JP6270119B2 - Heat conduction plate - Google Patents

Heat conduction plate Download PDF

Info

Publication number
JP6270119B2
JP6270119B2 JP2013261991A JP2013261991A JP6270119B2 JP 6270119 B2 JP6270119 B2 JP 6270119B2 JP 2013261991 A JP2013261991 A JP 2013261991A JP 2013261991 A JP2013261991 A JP 2013261991A JP 6270119 B2 JP6270119 B2 JP 6270119B2
Authority
JP
Japan
Prior art keywords
heat
heat conducting
conducting plate
superconducting
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013261991A
Other languages
Japanese (ja)
Other versions
JP2015119064A (en
Inventor
槙田 康博
康博 槙田
高太郎 濱島
高太郎 濱島
一磨 花田
一磨 花田
理 津田
理 津田
大輔 宮城
大輔 宮城
孝和 新冨
孝和 新冨
智明 高尾
智明 高尾
昌高 梶原
昌高 梶原
勝也 岩城
勝也 岩城
順之 廣瀬
順之 廣瀬
博司 辻上
博司 辻上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nihon University
Sophia School Corp
Inter University Research Institute Corp High Energy Accelerator Research Organization
Iwatani Corp
Original Assignee
Tohoku University NUC
Nihon University
Sophia School Corp
Inter University Research Institute Corp High Energy Accelerator Research Organization
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nihon University, Sophia School Corp, Inter University Research Institute Corp High Energy Accelerator Research Organization, Iwatani Corp filed Critical Tohoku University NUC
Priority to JP2013261991A priority Critical patent/JP6270119B2/en
Publication of JP2015119064A publication Critical patent/JP2015119064A/en
Application granted granted Critical
Publication of JP6270119B2 publication Critical patent/JP6270119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

本発明は、超電導コイルの冷却用である熱伝導板に関する。特に、サーモサイフォン式間接冷却方式を用いて超電導コイルを冷却するための熱伝導板に関する。   The present invention relates to a heat conductive plate for cooling a superconducting coil. In particular, the present invention relates to a heat conductive plate for cooling a superconducting coil using a thermosiphon indirect cooling method.

持続可能な社会の構築に向けて再生可能エネルギー利用の重要性が高まる一方、該再生可能エネルギーは発電変動があるため、現在の電力システムに直に連系できる再生可能エネルギー源やその利用量は限定されている。そのため、変動する再生可能エネルギーを制御した電気出力に変換する装置、例えば再生可能エネルギーを一旦貯蔵し必要なときに出力できる貯蔵装置が望まれている。この貯蔵装置として、i)「分」程度又はそれ以下の激しい発電変動がある再生可能エネルギーに対して、即応性及び多数回の繰り返しの貯蔵・放出が可能である超電導電力貯蔵装置(SMES)が適している。また、ii)「時間」単位の発電変動がある再生可能エネルギーに対して、発電の余剰変動成分を利用して水を電気分解装置(EL)で分解し大容量の貯蔵が可能な「水素」(H)として貯蔵するとともに、発電量が不足した際には「水素」を用いる燃料電池発電装置(FC)により出力させるのが適している。 While the use of renewable energy is becoming increasingly important for the creation of a sustainable society, renewable energy sources that can be directly linked to the current power system and the amount of their use are limited because of the fluctuations in power generation. Limited. Therefore, there is a demand for a device that converts fluctuating renewable energy into a controlled electrical output, for example, a storage device that can store renewable energy once and output it when necessary. As this storage device, i) a superconducting power storage device (SMES) that is capable of rapid response and a large number of repeated storage / releases with respect to renewable energy having a severe power generation fluctuation of “min” or less. Is suitable. In addition, ii) “hydrogen” that can store large volumes of renewable energy with power generation fluctuations in units of “time” by decomposing water with an electrolysis device (EL) using surplus fluctuation components of power generation In addition to storing as (H 2 ), when the amount of power generation is insufficient, it is suitable to output by a fuel cell power generation device (FC) using “hydrogen”.

上記SMES、EL、H及びFCに加え再生可能エネルギーの発電変動予測技術を統合することにより、ハイブリッド貯蔵システムを提供できることが期待され、さらには液化水素貯槽を有する燃料電池車用水素ステーションなども統合することにより、経済性及び信頼性をより向上させた先端超電導電力変換システム(Advanced Superconducting Power Conditioning System:ASPCS)の提供が期待されている。 It is expected that a hybrid storage system can be provided by integrating power generation fluctuation prediction technology of renewable energy in addition to the above SMES, EL, H 2 and FC, and also a hydrogen station for a fuel cell vehicle having a liquefied hydrogen storage tank By integrating, it is expected to provide an advanced superconducting power converting system (ASPCS) with improved economy and reliability.

超電導電力貯蔵装置(SMES)には、超電導コイルが用いられている。
超電導コイルは、温度が上がり、常電導転移をすれば超電導運転に致命的なクエンチ現象を引き起こす。また、変圧器やリアクトルなどのような交流機器への超電導コイルの適用は、通電電流により発生した磁束によって周辺の熱伝導板などに渦電流が誘起され、交流損失や発熱を生じることから、その実用化はあまり進んでいない。そういった問題から、冷却を効率良く行うための冷却機構及びそこに用いる熱伝導部材の開発が求められている。
A superconducting coil is used in the superconducting power storage device (SMES).
The superconducting coil causes a quenching phenomenon that is fatal to the superconducting operation if the temperature rises and the normal conducting transition occurs. In addition, the application of superconducting coils to AC devices such as transformers and reactors induces eddy currents in the surrounding heat conducting plates due to the magnetic flux generated by the energizing current, causing AC loss and heat generation. Practical use has not progressed much. From such problems, development of a cooling mechanism for efficiently cooling and a heat conducting member used therefor is required.

例えば、特許文献1は、冷凍機に接続された伝熱部材をコイルの外周を囲繞するよう配置させ、該伝熱部材の一部にスリットを設ける構成を開示する。
また、特許文献2は、パンケーキ型の超電導コイルにおいて、超電導コイル間の全ての間および積層体の両端外面に、それぞれ伝熱材の一端を挿入しコイル端面と全面接触させる一方、該複数の伝熱材の他端を冷凍機のコールドヘッドと連結する構成を開示する。また、渦電流の発生を抑制するために、外周端から内周端へ径方向に切り込んだ第1スリットを設けるとともに、内周端から外周側へ径方向に切り込んだ第2スリットを、周方向に間隔をあけて設ける構成を開示する。
For example, Patent Document 1 discloses a configuration in which a heat transfer member connected to a refrigerator is disposed so as to surround the outer periphery of a coil, and a slit is provided in a part of the heat transfer member.
Patent Document 2 discloses that in a pancake type superconducting coil, one end of a heat transfer material is inserted between all the superconducting coils and on both end outer surfaces of the laminated body so as to be in full contact with the coil end surfaces. The structure which connects the other end of a heat-transfer material with the cold head of a refrigerator is disclosed. Moreover, in order to suppress generation | occurrence | production of an eddy current, while providing the 1st slit cut radially from the outer peripheral end to the inner peripheral end, the 2nd slit cut radially from the inner peripheral end to the outer peripheral side is provided in the circumferential direction. The structure which provides in a space | interval is disclosed.

特開2010−272745。JP2010-272745A. 特開2010−016026。JP2010-016026.

しかしながら、特許文献1の伝熱部材は、コイル外周を囲むように配置される構成を採用するが、略円形状の上面又は下面を有する超電導コイルの該上面又は下面に配置される熱伝導板については開示していない。したがって、特許文献1の伝熱部材は、所望の冷却効率を奏することができない。
また、特許文献2は、特許文献1よりも高い冷却効率を奏すると考えられる熱伝導板を開示する。具体的には、特許文献2は、略円形状の上面又は下面を有する超電導コイルの該上面又は下面に配置される熱伝導板を開示し、渦電流の発生を抑制するために第1及び第2のスリットを設ける構造を開示する。しかしながら、特許文献2の第1及び第2のスリットは、周方向に間隔をあけて、外周端から内周端又は内周端から外周端に設けられるため、熱を円周方向に伝達して冷却効率を高めることができない。また、特許文献2では、依然として渦電流の発生を抑制することが問題となる。
However, the heat transfer member of Patent Document 1 adopts a configuration that is arranged so as to surround the outer periphery of the coil, but the heat conduction plate that is arranged on the upper or lower surface of the superconducting coil having a substantially circular upper or lower surface. Is not disclosed. Therefore, the heat transfer member of Patent Document 1 cannot achieve a desired cooling efficiency.
Patent Document 2 discloses a heat conductive plate that is considered to have higher cooling efficiency than Patent Document 1. Specifically, Patent Document 2 discloses a heat conduction plate disposed on the upper surface or the lower surface of a superconducting coil having a substantially circular upper surface or lower surface, and first and second in order to suppress the generation of eddy currents. A structure in which two slits are provided is disclosed. However, since the first and second slits of Patent Document 2 are provided from the outer peripheral end to the inner peripheral end or from the inner peripheral end to the outer peripheral end with an interval in the circumferential direction, heat is transmitted in the circumferential direction. The cooling efficiency cannot be increased. Moreover, in patent document 2, it remains a problem to suppress generation | occurrence | production of an eddy current.

そこで、本発明の目的は、上記課題を解決することにある。
具体的には、本発明の目的は、円形状の上面又は下面を有する超電導コイルの該上面又は下面に配置される熱伝導板であって、冷却効率を高めると共に渦電流の発生を抑制する構成を有する熱伝導板を提供することにある。特に、サーモサイフォン式間接冷却方式を用いる熱伝導板を提供することにある。
また、本発明の目的は、上記熱伝導板を有する超電導マグネット装置を提供することにある。
さらに、本発明の目的は、先端超電導電力変換システム(ASPCS)における超電導電力貯蔵装置(SMES)に用いられる、上記熱伝導板を有する超電導マグネット装置を提供することにある。
Therefore, an object of the present invention is to solve the above problems.
Specifically, an object of the present invention is a heat conduction plate disposed on the upper surface or the lower surface of a superconducting coil having a circular upper surface or lower surface, which increases cooling efficiency and suppresses the generation of eddy currents. It is providing the heat conductive board which has. In particular, it is to provide a heat conduction plate using a thermosiphon indirect cooling method.
Moreover, the objective of this invention is providing the superconducting magnet apparatus which has the said heat conductive board.
Furthermore, the objective of this invention is providing the superconducting magnet apparatus which has the said heat conductive board used for the superconducting power storage apparatus (SMES) in an advanced superconducting power conversion system (ASPCS).

本発明者らは、以下の発明を見出した。
<1> 超電導コイルの冷却用である、熱伝導板であって、
該熱伝導板は、略円板状熱伝導板部;及び該略円板状熱伝導板部の外周R(R:略円板状の円の中心から外周端までの距離)から外側に、好ましくは径方向外側に延伸する複数の熱伝達手段;を有し、
a)略円板状熱伝導板部は、超電導コイルの略円形状の上面及び/又は下面と同心円上に、超電導コイルの上及び/又は下に配置され、
b)略円板状熱伝導板部は、略円板状熱伝導板部の中心から内周Rまで円形状の切欠を有し、且つ
i)該略円板状熱伝導板部の径方向に、熱伝導板部の内周R(R:前記略円板状の円の中心から内周端までの距離)から外周R(R:前記略円板状の円の中心から外周端までの距離)までに達する、少なくとも1つ、好ましくは2つの第1のスリット;及び
ii)該略円板状熱伝導板部の径方向に、内周Rから所定距離R(R<R<R)まで伸びる複数の第2のスリット;及び
iii)該略円板状熱伝導板部の径方向に、所定距離R(R<R≦R)から外周Rまで伸びる複数の第3のスリット;
を有する、上記熱伝導板。
The inventors have found the following invention.
<1> A heat conduction plate for cooling a superconducting coil,
The heat conducting plate includes a substantially disc-shaped heat conducting plate portion; and an outer periphery R o (R o : a distance from the center of the substantially disc-shaped circle to the outer circumferential end) of the substantially disc-shaped heat conducting plate portion. And preferably a plurality of heat transfer means extending radially outward,
a) The substantially disk-shaped heat conduction plate portion is disposed on the upper and / or lower surface of the superconducting coil, concentrically with the upper surface and / or the lower surface of the superconducting coil,
b) The substantially disk-shaped heat conductive plate portion has a circular notch from the center of the substantially disk-shaped heat conductive plate portion to the inner periphery R i , and i) the diameter of the substantially disk-shaped heat conductive plate portion In the direction, the inner circumference R i (R i : the distance from the center of the substantially disc-shaped circle to the inner circumference end) to the outer circumference R o (R o : the center of the substantially disc-shaped circle) From the inner circumference R i to the predetermined distance R 1 in the radial direction of the substantially disc-shaped heat conducting plate portion; (A plurality of second slits extending to R i <R 1 <R o ); and iii) a predetermined distance R 2 (R 1 <R 2 ≦ R o ) in the radial direction of the substantially disk-shaped heat conductive plate portion. A plurality of third slits extending from the outer periphery Ro to the outer periphery Ro;
The heat conducting plate.

<2> 上記<1>において、Rが、下記式(A)(式中、Rは、超電導コイルの中心から超電導コイルの磁場がゼロとなる位置までの距離を示す)を満たすのがよい。 <2> In the above item <1>, R 1 satisfies the following formula (A) (where R x represents the distance from the center of the superconducting coil to the position where the magnetic field of the superconducting coil is zero). Good.

Figure 0006270119
Figure 0006270119

<3> 上記<1>又は<2>に記載される熱伝導板を有する超電導マグネット装置。
<4> 上記<3>において、熱伝達手段が冷熱源まで延伸して設けられるのがよい。
<5> 上記<4>において、超電導マグネット装置が複数の超電導コイルを積層し、第1〜第n(nは2以上の整数を示す)の熱伝導板が積層された超電導コイル間に配置され、且つ第1の熱伝導板の第1の熱伝達手段と第m(mは2以上n以下の整数を示す)の熱伝導板の第mの熱伝導手段とは、超電導コイルの上面から見て、互いに重ならないように又は互いの重なりを少なくして配置されるのがよい。
<3> A superconducting magnet device having the heat conducting plate described in <1> or <2>.
<4> In the above item <3>, the heat transfer means may be provided extending to a cold heat source.
<5> In the above item <4>, the superconducting magnet device is disposed between superconducting coils in which a plurality of superconducting coils are stacked, and first to nth (n represents an integer of 2 or more) heat conductive plates are stacked. The first heat transfer means of the first heat conduction plate and the mth heat conduction means of the mth heat conduction plate (m represents an integer of 2 or more and n or less) are seen from the top surface of the superconducting coil. Thus, they should be arranged so as not to overlap each other or with little overlap.

<6> 上記<4>又は<5>において、冷熱源が液化水素であるのがよい。
<7> 上記<4>〜<6>のいずれかにおいて、冷熱源がサーモサイフォン式を採用し、サーモサイフォン式の配管が熱伝導板の上部に配置されるのがよい。
<6> In the above item <4> or <5>, the cold heat source may be liquefied hydrogen.
<7> In any one of the above items <4> to <6>, the cold heat source may employ a thermosiphon type, and the thermosiphon type pipe may be disposed on the upper part of the heat conduction plate.

本発明により、円形状の上面又は下面を有する超電導コイルの該上面又は下面に配置される熱伝導板であって、冷却効率を高めると共に渦電流の発生を抑制する構成を有する熱伝導板を提供することができる。特に、サーモサイフォン式間接冷却方式を用いる熱伝導板を提供することができる。
また、本発明により、上記熱伝導板を有する超電導マグネット装置を提供することができる。
さらに、本発明により、先端超電導電力変換システム(ASPCS)における超電導電力貯蔵装置(SMES)に用いられる、上記熱伝導板を有する超電導マグネット装置を提供することができる。
According to the present invention, there is provided a heat conduction plate disposed on the upper surface or the lower surface of a superconducting coil having a circular upper surface or lower surface, the heat conduction plate having a structure for improving the cooling efficiency and suppressing the generation of eddy currents. can do. In particular, it is possible to provide a heat conduction plate using a thermosiphon indirect cooling method.
In addition, according to the present invention, a superconducting magnet device having the heat conducting plate can be provided.
Further, according to the present invention, it is possible to provide a superconducting magnet device having the above-described heat conductive plate, which is used for a superconducting power storage device (SMES) in an advanced superconducting power conversion system (ASPCS).

本発明の一態様である略円板状熱伝導板1の上面概略図を示す。The upper surface schematic diagram of the substantially disk-shaped heat conductive board 1 which is 1 aspect of this invention is shown. 冷却端(T)及び高温端(Tmax)を備える一般的な伝導板を例示する図である。It is a diagram illustrating a typical conductive plate comprising cooling end (T 0) and the hot side of (T max). 第3のスリットを有する、本発明の一態様である略円板状熱伝導部102を示す図である。It is a figure which shows the substantially disc shaped heat conductive part 102 which is a 1 aspect of this invention which has a 3rd slit. 本発明の一態様である略円板状熱伝導板部2の外周端付近の拡大概略図を示す。The enlarged schematic view of the outer periphery end vicinity of the substantially disc shaped heat conductive board part 2 which is one aspect | mode of this invention is shown. ダブルパンケーキ型の超電導コイルの磁場がゼロとなる位置を求めるために用いたグラフ(横軸:コイル中心からの距離(m);縦軸:磁束密度(T))を示す。A graph (horizontal axis: distance from coil center (m); vertical axis: magnetic flux density (T)) used to determine the position at which the magnetic field of a double pancake superconducting coil becomes zero is shown. 本発明の一態様である熱伝導板を有する超電導マグネット装置10の概略側面図及び上面概略図を示す。The schematic side view and upper surface schematic of the superconducting magnet apparatus 10 which has the heat conductive board which is one aspect | mode of this invention are shown.

本願は、超電導コイルの冷却用である、熱伝導板を提供する。また、本願は、該熱伝導板を有する超電導マグネット装置を提供する。以下、順に説明する。
<熱伝導板>
本願の熱伝導板は、略円板状熱伝導板部;及び
該略円板状熱伝導板部の外周R(R:略円板状の円の中心から外周端までの距離)から外側に、好ましくは径方向外側に延伸する複数の熱伝達手段;を有する。
The present application provides a heat conducting plate for cooling a superconducting coil. The present application also provides a superconducting magnet device having the heat conducting plate. Hereinafter, it demonstrates in order.
<Heat conduction plate>
The heat conducting plate of the present application is a substantially disc-shaped heat conducting plate portion; and an outer periphery R o (R o : a distance from the center of the substantially disc-shaped circle to the outer peripheral end) of the substantially disc-shaped heat conducting plate portion. A plurality of heat transfer means extending outward, preferably radially outward.

また、略円板状熱伝導板部は、
a)超電導コイルの略円形状の上面及び/又は下面と同心円上に、超電導コイルの上及び/又は下に、超電導コイルの全面又はほぼ全面に接するように配置され、
b)略円板状熱伝導板部の中心から内周R(R:略円板状の円の中心から内周端までの距離)まで円形状の切欠を有する。
Moreover, the substantially disk-shaped heat conduction plate part is
a) It is arranged concentrically with the substantially circular upper and / or lower surface of the superconducting coil, above and / or below the superconducting coil so as to be in contact with the entire surface or almost the entire surface of the superconducting coil,
b) It has a circular notch from the center of the substantially disk-shaped heat conducting plate part to the inner periphery R i (R i : the distance from the center of the substantially disk-shaped circle to the inner peripheral end).

さらに、略円板状熱伝導板部は、次のi)及びii)、並びにiii)の構成を有する。
即ち、i)該略円板状熱伝導板部の径方向に、熱伝導板部の内周Rから外周Rまでに達する、少なくとも1つの第1のスリット;及び
ii)該略円板状熱伝導板部の径方向に、内周Rから所定距離R(R<R<R)まで伸びる複数の第2のスリット;及び
iii)該略円板状熱伝導板部の径方向に、所定距離R(R<R≦R)から外周Rまで伸びる複数の第3のスリット。
なお、上記iii)に関して、R=Rである場合、略円板状熱伝導板部は、第3のスリットを有しないことを意味する。
Furthermore, the substantially disk-shaped heat conductive plate portion has the following configurations i), ii), and iii).
That, i) in the radial direction of the symbolic discoid heat conductive plate, reaches to the outer R o from the inner circumference R i of the heat conducting plate, at least one of the first slit; and ii) the symbolic disc A plurality of second slits extending from the inner circumference R i to a predetermined distance R 1 (R i <R 1 <R o ) in the radial direction of the plate-like heat conduction plate portion; and iii) the substantially disk-like heat conduction plate portion A plurality of third slits extending from the predetermined distance R 2 (R 1 <R 2 ≦ R o ) to the outer periphery R o in the radial direction of
Regarding the iii), when it is R 2 = R o, is substantially disc-shaped heat conducting plate, which means that it does not have a third slit.

本願の熱伝導板を、以下、図を用いつつ、説明する。
図1は、本発明の一実施形態である熱伝導板1の上面概略図を示す。
本発明の一実施形態である熱伝導板1は、熱伝導率の高い材料、例えばアルミニウム、銅、銅合金などから成り、厚みの小さい円板状からなる略円板状熱伝導板部2;及び該略円板状熱伝導板部2の外周Rから径方向外側に延伸する、複数の帯状の熱伝達手段3a〜3hを有する。
複数の熱伝達手段3a〜3hは、後述する冷熱源まで延伸され、略円板状熱伝導板部2の熱を冷熱源まで伝達する。図1において、1つの略円板状熱伝導板部2に対して、8つの熱伝達手段3a〜3hを有するが、その数及び配置箇所などは、冷熱源の位置、冷却効果、配置の制限、及び後述する第1のスリット5の数などに依存して決めることができる。
Hereinafter, the heat conductive plate of the present application will be described with reference to the drawings.
FIG. 1 shows a schematic top view of a heat conducting plate 1 according to an embodiment of the present invention.
A heat conductive plate 1 according to an embodiment of the present invention is a substantially disk-shaped heat conductive plate portion 2 made of a material having high heat conductivity, for example, aluminum, copper, copper alloy, etc., and having a thin disk shape; and extending radially outward from the outer peripheral R o of the symbolic discoid heat conductive plate 2 has a plurality of strip-shaped heat transfer means 3a to 3h.
The plurality of heat transfer means 3a to 3h are extended to a cold heat source, which will be described later, and transfer the heat of the substantially disk-shaped heat conduction plate portion 2 to the cold heat source. In FIG. 1, although it has eight heat transfer means 3a-3h with respect to one substantially disk-shaped heat conductive board part 2, the number, arrangement | positioning location, etc. are the position of a heat source, a cooling effect, and restrictions on arrangement | positioning. , And the number of first slits 5 to be described later can be determined.

略円板状熱伝導板部2は、b)略円板状熱伝導板部の中心から内周Rまで円形状の切欠を有し、径方向の幅W1を有するリング状又はドーナツ状を形成する。
内周Rは、略円板状熱電板部2がその上面及び/又は下面に配置される超電導コイルの略円形状に依存して、決められる。また、略円板状熱伝導板部2は、超電導コイルの全面又はほぼ全面に接するような形状であり且つそのように配置するのがよい。
Substantially disk-shaped heat conductive plate 2 has a circular cutout b) from the center of the substantially disc-shaped heat conducting plate portion to the inner peripheral R i, a ring-shaped or donut-shaped having a width W1 in the radial direction Form.
The inner circumference R i is determined depending on the substantially circular shape of the superconducting coil in which the substantially disk-shaped thermoelectric plate portion 2 is disposed on the upper surface and / or the lower surface thereof. Moreover, the substantially disk-shaped heat conductive plate portion 2 is shaped so as to be in contact with the entire surface or almost the entire surface of the superconducting coil, and is preferably arranged in that way.

略円板状熱伝導板部2は、i)該略円板状熱伝導板部2の径方向に、熱伝導板部2の内周Rから外周Rまでに達する第1のスリット5を有する。即ち、第1のスリット5は、周方向のループ電流を抑制するために、略円板状熱伝導板部2の幅W1全体を切断するか又は切り込むように設けられる。
外周Rは、超電導コイルの形状に依存し、超電導コイルの上面及び/又は下面の円形状と同じであるか又はそれよりも若干大きいのがよい。
図1において、略円板状熱伝導板部2は、第1のスリット5の1個だけを備えるものを例示するが、その数は、ループ電流の抑制効果、あるいは製造上の都合に依存して、2個以上であってもよい。第1のスリットの数は、好ましくは1個又は2個であるのがよい。
なお、第1のスリットを2個以上設けると、該略円板状熱伝導板部2は一体形成されず、「略円板状」を保持しないが、略円板状熱伝導板部を超電導コイルの略円形状の上面及び/又は下面に配置された状態で「略円板状」が形成されるため、「略円板状」熱伝導板部と本願では規定する。
Substantially disk-shaped heat conductive plate 2, i) in the radial direction of the symbolic discoid heat conductive plate 2, a first slit reaching from the inner periphery R i of the heat conducting plate 2 to the outer peripheral R o 5 Have That is, the first slit 5 is provided so as to cut or cut the entire width W1 of the substantially disk-shaped heat conduction plate portion 2 in order to suppress the loop current in the circumferential direction.
The outer periphery Ro depends on the shape of the superconducting coil, and may be the same as or slightly larger than the circular shape of the upper surface and / or the lower surface of the superconducting coil.
In FIG. 1, the substantially disk-shaped heat conduction plate portion 2 is illustrated as having only one first slit 5, but the number thereof depends on the loop current suppressing effect or the manufacturing convenience. Or two or more. The number of first slits is preferably one or two.
When two or more first slits are provided, the substantially disk-shaped heat conduction plate portion 2 is not integrally formed and does not maintain the “substantially disk shape”, but the substantially disk-like heat conduction plate portion is superconductive. Since a “substantially disk shape” is formed in a state of being arranged on the upper and / or lower surface of the substantially circular shape of the coil, the “substantially disk-like” heat conduction plate portion is defined in the present application.

略円板状熱伝導板部2は、ii)該略円板状熱伝導板部の径方向に、内周Rから所定距離R(R<R<R)まで伸びる複数の第2のスリット6(6a〜6f)を有する。なお、図1において、全周の1/4にあたる箇所の第2のスリットのみを6a〜6fと符号を付すが、全周に亘って、第2のスリット6が形成される。
第2のスリットは、熱伝導板に誘起される渦電流を抑制するために設けられ、且つ内周Rから所定距離Rまで、熱伝導を径方向に行うために設けられる。この第2のスリット6が形成された内周Rから所定距離Rまでの領域AR1は、径方向に熱を伝導(放熱)させる領域となる。
The substantially disk-shaped heat conductive plate portion 2 is ii) a plurality of pieces extending from the inner circumference R i to a predetermined distance R 1 (R i <R 1 <R o ) in the radial direction of the substantially disk-shaped heat conductive plate portion. It has the 2nd slit 6 (6a-6f). In FIG. 1, only the second slits corresponding to ¼ of the entire circumference are denoted by reference numerals 6 a to 6 f, but the second slit 6 is formed over the entire circumference.
The second slit is provided to suppress eddy currents induced in the heat conducting plate, and is provided to perform heat conduction in the radial direction from the inner periphery R i to the predetermined distance R 1 . Region AR1 from the inner peripheral R i of the second slit 6 is formed to a predetermined distance R 1 is an area for heat conduction (heat radiation) in the radial direction.

図1に示す第2のスリット6は、超電導コイル11a〜11h(図4を参照のこと)の内周端部から外周端部の周辺までの距離に略対応して切り込まれ、且つ周方向に沿うように、角度θをもって列設してなる。これにより、互いに隣接する第2のスリット6間の距離D1が狭められ、渦電流の発生を有効に抑制することができる。   The second slit 6 shown in FIG. 1 is cut substantially corresponding to the distance from the inner peripheral end of the superconducting coils 11a to 11h (see FIG. 4) to the periphery of the outer peripheral end, and in the circumferential direction. Are arranged with an angle θ. Thereby, the distance D1 between the 2nd slit 6 adjacent to each other is narrowed, and generation | occurrence | production of an eddy current can be suppressed effectively.

隣接する2つの第2のスリット間の距離(以下、単に「第2のスリット幅」と略記する)wについて、図2を用いて説明する。
一般的に、図2のような伝導板に発生する渦電流損Pは以下の式(1)で計算される。なお、式中、以下のように定義する。
:厚さa(m)、幅w(m)、長さl(m)の板に生じる渦電流損(W);
f:変動磁場の周波数(Hz);
:変動磁場の振幅(T);
ρ:伝導板の抵抗率(Ω・m)
A distance w between two adjacent second slits (hereinafter simply abbreviated as “second slit width”) w will be described with reference to FIG.
Generally, eddy current loss P e occurring conductive plate as shown in Figure 2 are calculated by the following equation (1). In the formula, it is defined as follows.
P e : Eddy current loss (W) generated in a plate having a thickness a (m), a width w (m), and a length l (m);
f: Frequency of the varying magnetic field (Hz);
B m : amplitude of the varying magnetic field (T);
ρ: Resistivity of conductive plate (Ω · m)

Figure 0006270119
Figure 0006270119

熱伝導板の外周端が冷却端であり、一定温度Tを有する一方、内周端付近の温度をTmaxとすると、位置xでの熱バランスは次式で表現される。式中、k:熱伝導率(W/m・K)である。 When the outer peripheral end of the heat conducting plate is a cooling end and has a constant temperature T 0 , while the temperature near the inner peripheral end is T max , the heat balance at the position x is expressed by the following equation. In the formula, k: thermal conductivity (W / m · K).

Figure 0006270119
Figure 0006270119

ここで、下式で表されるWiedemann Frants則(ρk=LT)(式中、L:ローレンツ定数、2.44×10−8 (WΩK−2)及びT:絶対温度(K))から、上記(2)式は以下のようになる。 Here, the Wiedemann Frants law (ρk = L 0 T) represented by the following formula (where L 0 : Lorentz constant, 2.44 × 10 −8 (WΩK −2 ) and T: absolute temperature (K)) Therefore, the above equation (2) is as follows.

Figure 0006270119
Figure 0006270119

xは0→1、TはTmax→Tで積分する。 x integrates with 0 → 1 and T integrates with T max → T 0 .

Figure 0006270119
Figure 0006270119

最高温度Tmaxが許容値以下とするための幅wを求める。 A width w for making the maximum temperature T max equal to or less than an allowable value is obtained.

Figure 0006270119
Figure 0006270119

したがって、周波数f、振幅Bの磁場変動で冷却温度T、許容温度Tmaxの時、第2のスリット幅wは(3)式で示される値以下であればよい。
例えば、冷却端温度が液化水素20Kで渦電流による発熱の許容上昇温度を25K、磁場の振幅を2テスラ、周波数を0.05Hz、板の長さlを1mとすると、第2のスリット幅wの許容値は0.018m(約20mm)となる。また、外周端箇所、即ち所定距離Rから外周Rまでの幅についても第2のスリット幅の許容値と同程度以下の幅にしておくとより好適である。
Therefore, when the cooling temperature T 0 and the allowable temperature T max are due to the fluctuation of the magnetic field with the frequency f and the amplitude B m , the second slit width w may be equal to or smaller than the value represented by the expression (3).
For example, if the cooling end temperature is 20K and the allowable rise temperature of eddy current is 25K, the magnetic field amplitude is 2 Tesla, the frequency is 0.05 Hz, and the plate length l is 1 m, the second slit width w The allowable value is 0.018 m (about 20 mm). The outer peripheral edge portion, i.e., it is more preferable that also keep the tolerance comparable to or less of the width of the second slit width the width of a predetermined distance R 1 to the outer R o.

第2のスリットが設けられていない領域(領域AR1よりも外側の領域)、即ち所定距離Rから所定距離Rまでの領域AR2は、周方向に熱伝導を行うことができる。また、後述のiii)第3のスリットがない場合、即ち領域AR2が外周端に設けられる場合、該領域AR2に熱伝達手段3a〜3hが接続して設けられ、領域AR2により周方向に伝導された熱を熱伝導手段3a〜3hに介して伝導することができる。したがって、図1に示す本発明の一態様の熱伝導板1は、AR1において径方向への伝熱、AR2においては周方向の伝熱、さらには熱伝導手段3aから3hによる伝熱により、渦電流の発生を抑制しつつ、熱伝導板全体を効率よく冷却することができる。 Region where the second slit is not provided (a region outside the region AR1), i.e., the area AR2 from a predetermined distance R 1 to a predetermined distance R 2 can perform heat conduction in the circumferential direction. Iii) When there is no third slit, that is, when the area AR2 is provided at the outer peripheral end, the heat transfer means 3a to 3h are connected to the area AR2, and are conducted in the circumferential direction by the area AR2. Heat can be conducted through the heat conducting means 3a to 3h. Therefore, the heat conducting plate 1 according to one aspect of the present invention shown in FIG. 1 is vortexed by AR1 heat transfer in the radial direction, AR2 heat transfer in the circumferential direction, and heat transfer by the heat transfer means 3a to 3h. The entire heat conducting plate can be efficiently cooled while suppressing the generation of current.

領域AR2は、その径方向の長さ(R−R)(以下、この値を「2a(=L1+L2)」と略記する場合がある。L1及びL2は、後述の図4を参照のこと)、その周方向の長さlsについて、最適な値を求めることができる。
ここで、「領域AR2」を『スリット連結部』と、「径方向の長さ」を『幅』と略記する場合がある。即ち、「AR2の径方向の長さ」を『スリット連結部の幅』と略記する場合がある。また、「AR2の周方向の長さls」を『スリット連結部の長さls』と略記する場合がある。ここで、「AR2の周方向の長さls」、即ち『スリット連結部の長さls』は、第1スリットの数が「1」である場合には、2πRであり、第1スリットの数が「n」であり、該n個の第1のスリットが周方向に均等に配置される場合、2πR/nと表記することができる。
最適な値を求めるには、伝導板冷却端より最も離れたスリットのコイル内面の温度が、超電導磁石の許容温度以下になる必要がある。また、熱流項と伝導項、熱伝導板におけるコイル内面の温度と冷却端の温度の関係を解析すること、などにより、求めることができる。
The area AR2 has a length in the radial direction (R 2 −R 1 ) (hereinafter, this value may be abbreviated as “2a 2 (= L1 + L2)”. For L1 and L2, refer to FIG. 4 described later. It is possible to obtain an optimum value for the circumferential length ls.
Here, “area AR2” may be abbreviated as “slit coupling part” and “diameter length” may be abbreviated as “width”. That is, “the radial length of AR2” may be abbreviated as “width of slit connecting portion”. Further, “the length ls in the circumferential direction of AR2” may be abbreviated as “the length ls of the slit connecting portion”. Here, “the length ls in the circumferential direction of AR2”, that is, “the length ls of the slit connecting portion” is 2πR 2 when the number of the first slits is “1”, When the number is “n” and the n first slits are equally arranged in the circumferential direction, it can be expressed as 2πR 2 / n.
In order to obtain the optimum value, the temperature of the coil inner surface of the slit furthest away from the conduction plate cooling end needs to be equal to or lower than the allowable temperature of the superconducting magnet. Further, it can be obtained by analyzing the relationship between the heat flow term and the conduction term, the temperature of the coil inner surface of the heat conduction plate and the temperature of the cooling end, and the like.

スリット幅D1およびスリット連結部の幅2aについては渦電流発熱を抑えるため一定の許容値以下とすることが好ましい。ただし、スリット連結部の幅2aについては、スリット連結部自身の渦電流発熱に加えて各スリットからの熱流入も熱流項に含める必要があり、対流項としてのバランスを考慮すると、ある程度以上の幅を確保することが好ましい。具体的には、2a、即ち(R−R)は、Rの10〜20%程度の範囲内とすることが好ましい。 It is preferably not more than a predetermined allowable value for suppressing an eddy current heat generation the width 2a 2 of the slit width D1 and the slit connecting portions. However, regarding the width 2a 2 of the slit connecting portion, in addition to the eddy current heat generation of the slit connecting portion itself, it is necessary to include heat inflow from each slit in the heat flow term. It is preferable to ensure the width. Specifically, 2a 2, i.e. (R 2 -R 1) is preferably in the range of about 10 to 20% of the R o.

より詳細には、コイル内面の温度と冷却端の温度の関係を、(Tmax 2−T 2)を左辺に置いた関係式で表す(下記式(4)を参照のこと。式(4)中、Rは、後述するが、超電導コイルの中心から超電導コイルの磁場がゼロとなる位置までの距離を示す。なお、式(4)導出の詳細は省略する)と、右辺の第1項に「1枚のスリット板すなわちコイルの内面から磁場0の場所までの渦電流損による温度差」、第2項に「スリット板連結部に発生する渦電流損による温度差」、第3項に「各スリット板から連結部に流入する渦電流損による熱流による温度差」を置くことができる。ここで、Wiedemann-Franz則を基に式を導出すると、スリット連結部の幅2aの影響は、第2項に4乗、第3項ではマイナス1乗のオーダーでかかってくることから、2aには上述のような最適範囲があることが下記式(4)の解析結果からも分かる。 More specifically, the relationship between the temperature of the coil inner surface and the temperature of the cooling end is expressed by a relational expression in which (T max 2 −T 0 2 ) is placed on the left side (see the following expression (4). Expression (4) ), R x indicates the distance from the center of the superconducting coil to the position where the magnetic field of the superconducting coil becomes zero (details of derivation of equation (4) are omitted), and the first on the right side "Temperature difference due to eddy current loss from one slit plate, that is, the inner surface of the coil to the place where the magnetic field is 0", and "Terminal difference" Temperature difference due to eddy current loss generated at the slit plate connecting portion ", The “temperature difference due to heat flow due to eddy current loss flowing from each slit plate into the connecting portion” can be placed. Here, to derive an expression based on Wiedemann-Franz law, since the influence of the width 2a 2 of the slit connecting portions, which fourth power in the second term, the third term comes takes minus 1 square of order, 2a 2 It can be seen from the analysis result of the following formula (4) that there is an optimum range as described above.

Figure 0006270119
Figure 0006270119

さらに、本発明の熱伝導板は、iii)略円板状熱伝導板部の径方向に、所定距離R(R<R≦R)から外周Rまで伸びる複数の第3のスリット;を有する。
ただし、所定距離RがRと同じである場合、第3のスリットは存在しない。要するに、第3のスリットは、任意の構造である。
第3のスリットが有する場合について、図3を用いて説明する。
図3は、第3のスリットを有する略円板状熱伝導部102を示す。
略円板状熱伝導部102は、図1に示す略円板状熱伝導部2と同様に、領域AR1を有し、該領域AR1は、内周Rから所定距離Rまでに、径方向に伸びる第2のスリット6が形成され、径方向に熱を伝導することができる。
Furthermore, the heat conducting plate of the present invention includes iii) a plurality of third plates extending from the predetermined distance R 2 (R 1 <R 2 ≦ R o ) to the outer circumference R o in the radial direction of the substantially disc-shaped heat conducting plate portion. A slit.
However, the predetermined distance R 2 may be the same as R o, not the third slit is present. In short, the third slit has an arbitrary structure.
The case where the third slit is provided will be described with reference to FIG.
FIG. 3 shows a substantially disc-shaped heat conducting part 102 having a third slit.
The substantially disc-shaped heat conducting portion 102 has an area AR1 similar to the substantially disc-shaped heat conducting portion 2 shown in FIG. 1, and the area AR1 has a diameter from the inner circumference R i to a predetermined distance R 1. A second slit 6 extending in the direction is formed, and heat can be conducted in the radial direction.

領域AR1の径方向外側には、図1と同様に、領域AR2が設けられる。領域AR2は、所定距離R2と所定距離R1との間に形成される円環状であり、図1で説明した通り、周方向に熱を伝導することができる。
領域AR2の径方向外側に、所定距離R(R<R≦R)から外周Rまで伸びる複数の第3のスリット107(107a〜107g)を有する領域AR3が設けられる。第3のスリットは、第2のスリットと同様に、径方向に熱を伝導させることができると共に、渦電流の発生を抑制することができる。なお、図3において、全周の1/4にあたる箇所の第3のスリットのみを107a〜107fと符号を付すが、全周に亘って、第3のスリット107が形成される。
The area AR2 is provided outside the area AR1 in the radial direction as in FIG. The area AR2 has an annular shape formed between the predetermined distance R2 and the predetermined distance R1, and can conduct heat in the circumferential direction as described with reference to FIG.
Radially outside the area AR2, a predetermined distance R 2 (R 1 <R 2 ≦ R o) area AR3 having a plurality of third slits 107 extending to the outer peripheral R o (107a~107g) from is provided. Similar to the second slit, the third slit can conduct heat in the radial direction and can suppress generation of eddy current. In FIG. 3, only the third slit corresponding to ¼ of the entire circumference is denoted by reference numerals 107 a to 107 f, but the third slit 107 is formed over the entire circumference.

図1のAR1及びAR2並びに図3のAR1、AR2及びAR3を見ればわかるように、図1のAR2が、図3では、径方向内側に移動したように見られる。即ち、本願において、「iii)第3のスリット」と規定するが、「ii)第2のスリットが外周端まで伸び」且つ「周方向への伝熱作用を有する領域AR2が第2のスリットを横断するように設けられる」と換言することもできる。
なお、図3において、AR3の第3のスリット107は、AR1の第2のスリット6の延長線上に設けられるが、第3のスリットは、第2のスリットの延長線上であってもなくてもよい。
As can be seen from AR1 and AR2 in FIG. 1 and AR1, AR2 and AR3 in FIG. 3, AR2 in FIG. 1 appears to have moved radially inward in FIG. That is, in the present application, it is defined as “iii) the third slit”, but “ii) the second slit extends to the outer peripheral end” and “the region AR2 having a heat transfer action in the circumferential direction is defined as the second slit. In other words, it is provided to cross.
In FIG. 3, the third slit 107 of AR3 is provided on the extension line of the second slit 6 of AR1, but the third slit may or may not be on the extension line of the second slit. Good.

さらに、Rは、下記式(A)(式中、Rは、超電導コイルの中心から超電導コイルの磁場がゼロとなる位置までの距離を示す)を満たすのがよい。 Further, R 1 preferably satisfies the following formula (A) (where R x represents the distance from the center of the superconducting coil to the position where the magnetic field of the superconducting coil becomes zero).

Figure 0006270119
Figure 0006270119

上記式(A)について、図4を用いて説明する。
図4は、略円板状熱伝導板部2の外周端付近の拡大概略図を示す。
第2のスリット6の外側の端部である所定距離RとAR2の端部までの距離Rとの間、即ち領域AR2に、超電導コイルの磁場がゼロとなる位置Rが配置するように、所定距離Rを設けられるのがよい。特に、所定距離R、AR2の端部までの距離R、及び超電導コイルの磁場がゼロとなる位置Rが上記式(A)を満たすと、第2のスリット6が設けられていない領域、即ちAR2は、所定距離Rから磁場ゼロの位置Rまでの距離L1において発生する起電力Xと、磁場ゼロの位置RからAR2の端部までの距離Rまでの距離L2において発生する起電力(−X)とは、逆の磁場であり、それらの値が同じであるため、それらは相殺される。したがって、第2のスリット6が設けられていない領域AR2、言い換えるならば外周端周辺は、渦電流の発生が完全に又はほぼ完全に抑制することができる。
The above formula (A) will be described with reference to FIG.
FIG. 4 shows an enlarged schematic view of the vicinity of the outer peripheral end of the substantially disk-shaped heat conductive plate portion 2.
A position R x where the magnetic field of the superconducting coil becomes zero is arranged between a predetermined distance R 1 that is the outer end of the second slit 6 and a distance R 2 to the end of AR 2 , that is, in the area AR 2. a, it is preferable provided with a predetermined distance R 1. In particular, when the predetermined distance R 1 , the distance R 2 to the end of AR 2 , and the position R x at which the magnetic field of the superconducting coil becomes zero satisfy the above formula (A), the region where the second slit 6 is not provided. , i.e. AR2 is generated at a distance L2 from the predetermined distance R 1 and electromotive force X that occurs in the distance L1 to the position R x of zero magnetic field, up to a distance R 2 from the position R x of the zero magnetic field to the end of AR2 The electromotive force (−X) is the opposite magnetic field, and since their values are the same, they cancel out. Therefore, the generation of eddy current can be completely or almost completely suppressed in the area AR2 where the second slit 6 is not provided, in other words, in the periphery of the outer peripheral end.

なお、第3のスリットを有しない場合、AR2の端部までの距離Rは、外周Rと等しくなる(R=R)ため、上記式(A)は、上記式(A’)として取り扱うことができる。
(R−R)の寸法(領域AR2の径方向の長さ、「スリット連結部の幅2a」と上述したものと同じ)は、周方向への熱伝導性を奏するような範囲を有し、好ましくは比較的小さいのがよい。図2の態様において、(R−R)の寸法は、上述したように、Rの10〜20%程度の範囲内とすることが好ましい。なお、第3のスリットを有しない場合、上述した通り、R=Rであるので、上記の「(R−R)の寸法」は、「(R−R)の寸法」とすることができる。
In the case where the third slit is not provided, the distance R 2 to the end of AR2 is equal to the outer periphery Ro (R 2 = R o ), and thus the above formula (A) is expressed by the above formula (A ′). Can be handled as
The dimension of (R 2 -R 1 ) (the length in the radial direction of the area AR2, the same as “width 2a 2 of the slit connecting portion” and the above-described one) is in a range that exhibits thermal conductivity in the circumferential direction. Preferably having a relatively small size. In the embodiment of FIG. 2, the dimensions of the (R 2 -R 1), as described above, is preferably in the range of about 10 to 20% of the R o. In the case where the third slit is not provided, as described above, R 2 = R o , and therefore, the “dimension of (R 2 −R 1 )” is “the dimension of (R o −R 1 )”. It can be.

超電導コイルの磁場がゼロとなる位置までの超電導コイルの中心から距離Rは、用いる超電導コイル、コイルの断面形状(アスペクト比)などに依存するが、その位置Rは、ビオ・サバール法則を用いて求めることができる。
図5は、MgB超電導線を円周方向に巻回して形成した、円盤状、具体的には内半径(r1)0.05m、外半径(r2)0.1m、厚さ(d)80.6mmのダブルパンケーキ型の超電導コイルの磁場がゼロとなる位置を求めるために用いたグラフを示す。横軸はコイル中心からの距離(m)を示し、縦軸は磁束密度(T)を示す。
図5によると、用いた超電導コイルの場合、0.095m付近に磁場がゼロとなる位置があることがわかる。
The distance R x from the center of the superconducting coil to the position where the magnetic field of the superconducting coil becomes zero depends on the superconducting coil used, the cross-sectional shape (aspect ratio) of the coil, etc., but the position R x depends on the Bio-Savart law. It can be obtained using.
FIG. 5 shows a disk shape formed by winding a MgB 2 superconducting wire in the circumferential direction, specifically an inner radius (r1) of 0.05 m, an outer radius (r2) of 0.1 m, and a thickness (d) of 80. The graph used in order to obtain | require the position where the magnetic field of a .6mm double pancake type superconducting coil becomes zero is shown. The horizontal axis indicates the distance (m) from the coil center, and the vertical axis indicates the magnetic flux density (T).
According to FIG. 5, in the case of the superconducting coil used, it can be seen that there is a position where the magnetic field becomes zero in the vicinity of 0.095 m.

<超電導マグネット装置>
本願は、上述の熱伝導板を有する超電導マグネット装置を提供する。
具体的には、いわゆるパンケーキ型又はダブルパンケーキ型超電導コイルを1つ又はそれ以上有する超電導マグネット装置であって、該パンケーキ型又はダブルパンケーキ型超電導コイルの上面及び/又は下面と同心円上に、上述の熱伝導板を配置するのがよい。また、パンケーキ型又はダブルパンケーキ型超電導コイルが複数積層される場合には、積層される超電導コイル間に、上述の熱伝導板を配置するのがよい。なお、超電導コイルにはMgB超電導線(臨界温度:39K)を用いたが、超電導線の材質は冷熱源との兼ね合いで適宜選択できる。
<Superconducting magnet device>
The present application provides a superconducting magnet device having the above-described heat conducting plate.
Specifically, it is a superconducting magnet device having one or more so-called pancake type or double pancake type superconducting coils, which are concentric with the upper surface and / or the lower surface of the pancake type or double pancake type superconducting coil. It is preferable to arrange the above-mentioned heat conductive plate. When a plurality of pancake-type or double pancake-type superconducting coils are stacked, it is preferable to arrange the above-described heat conductive plate between the superconducting coils to be stacked. Incidentally, MgB 2 superconducting wire in a superconducting coil (critical temperature: 39K) and has been used, the material of the superconducting wire can be appropriately selected in view of the cold source.

超電導マグネット装置は、冷熱源として液化ヘリウム(沸点:4K)、液化水素(沸点:20K)を用いるのがコイル冷却の点で都合が良く、水素ステーションの液化水素を用いるのが、経済性の点でさらに都合がよい。この場合、水素が可燃性の性質を有することから間接冷却方式を採用し、さらに、入熱が加わると自身で自然に循環するサーモサイフォン式を採用するのがよい。
該サーモサイフォン式の配管は熱伝導板の上部に配置されるのがよい。
In the superconducting magnet device, it is convenient to use liquefied helium (boiling point: 4K) and liquefied hydrogen (boiling point: 20K) as a cold heat source in terms of coil cooling, and it is economical to use liquefied hydrogen from a hydrogen station. It is even more convenient. In this case, it is preferable to adopt an indirect cooling method because hydrogen has a flammable property, and to adopt a thermosiphon method that naturally circulates itself when heat is applied.
The thermosiphon-type piping is preferably arranged on the top of the heat conducting plate.

サーモサイフォン式冷熱源を用い、且つ冷熱源として液化水素を用いる超電導マグネット装置の一例を以下に図を用いて説明する。
図6は、本願の熱伝導板を有する超電導マグネット装置の一態様10の概略図を示す。具体的には、図6(a)は側面正面図を示す。また、図6(b)は、図6(a)から熱伝導手段を取り除き、サーモサイフォン式間接冷却方式を採用した超電導マグネット装置の一態様10の概略図を示す。なら、図6(a’)は、図6(a)の上面図を示す。
An example of a superconducting magnet apparatus using a thermosiphon type cold heat source and using liquefied hydrogen as the cold heat source will be described below with reference to the drawings.
FIG. 6 shows a schematic diagram of an aspect 10 of the superconducting magnet device having the heat conducting plate of the present application. Specifically, FIG. 6A shows a side front view. Moreover, FIG.6 (b) shows the schematic of the one aspect | mode 10 of the superconducting magnet apparatus which removed the heat conduction means from Fig.6 (a), and employ | adopted the thermosiphon type indirect cooling system. Then, FIG. 6 (a ′) shows a top view of FIG. 6 (a).

超電導マグネット装置の一態様10は、8個のダブルパンケーキ型超電導コイル11a〜11hを積層して形成される。ダブルパンケーキ型の超電導コイル11a〜11hは各々、MgB超電導線(臨界温度:39K)を巻回して形成された円盤状のパンケーキ型コイルが重ねられて二層としたものであり、二層のコイルは最内周で繋がっている。
各超電導コイル間に熱伝導板1が配置され、例えば、該超電導コイル11aと11bとの間に第1の熱伝導板13a、該超電導コイル11bと11cとの間に第2の熱伝導板13b、などのように、熱伝導板が配置される。また、最上層の超電導コイル11hの上面及び最下層の超電導コイル11aの下面にも、それぞれ接触するように、熱伝導板1が配置される。熱伝導板1は、各超電導コイル11a〜11hを挟むように構成される。
なお、各熱伝導板1は各々、上述したように、上述の構成、即ち、熱伝導手段、第1のスリット、第2のスリット、第3のスリットなどを有してなる。
One aspect 10 of the superconducting magnet device is formed by laminating eight double pancake superconducting coils 11a to 11h. Each double pancake superconducting coils 11a~11h is, MgB 2 superconducting wire (critical temperature: 39K) with disc-shaped pancake coil formed by winding is superimposed is obtained by a two-layer, two The coils of the layers are connected at the innermost circumference.
The heat conducting plate 1 is disposed between the superconducting coils. For example, the first heat conducting plate 13a is disposed between the superconducting coils 11a and 11b, and the second heat conducting plate 13b is disposed between the superconducting coils 11b and 11c. , Etc., a heat conducting plate is arranged. Further, the heat conductive plate 1 is disposed so as to be in contact with the upper surface of the uppermost superconducting coil 11h and the lower surface of the lowermost superconducting coil 11a, respectively. The heat conducting plate 1 is configured to sandwich the superconducting coils 11a to 11h.
As described above, each heat conducting plate 1 has the above-described configuration, that is, the heat conducting means, the first slit, the second slit, the third slit, and the like.

各熱伝導板1が有する熱伝導手段3a〜3hは、該熱伝導板1の外周端付近で、具体的には図1の「CV」で示す位置で、上方に折り曲げられ、超電導コイルの上方に配置される冷熱ドラム15まで延伸し、該冷熱ドラム15に接触するように配置することにより、熱伝導手段で伝導した熱が冷却される。
冷熱ドラム15は、良好な熱伝導性を有する材料、例えば銅などから形成され且つ略円筒形状を有し、超電導コイル11a〜11hの上方に配置される。管状部であるサーモサイフォンライン16が、冷熱ドラム15の外周側面に接触する接触部17を有するように、設置される。
The heat conducting means 3a to 3h included in each heat conducting plate 1 are bent upward near the outer peripheral end of the heat conducting plate 1, specifically at the position indicated by “CV” in FIG. The heat conducted by the heat conducting means is cooled by extending to the cold drum 15 arranged in the above and placing it so as to be in contact with the cold drum 15.
The cooling / heating drum 15 is formed of a material having good thermal conductivity, such as copper, and has a substantially cylindrical shape, and is disposed above the superconducting coils 11a to 11h. The thermosiphon line 16 that is a tubular portion is installed so as to have a contact portion 17 that comes into contact with the outer peripheral side surface of the cooling drum 15.

サーモサイフォンライン16は、側面から見ると略U字状に有して配管設置される。サーモサイフォンライン16の一端は、液化水素槽18に接続し、該液化水素槽18から略U字状のサーモサイフォンライン16へと液化水素が流入し、冷熱ドラム15の円筒外周とサーモサイフォンライン16との接触部17で冷熱ドラム15を冷却する。冷熱ドラム15を冷却した液化水素は、熱伝導手段3a〜3hにより伝達された熱により蒸発され、該蒸発した水素は上方へと流れ、液化水素槽18に流入する。そして、液化水素は、再び液化水素槽18から接触部17へと流入し、サイフォン式に液化水素が流れる。これにより、冷熱ドラム15を連続的に冷却し、且つ熱伝導手段3a〜3hが間接的に冷却され、さらには各熱伝導板1及び超電導コイル11a〜11hが冷却される。
なお、これらダブルパンケーキ型超電導コイル11a〜11h、各熱伝導板1、冷熱ドラム15、サーモサイフォンライン16、及び液化水素槽18は、真空容器30内に収容されている。
The thermosiphon line 16 has a substantially U shape when viewed from the side, and is installed by piping. One end of the thermosiphon line 16 is connected to the liquefied hydrogen tank 18, and liquefied hydrogen flows from the liquefied hydrogen tank 18 into the substantially U-shaped thermosiphon line 16. The cooling drum 15 is cooled at the contact portion 17. The liquefied hydrogen that has cooled the cold drum 15 is evaporated by the heat transmitted by the heat conducting means 3 a to 3 h, and the evaporated hydrogen flows upward and flows into the liquefied hydrogen tank 18. And liquefied hydrogen flows in into the contact part 17 again from the liquefied hydrogen tank 18, and liquefied hydrogen flows into a siphon type. As a result, the cooling drum 15 is continuously cooled, the heat conducting means 3a to 3h are indirectly cooled, and further, each heat conducting plate 1 and the superconducting coils 11a to 11h are cooled.
The double pancake superconducting coils 11 a to 11 h, the respective heat conducting plates 1, the cooling / heating drum 15, the thermosyphon line 16, and the liquefied hydrogen tank 18 are accommodated in a vacuum container 30.

このように、熱伝導手段は、熱伝導板に設けられ、冷熱源まで延伸して、冷却される。本発明の熱伝導手段は、上述のように、その数及び配置箇所などは、冷熱源の位置、冷却効果、配置の制限などに依存して決めることができる。
超電導マグネット装置が複数の超電導コイルを積層し、第1〜第n(nは2以上の整数を示す)の熱伝導板が積層された超電導コイル間に配置される場合、熱伝導手段は、好ましくは、次のように配置されるのがよい。即ち、第1の熱伝導板の第1の熱伝達手段と第m(mは2以上n以下の整数を示す)の熱伝導板の第mの熱伝導手段とは、超電導コイルの上面から見て、互いに重ならないように又は互いの重なりを少なくして配置されるのがよい。このように、熱伝達手段を設けることにより、効率よく熱伝導板及び超電導コイルを冷却することができる。
Thus, the heat conducting means is provided on the heat conducting plate, extends to a cold heat source, and is cooled. As described above, the number and arrangement location of the heat conduction means of the present invention can be determined depending on the position of the cold heat source, the cooling effect, the arrangement limitation, and the like.
When the superconducting magnet device is formed by laminating a plurality of superconducting coils, and the first to nth (n represents an integer of 2 or more) heat conducting plates are disposed between the superconducting coils, the heat conducting means is preferably Is preferably arranged as follows. That is, the first heat transfer means of the first heat conduction plate and the mth heat conduction means of the mth heat conduction plate (m represents an integer of 2 or more and n or less) are viewed from the top surface of the superconducting coil. Thus, they should be arranged so as not to overlap each other or with little overlap. Thus, by providing the heat transfer means, the heat conduction plate and the superconducting coil can be efficiently cooled.

以上、図を用いて、本願の熱伝導板及び該熱伝導板を有する超電導マグネット装置を説明したが、本発明の熱伝導板及び該熱伝導板を有する超電導マグネット装置は、図示したものに限定されず、これら図示したものの変形、修飾したものであっても本発明に含まれる。   As described above, the heat conduction plate of the present application and the superconducting magnet device having the heat conduction plate have been described with reference to the drawings. However, the heat conduction plate of the present invention and the superconducting magnet device having the heat conduction plate are limited to those illustrated. However, modifications and modifications of these illustrated ones are also included in the present invention.

本願の熱伝導板を有する超電導マグネット装置、特に冷熱源として液化水素を用いる超電導マグネット装置は、水の電気分解装置(EL)、大容量の「水素」貯蔵装置(H)、「水素」を用いる燃料電池発電装置(FC)及び再生可能エネルギーの発電変動予測技術と統合することにより、ハイブリッド貯蔵システムを提供できることができる。また、液化水素貯槽を有する水素ステーションなどと統合することにより、経済性及び信頼性をより向上させた先端超電導電力変換システム(ASPCS)を提供することができる。 The superconducting magnet device having the heat conducting plate of the present application, particularly the superconducting magnet device using liquefied hydrogen as a cold heat source, water electrolysis device (EL), large-capacity “hydrogen” storage device (H 2 ), “hydrogen” By integrating with a fuel cell power generation apparatus (FC) to be used and a power generation fluctuation prediction technology of renewable energy, a hybrid storage system can be provided. Further, by integrating with a hydrogen station having a liquefied hydrogen storage tank or the like, an advanced superconducting power conversion system (ASPCS) with improved economy and reliability can be provided.

Claims (6)

超電導コイルの冷却用である、熱伝導板であって、
該熱伝導板は、略円板状熱伝導板部;及び該略円板状熱伝導板の外周R(R:略円板状の円の中心から外周端までの距離)から外側に延伸する複数の熱伝達手段;を有し、
略円板状熱伝導板部は、
a)超電導コイルの略円形状の上面及び/又は下面と同心円上に、超電導コイルの上及び/又は下に配置され、
b)前記略円板状熱伝導板部の中心から内周Rまで円形状の切欠を有し、且つ
さらに
i)該略円板状熱伝導板部の径方向に、熱伝導板部の内周R(R:前記略円板状の円の中心から内周端までの距離)から外周R(R:前記略円板状の円の中心から外周端までの距離)までに達する、少なくとも1つの第1のスリット;
ii)該略円板状熱伝導板部の径方向に、内周Rから所定距離R(R<R<R)まで伸びる複数の第2のスリット;及び
iii)該略円板状熱伝導板部の径方向に、所定距離R(R<R≦R)から外周Rまで伸びる複数の第3のスリット;
を有する、上記熱伝導板。
A heat conduction plate for cooling the superconducting coil,
The heat conducting plate has a substantially disc-shaped heat conducting plate portion; and an outer periphery R o (R o : a distance from the center of the substantially disc-shaped circle to the outer peripheral end) of the substantially disc-shaped heat conducting plate. A plurality of heat transfer means for stretching;
The substantially disk-shaped heat conduction plate part is
a) It is arranged above and / or below the superconducting coil, concentrically with the substantially circular upper and / or lower surface of the superconducting coil,
b) having a circular notch from the center of the substantially disc-shaped heat conducting plate portion to the inner periphery R i ; and i) in the radial direction of the substantially disc-shaped heat conducting plate portion, From inner circumference R i (R i : distance from the center of the substantially disc-shaped circle to the inner circumference end) to outer circumference R o (R o : distance from the center of the substantially disc-shaped circle to the outer circumference end) At least one first slit reaching;
ii) a plurality of second slits extending from the inner circumference R i to a predetermined distance R 1 (R i <R 1 <R o ) in the radial direction of the substantially disc-shaped heat conducting plate portion; and iii) the substantially circle in the radial direction of the plate-like heat conductive plate, a plurality of third slits extending from a predetermined distance R 2 (R 1 <R 2 ≦ R o) to the peripheral R o;
The heat conducting plate.
前記Rが、下記式(A)(式中、Rは、超電導コイルの中心から超電導コイルの磁場がゼロとなる位置までの距離を示す)を満たす請求項1記載の熱伝導板。
Figure 0006270119
2. The heat conducting plate according to claim 1, wherein R 1 satisfies the following formula (A) (wherein R x represents a distance from the center of the superconducting coil to a position where the magnetic field of the superconducting coil becomes zero).
Figure 0006270119
請求項1又は2記載の熱伝導板を有する超電導マグネット装置。   A superconducting magnet device comprising the heat conducting plate according to claim 1. 前記熱伝達手段が冷熱源まで延伸して設けられる請求項3記載の超電導マグネット装置。   4. The superconducting magnet device according to claim 3, wherein the heat transfer means is provided extending to a cold heat source. 前記冷熱源が液化水素である請求項4記載の超電導マグネット装置。   The superconducting magnet device according to claim 4, wherein the cold heat source is liquefied hydrogen. 前記冷熱源がサーモサイフォン式を採用し、前記サーモサイフォン式の配管が前記熱伝導板の上部に配置される請求項4又は5記載の超電導マグネット装置。   The superconducting magnet device according to claim 4 or 5, wherein the cold heat source employs a thermosiphon type, and the thermosiphon type pipe is disposed on an upper portion of the heat conducting plate.
JP2013261991A 2013-12-19 2013-12-19 Heat conduction plate Active JP6270119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013261991A JP6270119B2 (en) 2013-12-19 2013-12-19 Heat conduction plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013261991A JP6270119B2 (en) 2013-12-19 2013-12-19 Heat conduction plate

Publications (2)

Publication Number Publication Date
JP2015119064A JP2015119064A (en) 2015-06-25
JP6270119B2 true JP6270119B2 (en) 2018-01-31

Family

ID=53531544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013261991A Active JP6270119B2 (en) 2013-12-19 2013-12-19 Heat conduction plate

Country Status (1)

Country Link
JP (1) JP6270119B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6812747B2 (en) * 2016-10-21 2021-01-13 株式会社豊田中央研究所 Superconducting magnetic energy storage device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513150B2 (en) * 1973-07-28 1980-04-07
JP2980097B2 (en) * 1997-05-08 1999-11-22 住友電気工業株式会社 Superconducting coil
JP2006116042A (en) * 2004-10-21 2006-05-11 Iwatani Industrial Gases Corp Cooling unit in super-conductive magnet system
KR100723236B1 (en) * 2006-02-13 2007-05-29 두산중공업 주식회사 Superconductive coil assembly having improved cooling efficiency
JP2010016026A (en) * 2008-07-01 2010-01-21 Sumitomo Electric Ind Ltd Superconductive device
JP2013207088A (en) * 2012-03-28 2013-10-07 Toshiba Corp Superconducting coil
JP5921940B2 (en) * 2012-04-09 2016-05-24 中部電力株式会社 Superconducting coil conductive cooling plate and superconducting coil device

Also Published As

Publication number Publication date
JP2015119064A (en) 2015-06-25

Similar Documents

Publication Publication Date Title
JP5332217B2 (en) Superconducting device
JP2010016026A (en) Superconductive device
EP2390884B1 (en) Superconducting magnetizer
Ogata et al. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks
JP2016083018A (en) Superconducting magnet, mri apparatus, and nmr apparatus
US20160351310A1 (en) Low Temperature Superconductive and High Temperature Superconductive Amalgam Magnet
US20180330863A1 (en) Fluid-cooled electromagnets
JP2010171152A (en) Heat conduction plate and superconductive device
JP6270119B2 (en) Heat conduction plate
US20160180996A1 (en) Superconducting magnet system
JP7318096B2 (en) A superconducting generator containing a vacuum vessel made of magnetic material
JP2016018902A (en) Superconducting electromagnet device
Zhu et al. Conceptual design of the cryostat for a direct-drive superconducting wind generator
Kar et al. Experimental studies on thermal behavior of 6 Tesla cryogen-free superconducting magnet system
JP2011220506A (en) Heat insulating pipe and superconductive cable
Jo et al. High temperature superconducting synchronous motor
JP2011176018A (en) Superconductive current lead
Kim et al. Thermal characteristics of conduction cooled 600 kJ HTS SMES system
JP2011035216A (en) Re-based superconducting coil conduction cooling method and device therefor
CN112189299B (en) Partial low temperature shielding assembly in superconducting generator and assembly method thereof
JP2015192090A (en) reactor
Tommasini Nb3Sn accelerator dipole magnet needs for a future circular collider
Mito et al. Highly Efficient Liquid Hydrogen Storage System by Magnetic Levitation Using HTS Coils
Sung et al. Hardware integration and performance analysis of a 10 kW HTS wind power generator
Bae et al. Design, fabrication and evaluation of a conduction cooled HTS magnet for SMES

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171221

R150 Certificate of patent or registration of utility model

Ref document number: 6270119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250