸発器における冷媒蒸発温度と送風空気との温度差を確保して、送風空気を効率的に冷却することができる。 Further, during normal operation, the refrigerant evaporation pressure in the second evaporator 18 becomes the refrigerant pressure increased by the diffuser portion 15b, and the low refrigerant immediately after the refrigerant evaporation pressure in the first evaporator 17 is reduced by the nozzle portion 15a. It becomes pressure. Therefore, the temperature difference between the refrigerant evaporation temperature and the blown air in each evaporator can be secured and the blown air can be efficiently cooled.
 また、本実施形態のエジェクタ式冷凍サイクル10では、エジェクタモジュール20を備えているので、エジェクタ式冷凍サイクル10の負荷変動に応じて、エジェクタ15のノズル部15aの通路断面積、および可変絞り機構16の絞り開度を変化させることができる。従って、負荷変動が生じてもエジェクタ式冷凍サイクル10のCOPの低下を抑制することができる。 Further, since the ejector refrigeration cycle 10 of the present embodiment includes the ejector module 20, the passage sectional area of the nozzle portion 15 a of the ejector 15 and the variable throttle mechanism 16 according to the load fluctuation of the ejector refrigeration cycle 10. The throttle opening degree can be changed. Therefore, it is possible to suppress a decrease in COP of the ejector refrigeration cycle 10 even when load fluctuation occurs.
 さらに、本実施形態のエジェクタモジュール20では、ノズル部15aの通路断面積および絞り通路20bの絞り開度を、共通する1つの駆動機構部24にて調整することができるので、複数の駆動機構部を備えるものに対して、大型化を招くことなく、可変ノズル部を有するエジェクタ15、および可変絞り機構16を一体化させることができる。 Further, in the ejector module 20 of the present embodiment, the passage cross-sectional area of the nozzle portion 15a and the throttle opening degree of the throttle passage 20b can be adjusted by a single common drive mechanism portion 24, so that a plurality of drive mechanism portions can be adjusted. The ejector 15 having the variable nozzle portion and the variable aperture mechanism 16 can be integrated without increasing the size.
 その結果、本実施形態のエジェクタモジュール20によれば、通路断面積を変更可能に構成されていても、適用されたエジェクタ式冷凍サイクル10の大型化を招くことがない。 As a result, according to the ejector module 20 of the present embodiment, the applied ejector refrigeration cycle 10 is not enlarged even if the passage cross-sectional area is configured to be changeable.
 ところで、本実施形態のように、エジェクタ15のノズル部15aの通路断面積、および可変絞り機構16の絞り開度を変化させることのできるエジェクタ式冷凍サイクル10であっても、低負荷運転時等には、エジェクタ15のノズル部15aへ流入する冷媒の流量が低下し、噴射冷媒の流速が低下してしまうことがある。 By the way, even in the case of the ejector refrigeration cycle 10 that can change the passage sectional area of the nozzle portion 15a of the ejector 15 and the throttle opening of the variable throttle mechanism 16 as in the present embodiment, during low load operation, etc. In some cases, the flow rate of the refrigerant flowing into the nozzle portion 15a of the ejector 15 decreases, and the flow rate of the injected refrigerant decreases.
 このような噴射冷媒の流速の低下が生じると、エジェクタ15が充分な吸引作用を発揮することができなくなり、第1蒸発器17および第2蒸発器18に充分な流量の冷媒を供給することができなくなってしまう。その結果、COPの低下を招くだけでなく、第1蒸発器17および第2蒸発器18にて冷却される送風空気の温度分布を生じさせてしまうことがある。 When such a decrease in the flow rate of the injection refrigerant occurs, the ejector 15 cannot exhibit a sufficient suction action, and a sufficient amount of refrigerant can be supplied to the first evaporator 17 and the second evaporator 18. It becomes impossible. As a result, not only the COP is lowered, but also a temperature distribution of the blown air cooled by the first evaporator 17 and the second evaporator 18 may be caused.
 そこで、本実施形態のエジェクタ式冷凍サイクル10では、空調制御装置40が、上述したメインルーチンのサブルーチンとして、図8に示す制御処理を実行する。この制御処理は、予め定めた制御周期毎に実行される。 Therefore, in the ejector refrigeration cycle 10 of the present embodiment, the air conditioning control device 40 executes the control process shown in FIG. 8 as a subroutine of the main routine described above. This control process is executed every predetermined control cycle.
 まず、図8のステップS1では、予め定めたエジェクタ停止条件が成立しているか否かを判定する。従って、本実施形態の制御ステップS1は、停止条件判定部を構成している。より具体的には、本実施形態のステップS1では、蒸発器温度センサ47によって検出された温度差ΔTが予め定めた基準温度差KΔT以上となっている際に、エジェクタ停止条件が成立している判定する。 First, in step S1 of FIG. 8, it is determined whether or not a predetermined ejector stop condition is satisfied. Therefore, the control step S1 of this embodiment constitutes a stop condition determination unit. More specifically, in step S1 of the present embodiment, the ejector stop condition is satisfied when the temperature difference ΔT detected by the evaporator temperature sensor 47 is equal to or greater than a predetermined reference temperature difference KΔT. judge.
 ステップS1にて、エジェクタ停止条件が成立していると判定された際には、ステップS2へ進み、エジェクタ停止運転が実行される。ステップS1にて、エジェクタ停止条件が成立していると判定されなかった際には、メインルーチンへ戻り、通常運転が実行される。 When it is determined in step S1 that the ejector stop condition is satisfied, the process proceeds to step S2, and the ejector stop operation is executed. If it is not determined in step S1 that the ejector stop condition is satisfied, the process returns to the main routine and normal operation is performed.
 ステップS2のエジェクタ停止運転では、空調制御装置40が、絞り通路20bを開いた状態で、エジェクタ15のノズル部15aを閉塞させるようにエジェクタモジュール20の作動を制御する。より詳細には、前述した図6のC1~C2の範囲内で、吸入冷媒の過熱度が予め定めた基準過熱度(本実施形態では、1℃)に近づくように、エジェクタモジュール20の駆動機構部24の作動を制御する。 In the ejector stop operation in step S2, the air conditioning control device 40 controls the operation of the ejector module 20 so as to close the nozzle portion 15a of the ejector 15 with the throttle passage 20b opened. More specifically, the drive mechanism of the ejector module 20 is set so that the superheat degree of the suction refrigerant approaches a predetermined reference superheat degree (1 ° C. in the present embodiment) within the range of C1 to C2 in FIG. The operation of the unit 24 is controlled.
 従って、エジェクタ停止運転では、圧縮機11→放熱器12→エジェクタモジュール20の絞り通路20b→第1蒸発器17(→エジェクタモジュール20のディフューザ部15b)→第2蒸発器18→圧縮機11の順で冷媒が循環する冷凍サイクルが構成される。このサイクル構成では、エジェクタ15のノズル部15aから冷媒が噴射されないので、ディフューザ部15bは、昇圧作用を発揮することなく冷媒通路として機能する。 Therefore, in the ejector stop operation, the compressor 11 → the radiator 12 → the throttle passage 20b of the ejector module 20 → the first evaporator 17 (→ the diffuser portion 15b of the ejector module 20) → the second evaporator 18 → the compressor 11 in this order. The refrigeration cycle in which the refrigerant circulates is configured. In this cycle configuration, since the refrigerant is not injected from the nozzle portion 15a of the ejector 15, the diffuser portion 15b functions as a refrigerant passage without exhibiting a pressure increasing action.
 つまり、エジェクタ停止運転では、エジェクタ式冷凍サイクル10が、エジェクタ15を機能させない通常の蒸気圧縮式の冷凍サイクル装置に切り替えられる。これによれば、エジェクタ15が充分な吸引作用や昇圧作用を発揮できない運転条件であっても、圧縮機11の吸入、吐出作用によって、第1蒸発器17および第2蒸発器18に充分な流量の冷媒を供給することができる。 That is, in the ejector stop operation, the ejector refrigeration cycle 10 is switched to a normal vapor compression refrigeration cycle apparatus that does not cause the ejector 15 to function. According to this, even under operating conditions in which the ejector 15 cannot exhibit a sufficient suction action or pressure increase action, a sufficient flow rate is supplied to the first evaporator 17 and the second evaporator 18 by the suction and discharge actions of the compressor 11. The refrigerant can be supplied.
 従って、負荷変動が生じた場合や、起動時等のように、エジェクタ15が充分な吸引作用や昇圧作用を発揮できない運転条件であっても、エジェクタ式冷凍サイクル10を適切に作動させることができる。 Therefore, the ejector refrigeration cycle 10 can be appropriately operated even under operating conditions in which the ejector 15 cannot exhibit a sufficient suction action or pressure increase action, such as when a load fluctuates or during startup. .
 より具体的には、第1蒸発器17および第2蒸発器18にて冷却される送風空気の温度分布の拡大を抑制することができる。また、サイクルの起動直後等に、エジェクタ15のノズル部15aを閉塞させることができるので、ノズル15aを通過する冷媒通過音が耳障りな音になってしまうことがない。 More specifically, the expansion of the temperature distribution of the blown air cooled by the first evaporator 17 and the second evaporator 18 can be suppressed. Moreover, since the nozzle part 15a of the ejector 15 can be closed immediately after starting the cycle, the refrigerant passing sound passing through the nozzle 15a does not become annoying sound.
 さらに、エジェクタ停止運転では、圧縮機11の吸入、吐出作用によって、冷媒をサイクル内で確実に循環させることができるので、冷媒に混入されたオイルが圧縮機に戻り難くなってしまうことを抑制することができる。 Further, in the ejector stop operation, the refrigerant can be reliably circulated in the cycle by the suction and discharge action of the compressor 11, so that it is difficult to return the oil mixed in the refrigerant to the compressor. be able to.
 このことは、本実施形態のエジェクタ式冷凍サイクル10のように、ノズル部15aよりも冷媒流れ上流側で冷媒の流れを分岐し、分岐された一方の冷媒をノズル部15aへ流入させ、分岐された他方の冷媒を絞り機構および蒸発器を介してエジェクタ15の冷媒吸引口21bから吸引させるサイクル構成では有効である。 This is because, like the ejector refrigeration cycle 10 of the present embodiment, the refrigerant flow is branched upstream of the nozzle portion 15a, and one of the branched refrigerants flows into the nozzle portion 15a to be branched. This is effective in a cycle configuration in which the other refrigerant is sucked from the refrigerant suction port 21b of the ejector 15 through the throttle mechanism and the evaporator.
 その理由は、このようなサイクル構成では、蒸発器へ供給される冷媒の流量が、エジェクタ15の吸引能力によって変動しやすく、低負荷運転時等に冷媒に混入されたオイルが圧縮機に戻り難くなってしまうからである。 The reason is that in such a cycle configuration, the flow rate of the refrigerant supplied to the evaporator is likely to fluctuate depending on the suction capacity of the ejector 15, and the oil mixed in the refrigerant is difficult to return to the compressor during low-load operation or the like. Because it becomes.
 また、本実施形態のエジェクタモジュール20では、ニードル弁22に対して、ノズル部15aの通路断面積を縮小(閉塞)させる側の荷重をかけるコイルバネ22cを備えるとともに、絞り弁23の連結部23aとニードル弁22の係合穴22aの内壁面との間に、軸方向の隙間を形成している。さらに、絞り弁23の連結部23aがニードル弁22の当接部22bに当接している際に、ニードル弁22と絞り弁23とを連動して変位させるようにしている。 In addition, the ejector module 20 of the present embodiment includes a coil spring 22c that applies a load on the side of the needle valve 22 that reduces (closes) the passage cross-sectional area of the nozzle portion 15a, and includes a connecting portion 23a of the throttle valve 23 and An axial gap is formed between the inner wall surface of the engagement hole 22 a of the needle valve 22. Further, when the connecting portion 23a of the throttle valve 23 is in contact with the contact portion 22b of the needle valve 22, the needle valve 22 and the throttle valve 23 are displaced in conjunction with each other.
 これによれば、複雑な制御等を要することなく、ノズル部15aおよび絞り通路20bの双方が開いた状態から閉塞させる際には、絞り通路20bよりも先にノズル部15aを閉塞させ、さらに、ノズル部15aおよび絞り通路20bの双方を閉塞させた状態から開く際には、ノズル部15aよりも先に絞り通路20bを開く構成を実現することができる。 According to this, when both the nozzle portion 15a and the throttle passage 20b are closed from the open state without requiring complicated control or the like, the nozzle portion 15a is closed before the throttle passage 20b. When opening both the nozzle portion 15a and the throttle passage 20b from a closed state, a configuration in which the throttle passage 20b is opened before the nozzle portion 15a can be realized.
 また、本実施形態のエジェクタモジュール20では、ノズル部15aの入口および絞り通路20bの入口が旋回空間20aに開口しており、絞り通路20bの入口がノズル部15aの入口よりも中心軸の外周側に開口している。さらに、旋回空間20aでは、冷媒が中心軸周りに旋回しているので、遠心力の作用によって、外周側に密度の高い液相冷媒が偏在している。 Further, in the ejector module 20 of the present embodiment, the inlet of the nozzle portion 15a and the inlet of the throttle passage 20b are open to the swirl space 20a, and the inlet of the throttle passage 20b is on the outer peripheral side of the central axis than the inlet of the nozzle portion 15a. Is open. Furthermore, in the swirling space 20a, since the refrigerant is swirling around the central axis, high-density liquid-phase refrigerant is unevenly distributed on the outer peripheral side by the action of centrifugal force.
 従って、旋回空間20aから絞り通路20bへ比較的乾き度の低い冷媒が供給され、旋回空間20aからノズル部15aへ比較的乾き度の高い冷媒が供給される。 Therefore, the refrigerant having a relatively low dryness is supplied from the swirl space 20a to the throttle passage 20b, and the refrigerant having a relatively high dryness is supplied from the swirl space 20a to the nozzle portion 15a.
 これによれば、第1蒸発器17側へ乾き度の低い冷媒を供給することができるので、第2蒸発器18よりも冷媒蒸発温度の低い第1蒸発器17の冷凍能力を増大させて、送風空気を充分に冷却することができる。さらに、ノズル部15aへ乾き度の高い冷媒を供給することができるので、エジェクタ15における回収エネルギ量を増大させて、エジェクタ15のエネルギ変換効率を向上させることができる。 According to this, since the refrigerant having a low dryness can be supplied to the first evaporator 17 side, the refrigeration capacity of the first evaporator 17 having a refrigerant evaporation temperature lower than that of the second evaporator 18 is increased, The blown air can be sufficiently cooled. Furthermore, since the refrigerant having a high degree of dryness can be supplied to the nozzle portion 15a, the amount of recovered energy in the ejector 15 can be increased, and the energy conversion efficiency of the ejector 15 can be improved.
 ここで、冷凍サイクル装置に適用されるエジェクタの回収エネルギ量は、ノズル部にて冷媒を等エントロピ的に減圧させた際の冷媒のエンタルピの低下量(すなわち、ノズル部へ流入する流入冷媒のエンタルピからノズル部から噴射された直後の噴射冷媒のエンタルピを減算したエンタルピ差)によって表すことができる。 Here, the amount of energy recovered by the ejector applied to the refrigeration cycle apparatus is the amount of decrease in the enthalpy of the refrigerant when the refrigerant is isentropically depressurized at the nozzle portion (that is, the enthalpy of the inflowing refrigerant flowing into the nozzle portion). To the enthalpy difference obtained by subtracting the enthalpy of the injected refrigerant immediately after being injected from the nozzle portion.
 さらに、回収エネルギ量は、ノズル部へ流入する乾き度xが高くなるに伴って、増加することが判っている。その理由は、ノズル部へ流入する乾き度xが高くなるに伴って、モリエル線図上の等エントロピ線の傾きが小さくなるからである。 Furthermore, it is known that the amount of recovered energy increases as the dryness x flowing into the nozzle portion increases. The reason is that as the dryness x flowing into the nozzle portion increases, the slope of the isentropic line on the Mollier diagram decreases.
 (第2実施形態)
 本実施形態では、図9に示すように、分岐部14、可変ノズル部を有するエジェクタ15、および可変絞り機構16を別体として構成したエジェクタ式冷凍サイクル10aについて説明する。なお、図9では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。
(Second Embodiment)
In the present embodiment, as shown in FIG. 9, an ejector refrigeration cycle 10 a in which a branch portion 14, an ejector 15 having a variable nozzle portion, and a variable throttle mechanism 16 are configured separately will be described. In FIG. 9, the same or equivalent parts as those in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
 エジェクタ式冷凍サイクル10aの分岐部14としては、遠心分離方式の気液分離器構造のものを採用することができる。そして、旋回中心側の比較的乾き度の高い冷媒をエジェクタ15のノズル部15a側へ流出させ、外周側の比較的乾き度の低い冷媒を可変絞り機構16側へ流出させている。エジェクタ式冷凍サイクル10aの可変絞り機構16としては、電気式の膨張弁を採用することができる。 As the branching portion 14 of the ejector refrigeration cycle 10a, a centrifugal gas-liquid separator structure can be employed. Then, the refrigerant having a relatively high dryness on the turning center side is caused to flow out to the nozzle portion 15a side of the ejector 15, and the refrigerant having a relatively low dryness on the outer peripheral side is caused to flow out to the variable throttle mechanism 16 side. As the variable throttle mechanism 16 of the ejector refrigeration cycle 10a, an electric expansion valve can be adopted.
 また、本実施形態では、図10のブロック図に示すように、空調制御装置40の入力側に、吸引冷媒圧力センサ48、吸引冷媒温度センサ49が追加接続されている。吸引冷媒圧力センサ48は、エジェクタ15の冷媒吸引口21bへ吸引される冷媒の吸引冷媒圧力Piを検出する吸引圧力検出部である。吸引冷媒温度センサ49は、冷媒吸引口21bへ吸引される冷媒の吸引冷媒温度Tiを検出する吸引温度検出部である。 In the present embodiment, as shown in the block diagram of FIG. 10, a suction refrigerant pressure sensor 48 and a suction refrigerant temperature sensor 49 are additionally connected to the input side of the air conditioning control device 40. The suction refrigerant pressure sensor 48 is a suction pressure detection unit that detects the suction refrigerant pressure Pi of the refrigerant sucked into the refrigerant suction port 21 b of the ejector 15. The suction refrigerant temperature sensor 49 is a suction temperature detection unit that detects the suction refrigerant temperature Ti of the refrigerant sucked into the refrigerant suction port 21b.
 さらに、本実施形態では、エジェクタ15および可変絞り機構16が別体として構成されているので、それぞれが弁体部を変位させる駆動機構部を有している。そのため、空調制御装置40のうち、エジェクタ15の作動を制御する構成が、エジェクタ制御部40bを構成している。さらに、可変絞り機構16の作動を制御する構成が、可変絞り制御部40cを構成している。 Furthermore, in the present embodiment, since the ejector 15 and the variable throttle mechanism 16 are configured as separate bodies, each has a drive mechanism section that displaces the valve body section. Therefore, the structure which controls the action | operation of the ejector 15 among the air-conditioning control apparatuses 40 comprises the ejector control part 40b. Further, the configuration for controlling the operation of the variable aperture mechanism 16 constitutes a variable aperture control unit 40c.
 次に、上記構成における本実施形態の作動について説明する。本実施形態のエジェクタ式冷凍サイクル10aの基本的作動は、第1実施形態と同様である。より詳細には、通常運転時には、空調制御装置40は、吸入冷媒の過熱度が予め定めた吸入側基準過熱度(本実施形態では、1℃)に近づくように、エジェクタ15の可変ノズル部の作動を制御する。 Next, the operation of this embodiment in the above configuration will be described. The basic operation of the ejector refrigeration cycle 10a of this embodiment is the same as that of the first embodiment. More specifically, during normal operation, the air-conditioning control device 40 controls the variable nozzle portion of the ejector 15 so that the superheat degree of the suction refrigerant approaches a predetermined suction side reference superheat degree (1 ° C. in the present embodiment). Control the operation.
 さらに、通常運転時には、空調制御装置40は、吸引冷媒圧力センサ48によって検出された吸引冷媒圧力Piおよび吸引冷媒温度センサ49によって検出された吸引冷媒温度Tiに基づいて、冷媒吸引口21bから吸引される第1蒸発器17出口側冷媒の過熱度を算定する。そして、算定された過熱度が予め定めた吸引側基準過熱度(本実施形態では、0℃)に近づくように、可変絞り機構16の作動を制御する。 Further, during normal operation, the air conditioning control device 40 is sucked from the refrigerant suction port 21b based on the suction refrigerant pressure Pi detected by the suction refrigerant pressure sensor 48 and the suction refrigerant temperature Ti detected by the suction refrigerant temperature sensor 49. The degree of superheat of the refrigerant on the outlet side of the first evaporator 17 is calculated. Then, the operation of the variable throttle mechanism 16 is controlled so that the calculated superheat degree approaches a predetermined suction side reference superheat degree (0 ° C. in the present embodiment).
 通常運転時のその他の作動は、第1実施形態と同様である。従って、通常運転時には、第1実施形態と同様に、負荷変動が生じてもエジェクタ式冷凍サイクル10aのCOPの低下を抑制することができる。 Other operations during normal operation are the same as in the first embodiment. Therefore, during normal operation, similarly to the first embodiment, it is possible to suppress a decrease in the COP of the ejector refrigeration cycle 10a even if a load change occurs.
 また、エジェクタ停止運転時には、空調制御装置40は、エジェクタ15の可変ノズル部を閉塞させる。さらに、空調制御装置40は、吸入冷媒の過熱度が吸入側基準過熱度に近づくように、可変絞り機構16の作動を制御する。エジェクタ停止運転時のその他の作動は、第1実施形態と同様である。従って、エジェクタ停止運転時には、第1実施形態と同様に、エジェクタ式冷凍サイクル10を適切に作動させることができる。 In the ejector stop operation, the air conditioning control device 40 closes the variable nozzle portion of the ejector 15. Further, the air conditioning control device 40 controls the operation of the variable throttle mechanism 16 so that the degree of superheat of the suction refrigerant approaches the suction side reference superheat degree. Other operations during the ejector stop operation are the same as those in the first embodiment. Therefore, during the ejector stop operation, the ejector refrigeration cycle 10 can be appropriately operated as in the first embodiment.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiment, and various modifications can be made as follows without departing from the spirit of the present disclosure.
 上述の実施形態では、制御ステップS1にて構成される停止条件判定部として、温度差ΔTが基準温度差KΔT以上となっている際に、エジェクタ停止条件が成立していると判定するものを説明したが、停止条件判定部におけるエジェクタ停止条件の判定はこれに限定されない。 In the above-described embodiment, the stop condition determination unit configured in the control step S1 determines that the ejector stop condition is satisfied when the temperature difference ΔT is equal to or greater than the reference temperature difference KΔT. However, the determination of the ejector stop condition in the stop condition determination unit is not limited to this.
 例えば、圧縮機11の冷媒吐出能力が予め定めた基準吐出能力以下となっている際に、エジェクタ停止条件が成立していると判定してもよい。圧縮機11の冷媒吐出能力が基準吐出能力以下となっている際には、低負荷運転になっており、冷媒に混入されたオイルが圧縮機に戻り難くなっているからである。 For example, it may be determined that the ejector stop condition is satisfied when the refrigerant discharge capacity of the compressor 11 is equal to or less than a predetermined reference discharge capacity. This is because when the refrigerant discharge capacity of the compressor 11 is less than or equal to the reference discharge capacity, the operation is low load, and the oil mixed in the refrigerant is difficult to return to the compressor.
 さらに、圧縮機として電動圧縮機を採用しているサイクルでは、電動圧縮機の回転数が予め定めた基準回転数以下となっている際に、エジェクタ停止条件が成立していると判定してもよい。圧縮機として可変容量型の圧縮機を採用しているサイクルでは、吐出容量が予め定めた基準容量以下となっている際に、エジェクタ停止条件が成立していると判定してもよい。 Furthermore, in a cycle that employs an electric compressor as the compressor, even if it is determined that the ejector stop condition is satisfied when the rotation speed of the electric compressor is equal to or less than a predetermined reference rotation speed. Good. In a cycle that employs a variable capacity compressor as the compressor, it may be determined that the ejector stop condition is satisfied when the discharge capacity is equal to or less than a predetermined reference capacity.
 また、第1蒸発器17出口側冷媒の過熱度が予め定めた基準過熱度以下となっている際に、エジェクタ停止条件が成立していると判定してもよい。これは、低負荷運転時では、第1蒸発器17にて冷媒が送風空気から充分に吸熱できず、第1蒸発器17から液相冷媒が流出してしまうことがあるからである。 Further, when the superheat degree of the refrigerant on the outlet side of the first evaporator 17 is equal to or lower than a predetermined reference superheat degree, it may be determined that the ejector stop condition is satisfied. This is because the refrigerant cannot sufficiently absorb heat from the blown air in the first evaporator 17 during low-load operation, and the liquid-phase refrigerant may flow out of the first evaporator 17.
 また、圧縮機11の吸入冷媒の圧力が予め定めた基準吸入冷媒圧力以下となっている際に、エジェクタ停止条件が成立していると判定してもよい。これは、低負荷運転時では、吸入冷媒の密度が低下して、吸入冷媒の圧力が大きく低下してしまうことがあるからである。 Alternatively, it may be determined that the ejector stop condition is satisfied when the pressure of the suction refrigerant of the compressor 11 is equal to or lower than a predetermined reference suction refrigerant pressure. This is because during low-load operation, the density of the suction refrigerant decreases, and the pressure of the suction refrigerant may greatly decrease.
 また、サイクル(すなわち、圧縮機11)が起動してから予め定めた基準時間が経過する迄は、エジェクタ停止条件が成立していると判定してもよい。これは、サイクルの起動時には、エジェクタ15のノズル部15aへ冷媒が急に流れこみ、ノズル15aを通過する冷媒通過音がユーザにとって耳障りな音になってしまうことがあるからである。 Further, it may be determined that the ejector stop condition is satisfied until a predetermined reference time elapses after the cycle (that is, the compressor 11) is started. This is because when the cycle is started, the refrigerant suddenly flows into the nozzle portion 15a of the ejector 15, and the refrigerant passing sound passing through the nozzle 15a may be annoying to the user.
 第1実施形態で説明したエジェクタモジュール20を適用可能なエジェクタ式冷凍サイクルは、上述の実施形態で開示されたものに限定されない。 The ejector refrigeration cycle to which the ejector module 20 described in the first embodiment can be applied is not limited to that disclosed in the above-described embodiment.
 例えば、図11の全体構成図に示すエジェクタ式冷凍サイクル10bに、エジェクタモジュール20を適用してもよい。 For example, the ejector module 20 may be applied to the ejector refrigeration cycle 10b shown in the overall configuration diagram of FIG.
 具体的には、エジェクタ式冷凍サイクル10bは、冷媒を圧縮して吐出する圧縮機11、圧縮機11から吐出された冷媒を放熱させる放熱器12、冷媒の気液を分離する気液分離器31、気液分離器31にて分離された液相冷媒を減圧させる減圧装置32、減圧装置32にて減圧された冷媒を蒸発させる第1蒸発器17、減圧部にて減圧された冷媒を蒸発させる第2蒸発器18、および気液分離器31にて分離された気相冷媒と第2蒸発器18から流出した冷媒とを合流させて圧縮機11の吸入側へ流出させる合流部33を有している。 Specifically, the ejector refrigeration cycle 10b includes a compressor 11 that compresses and discharges a refrigerant, a radiator 12 that dissipates heat from the refrigerant discharged from the compressor 11, and a gas-liquid separator 31 that separates refrigerant gas and liquid. The decompression device 32 that decompresses the liquid-phase refrigerant separated by the gas-liquid separator 31, the first evaporator 17 that evaporates the refrigerant decompressed by the decompression device 32, and the refrigerant decompressed by the decompression unit are evaporated The second evaporator 18, and the merge section 33 that merges the gas-phase refrigerant separated by the gas-liquid separator 31 and the refrigerant that has flowed out of the second evaporator 18 to flow out to the suction side of the compressor 11. ing.
 エジェクタ式冷凍サイクル10bでは、エジェクタモジュール20の高圧入口21aには、放熱器12の出口側が接続され、冷媒吸引口21bには、第1蒸発器17の冷媒出口側が接続され、エジェクタ側出口21cには、気液分離器31の入口側が接続され、絞り側出口21dには、第2蒸発器18の冷媒入口側が接続されている。 In the ejector refrigeration cycle 10b, the outlet side of the radiator 12 is connected to the high pressure inlet 21a of the ejector module 20, the refrigerant outlet side of the first evaporator 17 is connected to the refrigerant suction port 21b, and the ejector side outlet 21c is connected. The inlet side of the gas-liquid separator 31 is connected, and the refrigerant inlet side of the second evaporator 18 is connected to the throttle side outlet 21d.
 さらに、エジェクタ式冷凍サイクル10bの第1蒸発器17では、減圧装置32にて減圧された低圧冷媒と第1送風機17aから送風された送風空気とを熱交換させる。第2蒸発器18では、可変絞り機構16にて減圧された低圧冷媒と第2送風機18aから送風された送風空気とを熱交換させる。 Further, in the first evaporator 17 of the ejector refrigeration cycle 10b, heat exchange is performed between the low-pressure refrigerant decompressed by the decompression device 32 and the blown air blown from the first blower 17a. In the second evaporator 18, heat exchange is performed between the low-pressure refrigerant decompressed by the variable throttle mechanism 16 and the blown air blown from the second blower 18a.
 また、エジェクタ式冷凍サイクル10bにおいて、合流部33の冷媒出口を圧縮機11の吸入側へ直接接続し、第1蒸発器17の冷媒出口を低圧入口21e側へ接続し、低圧出口21fを冷媒吸引口21bへ接続してもよい。 In the ejector refrigeration cycle 10b, the refrigerant outlet of the junction 33 is directly connected to the suction side of the compressor 11, the refrigerant outlet of the first evaporator 17 is connected to the low pressure inlet 21e side, and the low pressure outlet 21f is sucked of refrigerant. You may connect to the port 21b.
 そして、第1蒸発器17出口側冷媒の過熱度が吸引側基準過熱度(本実施形態では、0℃)に近づくように、駆動機構部24の作動を制御すればよい。もちろん、エジェクタ停止運転では、エジェクタ15のノズル部15aを閉塞させるように駆動機構部24の作動を制御すればよい。 Then, the operation of the drive mechanism unit 24 may be controlled so that the superheat degree of the refrigerant on the outlet side of the first evaporator 17 approaches the suction side reference superheat degree (0 ° C. in this embodiment). Of course, in the ejector stop operation, the operation of the drive mechanism 24 may be controlled so as to close the nozzle portion 15a of the ejector 15.
 エジェクタ式冷凍サイクル10~10bを構成する各構成機器は、上述の実施形態に開示されたものに限定されない。 Each component device constituting the ejector refrigeration cycle 10 to 10b is not limited to the one disclosed in the above embodiment.
 例えば、上述の実施形態では、圧縮機11として、電動圧縮機を採用した例を説明したが、圧縮機11として、プーリ、ベルト等を介して車両走行用エンジンから伝達される回転駆動力によって駆動されるエンジン駆動式の圧縮機を採用してもよい。さらに、エンジン駆動式の圧縮機としては、吐出容量の変化により冷媒吐出能力を調整可能な可変容量型圧縮機、あるいは電磁クラッチの断続により圧縮機の稼働率を変化させて冷媒吐出能力を調整可能な固定容量型圧縮機を採用することができる。 For example, in the above-described embodiment, an example in which an electric compressor is employed as the compressor 11 has been described. However, the compressor 11 is driven by a rotational driving force transmitted from a vehicle traveling engine via a pulley, a belt, or the like. An engine driven compressor may be employed. Furthermore, as an engine-driven compressor, the variable capacity compressor that can adjust the refrigerant discharge capacity by changing the discharge capacity, or the refrigerant discharge capacity can be adjusted by changing the operating rate of the compressor by intermittently connecting the electromagnetic clutch A fixed-capacity compressor can be employed.
 また、上述の実施形態では、放熱器12として、レシーバ一体型の凝縮器を採用した例を説明したが、さらに、レシーバ部12bから流出した液相冷媒を過冷却する過冷却部を有して構成される、いわゆるサブクール型の凝縮器を採用してもよい。この他にも、凝縮部12aのみからなる放熱器12、および放熱器12から流出した冷媒の気液を分離して、分離された液相冷媒を下流側へ流出させる受液器(レシーバ)を採用してもよい。 In the above-described embodiment, an example in which a receiver-integrated condenser is employed as the radiator 12 has been described. Further, the radiator 12 has a supercooling unit that supercools the liquid-phase refrigerant flowing out from the receiver unit 12b. A so-called subcool condenser may be employed. In addition, a radiator 12 including only the condensing unit 12a, and a receiver (receiver) that separates the gas-liquid refrigerant flowing out of the radiator 12 and flows the separated liquid-phase refrigerant downstream. It may be adopted.
 また、上述の実施形態では、冷媒としてR134aを採用した例を説明したが、冷媒はこれに限定されない。例えば、R1234yf、R600a、R410A、R404A、R32、R407C、等を採用してもよい。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。さらに、冷媒として二酸化炭素を採用して、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成してもよい。 In the above-described embodiment, the example in which R134a is adopted as the refrigerant has been described, but the refrigerant is not limited to this. For example, R1234yf, R600a, R410A, R404A, R32, R407C, etc. may be adopted. Or you may employ | adopt the mixed refrigerant | coolant etc. which mixed multiple types among these refrigerant | coolants. Furthermore, a supercritical refrigeration cycle in which carbon dioxide is employed as the refrigerant and the high-pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant may be configured.
 また、エジェクタ式冷凍サイクル10では、第1蒸発器17および第2蒸発器18を一体的に構成した例を説明したが、エジェクタ式冷凍サイクル10bのように、第1蒸発器17および第2蒸発器18を別体で構成されていてもよい。そして、第1蒸発器17および第2蒸発器18にて、異なる冷媒対象流体を異なる温度帯で冷却するようにしてもよい。 Further, in the ejector refrigeration cycle 10, the example in which the first evaporator 17 and the second evaporator 18 are integrally configured has been described. However, as in the ejector refrigeration cycle 10b, the first evaporator 17 and the second evaporator The vessel 18 may be configured separately. In the first evaporator 17 and the second evaporator 18, different refrigerant target fluids may be cooled in different temperature zones.
 また、第2実施形態で説明したエジェクタ式冷凍サイクル10aでは、可変絞り機構16として、電気式の膨張弁を採用して例を説明したが、冷媒の温度および圧力に応じて変形する変形部材を有する機械的機構で構成されたものを採用してもよい。 In the ejector refrigeration cycle 10a described in the second embodiment, an example is described in which an electric expansion valve is used as the variable throttle mechanism 16, but a deformable member that deforms according to the temperature and pressure of the refrigerant is used. You may employ | adopt what was comprised with the mechanical mechanism which has.
 上述の各実施形態では、本開示に係るエジェクタモジュール20を車両に搭載されるエジェクタ式冷凍サイクル10~10bに適用した例を説明したが、エジェクタモジュール20の適用はこれに限定されない。例えば、定置型の空調装置、冷温保存庫等に用いられるエジェクタ式冷凍サイクルに適用してもよい。 In each of the above-described embodiments, the example in which the ejector module 20 according to the present disclosure is applied to the ejector refrigeration cycles 10 to 10b mounted on a vehicle has been described, but the application of the ejector module 20 is not limited thereto. For example, the present invention may be applied to an ejector-type refrigeration cycle used in a stationary air conditioner, a cold / hot storage, or the like.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態が本開示に示されているが、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, although various combinations and forms are shown in the present disclosure, other combinations and forms including only one element, more or less than them are also included in the scope and concept of the present disclosure. Is.

Claims (8)

  1.  エジェクタ式冷凍サイクル(10、10b)に適用されるエジェクタモジュールであって、
     冷媒を減圧させて噴射するノズル部(15a)と、
     冷媒を減圧させる減圧部(20b)と、
     前記ノズル部から噴射された噴射冷媒の吸引作用によって外部から冷媒を吸引する冷媒吸引口(21b)、および前記噴射冷媒と前記冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させる昇圧部(15b)が形成されたボデー部(21)と、
     前記ノズル部の通路断面積を変化させるノズル側弁体部(22)と、
     前記減圧部の通路断面積を変化させる減圧側弁体部(23)と、
     前記ノズル側弁体部および前記減圧側弁体部を変位させる駆動機構部(24)と、を備え、
     前記駆動機構部は、前記ノズル部および前記減圧部を開いた状態から閉塞させる際には、前記減圧部よりも先に前記ノズル部を閉塞させ、さらに、前記ノズル部および前記減圧部を閉塞させた状態から開く際には、前記ノズル部よりも先に前記減圧部を開くものであるエジェクタモジュール。
    An ejector module applied to an ejector refrigeration cycle (10, 10b),
    A nozzle part (15a) for injecting the refrigerant under reduced pressure;
    A decompression section (20b) for decompressing the refrigerant;
    A refrigerant suction port (21b) that sucks the refrigerant from the outside by the suction action of the jetted refrigerant jetted from the nozzle unit, and a boosting unit that boosts the mixed refrigerant of the jetted refrigerant and the sucked refrigerant sucked from the refrigerant suction port (15b) formed body part (21);
    A nozzle side valve body portion (22) for changing a passage cross-sectional area of the nozzle portion;
    A pressure reducing side valve body portion (23) for changing a passage sectional area of the pressure reducing portion;
    A drive mechanism (24) for displacing the nozzle side valve body and the pressure reducing side valve body,
    When the driving mechanism portion closes the nozzle portion and the pressure reducing portion from the opened state, the drive mechanism portion closes the nozzle portion before the pressure reducing portion, and further closes the nozzle portion and the pressure reducing portion. An ejector module that opens the decompression section before the nozzle section when opening from a closed state.
  2.  前記ボデー部には、冷媒を前記ノズル部の中心軸周りに旋回させる旋回空間(20a)が形成されており、
     前記ノズル部の入口および前記絞り部の入口は、前記旋回空間に開口しており、
     前記絞り部の入口は、前記ノズル部の入口よりも中心軸の外周側に開口している請求項1に記載のエジェクタモジュール。
    The body portion is formed with a swirling space (20a) for swirling the refrigerant around the central axis of the nozzle portion,
    The inlet of the nozzle part and the inlet of the throttle part are open to the swirl space,
    2. The ejector module according to claim 1, wherein an inlet of the throttle portion is opened toward an outer peripheral side of a central axis with respect to an inlet of the nozzle portion.
  3.  前記ノズル側弁体部に対して前記ノズル部の冷媒通路面積を縮小させる側に荷重をかける弾性部材(22c)を備え、
     前記駆動機構部は、前記減圧側弁体部に連結されており、
     前記ノズル側弁体部には、前記減圧側弁体部が変位する際に当接する当接部(22b)が形成されており、
     前記ノズル側弁体部は、前記減圧側弁体部が前記当接部に当接している際に、前記減圧側弁体部と連動して変位する請求項1または2に記載のエジェクタモジュール。
    An elastic member (22c) that applies a load to the nozzle side valve body portion on the side of reducing the refrigerant passage area of the nozzle portion;
    The drive mechanism is connected to the pressure reducing valve body,
    The nozzle side valve body portion is formed with a contact portion (22b) that contacts when the pressure reducing side valve body portion is displaced,
    3. The ejector module according to claim 1, wherein the nozzle side valve body portion is displaced in conjunction with the pressure reduction side valve body portion when the pressure reduction side valve body portion is in contact with the contact portion.
  4.  前記エジェクタ式冷凍サイクル(10)は、冷媒を圧縮して吐出する圧縮機(11)、前記圧縮機から吐出された冷媒を放熱させる放熱器(12)、冷媒を蒸発させる第1蒸発器(17)、および冷媒を蒸発させて前記圧縮機の吸入側へ流出させる第2蒸発器(18)を有し、
     前記ノズル部および前記減圧部へ冷媒を流入させる高圧入口(21a)には、前記放熱器の出口側が接続され、
     前記冷媒吸引口には、前記第1蒸発器の冷媒出口側が接続され、
     前記昇圧部から冷媒を流出させるエジェクタ側出口(21c)には、前記第2蒸発器の冷媒入口側が接続され、
     前記減圧部から冷媒を流出させる絞り側出口(21d)には、前記第1蒸発器の冷媒入口側が接続されている請求項1ないし3のいずれか1つに記載のエジェクタモジュール。
    The ejector refrigeration cycle (10) includes a compressor (11) that compresses and discharges a refrigerant, a radiator (12) that dissipates heat from the refrigerant discharged from the compressor, and a first evaporator (17) that evaporates the refrigerant. ), And a second evaporator (18) for evaporating the refrigerant and flowing it out to the suction side of the compressor,
    The outlet side of the radiator is connected to the high-pressure inlet (21a) through which the refrigerant flows into the nozzle part and the decompression part,
    A refrigerant outlet side of the first evaporator is connected to the refrigerant suction port;
    A refrigerant inlet side of the second evaporator is connected to an ejector side outlet (21c) for allowing the refrigerant to flow out from the pressure increasing unit,
    The ejector module according to any one of claims 1 to 3, wherein a refrigerant inlet side of the first evaporator is connected to a throttle-side outlet (21d) through which the refrigerant flows out from the decompression unit.
  5.  冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機から吐出された冷媒を放熱させる放熱器(12)と、
     前記放熱器から流出した冷媒の流れを分岐する分岐部(14)と、
     前記分岐部にて分岐された一方の冷媒を減圧させる可変ノズル部から噴射される噴射冷媒の吸引作用によって冷媒吸引口(21b)から冷媒を吸引し、前記噴射冷媒と前記冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させるエジェクタ(15)と、
     前記分岐部にて分岐された他方の冷媒を減圧させる可変絞り機構(16)と、
     前記可変絞り機構にて減圧された冷媒を蒸発させて前記冷媒吸引口側へ流出させる第1蒸発器(17)と、
     前記エジェクタから流出した冷媒を蒸発させて前記圧縮機の吸入側へ流出させる第2蒸発器(18)と、
     前記可変ノズル部の通路断面積を制御するエジェクタ制御部(40b)と、
     予め定めたエジェクタ停止条件が成立したことを判定する停止条件判定部(S1)と、を備え、
     前記エジェクタ制御部は、前記停止条件判定部によって前記エジェクタ停止条件が成立したと判定された際に、前記可変ノズル部を閉塞させるものであるエジェクタ式冷凍サイクル。
    A compressor (11) for compressing and discharging the refrigerant;
    A radiator (12) for dissipating heat from the refrigerant discharged from the compressor;
    A branch part (14) for branching the flow of the refrigerant flowing out of the radiator;
    The refrigerant is sucked from the refrigerant suction port (21b) by the suction action of the jetted refrigerant jetted from the variable nozzle part that depressurizes one of the refrigerants branched at the branching unit, and sucked from the jetted refrigerant and the refrigerant suction port. An ejector (15) for increasing the pressure of the mixed refrigerant with the sucked refrigerant;
    A variable throttle mechanism (16) for depressurizing the other refrigerant branched at the branch portion;
    A first evaporator (17) that evaporates the refrigerant depressurized by the variable throttle mechanism and causes the refrigerant to flow toward the refrigerant suction port;
    A second evaporator (18) for evaporating the refrigerant flowing out of the ejector and flowing out to the suction side of the compressor;
    An ejector control section (40b) for controlling a passage sectional area of the variable nozzle section;
    A stop condition determination unit (S1) that determines that a predetermined ejector stop condition is satisfied,
    The ejector control unit is an ejector-type refrigeration cycle that closes the variable nozzle unit when the stop condition determining unit determines that the ejector stop condition is satisfied.
  6.  前記第1蒸発器の複数の部位の温度を検出する蒸発器温度検出部(47)を備え、
     前記停止条件判定部は、前記温度検出部が検出した最高温度から最低温度を減算した温度差(ΔT)が予め定めた基準温度差(KΔT)以上となった際に、前記エジェクタ停止条件が成立したと判定するものである請求項5に記載のエジェクタ式冷凍サイクル。
    An evaporator temperature detector (47) for detecting temperatures of a plurality of portions of the first evaporator;
    The stop condition determination unit establishes the ejector stop condition when a temperature difference (ΔT) obtained by subtracting the minimum temperature from the maximum temperature detected by the temperature detection unit is equal to or greater than a predetermined reference temperature difference (KΔT). The ejector-type refrigeration cycle according to claim 5, wherein the ejector refrigeration cycle is determined as having been performed.
  7.  前記停止条件判定部は、前記圧縮機が起動してから予め定めた基準時間が経過する迄は、前記エジェクタ停止条件が成立したと判定するものである請求項5または6に記載のエジェクタ式冷凍サイクル。 The ejector refrigeration according to claim 5 or 6, wherein the stop condition determining unit determines that the ejector stop condition is satisfied until a predetermined reference time elapses after the compressor is started. cycle.
  8.  前記停止条件判定部は、前記圧縮機の冷媒吐出能力が予め定めた基準吐出能力以下となっている際は、前記エジェクタ停止条件が成立したと判定するものである請求項5ないし7のいずれか1つに記載のエジェクタ式冷凍サイクル。 The stop condition determination unit determines that the ejector stop condition is satisfied when the refrigerant discharge capacity of the compressor is equal to or less than a predetermined reference discharge capacity. The ejector-type refrigeration cycle according to one.
PCT/JP2018/005441 2017-03-02 2018-02-16 Ejector module and ejector-type refrigeration cycle WO2018159322A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017039254A JP6776947B2 (en) 2017-03-02 2017-03-02 Ejector module and ejector refrigeration cycle
JP2017-039254 2017-03-02

Publications (1)

Publication Number Publication Date
WO2018159322A1 true WO2018159322A1 (en) 2018-09-07

Family

ID=63370861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005441 WO2018159322A1 (en) 2017-03-02 2018-02-16 Ejector module and ejector-type refrigeration cycle

Country Status (2)

Country Link
JP (1) JP6776947B2 (en)
WO (1) WO2018159322A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11454409B2 (en) 2019-03-15 2022-09-27 Carrier Corporation Failure detection method for air conditioning system
US11480197B2 (en) 2017-03-02 2022-10-25 Denso Corporation Ejector module
DE102021213208A1 (en) 2021-11-24 2023-05-25 Volkswagen Aktiengesellschaft Air conditioning arrangement with controlled ejector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118455A1 (en) * 2001-12-21 2003-06-26 Marwal Systems Regulating jet pump
JP2008303851A (en) * 2007-06-11 2008-12-18 Denso Corp Two-stage pressure-reduction ejector and ejector refrigerating cycle
JP2010019133A (en) * 2008-07-09 2010-01-28 Denso Corp Ejector and heat pump cycle device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118455A1 (en) * 2001-12-21 2003-06-26 Marwal Systems Regulating jet pump
JP2008303851A (en) * 2007-06-11 2008-12-18 Denso Corp Two-stage pressure-reduction ejector and ejector refrigerating cycle
JP2010019133A (en) * 2008-07-09 2010-01-28 Denso Corp Ejector and heat pump cycle device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11480197B2 (en) 2017-03-02 2022-10-25 Denso Corporation Ejector module
US11454409B2 (en) 2019-03-15 2022-09-27 Carrier Corporation Failure detection method for air conditioning system
DE102021213208A1 (en) 2021-11-24 2023-05-25 Volkswagen Aktiengesellschaft Air conditioning arrangement with controlled ejector
EP4186725A1 (en) 2021-11-24 2023-05-31 Volkswagen Ag Air conditioning assembly with controlled ejector

Also Published As

Publication number Publication date
JP2018145823A (en) 2018-09-20
JP6776947B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
US10029538B2 (en) Refrigeration cycle
CN107407507B (en) Ejector type refrigeration cycle
US9857102B2 (en) Ejector
JP6277869B2 (en) Ejector refrigeration cycle
US20060065011A1 (en) Vapor-compression refrigerant cycle system with ejector
US20160209094A1 (en) Ejector-type refrigeration cycle, and ejector
WO2018159322A1 (en) Ejector module and ejector-type refrigeration cycle
JP6610313B2 (en) Ejector, ejector manufacturing method, and ejector refrigeration cycle
US11549522B2 (en) Ejector
JP6717234B2 (en) Ejector module
JP6512071B2 (en) Ejector type refrigeration cycle
WO2019208428A1 (en) Ejector-type refrigeration cycle
JP6720934B2 (en) Ejector module
WO2018016219A1 (en) Ejector-type refrigeration cycle
JP6780567B2 (en) Gas-liquid separator and refrigeration cycle equipment
JP6327088B2 (en) Ejector refrigeration cycle
JP2008008505A (en) Ejector type refrigerating cycle
JP6380122B2 (en) Ejector
JP6319043B2 (en) Ejector refrigeration cycle
JP6319041B2 (en) Ejector refrigeration cycle
JP2019190795A (en) Ejector type refrigeration cycle
JP6319042B2 (en) Ejector refrigeration cycle
WO2018139417A1 (en) Ejector
JP2018179330A (en) Gas-liquid separator and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760438

Country of ref document: EP

Kind code of ref document: A1