JP6812747B2 - Superconducting magnetic energy storage device - Google Patents

Superconducting magnetic energy storage device Download PDF

Info

Publication number
JP6812747B2
JP6812747B2 JP2016207254A JP2016207254A JP6812747B2 JP 6812747 B2 JP6812747 B2 JP 6812747B2 JP 2016207254 A JP2016207254 A JP 2016207254A JP 2016207254 A JP2016207254 A JP 2016207254A JP 6812747 B2 JP6812747 B2 JP 6812747B2
Authority
JP
Japan
Prior art keywords
hydrogen
ortho
magnetic field
superconducting coil
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016207254A
Other languages
Japanese (ja)
Other versions
JP2018068089A (en
Inventor
深野 達雄
達雄 深野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2016207254A priority Critical patent/JP6812747B2/en
Publication of JP2018068089A publication Critical patent/JP2018068089A/en
Application granted granted Critical
Publication of JP6812747B2 publication Critical patent/JP6812747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本明細書は、超電導磁気エネルギー貯蔵装置(Superconducting Magnetic Energy Storage : SMES)に関する。 The present specification relates to a Superconducting Magnetic Energy Storage (SMES).

特許文献1は、液体水素を利用して超電導磁気エネルギー貯蔵装置の超電導コイルを冷却するシステムを開示する。このシステムでは、エネルギーの有効利用を図るために、超電導コイルを冷却するために用いられる液体水素がガス化したボイルオフガスを、ガスタービン等で利用できるように構成されている。 Patent Document 1 discloses a system for cooling a superconducting coil of a superconducting magnetic energy storage device using liquid hydrogen. In this system, in order to make effective use of energy, boil-off gas obtained by gasifying liquid hydrogen used for cooling the superconducting coil can be used in a gas turbine or the like.

ところで、水素分子は、2つの核スピンの向きが同じであるオルト水素と2つの核スピンの向きが逆であるパラ水素の2種類の核スピン異性体があることが知られている。オルト水素は、パラ水素よりもエネルギーが高い。このため、オルト水素からパラ水素へのオルト・パラ転換が発熱反応であり、パラ水素からオルト水素へのパラ・オルト転換が吸熱反応である。 By the way, it is known that hydrogen molecules have two types of nuclear spin isomers, ortho-hydrogen, which has the same two nuclear spin directions, and para-hydrogen, which has two nuclear spins in opposite directions. Ortho-hydrogen has higher energy than para-hydrogen. Therefore, the ortho-para conversion from ortho-hydrogen to para-hydrogen is an exothermic reaction, and the para-ortho-conversion from para-hydrogen to ortho-hydrogen is an endothermic reaction.

特開2010−43708号公報(特に、図3,5を参照)Japanese Unexamined Patent Publication No. 2010-43708 (see in particular, FIGS. 3 and 5)

特許文献1のように、冷却媒体として液体水素を利用する超電導磁気エネルギー貯蔵装置では、超電導コイルが充電されると、超電導コイルが発生する磁場により、液体水素の核スピンの向きが一致し、パラ水素からオルト水素へのパラ・オルト転換が生じる。このパラ・オルト転換の吸熱反応により、磁場を通して超電導コイルからエネルギーが奪われる。一方、超電導コイルが放電すると、液体水素は平衡状態に戻るため、オルト水素からパラ水素へのオルト・パラ転換が生じる。このオルト・パラ転換の発熱反応により、液体水素が暖められ、ボイルオフガスが発生する。 In a superconducting magnetic energy storage device that uses liquid hydrogen as a cooling medium as in Patent Document 1, when the superconducting coil is charged, the direction of the nuclear spins of the liquid hydrogen matches due to the magnetic field generated by the superconducting coil. A para-ortho conversion from hydrogen to ortho-hydrogen occurs. The endothermic reaction of this para-ortho conversion deprives the superconducting coil of energy through a magnetic field. On the other hand, when the superconducting coil is discharged, liquid hydrogen returns to an equilibrium state, so that ortho-para conversion from ortho-hydrogen to para-hydrogen occurs. The exothermic reaction of this ortho-para conversion warms the liquid hydrogen and generates boil-off gas.

このように、冷却媒体として液体水素を利用する超電導磁気エネルギー貯蔵装置では、超電導コイルの充放電が繰り返されると、エネルギー損失が増大するとともに、ボイルオフガスが大量に発生する。特許文献1は、発生するボイルオフガスをガスタービン等で利用するとしているが、ガスタービンの駆動を必要としないときは、ボイルオフガスを有効に利用することができない。 As described above, in the superconducting magnetic energy storage device that uses liquid hydrogen as a cooling medium, when the superconducting coil is repeatedly charged and discharged, the energy loss increases and a large amount of boil-off gas is generated. Patent Document 1 states that the generated boil-off gas is used in a gas turbine or the like, but the boil-off gas cannot be effectively used when the gas turbine is not required to be driven.

本明細書は、冷却媒体として液体水素を利用する超電導磁気エネルギー貯蔵装置において、エネルギー損失の増大を抑えるとともに、ボイルオフガスの発生を抑える技術を提供する。 The present specification provides a technique for suppressing an increase in energy loss and suppressing the generation of boil-off gas in a superconducting magnetic energy storage device that uses liquid hydrogen as a cooling medium.

本明細書が開示する超電導磁気エネルギー貯蔵装置の一実施形態は、磁気エネルギーを貯蔵する超電導コイル、その超電導コイルを収容するとともに液体水素を貯留する貯留槽、及び、液体水素をオルト水素の多い状態に維持するオルト水素維持手段を備える。この超電導磁気エネルギー貯蔵装置では、オルト水素維持手段によって液体水素がオルト水素の多い状態に維持されているので、超電導コイルの充放電が繰り返されても、パラ・オルト転換の吸熱反応及びオルト・パラ転換の発熱反応の双方が抑えられる。このため、この超電導磁気エネルギー貯蔵装置では、エネルギー損失の増大が抑えられるとともに、ボイルオフガスの発生が抑えられる。 One embodiment of the superconducting magnetic energy storage device disclosed herein includes a superconducting coil that stores magnetic energy, a storage tank that houses the superconducting coil and stores liquid hydrogen, and a state in which liquid hydrogen is rich in ortho-hydrogen. Provided with ortho-hydrogen maintenance means to maintain. In this superconducting magnetic energy storage device, liquid hydrogen is maintained in a state of abundant ortho-hydrogen by the ortho-hydrogen maintaining means, so that even if the superconducting coil is repeatedly charged and discharged, the endothermic reaction of para-ortho conversion and ortho-para Both exothermic reactions of conversion are suppressed. Therefore, in this superconducting magnetic energy storage device, the increase in energy loss is suppressed and the generation of boil-off gas is suppressed.

超伝導磁気エネルギー貯蔵装置の構成の概略を示す。The outline of the structure of the superconducting magnetic energy storage device is shown.

以下、本明細書で開示される技術の特徴を整理する。なお、以下に記載する技術要素は、それぞれ独立した技術要素であって、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。 The features of the techniques disclosed in this specification are summarized below. It should be noted that the technical elements described below are independent technical elements and exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. Absent.

本明細書が開示する超電導磁気エネルギー貯蔵装置の一実施形態は、磁気エネルギーを貯蔵する超電導コイル、その超電導コイルを収容するとともに液体水素を貯留する貯留槽、及び、液体水素をオルト水素の多い状態に維持するオルト水素維持手段を備えていてもよい。ここで、本明細書で記載する「オルト水素の多い状態に維持する」とは、パラ水素からオルト水素へのパラ・オルト転換を促進させることにより、貯留槽内の環境下におけるオルト水素とパラ水素の平衡状態よりも、パラ水素に対するオルト水素の存在比が高い状態に液体水素を維持させることをいう。超電導コイルの線材には、液体水素の温度である約−253℃(20.4K)よりも高い温度に臨界温度を有する高温超電導体が用いられ、例えばMgB2、YBCO、BSCCO、Hg-1223及びLaFeAs(O,F)が例示される。オルト水素維持手段には、パラ水素からオルト水素へのパラ・オルト転換を促進させる様々な手段を採用することができ、例えば液体水素に磁場を印加してパラ・オルト転換を促進する手段を採用することができる。オルト水素維持手段は、貯留槽内に配置されていてもよく、貯留槽とは別体の構造体に配置されていてもよい。 One embodiment of the superconducting magnetic energy storage device disclosed herein includes a superconducting coil that stores magnetic energy, a storage tank that houses the superconducting coil and stores liquid hydrogen, and a state in which liquid hydrogen is rich in ortho-hydrogen. Ortho-hydrogen maintenance means may be provided. Here, "maintaining an ortho-hydrogen-rich state" described in the present specification means ortho-hydrogen and para in an environment in a storage tank by promoting para-ortho conversion from para-hydrogen to ortho-hydrogen. It means maintaining liquid hydrogen in a state where the abundance ratio of ortho-hydrogen to para-hydrogen is higher than the equilibrium state of hydrogen. For the wire rod of the superconducting coil, a high-temperature superconductor having a critical temperature higher than the temperature of liquid hydrogen of about -253 ° C. (20.4K) is used, for example, MgB2, YBCO, BSCCO, Hg-1223 and LaFeAs. (O, F) is exemplified. As the ortho-hydrogen maintenance means, various means for promoting para-ortho conversion from para-hydrogen to ortho-hydrogen can be adopted. For example, a means for promoting para-ortho-conversion by applying a magnetic field to liquid hydrogen is adopted. can do. The ortho-hydrogen maintenance means may be arranged in the storage tank, or may be arranged in a structure separate from the storage tank.

オルト水素維持手段は、循環装置及び磁場発生装置を有していてもよい。循環装置は、貯留槽から液体水素を引き出して貯留槽に液体水素を戻すように構成されている。磁場発生装置は、循環装置によって貯留槽から引き出された液体水素に磁場を印加するように構成されている。この態様によると、磁場発生装置がパラ水素からオルト水素へのパラ・オルト転換を行うことにより、貯留槽内の液体水素がオルト水素の多い状態に維持される。さらに、磁場発生装置は、超電導コイルが放電している期間において、磁場を印加するように制御されてもよい。これにより、超電導コイルが磁場を発生させない期間において、磁場発生装置が貯留槽内に貯留されている液体水素をオルト水素の多い状態に維持することができる。また、磁場発生装置は、超電導コイルが充電しているときの少なくとも一部の期間において、磁場の印加を停止するように制御されてもよい。超電導コイルが充電している期間では、超電導コイルが発生する磁場によって貯留槽内に貯留されている液体水素がオルト水素の多い状態に維持される。このため、この期間の一部において磁場発生装置を停止することにより、超電導磁気エネルギー貯蔵装置のエネルギー効率を向上させることができる。 The ortho-hydrogen maintenance means may have a circulation device and a magnetic field generator. The circulation device is configured to draw liquid hydrogen from the storage tank and return the liquid hydrogen to the storage tank. The magnetic field generator is configured to apply a magnetic field to the liquid hydrogen drawn from the storage tank by the circulation device. According to this aspect, the liquid hydrogen in the storage tank is maintained in a state of being rich in ortho-hydrogen by performing para-ortho conversion from para-hydrogen to ortho-hydrogen by the magnetic field generator. Further, the magnetic field generator may be controlled to apply a magnetic field during the period when the superconducting coil is discharged. As a result, the magnetic field generator can maintain the liquid hydrogen stored in the storage tank in a state of a large amount of ortho-hydrogen during the period when the superconducting coil does not generate a magnetic field. Further, the magnetic field generator may be controlled to stop the application of the magnetic field for at least a part of the period when the superconducting coil is being charged. During the period when the superconducting coil is being charged, the liquid hydrogen stored in the storage tank is maintained in a state of a large amount of ortho-hydrogen by the magnetic field generated by the superconducting coil. Therefore, the energy efficiency of the superconducting magnetic energy storage device can be improved by stopping the magnetic field generator during a part of this period.

図1に示されるように、超電導磁気エネルギー貯蔵装置1は、超電導コイル2、貯留槽4、循環装置6、磁場発生装置7及び制御装置8を備える。循環装置6、磁場発生装置7及び制御装置8は、オルト水素維持手段として機能する。 As shown in FIG. 1, the superconducting magnetic energy storage device 1 includes a superconducting coil 2, a storage tank 4, a circulation device 6, a magnetic field generator 7, and a control device 8. The circulation device 6, the magnetic field generator 7, and the control device 8 function as ortho-hydrogen maintenance means.

超電導コイル2は、例えば系統の交流電源がインバータ装置を介して接続しており、直流電流が流れるように構成されている。超電導コイル2は、直流電流が流れているときに両端を短絡させるスイッチ回路(図示省略)を有する。これにより、超電導磁気エネルギー貯蔵装置1は、超電導コイル2を含む閉ループに直流電流を還流させ、電気エネルギーを磁気エネルギーとして貯蔵することができる。超電導コイル2の線材には、YBCOが用いられている。 The superconducting coil 2 is configured such that, for example, an AC power supply of a system is connected via an inverter device so that a direct current flows. The superconducting coil 2 has a switch circuit (not shown) that short-circuits both ends when a direct current is flowing. As a result, the superconducting magnetic energy storage device 1 can recirculate the direct current to the closed loop including the superconducting coil 2 and store the electric energy as magnetic energy. YBCO is used for the wire rod of the superconducting coil 2.

貯留槽4は、超電導コイル2を収容するとともに液体水素を貯留するように構成されている。後述するように、貯留槽4に貯留されている液体水素は、超電導コイル2が充放電を繰り返すときに、オルト水素の多い状態に維持されている。 The storage tank 4 is configured to house the superconducting coil 2 and store liquid hydrogen. As will be described later, the liquid hydrogen stored in the storage tank 4 is maintained in a state of a large amount of ortho-hydrogen when the superconducting coil 2 repeats charging and discharging.

循環装置6は、貯留槽4から液体水素を引き出して貯留槽4に液体水素を戻すように構成されている。 The circulation device 6 is configured to draw out liquid hydrogen from the storage tank 4 and return the liquid hydrogen to the storage tank 4.

磁場発生装置7は、循環装置6の循環経路に設けられており、循環経路を循環する液体水素に磁場を印加するように構成されている。磁場発生装置7は、液体水素に対して0.1T(テスラ)以上の強さの磁場を印加可能に構成されている。このような強磁場が印加されると、液体水素では、パラ水素からオルト水素へのパラ・オルト水素転換が促進される。また、液体水素を冷却する冷却装置が循環装置6の循環経路に設けられていてもよい。 The magnetic field generator 7 is provided in the circulation path of the circulation device 6, and is configured to apply a magnetic field to the liquid hydrogen circulating in the circulation path. The magnetic field generator 7 is configured to be able to apply a magnetic field having a strength of 0.1 T (tesla) or more to liquid hydrogen. When such a strong magnetic field is applied, liquid hydrogen promotes para-ortho-hydrogen conversion from para-hydrogen to ortho-hydrogen. Further, a cooling device for cooling liquid hydrogen may be provided in the circulation path of the circulation device 6.

制御装置8は、磁場発生装置7が液体水素に磁場を印加するタイミングを制御するように構成されている。制御装置8は、超電導コイル2が放電している期間において、磁場発生装置7が磁場を印加するように制御する。また、制御装置8は、超電導コイル2が充電されているときの少なくとも一部の期間において、磁場発生装置7が磁場を印加するのを停止するように制御する。 The control device 8 is configured to control the timing at which the magnetic field generator 7 applies a magnetic field to liquid hydrogen. The control device 8 controls the magnetic field generator 7 to apply a magnetic field during the period when the superconducting coil 2 is discharged. Further, the control device 8 controls the magnetic field generator 7 to stop applying the magnetic field for at least a part of the period when the superconducting coil 2 is being charged.

次に、超電導磁気エネルギー貯蔵装置1の動作を説明する。なお、超電導磁気エネルギー貯蔵装置1が動作する前の段階では、貯留槽4内に貯留されている液体水素は、オルト水素とパラ水素が平衡状態にあり、特定のパラ水素が多い存在比でオルト水素とパラ水素が存在する。 Next, the operation of the superconducting magnetic energy storage device 1 will be described. Before the superconducting magnetic energy storage device 1 operates, the liquid hydrogen stored in the storage tank 4 is in an equilibrium state between ortho-hydrogen and para-hydrogen, and the abundance ratio of specific para-hydrogen is high. There are hydrogen and parahydrogen.

まず、超電導磁気エネルギー貯蔵装置1は、初期充電動作を実行する。初期充電動作では、スイッチ回路(図示省略)が、超電導コイル2に直流電流が流れているときに、超電導コイル2の両端を短絡させて超電導コイル2を含む閉ループを構成する。これにより、超電導コイル2を含む閉ループを直流電流が還流し、超電導コイル2が充電される。超電導コイル2が充電されると、超電導コイル2が発生する磁場により、貯留槽4内に貯留されている液体水素の核スピンの向きが一致し、パラ水素からオルト水素へのパラ・オルト転換が生じる。パラ・オルト転換は吸熱反応であり、この吸熱反応により磁場を通して超電導コイル2からエネルギーが奪われる。なお、この初期充電に先立って、循環装置6が液体水素を循環させるとともに制御装置8が磁場発生装置7を駆動して循環する液体水素に磁場を印加し、液体水素にパラ・オルト転換を生じさせておいてもよい。このように、初期充電が完了すると、貯留槽4内に貯留されている液体水素は、平衡状態に比して、パラ水素に対するオルト水素の存在比が高い状態となる。 First, the superconducting magnetic energy storage device 1 executes an initial charging operation. In the initial charging operation, the switch circuit (not shown) short-circuits both ends of the superconducting coil 2 when a direct current is flowing through the superconducting coil 2 to form a closed loop including the superconducting coil 2. As a result, the direct current flows back through the closed loop including the superconducting coil 2, and the superconducting coil 2 is charged. When the superconducting coil 2 is charged, the magnetic field generated by the superconducting coil 2 matches the directions of the nuclear spins of the liquid hydrogen stored in the storage tank 4, and the para-ortho conversion from para-hydrogen to ortho-hydrogen occurs. Occurs. The para-ortho conversion is an endothermic reaction, and energy is taken from the superconducting coil 2 through a magnetic field by this endothermic reaction. Prior to this initial charging, the circulation device 6 circulates the liquid hydrogen, and the control device 8 drives the magnetic field generator 7 to apply a magnetic field to the circulating liquid hydrogen, causing para-ortho conversion to the liquid hydrogen. You may let me do it. As described above, when the initial charging is completed, the liquid hydrogen stored in the storage tank 4 is in a state where the abundance ratio of ortho-hydrogen to para-hydrogen is higher than that in the equilibrium state.

次に、超電導磁気エネルギー貯蔵装置1は、外部負荷の要求に応じて、放電動作を実行する。放電動作では、スイッチ回路(図示省略)が、超電導コイル2の両端を開放して超電導コイル2を外部負荷に接続させる。これにより、超電導コイル2に貯蔵されていた磁気エネルギーが電気エネルギーとして外部負荷に供給される。この超電導コイル2の放電動作に先立って、循環装置6が液体水素を循環させるとともに制御装置8が磁場発生装置7を駆動して循環する液体水素に磁場を印加する。これにより、超電導コイル2が放電して超電導コイル2が磁場を発生しなくなった後でも、磁場発生装置7が液体水素に対して磁場を印加し続けるので、貯留槽4内に貯留されている液体水素は、オルト水素の多い状態に維持される。これにより、液体水素がオルト水素からパラ水素にオルト・パラ転換することが抑えられる。液体水素のオルト・パラ転換は発熱反応であり、この発熱反応が抑えられるので、ボイルオフガスの発生が抑えられる。 Next, the superconducting magnetic energy storage device 1 executes a discharge operation in response to a request for an external load. In the discharge operation, a switch circuit (not shown) opens both ends of the superconducting coil 2 to connect the superconducting coil 2 to an external load. As a result, the magnetic energy stored in the superconducting coil 2 is supplied to the external load as electrical energy. Prior to the discharge operation of the superconducting coil 2, the circulation device 6 circulates the liquid hydrogen, and the control device 8 drives the magnetic field generator 7 to apply a magnetic field to the circulating liquid hydrogen. As a result, even after the superconducting coil 2 is discharged and the superconducting coil 2 no longer generates a magnetic field, the magnetic field generator 7 continues to apply the magnetic field to the liquid hydrogen, so that the liquid stored in the storage tank 4 is stored. Hydrogen is maintained in a state high in orthohydrogen. This suppresses the ortho-para conversion of liquid hydrogen from ortho-hydrogen to para-hydrogen. The ortho-para conversion of liquid hydrogen is an exothermic reaction, and since this exothermic reaction is suppressed, the generation of boil-off gas is suppressed.

次に、超電導磁気エネルギー貯蔵装置1は、充電動作を実行する。充電動作では、スイッチ回路(図示省略)が、超電導コイル2に直流電流が流れているときに、超電導コイル2の両端を短絡させて超電導コイル2を含む閉ループを構成する。これにより、超電導コイル2を含む閉ループを直流電流が還流し、超電導コイル2が充電される。貯留槽4内に貯留されている液体水素がオルト水素の多い状態に維持されているので、この充電動作では、パラ水素からオルト水素へのパラ・オルト転換が抑えられる。このため、パラ・オルト転換の吸熱反応によるエネルギー損失が低減される。超電導コイル2が充電されると、制御装置8は、磁場発生装置7の駆動を停止し、循環する液体水素に磁場を印加するのを停止する。超電導コイル2が充電されると、超電導コイル2が発生する磁場により、貯留槽4内に貯留されている液体水素は、オルト水素の多い状態に維持される。このため、磁場発生装置7の駆動を停止することにより、超電導磁気エネルギー貯蔵装置1のエネルギー効率を向上させることができる。 Next, the superconducting magnetic energy storage device 1 executes a charging operation. In the charging operation, the switch circuit (not shown) short-circuits both ends of the superconducting coil 2 when a direct current is flowing through the superconducting coil 2 to form a closed loop including the superconducting coil 2. As a result, the direct current flows back through the closed loop including the superconducting coil 2, and the superconducting coil 2 is charged. Since the liquid hydrogen stored in the storage tank 4 is maintained in a state in which a large amount of ortho-hydrogen is present, the para-ortho conversion from para-hydrogen to ortho-hydrogen is suppressed in this charging operation. Therefore, the energy loss due to the endothermic reaction of para-ortho conversion is reduced. When the superconducting coil 2 is charged, the control device 8 stops driving the magnetic field generator 7 and stops applying a magnetic field to the circulating liquid hydrogen. When the superconducting coil 2 is charged, the liquid hydrogen stored in the storage tank 4 is maintained in a state of a large amount of ortho-hydrogen due to the magnetic field generated by the superconducting coil 2. Therefore, the energy efficiency of the superconducting magnetic energy storage device 1 can be improved by stopping the driving of the magnetic field generator 7.

その後、上記の放電動作と充電動作が繰り返されるが、貯留槽4内に貯留されている液体水素がオルト水素の多い状態に維持されているので、オルト・パラ転換の発熱反応とパラ・オルト転換の吸熱反応の双方が抑えられる。このように、超電導磁気エネルギー貯蔵装置1では、超電導コイル2の充放電が繰り返されても、エネルギー損失の増大が抑えられるとともに、ボイルオフガスの発生が抑えられる。 After that, the above discharge operation and charge operation are repeated, but since the liquid hydrogen stored in the storage tank 4 is maintained in a state of a large amount of ortho-hydrogen, the exothermic reaction of ortho-para conversion and para-orto conversion Both of the endothermic reactions of the above are suppressed. As described above, in the superconducting magnetic energy storage device 1, even if the superconducting coil 2 is repeatedly charged and discharged, the increase in energy loss is suppressed and the generation of boil-off gas is suppressed.

以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of claims. The techniques described in the claims include various modifications and modifications of the specific examples illustrated above. In addition, the technical elements described in the present specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the techniques illustrated in the present specification or drawings can achieve a plurality of purposes at the same time, and achieving one of the purposes itself has technical usefulness.

1:超電導磁気エネルギー貯蔵装置
2:超電導コイル
4:貯留槽
6:循環装置
7:磁場発生装置
8:制御装置
1: Superconducting magnetic energy storage device 2: Superconducting coil 4: Storage tank 6: Circulation device 7: Magnetic field generator 8: Control device

Claims (2)

超電導磁気エネルギー貯蔵装置であって、
磁気エネルギーを貯蔵する超電導コイルと、
前記超電導コイルを収容するとともに液体水素を貯留する貯留槽と、
前記液体水素をオルト水素の多い状態に維持するオルト水素維持手段と、を備えており、
前記オルト水素維持手段は、
前記貯留槽から前記液体水素を引き出して前記貯留槽に前記液体水素を戻すように構成されている循環装置と、
前記循環装置によって前記貯留槽から引き出された前記液体水素に磁場を印加するように構成されている磁場発生装置と、を有しており、
前記磁場発生装置は、前記超電導コイルが充電しているときの少なくとも一部の期間において、磁場の印加を停止するように制御される、超電導磁気エネルギー貯蔵装置。
Superconducting magnetic energy storage device
A superconducting coil that stores magnetic energy,
A storage tank that houses the superconducting coil and stores liquid hydrogen,
It is provided with an ortho-hydrogen maintaining means for maintaining the liquid hydrogen in a state of abundant ortho-hydrogen .
The ortho-hydrogen maintenance means
A circulation device configured to draw the liquid hydrogen from the storage tank and return the liquid hydrogen to the storage tank.
It has a magnetic field generator configured to apply a magnetic field to the liquid hydrogen drawn from the storage tank by the circulation device.
The magnetic field generator is a superconducting magnetic energy storage device that is controlled to stop applying a magnetic field for at least a part of the period when the superconducting coil is being charged .
前記磁場発生装置は、前記超電導コイルが放電している期間において、磁場を印加するように制御される、請求項1に記載の超電導磁気エネルギー貯蔵装置。 The superconducting magnetic energy storage device according to claim 1 , wherein the magnetic field generator is controlled to apply a magnetic field during a period in which the superconducting coil is discharging.
JP2016207254A 2016-10-21 2016-10-21 Superconducting magnetic energy storage device Active JP6812747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016207254A JP6812747B2 (en) 2016-10-21 2016-10-21 Superconducting magnetic energy storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016207254A JP6812747B2 (en) 2016-10-21 2016-10-21 Superconducting magnetic energy storage device

Publications (2)

Publication Number Publication Date
JP2018068089A JP2018068089A (en) 2018-04-26
JP6812747B2 true JP6812747B2 (en) 2021-01-13

Family

ID=62087423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016207254A Active JP6812747B2 (en) 2016-10-21 2016-10-21 Superconducting magnetic energy storage device

Country Status (1)

Country Link
JP (1) JP6812747B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4332890B2 (en) * 2003-08-06 2009-09-16 住友電気工業株式会社 Motor cooling structure for superconducting motor vehicle
JP2006009917A (en) * 2004-06-25 2006-01-12 Railway Technical Res Inst Apparatus for storing liquid hydrogen
JP2010043708A (en) * 2008-08-13 2010-02-25 Mitsubishi Heavy Ind Ltd Regional energy supply system
JP6270119B2 (en) * 2013-12-19 2018-01-31 大学共同利用機関法人 高エネルギー加速器研究機構 Heat conduction plate

Also Published As

Publication number Publication date
JP2018068089A (en) 2018-04-26

Similar Documents

Publication Publication Date Title
Vulusala G et al. Application of superconducting magnetic energy storage in electrical power and energy systems: a review
Zhaoxia et al. Coordinated control of a hybrid-electric-ferry shipboard microgrid
CN107848428A (en) It is used for the drive system and method for driving the propeller of means of transport in the case where using sub-cooled
Padimiti et al. Superconducting magnetic energy storage system (SMES) for improved dynamic system performance
Islam et al. High-frequency magnetic-link medium-voltage converter for superconducting generator-based high-power density wind generation systems
CN107317391A (en) Uninterruptible power system
Yunus et al. Overview of SMES units application on smart grid systems
Morandi et al. Feasibility of superconducting magnetic energy storage on board of ground vehicles with present state-of-the-art superconductors
Mukoyama et al. Test of REBCO HTS magnet of magnetic bearing for flywheel storage system in solar power system
JP6812747B2 (en) Superconducting magnetic energy storage device
Amaro et al. Integration of SMES devices in power systems-opportunities and challenges
Nomura et al. Feasibility study on large scale SMES for daily load leveling using force-balanced helical coils
Li et al. A high-temperature superconducting energy conversion and storage system with large capacity
Nomura et al. Flexible power interconnection with SMES
Ueno et al. Race-track coils for a 3 MW HTS ship motor
Makida et al. Design of SMES system with liquid hydrogen for emergency purpose
CN107946694B (en) A kind of power battery cooling system and its cooling means
JP2018525850A (en) Hybrid superconducting magnetic device
Nomura et al. Design considerations for SMES systems applied to HVDC links
Coombs High-temperature superconducting magnetic energy storage (SMES) for power grid applications
Alkhafaji et al. Survey a Superconducting Magnetic Energy Storage SMES with PV System to Enhance the Microgrid
Hannachi et al. Progress in Superconducting Materials for Powerful Energy Storage Systems
Choudhary et al. Stabilization of synchronous generator based PV and wind farm system using SMES
Lin et al. The Investigation of Superconducting Magnetic Energy Storage
KR20130095581A (en) Superconducting wind turbine generator having cryo-cooling system operating by self-generated power

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201130

R150 Certificate of patent or registration of utility model

Ref document number: 6812747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150