JP5332217B2 - Superconducting device - Google Patents

Superconducting device Download PDF

Info

Publication number
JP5332217B2
JP5332217B2 JP2008024493A JP2008024493A JP5332217B2 JP 5332217 B2 JP5332217 B2 JP 5332217B2 JP 2008024493 A JP2008024493 A JP 2008024493A JP 2008024493 A JP2008024493 A JP 2008024493A JP 5332217 B2 JP5332217 B2 JP 5332217B2
Authority
JP
Japan
Prior art keywords
superconducting
superconducting coil
metal
coil
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008024493A
Other languages
Japanese (ja)
Other versions
JP2009188065A (en
Inventor
徹 岡崎
一也 大松
健吾 大倉
剛 佐波
剛三 藤野
敏広 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008024493A priority Critical patent/JP5332217B2/en
Publication of JP2009188065A publication Critical patent/JP2009188065A/en
Application granted granted Critical
Publication of JP5332217B2 publication Critical patent/JP5332217B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

本発明は、超電導装置に関し、詳しくは、交流電流で励磁される超電導コイルを真空断熱容器内に収容した超電導装置において、超電導コイルの冷却機構を改善して超電導装置全体の小型化・軽量化を図ると共に、超電導性能を向上させるものである。   The present invention relates to a superconducting device, and more specifically, in a superconducting device in which a superconducting coil excited by an alternating current is accommodated in a vacuum heat insulating container, the cooling mechanism of the superconducting coil is improved to reduce the size and weight of the entire superconducting device. And to improve the superconducting performance.

従来、超電導コイルを用いた装置として超電導モータや変圧器が提供されている。例えば特開2007−37343号公報(特許文献1)において、本出願人は超電導モータの固定子に超電導コイルを用いた超電導モータを提案している。該超電導モータにおいては、界磁側固定子の溝部に断熱容器を埋没し、該断熱容器に超電導コイルを収容している。断熱容器には断熱配管を介して液体窒素タンクを接続し、液体窒素を冷媒として循環させる冷却システムを設けて、超電導コイルを超電導温度まで冷却している。   Conventionally, superconducting motors and transformers have been provided as devices using superconducting coils. For example, in Japanese Patent Laid-Open No. 2007-37343 (Patent Document 1), the present applicant has proposed a superconducting motor using a superconducting coil as a stator of a superconducting motor. In the superconducting motor, a heat insulating container is buried in the groove portion of the field side stator, and the superconducting coil is accommodated in the heat insulating container. A liquid nitrogen tank is connected to the heat insulating container through a heat insulating pipe, and a cooling system for circulating liquid nitrogen as a refrigerant is provided to cool the superconducting coil to the superconducting temperature.

液体窒素を冷媒として循環させて超電導コイルを冷却する冷却システムの一般的な構成は図4に示す構成からなる。即ち、冷却システム1は、断熱容器2内に超電導コイル3を収容し、断熱容器2に連結具4を介して断熱配管5を取り付けて液体窒素を冷媒として循環させている。断熱配管5にはポンプ6を設けて液体窒素を循環させる動力とすると共に、冷凍機7を取り付けたリザーバー8を設けている。
このように、超電導コイルを収容した断熱容器に液体窒素を充填することで、超電導コイル全体を冷却している。
A general configuration of a cooling system that circulates liquid nitrogen as a refrigerant and cools the superconducting coil is configured as shown in FIG. That is, the cooling system 1 accommodates the superconducting coil 3 in the heat insulating container 2, attaches the heat insulating pipe 5 to the heat insulating container 2 via the connector 4, and circulates liquid nitrogen as a refrigerant. The heat insulation pipe 5 is provided with a pump 6 for powering the circulation of liquid nitrogen, and a reservoir 8 to which a refrigerator 7 is attached.
In this way, the entire superconducting coil is cooled by filling the heat insulating container containing the superconducting coil with liquid nitrogen.

前記液体窒素を冷媒とした冷却システムは、超電導コイルに交流電流を流す場合に用いられている。
超電導コイルに交流電流を流すと、超電導線自体が発熱して交流損失(ACロス)が発生し、該交流損失のために超電導線がクエンチして超電導性能を失いやすくなる。該交流損失は超電導コイルに流れる電流の大きさと、超電導コイルの各位置において超電導コイルにかかる磁界強度によって定まる。
図5は磁場に対する交流損失の概略を示した図であり、磁場が強い場合には超電導コイルを冷却する温度によらず大きい交流損失が発生する。
このため、超電導コイルに交流電流を流した場合には、超電導コイルを確実に冷却して発熱を効率よく除去することが重要であり、液体窒素を冷媒とした冷却システムを用いることで、超電導コイル全体を確実に冷却することができる。
The cooling system using liquid nitrogen as a refrigerant is used when an alternating current is passed through a superconducting coil.
When an alternating current is passed through the superconducting coil, the superconducting wire itself generates heat and an AC loss (AC loss) is generated. The superconducting wire is quenched due to the AC loss, and the superconducting performance is easily lost. The AC loss is determined by the magnitude of the current flowing through the superconducting coil and the strength of the magnetic field applied to the superconducting coil at each position of the superconducting coil.
FIG. 5 is a diagram showing an outline of AC loss with respect to a magnetic field. When the magnetic field is strong, a large AC loss occurs regardless of the temperature at which the superconducting coil is cooled.
For this reason, when an alternating current is passed through the superconducting coil, it is important to reliably cool the superconducting coil and efficiently remove heat generation. By using a cooling system using liquid nitrogen as a refrigerant, the superconducting coil The whole can be reliably cooled.

しかし、液体窒素は64K(ケルビン)以上の温度でしか液体として存在できないため、冷媒として液体窒素を用いた場合には、これ以下の温度に超電導コイルを冷却することはできない。一方、超電導コイルを構成する高温超電導線は64K以下に冷却するとより性能が向上することが知られている。
このため、液体窒素を用いて超電導コイルを冷却した場合は、超電導コイルを64K以下に冷却した場合に比べて超電導コイルの臨界電流が小さく、超電導コイルにかかる磁場が弱い範囲でしか超電導状態を保つことができないという問題がある。
However, since liquid nitrogen can exist as a liquid only at a temperature of 64K (Kelvin) or higher, when liquid nitrogen is used as a refrigerant, the superconducting coil cannot be cooled to a temperature lower than that. On the other hand, it is known that the performance of the high-temperature superconducting wire constituting the superconducting coil is further improved when cooled to 64K or lower.
For this reason, when the superconducting coil is cooled using liquid nitrogen, the superconducting coil has a lower critical current than the case where the superconducting coil is cooled to 64K or less, and the superconducting state is maintained only in a range where the magnetic field applied to the superconducting coil is weak. There is a problem that can not be.

また、液体窒素等の冷媒により冷却を行う場合、断熱容器を二重槽にして外部からの熱侵入を抑制しなければならず、断熱容器の構造が複雑となるという問題がある。
さらに、冷媒を循環させるため、冷却システムは冷凍機に加えて断熱配管やポンプ、リザーバー、熱交換機等が必要となる。また、液体窒素などの液体冷媒の配管には特殊なコネクタが必要であり、冷却システムの構造が複雑でコスト高になるという問題がある。
さらにまた、冷却システムは、断熱配管等において外部から侵入する熱や、ポンプでの発熱等も冷却しなければならないため、冷凍機が大型化するという問題がある。
Moreover, when cooling with refrigerants, such as liquid nitrogen, there exists a problem that the heat insulation from the outside must be suppressed by making a heat insulation container into a double tank, and the structure of a heat insulation container becomes complicated.
Furthermore, in order to circulate the refrigerant, the cooling system requires a heat insulating pipe, a pump, a reservoir, a heat exchanger, and the like in addition to the refrigerator. In addition, a special connector is required for piping of liquid refrigerant such as liquid nitrogen, and there is a problem that the structure of the cooling system is complicated and expensive.
Furthermore, the cooling system has a problem that the size of the refrigerator is increased because the heat entering from the outside in the heat insulating piping or the like or the heat generated by the pump must be cooled.

特に、超電導コイルに流す電流を交流電流とした場合には、前述したように交流損失が発生するため、冷却システムは該交流損失を確実に冷却しなければならず、さらに大型の冷凍機が必要となるという問題がある。とりわけ、超電導コイルにかかる磁場が大きい場合や、超電導コイルの巻き数が多く線量が多い場合には交流損失も大きくなるため、冷却システムが大型化し、超電導コイルを備えた装置全体も大型化するという問題がある。   In particular, when the current flowing through the superconducting coil is an alternating current, an alternating current loss occurs as described above. Therefore, the cooling system must reliably cool the alternating current loss, and a larger refrigerator is required. There is a problem of becoming. In particular, when the magnetic field applied to the superconducting coil is large, or when the number of turns of the superconducting coil is large and the dose is large, the AC loss also increases, so that the cooling system is enlarged and the entire apparatus equipped with the superconducting coil is also enlarged. There's a problem.

特開2007−37343号公報JP 2007-37343 A

本発明は、前記問題に鑑みてなされたもので、超電導コイルに交流電流を流す場合において、超電導装置を小型化・軽量化して超電導性能を向上させることを課題としている。   The present invention has been made in view of the above problems, and it is an object of the present invention to improve the superconducting performance by reducing the size and weight of the superconducting device when an alternating current is passed through the superconducting coil.

前記課題を解決するため、本発明は、交流電流で励磁される超電導線を巻回した超電導コイルと、
真空とした内部に前記超電導コイルを収容している一方、冷媒は充填していない真空断熱容器と、
前記真空断熱容器内にコールドヘッドを突出させている冷凍機と、
前記真空断熱容器内で前記コールドヘッドと前記超電導コイルとを連結する超電導コイル直接冷却用の伝熱材を備え、
前記超電導コイルは複数のシングルパンケーキコイルまたはダブルパンケーキコイルからなり、これら超電導コイルを中央連結芯材の外周に積層固定し、該積層した超電導コイルの間および両側に複数の金属板を間隔をあけて配置し、
前記伝熱材は前記コールドヘッドと接続するコールドヘッド接続部から、前記両側に配置する前記金属板と接続する両端の金属接続部と、前記超電導コイル間に配置する前記金属板と接続する中間の金属接続部が分岐して突出し、該分岐した前記両端の金属接続部は中間の金属接続部より熱抵抗を小さくした形状とし、
前記超電導コイルの超電導温度を10K以上60K以下、前記超電導コイルにより発生する磁場を0.1T以上20T以下、前記超電導コイルに流れる交流電流を10A以上1000A以下としていることを特徴とする超電導装置を提供している。
In order to solve the above problems, the present invention provides a superconducting coil wound with a superconducting wire excited by an alternating current;
A vacuum insulation container that contains the superconducting coil in a vacuum and is not filled with a refrigerant;
A refrigerator having a cold head protruding into the vacuum insulation container;
A superconducting coil direct cooling heat transfer material for connecting the cold head and the superconducting coil in the vacuum insulation container;
The superconducting coil is composed of a plurality of single pancake coils or double pancake coils. These superconducting coils are laminated and fixed on the outer periphery of the central connecting core, and a plurality of metal plates are spaced between and on both sides of the laminated superconducting coils. Open and place
The heat transfer material is connected between the cold head connection portion connected to the cold head, the metal connection portions at both ends connected to the metal plates arranged on both sides, and the intermediate portion connected to the metal plate arranged between the superconducting coils. metal connecting portion protruding branches, metal connecting portions of said end that the branch is a shape with a reduced thermal resistance than the intermediate metal connecting portion,
A superconducting device is characterized in that the superconducting temperature of the superconducting coil is 10 K or more and 60 K or less, the magnetic field generated by the superconducting coil is 0.1 T or more and 20 T or less, and the alternating current flowing through the superconducting coil is 10 A or more and 1000 A or less. doing.

本発明の超電導装置は、交流電流を励磁する超電導コイルを真空断熱容器に収容し、超電導コイルを伝熱材を介して冷凍機で直接冷却している。このため、従来技術のように液体窒素の冷媒を使用する必要がなく、液体窒素で冷却できる限界の温度であった64Kより低い温度まで超電導コイルを冷却できる。該冷却により、超電導コイルの臨界電流が大きく超電導コイルにかかる磁場が強い状態であっても超電導コイルを超電導状態とすることができ、超電導コイルの性能を向上させることができる。   In the superconducting device of the present invention, a superconducting coil for exciting an alternating current is accommodated in a vacuum heat insulating container, and the superconducting coil is directly cooled by a refrigerator through a heat transfer material. For this reason, it is not necessary to use a refrigerant of liquid nitrogen as in the prior art, and the superconducting coil can be cooled to a temperature lower than 64 K, which is the limit temperature that can be cooled with liquid nitrogen. By this cooling, even when the critical current of the superconducting coil is large and the magnetic field applied to the superconducting coil is strong, the superconducting coil can be brought into the superconducting state, and the performance of the superconducting coil can be improved.

また、液体窒素を用いる場合と比べて低い温度まで超電導コイルを冷却することで超電導コイルの臨界電流が大きくなるため、液体窒素を用いる場合と同じアンペアターン(超電導コイルに流す電流値と超電導コイルの巻き数の積)の起磁力を発生させるためには、少ない超電導コイルの巻き数でよく、超電導線の線量を減らすことができる。   In addition, since the critical current of the superconducting coil is increased by cooling the superconducting coil to a lower temperature than when liquid nitrogen is used, the same ampere-turn as the case of using liquid nitrogen (the current value flowing through the superconducting coil and the superconducting coil In order to generate the magnetomotive force of the product of the number of turns, the number of turns of the superconducting coil may be small, and the dose of the superconducting wire can be reduced.

特に、本発明の超電導装置の超電導コイルには交流電流を流しているため、超電導コイルに発生する交流損失は超電導線の線量により定まり、超電導線の線量が少ないほど交流損失も小さくなる。このため、交流損失を冷却するための冷却システムを小型化することができる。また、超電導線の線量を減らすことができるため、超電導コイル自体の小型化、軽量化を図ることができる。   In particular, since an alternating current flows through the superconducting coil of the superconducting device of the present invention, the AC loss generated in the superconducting coil is determined by the dose of the superconducting wire, and the AC loss decreases as the dose of the superconducting wire decreases. For this reason, the cooling system for cooling AC loss can be reduced in size. In addition, since the dose of the superconducting wire can be reduced, the superconducting coil itself can be reduced in size and weight.

さらに、本発明では冷媒を使用しないため、冷却システムに断熱配管やポンプ、リザーバー、熱交換機等が不要となり、冷却システムのコストを抑えることができると共に、小型化、軽量化することができる。さらにまた、断熱配管等からの侵入熱や、ポンプでの発熱等が減少するため、冷凍機は該発熱を冷却する必要がなく、冷凍機の小型化を図ることができる。   Furthermore, since no refrigerant is used in the present invention, a heat insulation pipe, a pump, a reservoir, a heat exchanger, and the like are not required in the cooling system, so that the cost of the cooling system can be suppressed and the size and weight can be reduced. Furthermore, since the intrusion heat from the heat insulating pipes and the like, heat generation by the pump, etc. are reduced, the refrigerator does not need to cool the heat generation, and the refrigerator can be miniaturized.

前記のように、超電導コイルの超電導温度は10K以上60K以下としている。
超電導温度、即ち超電導コイルの冷却温度を60Kより高くした場合には、液体窒素の冷媒を用いた場合と比べて超電導コイルの性能に変化がないからである。また、超電導コイルの超電導温度を10K未満とした場合には、冷凍機の冷却能力が低下するからである。
このとき、前記超電導コイルにより発生する磁場は0.1T以上20T以下であり、より好ましくは0.5T以上20T以下となる。また、前記超電導コイルに流れる電流は10A以上1000A以下となる。
As described above, the superconducting temperature of the superconducting coil is set to 10K to 60K.
This is because when the superconducting temperature, that is, the cooling temperature of the superconducting coil is higher than 60K, the performance of the superconducting coil does not change as compared with the case of using a liquid nitrogen refrigerant. In addition, when the superconducting temperature of the superconducting coil is less than 10K, the cooling capacity of the refrigerator is reduced.
At this time, the magnetic field generated by the superconducting coil is not less than 0.1T and not more than 20T, more preferably not less than 0.5T and not more than 20T. The current flowing through the superconducting coil is 10A or more and 1000A or less.

前記断熱容器は金属材またはFRPからなる1槽の容器からなり、
前記伝熱材は、銅、アルミから選択される高熱伝導率の金属からなる金属板または該金属からなる導体を絶縁被覆した金属線からなり、かつ、前記容器内部には、断熱材を充填していることが好ましい。
The heat insulating container is composed of one tank made of metal or FRP,
The heat transfer material is made of a metal plate made of a metal having a high thermal conductivity selected from copper and aluminum or a metal wire insulatively coated with a conductor made of the metal, and the container is filled with a heat insulating material. It is preferable.

液体窒素等の冷媒により冷却を行う場合、断熱容器を二重槽にして外部からの熱侵入を抑制しなければならないが、本発明では断熱容器内を真空としているので、1槽の容器であっても十分な断熱性能を備えることができる。
また、伝熱材を熱伝導率が高い金属の銅またはアルミとすることで、冷凍機のコールドヘッドから伝熱材を介して超電導コイルを冷却することができる。
さらに、断熱容器内の空間には断熱材を充填しているため、輻射熱が超電導コイルに伝わることを防ぐことができる
When cooling with a refrigerant such as liquid nitrogen, it is necessary to use a heat insulating container as a double tank to suppress heat intrusion from the outside. However, in the present invention, since the heat insulating container is evacuated, a single tank is used. However, sufficient heat insulation performance can be provided.
In addition, the superconducting coil can be cooled from the cold head of the refrigerator through the heat transfer material by using a metal having a high thermal conductivity such as copper or aluminum as the heat transfer material.
Furthermore, since the space in the heat insulating container is filled with a heat insulating material, it is possible to prevent radiant heat from being transmitted to the superconducting coil .

前記断熱容器を金属材とした場合には、強度が強いため断熱容器の厚さを薄くすることができ、小型化できる。また、断熱容器の周囲は大気と接しているため自然冷却や冷却水による冷却を簡単に低コストで行うことができる。
また、断熱容器をFRP(繊維強化樹脂)とした場合には、超電導コイルに交流電流を流しても断熱容器に誘導電流が流れて発熱することがなく、超電導装置全体の損失が小さくなり冷却効率を高めることができる。
When the heat insulating container is made of a metal material, since the strength is strong, the thickness of the heat insulating container can be reduced, and the size can be reduced. Further, since the periphery of the heat insulating container is in contact with the atmosphere, natural cooling and cooling with cooling water can be easily performed at low cost.
Further, when the heat insulating container is made of FRP (fiber reinforced resin), even if an alternating current is passed through the superconducting coil, an induced current does not flow through the heat insulating container to generate heat, and the loss of the entire superconducting device is reduced and cooling efficiency is reduced. Can be increased.

前記超電導コイルは、複数のシングルパンケーキコイルまたはダブルパンケーキコイルからなり、これら超電導コイルを樹脂製の中央連結芯材に積層固定しており、
前記中央連結芯材の軸線方向の両端にフランジ部を設け、該フランジ部に前記伝熱材と同種の金属板を固定し、該金属板と前記伝熱材とを半田付けで固定し、及び/または、
前記積層する超電導コイルの間に前記金属板を配置し、該金属板を前記伝熱材と半田付けで固定すると共に、該金属板と超電導コイルとの間に絶縁フィルムを介在させていることが好ましい。
The superconducting coil is composed of a plurality of single pancake coils or double pancake coils, and these superconducting coils are laminated and fixed to a central connecting core made of resin,
Flange portions are provided at both ends in the axial direction of the central connecting core member, a metal plate of the same type as the heat transfer material is fixed to the flange portion, the metal plate and the heat transfer material are fixed by soldering, and Or
The metal plate is disposed between the superconducting coils to be laminated, the metal plate is fixed to the heat transfer material by soldering, and an insulating film is interposed between the metal plate and the superconducting coil. preferable.

前記構成によれば、超電導コイルの軸線方向の両端に設けた金属板に伝熱材を固定しているので、超電導コイルを両端から冷却することができる。また、積層する超電導コイルの間に金属板を配置しているので、超電導コイルの間からも冷却することができる。   According to the said structure, since the heat-transfer material is being fixed to the metal plate provided in the both ends of the axial direction of a superconducting coil, a superconducting coil can be cooled from both ends. Moreover, since the metal plate is arrange | positioned between the superconducting coils to laminate | stack, it can cool also from between superconducting coils.

前述したように、本発明の超電導装置によれば、交流電流を超電導コイルに流し、超電導コイルを冷凍機で伝熱板を介して直接冷却することで、液体窒素を用いる場合よりも低温で超電導コイルを使用することができる。さらに、冷却システムを小型化・軽量化できると共に超電導コイル自体の小型化・軽量化を図ることができ、超電導装置全体が小型かつ軽量となる。   As described above, according to the superconducting device of the present invention, an AC current is passed through the superconducting coil, and the superconducting coil is directly cooled by a refrigerator through a heat transfer plate, thereby superconducting at a lower temperature than when liquid nitrogen is used. A coil can be used. Furthermore, the cooling system can be reduced in size and weight, and the superconducting coil itself can be reduced in size and weight, so that the entire superconducting device is reduced in size and weight.

本発明の実施形態を図面を参照して説明する。
図1乃至図3に本発明の第1実施形態を示す。
本発明の超電導装置10は、交流電流で励磁される超電導線を巻回した超電導コイル11を真空断熱容器12に収容し、超電導コイル11を冷凍機13で冷却している。
Embodiments of the present invention will be described with reference to the drawings.
1 to 3 show a first embodiment of the present invention.
In the superconducting device 10 of the present invention, a superconducting coil 11 wound with a superconducting wire excited by an alternating current is accommodated in a vacuum heat insulating container 12, and the superconducting coil 11 is cooled by a refrigerator 13.

真空断熱容器12は金属材であるステンレスからなる断面環状の1槽の容器であり、冷媒を充填せずに内部を真空としている。
真空断熱容器12の側壁に貫通孔12aを設け、冷凍機13の伝熱管14を貫通孔12aに挿入して固定し、冷凍機13を真空断熱容器12に取り付けている。冷凍機13の伝熱管14の先端にはコールドヘッド15が取り付けられ、該コールドヘッド15は真空断熱容器12内に突出している。
冷凍機13は、本実施形態ではクライオメック社製のAL325を用いているが、住友重機械工業製SRDK408、アイシン製RS373等を用いてもよい。
The vacuum heat insulating container 12 is a container having a circular cross section made of stainless steel, which is a metal material, and the inside is evacuated without being filled with a refrigerant.
A through hole 12 a is provided in the side wall of the vacuum heat insulating container 12, and the heat transfer tube 14 of the refrigerator 13 is inserted and fixed in the through hole 12 a, and the refrigerator 13 is attached to the vacuum heat insulating container 12. A cold head 15 is attached to the tip of the heat transfer tube 14 of the refrigerator 13, and the cold head 15 protrudes into the vacuum heat insulating container 12.
In the present embodiment, the refrigerator 13 uses AL325 manufactured by CryoMec, but SRDK408 manufactured by Sumitomo Heavy Industries, RS373 manufactured by Aisin, or the like may be used.

また、真空断熱容器12内には、超電導コイル11を直接冷却するための伝熱材16を設けている。伝熱材16は高熱伝導率の銅板からなり、該伝熱材16でコールドヘッド15と超電導コイル11とを連結し超電導コイル11を冷却している。
なお、伝熱材16は銅に替えて、アルミ等の熱伝導率の高い金属からなる金属の板を用いてもよい。また、該金属からなる導体を絶縁被覆したリッツ線等の金属線としてもよい。
A heat transfer material 16 for directly cooling the superconducting coil 11 is provided in the vacuum heat insulating container 12. The heat transfer material 16 is made of a copper plate having a high thermal conductivity. The heat transfer material 16 connects the cold head 15 and the superconducting coil 11 to cool the superconducting coil 11.
The heat transfer material 16 may be a metal plate made of a metal having a high thermal conductivity such as aluminum instead of copper. Moreover, it is good also as metal wires, such as a litz wire which carried out the insulation coating of the conductor which consists of this metal.

さらに、真空断熱容器12内には、輻射熱が超電導コイル11に伝わるのを防止する断熱材17を充填しており、該断熱材17は積層したアルミ箔からなる。なお、図1では断熱材17の一部のみを記載しているが、断熱材17は真空断熱容器12内全体に充填されている。   Further, the vacuum heat insulating container 12 is filled with a heat insulating material 17 for preventing radiant heat from being transmitted to the superconducting coil 11, and the heat insulating material 17 is made of laminated aluminum foil. Although only a part of the heat insulating material 17 is shown in FIG. 1, the heat insulating material 17 is filled in the entire vacuum heat insulating container 12.

超電導コイル11は複数のシングルパンケーキコイル11aから形成している。各シングルパンケーキコイル11aは、超電導線を樹脂製の円筒状の中央連結芯材11bにフラットワイズ巻きしており、複数のシングルパンケーキコイル11aを軸線方向に複数積層固定して一つの超電導コイル11としている。両端のパンケーキコイルの超電導線の端面をリード線(図示せず)を介して電源(図示せず)と接続している。
なお、超電導コイル11はダブルパンケーキコイルから形成してもよい。
Superconducting coil 11 is formed of a plurality of single pancake coils 11a. Each single pancake coil 11a is obtained by flatwise winding a superconducting wire around a cylindrical central connecting core 11b made of resin, and a plurality of single pancake coils 11a are stacked and fixed in the axial direction to form one superconducting coil. 11 is set. End faces of the superconducting wires of the pancake coils at both ends are connected to a power source (not shown) through lead wires (not shown).
The superconducting coil 11 may be formed from a double pancake coil.

中央連結芯材11bの軸線方向の両端には、超電導コイル11と同径の円状のフランジ部11cを設けている。該フランジ部11cの内面は超電導コイル11の軸線方向の両端面に接触させ、フランジ部11cの外面には超電導コイル11よりも径が大きい円状の金属板18Aを接着剤で固定している。即ち、超電導コイル11と金属板18Aはフランジ部11cで絶縁している。金属板18Aは伝熱材16と同種の金属である銅からなる。   Circular flange portions 11c having the same diameter as the superconducting coil 11 are provided at both ends in the axial direction of the central connecting core member 11b. The inner surface of the flange portion 11c is brought into contact with both end surfaces in the axial direction of the superconducting coil 11, and a circular metal plate 18A having a diameter larger than that of the superconducting coil 11 is fixed to the outer surface of the flange portion 11c with an adhesive. That is, the superconducting coil 11 and the metal plate 18A are insulated by the flange portion 11c. The metal plate 18A is made of copper which is the same kind of metal as the heat transfer material 16.

また、各シングルパンケーキコイル11aの間に金属板18Bを配置し、該金属板18Bと超電導コイル11との間には絶縁フィルム19を介在させている。絶縁フィルム19は、熱的抵抗を小さくするためにできるだけ厚さが小さいものとし、本実施形態ではポリイミドフィルム12.5μm厚を用いている。   Further, a metal plate 18B is disposed between each single pancake coil 11a, and an insulating film 19 is interposed between the metal plate 18B and the superconducting coil 11. The insulating film 19 has a thickness as small as possible in order to reduce the thermal resistance. In this embodiment, a polyimide film having a thickness of 12.5 μm is used.

さらに、これら金属板18A,18Bの内面の外周側に伝熱材16を半田付けで接続している。伝熱材16は銅板を打ち抜きして作成し、コールドヘッド15に接続するコールドヘッド接続部16aと、超電導コイル11の両端の金属板18Aに接続する金属板接続部16bと、シングルパンケーキコイル11aの間の金属板18Bに接続する金属板接続部16cとを設けている。   Furthermore, the heat transfer material 16 is connected to the outer peripheral side of the inner surfaces of the metal plates 18A and 18B by soldering. The heat transfer material 16 is formed by punching a copper plate, and a cold head connection portion 16a connected to the cold head 15, a metal plate connection portion 16b connected to the metal plates 18A at both ends of the superconducting coil 11, and a single pancake coil 11a. And a metal plate connecting portion 16c connected to the metal plate 18B between them.

金属板接続部16bの断面積は金属板接続部16cの断面積よりも大きくしている。超電導コイル11に交流電流を流すと、超電導コイル11の軸線方向の両端には超電導線のテープ面に垂直方向の成分を備える磁場が発生し、該垂直方向成分の磁場は超電導コイル11の交流損失、即ち発熱の原因となる。このため、超電導コイル11の両端の金属板18に接続する金属板接続部16bの断面積を大きくすることで、超電導コイル11の軸線方向の両端位置からコールドヘッド15までの伝熱材16の熱抵抗が小さくなるようにしている。
また、伝熱材16の表面には、磁束の流れる方向と平行にスリット16dを入れている。該スリット16dにより、超電導コイル11に交流電流を流したときに伝熱材16の表面に流れる渦電流のルートを遮って、伝熱材16に発生する誘導電流や渦電流による発熱を少なくしている。即ち、図1では縦方向にスリット16dを入れているが、縦方向に限られるものではない。
The cross-sectional area of the metal plate connection portion 16b is larger than the cross-sectional area of the metal plate connection portion 16c. When an alternating current is passed through the superconducting coil 11, a magnetic field having a component perpendicular to the tape surface of the superconducting wire is generated at both ends in the axial direction of the superconducting coil 11, and the magnetic field of the vertical component is an AC loss of the superconducting coil 11. That is, it causes heat generation. Therefore, by increasing the cross-sectional area of the metal plate connecting portion 16b to be connected to the metal plate 18 A of the both ends of the superconducting coil 11, the heat transfer member 16 from the end positions in the axial direction of the superconducting coil 11 to the cold head 15 The thermal resistance is made small.
Further, a slit 16d is formed on the surface of the heat transfer material 16 in parallel with the direction in which the magnetic flux flows. The slit 16d blocks the eddy current route that flows on the surface of the heat transfer material 16 when an alternating current is passed through the superconducting coil 11, thereby reducing the heat generated by the induced current and eddy current generated in the heat transfer material 16. Yes. That is, in FIG. 1, although the slit 16d is put in the vertical direction, it is not restricted to the vertical direction.

次に、本発明の超電導装置10の動作条件について説明する。
本発明の超電導装置10の冷凍機13は、超電導コイル11に交流電流を流したときに超電導線に発生する発熱(交流損失、ACロス)を冷却している。
図2はクライオメック社の冷凍機13の型番AL325の性能を示す図である。
例えば、70Kでは約280Wの冷却能力があり、20Kでは約70Wの冷却能力がある。即ち、冷凍機13は、70Kを保つ場合には約280Wの交流損失を冷却することができるが、20Kのときは約70Wの損失しか冷却することができず1/4倍に冷却能力が低下している。
Next, the operating conditions of the superconducting device 10 of the present invention will be described.
The refrigerator 13 of the superconducting device 10 of the present invention cools the heat generated in the superconducting wire (AC loss, AC loss) when an AC current is passed through the superconducting coil 11.
FIG. 2 is a diagram showing the performance of the model number AL325 of the cryogenic refrigerator 13.
For example, at 70K, there is a cooling capacity of about 280W, and at 20K, there is a cooling capacity of about 70W. That is, the refrigerator 13 can cool an AC loss of about 280 W when maintaining 70 K, but can cool only a loss of about 70 W at 20 K, and the cooling capacity is reduced to 1/4 times. doing.

一方、図3は超電導コイル11が20Kから77Kに冷却されている場合に、磁場に対する臨界電流を示す図である。例えば、磁場が0.5Tで超電導コイル11を使用する場合、臨界電流は70Kでは約30A、20Kまで冷却すると約600Aであり約20倍となる。
このとき、超電導コイル11の起磁力を示すアンペアターンは超電導コイル11に流す電流と超電導コイル11の巻き数の積で定義される。
このため、アンペアターンを一定とすると、超電導コイル11を20Kで使用する場合は70Kで使用する場合に比べて臨界電流は20倍となるため、巻き数は1/20倍でよい。即ち、超電導線の線量が1/20倍となる。
On the other hand, FIG. 3 is a diagram showing the critical current with respect to the magnetic field when the superconducting coil 11 is cooled from 20K to 77K. For example, when the superconducting coil 11 is used with a magnetic field of 0.5 T, the critical current is about 30A at 70K, and about 600A when cooled to 20K, which is about 20 times.
At this time, the ampere turn indicating the magnetomotive force of the superconducting coil 11 is defined by the product of the current flowing through the superconducting coil 11 and the number of turns of the superconducting coil 11.
For this reason, assuming that the ampere turn is constant, when the superconducting coil 11 is used at 20K, the critical current is 20 times that at 70K, so the number of turns may be 1/20 times. That is, the dose of the superconducting wire becomes 1/20 times.

前述したように、交流損失とは、超電導コイル11に交流電流を流したときに超電導線に発生する発熱による損失であり、交流損失は超電導線の線量に比例する。このため、超電導コイル11を20Kで使用する場合は70Kで使用する場合に比べて、交流損失が1/20倍となる。   As described above, the AC loss is a loss due to heat generated in the superconducting wire when an AC current is passed through the superconducting coil 11, and the AC loss is proportional to the dose of the superconducting wire. For this reason, when the superconducting coil 11 is used at 20K, the AC loss is 1/20 times that when used at 70K.

従って、超電導コイル11に交流電流を流したときに、超電導コイル11を20Kで使用する場合は70Kで使用する場合に比べて、冷凍機13の冷却能力は1/4倍となってしまうが、冷凍機13により冷却されるべき交流損失による発熱量も1/20倍となり、超電導コイル11の冷却に必要な電力は1/5倍となる。すなわち、冷凍機13の冷却能力の低下よりも交流損失による発熱量の低下の方が大きい。   Therefore, when an alternating current is passed through the superconducting coil 11, when the superconducting coil 11 is used at 20K, the cooling capacity of the refrigerator 13 is ¼ times that when used at 70K. The amount of heat generated by the AC loss to be cooled by the refrigerator 13 is also 1/20 times, and the power necessary for cooling the superconducting coil 11 is 1/5 times. That is, the decrease in the heat generation amount due to the AC loss is greater than the decrease in the cooling capacity of the refrigerator 13.

このように、本発明の超電導装置10は、交流損失による発熱量の低下が冷凍機13の冷却能力の低下よりも大きい範囲の温度に超電導コイル11を冷却して使用することで、超電導コイル11の性能が向上する。   As described above, the superconducting device 10 according to the present invention uses the superconducting coil 11 by cooling the superconducting coil 11 to a temperature in a range where the decrease in the heat generation amount due to the AC loss is larger than the decrease in the cooling capacity of the refrigerator 13. Improved performance.

また、液体窒素を冷媒とした冷却システムを用いて70Kに超電導コイル11を冷却した場合と比較すると、本発明の超電導装置10は20Kに冷却が可能であるため、超電導コイル11の線量が少なく交流損失が少なくなる上、冷却システムからの熱侵入や断熱容器12の渦電流による損失、ポンプの発熱等を冷却する必要がない。このため、少ない巻き数の超電導線からの交流損失だけを冷却するだけでよく、該交流損失を液体窒素を冷媒とした場合の損失の1/4倍とできれば、本発明の超電導装置10の方が冷却効率が向上する。   Further, compared to the case where the superconducting coil 11 is cooled to 70 K using a cooling system using liquid nitrogen as a refrigerant, the superconducting device 10 of the present invention can be cooled to 20 K, so the dose of the superconducting coil 11 is small and AC is reduced. In addition to reducing the loss, it is not necessary to cool the heat intrusion from the cooling system, the loss due to the eddy current of the heat insulating container 12, the heat generation of the pump, or the like. For this reason, only the AC loss from the superconducting wire having a small number of turns needs to be cooled, and if the AC loss can be reduced to 1/4 times the loss when liquid nitrogen is used as the refrigerant, the superconducting device 10 of the present invention can be used. However, the cooling efficiency is improved.

また、液体窒素を冷媒とした冷却システムを用いた場合には64Kまでしか超電導コイル11を冷却できないが、この場合、超電導コイル11に高磁場が発生した場合には超電導コイル11は超電導状態を保つことができない。図3に示すように、超電導コイル11を70Kに冷却した場合、超電導コイル11にかかる磁場が約0.5T以下の場合には超電導状態を保つことができるが、約0.5Tより大きい磁場がかかる場合には超電導状態を保つことができない。
一方、本発明の超電導装置10において20Kまで超電導コイル11を冷却すると、図3に示すように超電導コイル11にかかる磁場が12Tであっても超電導状態を保っている。
Further, when a cooling system using liquid nitrogen as a refrigerant is used, the superconducting coil 11 can be cooled only to 64K. In this case, when a high magnetic field is generated in the superconducting coil 11, the superconducting coil 11 maintains a superconducting state. I can't. As shown in FIG. 3, when the superconducting coil 11 is cooled to 70K, the superconducting state can be maintained when the magnetic field applied to the superconducting coil 11 is about 0.5 T or less. In such a case, the superconducting state cannot be maintained.
On the other hand, when the superconducting coil 11 is cooled to 20K in the superconducting device 10 of the present invention, the superconducting state is maintained even if the magnetic field applied to the superconducting coil 11 is 12T as shown in FIG.

従って、本発明の超電導装置10の動作条件は、超電導コイル11の超電導温度を液体窒素で冷却する場合よりも低い10K以上60K以下まで冷却することで、超電導コイル11により発生する磁場が0.1T以上20T以下、より好ましくは0.5T以上12T以下であり、超電導コイル11に流れる電流が10A以上1000A以下となる。この場合に超電導コイル11は超電導状態を保ち、超電導装置10の運転が可能となる。   Therefore, the operating condition of the superconducting device 10 of the present invention is that the superconducting temperature of the superconducting coil 11 is reduced to 10K or more and 60K or lower than that when the superconducting coil 11 is cooled with liquid nitrogen. 20T or less, more preferably 0.5T or more and 12T or less, and the current flowing through the superconducting coil 11 is 10A or more and 1000A or less. In this case, the superconducting coil 11 maintains the superconducting state, and the superconducting device 10 can be operated.

このように、本発明によれば、交流電流を励磁する超電導コイル11を真空断熱容器12に収容し、超電導コイル11を伝熱材16を介して冷凍機13で直接冷却している。このため、従来技術のように液体窒素の冷媒を使用する必要がなく、液体窒素で冷却できる限界の温度であった64Kより低い温度まで超電導コイル11を冷却できる。該冷却により、超電導コイル11の臨界電流が大きく超電導コイル11にかかる磁場が強い状態であっても超電導コイル11を超電導状態とすることができ、超電導コイル11の性能を向上させることができる。   Thus, according to the present invention, the superconducting coil 11 that excites alternating current is accommodated in the vacuum heat insulating container 12, and the superconducting coil 11 is directly cooled by the refrigerator 13 via the heat transfer material 16. Therefore, it is not necessary to use a liquid nitrogen refrigerant as in the prior art, and the superconducting coil 11 can be cooled to a temperature lower than 64K, which is the limit temperature that can be cooled with liquid nitrogen. By this cooling, even when the critical current of the superconducting coil 11 is large and the magnetic field applied to the superconducting coil 11 is strong, the superconducting coil 11 can be brought into the superconducting state, and the performance of the superconducting coil 11 can be improved.

また、超電導コイル11の臨界電流が大きくなるため、液体窒素を用いる場合と同じアンペアターン(超電導コイル11に流す電流値と超電導コイル11の巻き数の積)の起磁力を発生させるためには、少ない超電導コイル11の巻き数でよく、超電導線の線量を減らすことができる。
特に、本発明の超電導装置10の超電導コイル11には交流電流を流しているため、超電導コイル11に発生する交流損失は超電導線の線量により定まり、超電導線の線量が少ないほど交流損失も小さくなる。このため、交流損失を冷却するための冷却システムを小型化することができる。超電導線の線量を減らすことができるため、超電導コイル11自体の小型化、軽量化を図ることができる。
Further, since the critical current of the superconducting coil 11 is increased, in order to generate a magnetomotive force of the same ampere turn (product of the current value flowing through the superconducting coil 11 and the number of turns of the superconducting coil 11) as in the case of using liquid nitrogen, A small number of turns of the superconducting coil 11 is sufficient, and the dose of the superconducting wire can be reduced.
In particular, since an alternating current flows through the superconducting coil 11 of the superconducting device 10 of the present invention, the AC loss generated in the superconducting coil 11 is determined by the dose of the superconducting wire, and the AC loss decreases as the dose of the superconducting wire decreases. . For this reason, the cooling system for cooling AC loss can be reduced in size. Since the dose of the superconducting wire can be reduced, the superconducting coil 11 itself can be reduced in size and weight.

また、本発明では冷媒を使用しないため、冷却システムに断熱配管やポンプ、リザーバー、熱交換機等が不要となり、冷却システムのコストを抑えることができると共に、小型化、軽量化することができる。さらに、断熱配管等からの侵入熱や、ポンプでの発熱等が減少するため、冷凍機13は該発熱を冷却する必要がなく、冷凍機13の小型化を図ることができる。   Moreover, since no refrigerant is used in the present invention, a heat insulation pipe, a pump, a reservoir, a heat exchanger or the like is not required in the cooling system, and the cost of the cooling system can be suppressed, and the size and weight can be reduced. Furthermore, since the intrusion heat from the heat insulating piping or the like, the heat generation by the pump, and the like are reduced, the refrigerator 13 does not need to cool the heat generation, and the refrigerator 13 can be downsized.

なお、本発明は前記実施形態に限定されず、本発明の特許請求の範囲内の種々の形態が含まれるものである。   In addition, this invention is not limited to the said embodiment, The various form within the claim of this invention is included.

本発明である超電導装置の第1実施形態を示す全体的な概略構成図である。1 is an overall schematic configuration diagram showing a first embodiment of a superconducting device according to the present invention. 冷凍機の冷却性能を示す図である。It is a figure which shows the cooling performance of a refrigerator. 超電導コイルの超電導温度における磁場に対する臨界電流を示す図である。It is a figure which shows the critical current with respect to the magnetic field in the superconducting temperature of a superconducting coil. 液体窒素を冷媒とした冷却システムの図である。It is a figure of the cooling system which used liquid nitrogen as a refrigerant. 磁界に対する交流損失を示す図である。It is a figure which shows the alternating current loss with respect to a magnetic field.

符号の説明Explanation of symbols

10 超電導装置
11 超電導コイル
11a シングルパンケーキコイル
11b 中央連結芯材
11c フランジ部
12 真空断熱容器
13 冷凍機
15 コールドヘッド
16 伝熱材
17 断熱材
18 金属板
19 絶縁フィルム
DESCRIPTION OF SYMBOLS 10 Superconducting device 11 Superconducting coil 11a Single pancake coil 11b Center connection core material 11c Flange part 12 Vacuum heat insulating container 13 Refrigerator 15 Cold head 16 Heat transfer material 17 Heat insulating material 18 Metal plate 19 Insulating film

Claims (3)

交流電流で励磁される超電導線を巻回した超電導コイルと、
真空とした内部に前記超電導コイルを収容している一方、冷媒は充填していない真空断熱容器と、
前記真空断熱容器内にコールドヘッドを突出させている冷凍機と、
前記真空断熱容器内で前記コールドヘッドと前記超電導コイルとを連結する超電導コイル直接冷却用の伝熱材を備え、
前記超電導コイルは複数のシングルパンケーキコイルまたはダブルパンケーキコイルからなり、これら超電導コイルを中央連結芯材の外周に積層固定し、該積層した超電導コイルの間および両側に複数の金属板を間隔をあけて配置し、
前記伝熱材は前記コールドヘッドと接続するコールドヘッド接続部から、前記両側に配置する前記金属板と接続する両端の金属接続部と、前記超電導コイル間に配置する前記金属板と接続する中間の金属接続部が分岐して突出し、該分岐した前記両端の金属接続部は中間の金属接続部より熱抵抗を小さくした形状とし、
前記超電導コイルの超電導温度を10K以上60K以下、前記超電導コイルにより発生する磁場を0.1T以上20T以下、前記超電導コイルに流れる交流電流を10A以上1000A以下としていることを特徴とする超電導装置。
A superconducting coil wound with a superconducting wire excited by an alternating current;
A vacuum insulation container that contains the superconducting coil in a vacuum and is not filled with a refrigerant;
A refrigerator having a cold head protruding into the vacuum insulation container;
A superconducting coil direct cooling heat transfer material for connecting the cold head and the superconducting coil in the vacuum insulation container;
The superconducting coil is composed of a plurality of single pancake coils or double pancake coils. These superconducting coils are laminated and fixed on the outer periphery of the central connecting core, and a plurality of metal plates are spaced between and on both sides of the laminated superconducting coils. Open and place
The heat transfer material is connected between the cold head connection portion connected to the cold head, the metal connection portions at both ends connected to the metal plates arranged on both sides, and the intermediate portion connected to the metal plate arranged between the superconducting coils. metal connecting portion protruding branches, metal connecting portions of said end that the branch is a shape with a reduced thermal resistance than the intermediate metal connecting portion,
A superconducting device, wherein a superconducting temperature of the superconducting coil is 10 K or more and 60 K or less, a magnetic field generated by the superconducting coil is 0.1 T or more and 20 T or less, and an alternating current flowing through the superconducting coil is 10 A or more and 1000 A or less.
前記真空断熱容器は金属材またはFRPからなる1槽の容器からなり、前記金属板と前記伝熱材は銅またはアルミからなる請求項1に記載の超電導装置。 The superconducting device according to claim 1, wherein the vacuum heat insulating container is made of one tank made of a metal material or FRP, and the metal plate and the heat transfer material are made of copper or aluminum . 前記伝熱材にスリットを設けている請求項1または請求項2に記載の超電導装置。 The superconducting device according to claim 1, wherein a slit is provided in the heat transfer material .
JP2008024493A 2008-02-04 2008-02-04 Superconducting device Active JP5332217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008024493A JP5332217B2 (en) 2008-02-04 2008-02-04 Superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008024493A JP5332217B2 (en) 2008-02-04 2008-02-04 Superconducting device

Publications (2)

Publication Number Publication Date
JP2009188065A JP2009188065A (en) 2009-08-20
JP5332217B2 true JP5332217B2 (en) 2013-11-06

Family

ID=41071040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008024493A Active JP5332217B2 (en) 2008-02-04 2008-02-04 Superconducting device

Country Status (1)

Country Link
JP (1) JP5332217B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102054554B (en) * 2009-10-30 2015-07-08 通用电气公司 System and method for refrigerating superconducting magnet
JP5321531B2 (en) * 2010-04-26 2013-10-23 株式会社デンソー Reactor device
JP2012038812A (en) * 2010-08-04 2012-02-23 Toshiba Corp Superconducting coil device
JP5823116B2 (en) * 2010-11-15 2015-11-25 株式会社東芝 Superconducting coil
JP5708254B2 (en) * 2011-05-30 2015-04-30 住友電気工業株式会社 Superconducting coil and superconducting magnet
JP5708253B2 (en) * 2011-05-30 2015-04-30 住友電気工業株式会社 Superconducting coil and superconducting magnet
JP5708255B2 (en) * 2011-05-30 2015-04-30 住友電気工業株式会社 Superconducting coil and superconducting magnet
EP2801986B1 (en) * 2012-03-06 2021-07-07 Fujikura Ltd. Superconductive coil and superconducting device
CN102789865B (en) * 2012-07-19 2014-07-16 中国科学院电工研究所 Conduction-cooled structure of superconducting magnet
JP6445752B2 (en) * 2013-06-28 2018-12-26 株式会社東芝 Superconducting magnet device
JP6266391B2 (en) * 2014-03-14 2018-01-24 株式会社東芝 Superconducting coil device
JP7114881B2 (en) * 2017-11-15 2022-08-09 株式会社アイシン Superconducting magnetic field generator and nuclear magnetic resonance device
JP2021019106A (en) * 2019-07-22 2021-02-15 株式会社日立製作所 Conduction cooling type super conductive magnet
JP7210403B2 (en) * 2019-08-08 2023-01-23 株式会社日立製作所 Superconducting magnet device and particle beam therapy system
CN115711500A (en) * 2022-11-29 2023-02-24 中车长春轨道客车股份有限公司 Cold conducting passage structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757567U (en) * 1980-09-22 1982-04-05
JPH10214713A (en) * 1997-01-29 1998-08-11 Fuji Electric Co Ltd Superconducting coil
JPH11204325A (en) * 1997-10-24 1999-07-30 Sumitomo Electric Ind Ltd Method for controlling operation of superconducting coil
JPH11144940A (en) * 1997-11-14 1999-05-28 Mitsubishi Electric Corp Superconducting magnet device
JP2000150224A (en) * 1998-11-12 2000-05-30 Sumitomo Electric Ind Ltd Excitation control method of superconducting coil
JP2001244109A (en) * 2000-02-28 2001-09-07 Toshiba Corp High-temperature superconducting coil device

Also Published As

Publication number Publication date
JP2009188065A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP5332217B2 (en) Superconducting device
US8928441B2 (en) Liquid cooled magnetic component with indirect cooling for high frequency and high power applications
JP5852425B2 (en) Superconducting electromagnet apparatus, cooling method thereof, and magnetic resonance imaging apparatus
US8436499B2 (en) Electrical machine with superconducting armature coils and other components
US7953466B2 (en) Superconducting cable
JP4593963B2 (en) Superconducting multipolar electrical machine
AU2019260018B2 (en) Superconductive electric coil device and rotor comprising a coil device
EP2390884B1 (en) Superconducting magnetizer
JP2010016026A (en) Superconductive device
GB2457422A (en) Cooled cryostat radiation shield
JP5043955B2 (en) Superconducting synchronous motor
JP2001244109A (en) High-temperature superconducting coil device
JP2010171152A (en) Heat conduction plate and superconductive device
US20050079980A1 (en) Superconducting cable
JP2006203154A (en) Superconducting pulse coil, and superconducting device and superconducting power storage using same
CN111863374A (en) High-temperature superconducting uninsulated magnet
US20160180996A1 (en) Superconducting magnet system
CN210041676U (en) High-temperature superconducting uninsulated magnet
Chen et al. Design of the cryogenic system for a 400 kW experimental HTS synchronous motor
JP6491828B2 (en) Superconducting magnet system
JP2007060747A (en) Superconducting motor and vehicle equipped with that motor
KR20220031080A (en) Superconducting generator comprising a vacuum vessel formed of a magnetic material
JP2001126916A (en) High-temperature superconducting coil and high- temperature superconducting magnet using the same
JPS6123306A (en) Cooling device of superconductive coil
JP2011250503A (en) Superconducting motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5332217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250