WO2018003420A1 - Superconducting magnet device and magnetic resonance tomographic imaging device - Google Patents

Superconducting magnet device and magnetic resonance tomographic imaging device Download PDF

Info

Publication number
WO2018003420A1
WO2018003420A1 PCT/JP2017/020897 JP2017020897W WO2018003420A1 WO 2018003420 A1 WO2018003420 A1 WO 2018003420A1 JP 2017020897 W JP2017020897 W JP 2017020897W WO 2018003420 A1 WO2018003420 A1 WO 2018003420A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
superconducting magnet
circulation
magnet device
superconducting
Prior art date
Application number
PCT/JP2017/020897
Other languages
French (fr)
Japanese (ja)
Inventor
学 青木
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018003420A1 publication Critical patent/WO2018003420A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/30Devices switchable between superconducting and normal states
    • H10N60/35Cryotrons
    • H10N60/355Power cryotrons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/81Containers; Mountings

Definitions

  • the present invention relates to a superconducting magnet apparatus and a magnetic resonance tomography apparatus.
  • the superconducting magnet device is composed of a superconducting coil and a permanent current switch installed in parallel thereto, and the above-described permanent current switch is heated to a normal conduction state by generating a resistance (hereinafter referred to as an open state). ), The current is supplied from the exciting power source to the superconducting coil, and then the permanent current switch is cooled to be in the superconducting state (hereinafter referred to as the closed state).
  • This is a permanent current operation in which a current continues to flow in a superconducting closed circuit composed of a permanent current switch with almost no attenuation. As a result, the superconducting magnet device can maintain the magnetic field for a long time.
  • a conventional superconducting magnet device is a submerged cooling system that is used by immersing it in a refrigerant typified by liquid helium or liquid nitrogen in order to keep the constituent elements typified by the superconducting coil and the permanent current switch in a superconducting state, and Many conductive cooling systems are employed in which a refrigerator and a component are thermally connected with a metal having good thermal conductivity to cool.
  • a refrigerant typified by liquid helium or liquid nitrogen
  • Many conductive cooling systems are employed in which a refrigerator and a component are thermally connected with a metal having good thermal conductivity to cool.
  • a refrigerant circulation type cooling system has been studied, and a large apparatus represented by a fusion apparatus employs a forced cooling system in which a refrigerant flow path is provided inside the apparatus and forcedly circulated by a pump (for example, a patent).
  • a pump for example, a patent.
  • Reference 1 In a medium-sized apparatus typified by a magnetic resonance tomography apparatus (MRI), the refrigerant is flown in the flow path by using buoyancy due to the density difference between the refrigerant vaporized by a heat source such as a superconducting coil and the refrigerant liquefied by a refrigerator.
  • MRI magnetic resonance tomography apparatus
  • a loop-type thermosiphon system for natural circulation has been proposed (for example, Patent Documents 2 and 3).
  • the refrigerant circulation type cooling method is expected to shorten the time required to open and close the permanent current switch compared to the conduction cooling method.
  • the permanent current switch is heated from the closed state to the open state, it is difficult to actively control the circulation of the refrigerant and immediately stop the cooling. It is necessary to continue heater heating with an output exceeding the cooling capacity.
  • an object of the present invention is to provide a superconducting magnet apparatus and a magnetic resonance tomography apparatus capable of reducing the amount of refrigerant vaporized by heater heating in a superconducting magnet apparatus adopting a refrigerant circulation type cooling system.
  • a superconducting coil, a permanent current switch connected to the superconducting coil, the superconducting coil, and the permanent current switch are cooled.
  • a superconducting magnet device having at least a refrigerant circulation type cooling means for circulating the refrigerant in the flow path, wherein the cooling means stores at least a refrigerant container for storing the liquefied refrigerant, and a refrigerant circulation for circulating the refrigerant.
  • Examples include a superconducting magnet device having stop means for stopping circulation of the refrigerant flowing through the refrigerant circulation passage in the section to the arrangement location.
  • a superconducting magnet apparatus and a magnetic resonance tomography apparatus capable of reducing the amount of refrigerant vaporized by heating a heater in a superconducting magnet apparatus adopting a refrigerant circulation type cooling system.
  • FIG. 2 is a bird's eye view of the superconducting magnet device 1 shown in FIG. 1 in which only the refrigerant circulation channel 6 and the refrigerant container 8 are extracted and illustrated. Sectional drawing of the superconducting magnet apparatus 1 which concerns on 2nd Embodiment is shown.
  • FIG. 5 is a bird's-eye view showing only the refrigerant circulation flow path 6 and the refrigerant container 8 with respect to the superconducting magnet device 1 shown in FIG. 4.
  • FIG. 7 is a cross-sectional view of the superconducting magnet device 1 shown in FIG. 6 taken along the line AA.
  • FIG. 7 is a BB sectional view of the superconducting magnet device 1 shown in FIG.
  • FIG. 7 is a bird's-eye view showing only the refrigerant circulation flow path 6, the refrigerant container 8, and the permanent current switch 9 of the superconducting magnet device 1 shown in FIG. 6.
  • Sectional drawing of the superconducting magnet apparatus which concerns on 5th Embodiment is shown.
  • 1 is a schematic diagram of a magnetic resonance imaging apparatus.
  • FIG. 1 schematically shows a cross section of a superconducting magnet device 1 according to the first embodiment.
  • the superconducting magnet device 1 includes a vacuum vessel 2, a radiation shield 3 contained in the vacuum vessel 2, a plurality of superconducting coils 4 contained in the radiation shield 3, a coil bobbin 5 to which the superconducting coil 4 is fixed, a refrigerant circulation channel 6,
  • the basic configuration includes a refrigerant 7 contained in the refrigerant circulation channel 6, a refrigerant container 8 storing the refrigerant 7, a permanent current switch 9, and a refrigerator 12 attached to the refrigerant container 8.
  • the refrigerant 7 for example, liquid helium or liquid nitrogen can be used.
  • the shape of the vacuum vessel 2 and the radiation shield 3 shown in FIG. 1 can take any shape as long as the support structure and the constituent members constituting the superconducting magnet device 1 are allowed.
  • the central axis 21 of the superconducting coil 4 of the present embodiment is oriented in the vertical direction.
  • the central axis 21 is the winding central axis of the superconducting coil 4 and coincides with the direction of the magnetic field generated when the superconducting coil 4 is energized.
  • the refrigerant circulation channel 6 has a structure in which the superconducting coil 4 and the coil bobbin 5 are thermally contacted and cooled via a heat conduction path 11 which is a heat transfer member. Therefore, the heat conduction path 11 is composed of a good conductor having high heat conductivity, and specifically, a copper mesh wire or the like is used. Further, the permanent current switch 9 is also cooled by the refrigerant circulation passage 6 in the same manner as the superconducting coil 4.
  • the refrigerant circulation channel 6 and the heat conduction path 11 mainly constitute the cooling means of this embodiment.
  • FIG. 2 schematically shows the superconducting magnet device 1 as a circuit.
  • the protective resistors 10 are provided in the same number as the number of superconducting coils 4 installed, and each protective resistor 10 is installed in parallel to each superconducting coil 4.
  • a DC power source 13 and a current breaker 14 that are current sources for exciting the superconducting coil 4 are installed outside the vacuum vessel 2.
  • a superconducting coil 4 and a permanent current switch 9 are installed inside the vacuum vessel 2 and are kept below the critical temperature and are in a superconducting state.
  • the procedure for generating a permanent current is as follows. First, current is supplied from the DC power supply 13 to the superconducting coil 4 with the permanent current switch 9 opened. Thereafter, with the permanent current switch 9 closed, the supply current from the DC power supply 13 is made zero and the current breaker 14 is opened. As a result, the operation is a permanent current operation in which the current continues to flow in the superconducting closed circuit composed of the superconducting coil 4 and the permanent current switch 9 with almost no attenuation. Thereby, the superconducting magnet apparatus 1 can hold a magnetic field for a long time. When the permanent current switch 9 is opened, it means that the permanent current switch 9 is changed to a normal conduction state and an electric resistance is generated. Moreover, the permanent current switch 9 is closed by shifting the permanent current switch 9 to the superconducting state and setting the electrical resistance to a very low state.
  • FIG. 3 shows a bird's-eye view of the refrigerant flow path in the superconducting magnet device 1 with respect to the superconducting magnet device 1 shown in FIG.
  • the refrigerant circulation path and the mechanism by which the refrigerant 7 circulates along the path will be described as follows.
  • the refrigerant circulation channel 6 is connected to the refrigerant circulation part 6d that is in thermal contact with the permanent current switch 9, the refrigerant circulation part 6e that is in thermal contact with the superconducting coil 4, the refrigerant circulation part 6d, and the refrigerant container 8. It is comprised from the part 6c (6a and 6b).
  • the refrigerant 7 flowing through the refrigerant circulation parts 6d and 6e has a lower density per unit volume than the refrigerant 7 in the refrigerant container 8 and the refrigerant circulation part 6c. Buoyancy is generated by this density difference, and the refrigerant 7 moves along the refrigerant circulation passage 6 with a force from the bottom to the top in the vertical direction.
  • the reason why the density of the refrigerant 7 flowing through the refrigerant circulation parts 6d and 6e is reduced is that the refrigerant 7 thermally absorbs heat from these heat sources because it is thermally connected to the permanent current switch 9 and the superconducting coil 4. This is because the volume per unit mass increases.
  • Reference numeral 20 in the figure indicates the circulation direction of the refrigerant 7 described above.
  • the loop thermosyphon is a refrigerant circulation system that utilizes the density difference of the refrigerant 7 generated in the refrigerant circulation section, there is an advantage that a pump or the like for circulating the refrigerant 7 is unnecessary. Further, since the amount of the refrigerant 7 used is sufficient to create a flow that circulates through the refrigerant container 8 and the refrigerant circulation passage 6, the cooling state is maintained even if the amount of the refrigerant 7 used is small compared to the immersion cooling method. Can be maintained.
  • the cooling means is not a loop thermosyphon type but a forced circulation type, a time lag occurs until the refrigerant circulation stops even if the pump used for circulation stops. Therefore, similarly to the loop thermosiphon type cooling, it is necessary to continue heating the heater for a certain period of time so that the permanent current switch 9 maintains a critical temperature or higher.
  • the superconducting magnet device 1 of the present embodiment discharges or shields the refrigerant 7 flowing through the refrigerant circulation channel 6 in the section from the refrigerant container 8 to the arrangement position of the heat conduction path 11 in contact with the permanent current switch 9. Stop means for stopping the circulation of the refrigerant 7 is provided. A specific concept of this stopping means will be described below. In the following description, the case of adopting the loop thermosiphon type is taken as an example, but the same applies to the forced circulation type.
  • the superconducting magnet device 1 of the present embodiment has a structure shown in FIGS. 1 and 3 as a stopping means for stopping the circulation of the refrigerant 7.
  • These structures are mainly composed of the refrigerant circulation section 6c, the heater 52 as circulation suppression means, the branch pipe 6f, and the opening / closing means of the branch pipe 6f.
  • the refrigerant circulation portion 6 c is a meandering portion that is provided in a part of the refrigerant circulation passage 6 and that is vertically related to the vertical direction. As shown in FIG. 3, it is comprised from the refrigerant
  • the refrigerant circulation unit 6 a is a pipe that is connected to the vicinity of the bottom of the refrigerant container 8 and that extends upward from the vicinity of the bottom of the refrigerant container 8.
  • coolant circulation part 6b is piping which goes below from the upper end part of the refrigerant
  • the refrigerant storage unit 15 is provided at each end, and the upper end of the refrigerant circulation unit 6a and the upper end of the refrigerant circulation unit 6b are connected to the refrigerant storage unit 15. Structure. Specifically, as illustrated in FIG. 1, the refrigerant storage unit 15 is provided at the upper and lower folding position of the refrigerant circulation unit 6 c.
  • coolant storage part 15 may use a container different from piping as the refrigerant
  • the refrigerant storage unit 15 When the refrigerant storage unit 15 is made of a material different from that of the refrigerant circulation unit, it is desirable that the refrigerant storage unit 15 be made of a material having higher thermal conductivity than the refrigerant circulation unit.
  • the refrigerant reservoir 15 is heated by the heater 51 when the permanent current switch 9 is opened, and the internal refrigerant 7 needs to be quickly evaporated. Therefore, it is desirable to be made of copper or aluminum.
  • coolant storage part 15 are comprised with a material with low heat conductivity, for example, stainless steel.
  • the refrigerant reservoir 15 is installed in a vertical direction so as to be lower than the liquid level of the refrigerant 7 accommodated in the refrigerant container 8. This is because the refrigerant 7 filled in the refrigerant reservoir 15 rises and flows in the refrigerant circulation unit 6 a against gravity due to the dead weight of the refrigerant 7 accommodated in the refrigerant container 8.
  • the heater 51 is provided at least in the vicinity of the meandering portion, and prevents the refrigerant 7 from circulating by evaporating the refrigerant 7 flowing through the refrigerant circulation portion 6c.
  • the attachment position of the heater 51 is set to the refrigerant
  • the heater 51 operates at the same timing as the heater 52 that heats the permanent current switch 9. Therefore, by sharing the power source and the conductive wire with the heater 52, the heating timing can be easily synchronized, and the structure can be simplified.
  • the heater 51 is a general electric heater, and for example, a nichrome wire heater can be used.
  • the branch pipe 6 f is a pipe that reaches the outside of the vacuum vessel 2 and that discharges the refrigerant 7 evaporated by the operation of the heater 51.
  • a pressure sensor or a temperature sensor may be attached to the branch pipe 6f as means for detecting the liquid level of the refrigerant 7.
  • the liquid level position (the liquid level position in the rated state) of the refrigerant 7 is approximately the same between the refrigerant container 8 and the branch pipe 6f. Detecting the liquid level of the refrigerant 7 in the branch pipe 6f has the following advantages.
  • the superconducting magnet device 1 of this embodiment employs a loop thermosyphon cooling system. For this reason, when bubbles accumulate in the refrigerant circulation channel 6 and the refrigerant reservoir 15, the buoyancy derived from the density difference that is the source of the conveying force of the refrigerant 7 is not efficiently transmitted, and the circulation of the refrigerant 7 stops or the efficiency decreases. There is a possibility that.
  • the meandering part constituted by the refrigerant circulation part 6c and the refrigerant storage part 15 of the present embodiment has no heat source under a permanent current operation.
  • the refrigerant 7 is conveyed by the pressure generated from the difference between the density of the refrigerant 7 in the refrigerant container 8 and the density of the refrigerant 7 in the refrigerant circulation unit 6d. Therefore, in order to efficiently circulate the refrigerant 7, it is desirable to suppress a decrease in the circulation efficiency of the refrigerant 7 in the meandering portion, and to detect it immediately when a decrease in efficiency occurs. Therefore, a means for detecting the liquid level position of the refrigerant 7 and a means for estimating the storage state of the refrigerant 7 may be provided in the branch pipe 6f.
  • the means for controlling the opening and closing of the branch pipe 6f is, for example, a valve 61 as shown in FIG.
  • the valve 61 is provided outside the vacuum vessel 2 and may be operated either manually or automatically.
  • the heater 51 is operated to evaporate the refrigerant 7.
  • the valve 61 is opened, the vaporized refrigerant 7 is discharged to the outside. This discharge can prevent an excessive pressure from being applied to the meandering portion and stop the circulation of the refrigerant 7. Further, as shown in FIG.
  • a configuration may be employed in which a flow path returning from the branch pipe 6f to the refrigerant container 8 is provided and the refrigerant gas generated in the branch pipe 6f is liquefied again and used.
  • the flow path returning to the refrigerant container 8 the consumption amount of the refrigerant 7 can be further reduced.
  • the permanent current switch 9 is opened and closed as follows.
  • the heater 51 When switching the permanent current switch 9 from the closed state to the open state, the heater 51 is energized with the valves 61 and 62 closed.
  • the refrigerant 7 circulating through the meandering portion is vaporized by the heater 51.
  • the vaporized refrigerant 7 or the refrigerant 7 whose density has decreased due to the temperature rise obtains buoyancy and stays in the refrigerant reservoir 15.
  • the accumulated refrigerant 7 hinders the circulation of the refrigerant 7 in the meandering portion, and the circulation of the refrigerant 7 toward the permanent current switch 9 is stopped.
  • the heater 52 is energized in conjunction with the energization of the heater 51, the refrigerant 7 in the refrigerant circulation section 6d that is in thermal contact with the permanent current switch 9 vaporizes or rises in temperature, and the resulting buoyancy causes the refrigerant 7 Returns to the refrigerant container 8.
  • the permanent current switch 9 and the refrigerant 7 existing in the refrigerant circulation part 6d evaporate, and the liquid level rapidly decreases.
  • the liquid level is lower than the permanent current switch 9, in other words, the position where the liquid level of the refrigerant 7 liquefied at the liquid level is in direct or indirect thermal contact with the permanent current switch 9.
  • the energization to the heater 51 and the heater 52 may be stopped.
  • the cooling rate of the permanent current switch 9 via the refrigerant circulation portion 6d is lower than the rated state, and the cooling of the permanent current switch 9 by the liquefied refrigerant 7 is suppressed, so the heater This is because the permanent current switch 9 can be kept open without continuing heating by energization.
  • energization of the heater 52 may be continued even after the liquid level of the refrigerant 7 has sufficiently decreased. By continuing the energization, the temperature of the permanent current switch 9 can also rise quickly and shift to the open state.
  • the part of the permanent current switch 9 and the heated refrigerant circulation portion 6 d are arranged so as to be substantially in the same position in the vertical direction. With such an arrangement relationship, both structures can be heated together by one heater 52, and the configuration is simplified.
  • a heater is provided at each attachment position. Also good.
  • the thermal connection position of the permanent current switch 9 to the refrigerant circulation part 6d and the installation position of the refrigerant storage part 15 are lower than the liquid level height of the refrigerant container 8 and the liquid level height. It is desirable to be in the vicinity.
  • the liquid level of the refrigerant container 8, the branch pipe 6f, and the refrigerant circulation part 6d is substantially equal, and exists in the branch pipe 6f and the refrigerant circulation part 6d when the circulation of the refrigerant 7 is stopped. It is necessary to evaporate and remove the refrigerant 7.
  • connection position and the installation position described above at a position close to the liquid level of the refrigerant container 8, the amount of the refrigerant 7 to be evaporated can be reduced, and the liquid level of the refrigerant 7 can be quickly reduced to circulate the refrigerant 7. Can be stopped.
  • the connecting portion between the branch pipe 6f and the refrigerant container 8 is set to a position higher than the liquid level of the refrigerant 7 in the refrigerant container 8. At this position, it is possible to prevent the refrigerant 7 from flowing back into the branch pipe 6f due to gravity.
  • the branch pipe 6f employs a material having a low thermal conductivity such as stainless steel, thereby suppressing the heat conduction through the branch pipe 6f other than the heating portion, thereby the permanent current switch 9 is cooled and closed. Can be avoided.
  • the refrigerant circulation part 6d may be made of two materials.
  • the part where the heater 52 is installed is made of a high heat conductive member such as aluminum, and the other part is made of stainless steel so that they are joined by a dissimilar material joint.
  • the case where a loop-type thermosiphon-type cooling method is employed has been described.
  • the permanent current switch 9 is shifted from the closed state to the open state according to the same procedure as described above after stopping the pump or the like.
  • the circulation of the refrigerant 7 with respect to the superconducting coil 4 is stopped. Therefore, the cooling of the superconducting coil 4 may be continued using cooling or conduction cooling using heat storage of the solid refrigerant together.
  • a plurality of independent refrigerant containers 8 may be provided, and the circulation of the refrigerant 7 for cooling the superconducting coil 4 and the circulation of the refrigerant 7 for cooling the permanent current switch 9 may be separated.
  • the permanent current switch 9 is shifted from the closed state to the open state.
  • the following procedure is executed. First, the valve 61 shown in FIG. 1 is opened, and the low-density refrigerant 7 staying in the refrigerant reservoir 15 is discharged out of the superconducting magnet device 1.
  • a check valve 71 is provided between the discharge side end of the branch pipe 6f and the valve 61 so that the atmosphere does not flow through the branch pipe 6f.
  • the refrigerant 7 passes from the refrigerant container 8 through the refrigerant circulation unit 6a. It flows into the refrigerant reservoir 15.
  • the refrigerant circulation unit 6c basically has no heat source, so that the refrigerant 7 maintains the same density as the state stored in the refrigerant container 8. The refrigerant flows into the refrigerant circulation section 6d as it is.
  • the permanent current switch 9 serves as a heat source for the refrigerant circulation section 6d, the density difference of the refrigerant 7 is caused thereby, and the circulation of the refrigerant 7 is resumed.
  • the permanent liquid switch 9 starts to be cooled when the liquid level inside the refrigerant circulation section 6d rises and is held above the position where it is in thermal contact with the permanent current switch 9. Note that when the permanent current switch 9 is kept closed, it is difficult to completely eliminate the influence of radiant heat or the like, although the refrigerant circulation portion 6c basically has no heat source.
  • the refrigerant 7 vaporized by the heat entering the refrigerant circulation parts 6 a and 6 b without being shielded stays in the refrigerant storage part 15, thereby preventing refrigerant circulation.
  • valve 61 is closed and the valve 62 is opened so that the vaporized refrigerant 7 returns to the refrigerant container 8 through the refrigerant circulation portion 6g.
  • the refrigerant circulation unit 6g can be used as a flow path for supplying the refrigerant 7 to the refrigerant container 8 in a preparation stage in which the superconducting magnet device 1 is operated.
  • a check valve 72 is provided in order to prevent atmospheric inflow, similarly to the atmospheric end of the branch pipe 6f.
  • the pump or the like may be restarted after discharging the gaseous refrigerant 7 retained in the refrigerant reservoir 15 as described above.
  • the superconducting magnet device 1 of the present embodiment can quickly open and close the permanent current switch 9 by partially stopping the circulation of the refrigerant in the refrigerant circulation type superconducting magnet device.
  • coolant circulation part 6c provided with the meandering part are included and partial circulation stop can be performed by the selective heating of this part, the quantity of the refrigerant
  • the heater heating time of the permanent current switch 9 can be reduced as compared with the prior art, and the waiting time for excitation and demagnetization of the superconducting magnet device can be shortened.
  • in the loop thermosyphon since it is possible to actively control the refrigerant circulation, it is possible to achieve a remarkable effect that the time required for opening and closing the permanent current switch 9 is equivalent to that of immersion cooling.
  • FIG. 4 shows a cross-sectional view of the superconducting magnet device 1 according to the second embodiment.
  • FIG. 5 is a bird's-eye view showing only the refrigerant circulation channel 6 and the refrigerant container 8 taken out.
  • the second embodiment further includes a branch pipe 6 f that leads the refrigerant 7 to the outside of the superconducting magnet device 1, and a gas cylinder 81 that is a gas refrigerant introduction unit is provided.
  • the vaporized refrigerant 7 can be supplied from the gas cylinder 81 to the refrigerant reservoir 15.
  • the stop means for stopping the circulation of the refrigerant 7 in this embodiment is mainly composed of the refrigerant circulation portion 6c, a gas cylinder 81 which is a circulation suppression means, and a branch pipe 6f. Moreover, you may add the refrigerant
  • the operation of moving the permanent current switch 9 from the closed state to the open state is performed as follows. First, the valve 61 and the valve 62 are closed, and then the valve 63 is opened. After the valve 63 is opened, the gaseous refrigerant 7 is introduced from the gas cylinder 81 into the branch pipe 6f. The introduced gaseous refrigerant 7 generates a pressure that pushes down the liquid level of the refrigerant 7 below the branch pipe 6f because the valve 61 and the valve 62 are closed.
  • the valve 63 is closed, and then the valve 61 is opened.
  • the gaseous refrigerant 7 accommodated in the branch pipe 6 f and the refrigerant reservoir 15 is discharged through the valve 61.
  • the discharge of the refrigerant 7 continues until the liquid level in the branch pipe 6f and the liquid level of the refrigerant container 8 become approximately the same.
  • the valve 61 is retightened when the discharge pressure of the refrigerant 7 decreases and the refrigerant 7 is filled with the liquefied refrigerant 7.
  • valve 62 may be open or closed. While the gaseous refrigerant 7 is discharged through the valve 61, it is possible to collect a part of the refrigerant 7 released into the atmosphere and return it to the refrigerant container 8 by maintaining the open state. on the other hand. If the valve 62 is closed, the gaseous refrigerant 7 does not flow into the refrigerant container 8. As a result, since the output of the refrigerator 12 over the period during which the circulation is maintained is not required, the superconducting magnet device 1 can be stably moved even with a small refrigerator.
  • the superconducting magnet device 1 With the superconducting magnet device 1 according to the second embodiment described above, not only can the same effect as in the first embodiment be obtained, but the time required to stop the circulation of the refrigerant 7 can be reduced by the heating of the refrigerant 7. Since this phase change time is not required, the time is further shortened compared with the first embodiment. Further, since it is not necessary to use heat in order to stop the circulation of the refrigerant 7, the refrigerant circulation part 6c and the refrigerant storage part 15 are all constituted by members having low thermal conductivity, and the amount of heat input from the outside of the vacuum vessel 2 It is possible to design with a focus only on reducing the size, and to ease the design constraints.
  • FIG. 5 shows a cross-sectional view of the superconducting magnet device 1 according to the third embodiment.
  • the third embodiment has a structure in which the refrigerant circulation portion 6d that is in thermal contact with the permanent current switch 9 is extended from 6e that is in thermal contact with the superconducting coil 4. Is different.
  • this embodiment has a structure having the heater 51 as in the first embodiment, it may have a system in which the gaseous refrigerant 7 is introduced as in the second embodiment.
  • the permanent current switch 9 is arranged in the vicinity of the superconducting coil 4, and the vacuum vessel 2 and the like The entire containment vessel can be made compact.
  • FIG. 6 is a cross-sectional view of the superconducting magnet device 1 according to the fourth embodiment, and particularly relates to the superconducting coil 4 and the coil bobbin 5.
  • FIG. 7 is a cross-sectional view of the superconducting magnet device 1 shown in FIG.
  • FIG. 8 is a BB cross-sectional view of the superconducting magnet device 1 shown in FIG.
  • FIG. 9 is a bird's eye view in which only the refrigerant circulation flow path 6, the refrigerant container 8, and the permanent current switch 9 of the superconducting magnet apparatus 1 shown in FIG. 6 are taken out.
  • the fourth embodiment is different from the first embodiment in that the central axis 21 of the superconducting coil 4 is oriented in the horizontal direction and the refrigerant circulation part 6e that is in thermal contact with the superconducting coil 4 is a superconducting coil. 4 and the central axis 21 are different from each other in that they are configured as a plurality of arcuate members. 7 and 8, the superconducting magnet device 1 according to the present embodiment has a circular or elliptical cross section on the inner peripheral surface when a cross section perpendicular to the central axis 21 is obtained.
  • the vacuum container 2 is configured, and an open space can be formed along the direction of the central axis 21.
  • the superconducting magnet device 1 includes a plurality of superconducting coils 4 in the direction of the central axis 21.
  • the diameter of each superconducting coil 4 may be different.
  • the shape of the refrigerant circulation portion 6e is different from those of the first to third embodiments. 8 and 9 show the refrigerant circulation section 6e in the present embodiment.
  • the refrigerant circulation section 6 e is mainly composed of an arc-shaped pipe formed along the outer peripheral curved surface of the superconducting coil 4 and a horizontal pipe for circulating the refrigerant 7 in the direction of the central axis 21.
  • positioning of arc-shaped piping is not restricted to the aspect in alignment with the outer periphery of a superconducting coil. If it is structurally acceptable, it may be configured along the inner peripheral surface.
  • the superconducting coil 4 is cooled by providing a heat conduction path 11 penetrating the coil bobbin 5.
  • Arc-shaped pipes may be provided at different positions in the direction of the superconducting coil 4 and the central axis 21.
  • an arcuate pipe or a straight pipe may be arranged at the position AA in FIG.
  • the superconducting coil 4 is cooled by providing the heat conduction path 11 so as to penetrate the coil bobbin 5.
  • the piping structure that does not follow the outer peripheral curved surface is useful for suppressing the internal structure of the vacuum vessel 2 from expanding in the radial direction with respect to the central shaft 21 and miniaturizing the superconducting magnet device 1. is there.
  • FIG. 11A is a schematic diagram of a horizontal MRI apparatus 100.
  • the MRI apparatus requires a static and strong magnetic field (static magnetic field) for imaging, and a superconducting magnet apparatus is used as a component for generating the static magnetic field.
  • the superconducting magnet device 1 of the present embodiment can be used as a device (static magnetic field generator) that generates this static magnetic field. Since the static magnetic field generator in the conventional MRI apparatus employs an immersion cooling method using liquid helium, the consumption of helium accompanying energization and demagnetization of the superconducting magnet is enormous.
  • the amount of the refrigerant 7 used is significantly smaller than that of the immersion cooling, and the consumption amount is in principle the volume of the refrigerant reservoir 15. It can also be suppressed.
  • FIG. 10 is a cross-sectional view of the superconducting magnet device 1 according to the fifth embodiment.
  • the fifth embodiment is provided with a plurality of refrigerant circulation portions 6 e that are in thermal contact with the superconducting coil 4, and is opened by the vacuum vessel 2 and the radiation shield 3 perpendicular to the central axis 21. The difference is that 22 is formed.
  • FIG. 11B is a schematic diagram of the vertical MRI apparatus 100.
  • the MRI apparatus 100 to which the superconducting magnet apparatus 1 of the present embodiment is applied requires a remarkably small amount of the refrigerant 7 to be used as compared with the immersion cooling, and the consumption amount is in principle the volume of the refrigerant reservoir 15. It can also be suppressed.
  • liquid helium is used as the refrigerant 7.
  • the superconducting coil 4 is composed of a high-temperature superconducting wire, liquid nitrogen or the like may be used.
  • a refrigerant circulation type cooling method and a conduction cooling method may be combined.
  • the cooling system of the superconducting magnet apparatus 1 of the present embodiment includes, for example, a superconducting magnet for an accelerator, a superconducting rotating gantry for a particle beam therapy apparatus, a superconducting flyhole, a superconducting bulk body, etc. It can be applied to all devices and members that are required to maintain the superconducting state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

This superconducting magnet device (1) comprises at least a superconducting coil (4), a permanent current switch (9) that is connected to the superconducting coil, and a refrigerant-circulating cooling means that cools the superconducting coil and the permanent current switch and that has a channel through which a refrigerant circulates, the device being characterized in that the cooling means at least comprises: a refrigerant container (8) that retains liquefied refrigerant, a refrigerant circulation channel (6) that allows the refrigerant to circulate, and a heat-transfer member (11) that brings the refrigerant circulation channel into thermal contact with the superconducting coil and the permanent current switch; and a stopping means that stops the circulation of the refrigerant flowing through the refrigerant circulation channel in the segment from the refrigerant container to the location of the heat-transfer member that is in contact with the permanent current switch.

Description

超電導磁石装置および磁気共鳴断層撮影装置Superconducting magnet apparatus and magnetic resonance tomography apparatus
 本発明は、超電導磁石装置および磁気共鳴断層撮影装置に関する。 The present invention relates to a superconducting magnet apparatus and a magnetic resonance tomography apparatus.
 超電導磁石装置は、超電導コイルと、それに並列に設置された永久電流スイッチから構成され、上記の永久電流スイッチをヒータ加熱するなどして常電導転移させ電気抵抗を発生させた状態(以下、開状態)で励磁電源から超電導コイルに電流供給し、その後、永久電流スイッチを冷却し超電導状態にした状態(以下、閉状態)で励磁電源からの供給電流を減少させゼロにすることで、超電導コイルおよび永久電流スイッチからなる超電導状態の閉回路に電流がほとんど減衰することなく流れ続ける永久電流運転となる。これにより超電導磁石装置は、長期に渡って磁場を保持することが可能である。 The superconducting magnet device is composed of a superconducting coil and a permanent current switch installed in parallel thereto, and the above-described permanent current switch is heated to a normal conduction state by generating a resistance (hereinafter referred to as an open state). ), The current is supplied from the exciting power source to the superconducting coil, and then the permanent current switch is cooled to be in the superconducting state (hereinafter referred to as the closed state). This is a permanent current operation in which a current continues to flow in a superconducting closed circuit composed of a permanent current switch with almost no attenuation. As a result, the superconducting magnet device can maintain the magnetic field for a long time.
 従来の超電導磁石装置は、上記の超電導コイルや永久電流スイッチに代表される構成素子を超電導状態に保持するため、液体ヘリウムや液体窒素に代表される冷媒に浸漬させて使用する浸漬冷却方式および、冷凍機と構成素子とを熱伝導性の良い金属で熱的に接続して冷却する伝導冷却方式が多く採用されている。ただし、上記の冷却方式は装置が大型化すると、浸漬方式では大量の冷媒が必要となり、伝導冷却方式では冷却対象物内での温度勾配が大きくなって所望の温度に保持することができなくなる。そこで、冷媒循環型の冷却方式が検討され、核融合装置に代表される大型装置では、装置内部に冷媒流路を設けてポンプで強制的に循環させる強制冷却方式が採用されている(例えば特許文献1)。また、磁気共鳴断層撮影装置(MRI)に代表される中型装置では、超電導コイル等の熱源で気化した冷媒と冷凍機で液化した冷媒との密度差による浮力を利用して冷媒を流路内で自然循環させるループ型サーモサイフォン方式が提案されている(例えば特許文献2,3)。 A conventional superconducting magnet device is a submerged cooling system that is used by immersing it in a refrigerant typified by liquid helium or liquid nitrogen in order to keep the constituent elements typified by the superconducting coil and the permanent current switch in a superconducting state, and Many conductive cooling systems are employed in which a refrigerator and a component are thermally connected with a metal having good thermal conductivity to cool. However, in the above cooling method, when the apparatus is increased in size, a large amount of refrigerant is required in the immersion method, and in the conduction cooling method, the temperature gradient in the object to be cooled becomes large and cannot be maintained at a desired temperature. Therefore, a refrigerant circulation type cooling system has been studied, and a large apparatus represented by a fusion apparatus employs a forced cooling system in which a refrigerant flow path is provided inside the apparatus and forcedly circulated by a pump (for example, a patent). Reference 1). In a medium-sized apparatus typified by a magnetic resonance tomography apparatus (MRI), the refrigerant is flown in the flow path by using buoyancy due to the density difference between the refrigerant vaporized by a heat source such as a superconducting coil and the refrigerant liquefied by a refrigerator. A loop-type thermosiphon system for natural circulation has been proposed (for example, Patent Documents 2 and 3).
 冷媒循環型の冷却方式は、伝導冷却方式と比較して永久電流スイッチの開閉に要する時間が短縮されることが期待される。一方、永久電流スイッチを加熱して閉状態から開状態とする際、冷媒の循環を能動的に制御し冷却を即座に停止することは困難のため、開状態を維持するためには、冷媒による冷却能力以上の出力でヒータ加熱を継続する必要がある。 The refrigerant circulation type cooling method is expected to shorten the time required to open and close the permanent current switch compared to the conduction cooling method. On the other hand, when the permanent current switch is heated from the closed state to the open state, it is difficult to actively control the circulation of the refrigerant and immediately stop the cooling. It is necessary to continue heater heating with an output exceeding the cooling capacity.
特開平07-121421号公報Japanese Patent Laid-Open No. 07-121421 特開平06-342721号公報Japanese Patent Application Laid-Open No. 06-342721 国際公開2014/155476号公報International Publication No. 2014/155476
 しかし、ヒータ加熱で気化した冷媒は装置の圧力上昇を避けるために装置外へ放出される必要があるが、継続的なヒータ加熱によってその放出量が浸漬冷却と同様に多くなってしまうという課題があった。そこで本発明の課題は、冷媒循環型の冷却方式を採用した超電導磁石装置において、ヒータ加熱によって気化する冷媒の量を低減可能な超電導磁石装置および磁気共鳴断層撮影装置を提供することにある。 However, the refrigerant vaporized by the heater heating needs to be released to the outside of the apparatus in order to avoid an increase in the pressure of the apparatus, but there is a problem that the amount of discharge increases as in the case of immersion cooling by continuous heater heating. there were. Accordingly, an object of the present invention is to provide a superconducting magnet apparatus and a magnetic resonance tomography apparatus capable of reducing the amount of refrigerant vaporized by heater heating in a superconducting magnet apparatus adopting a refrigerant circulation type cooling system.
 本発明は、上記課題を解決すために様々な実施形態をとり得るが、その一例として「超電導コイルと、前記超電導コイルに接続された永久電流スイッチと、前記超電導コイルおよび前記永久電流スイッチを冷却し、流路を冷媒が循環する冷媒循環型の冷却手段と、を少なくとも有する超電導磁石装置であって、前記冷却手段は少なくとも、液化した冷媒を貯留する冷媒容器と、前記冷媒を循環させる冷媒循環流路と、前記冷媒循環流路と前記超電導コイルおよび前記永久電流スイッチとを熱的に接触させる伝熱部材と、を有し、前記冷媒容器から前記永久電流スイッチと接触した前記伝熱部材の配置箇所までの区間において、前記冷媒循環流路を流れる前記冷媒の循環を停止する停止手段を有する」超電導磁石装置等が挙げられる。 The present invention can take various embodiments in order to solve the above-mentioned problems. As an example, “a superconducting coil, a permanent current switch connected to the superconducting coil, the superconducting coil, and the permanent current switch are cooled. And a superconducting magnet device having at least a refrigerant circulation type cooling means for circulating the refrigerant in the flow path, wherein the cooling means stores at least a refrigerant container for storing the liquefied refrigerant, and a refrigerant circulation for circulating the refrigerant. A heat transfer member that thermally contacts the refrigerant circulation flow channel, the superconducting coil, and the permanent current switch, and the heat transfer member that is in contact with the permanent current switch from the refrigerant container. Examples include a superconducting magnet device having stop means for stopping circulation of the refrigerant flowing through the refrigerant circulation passage in the section to the arrangement location.
 本発明によれば、冷媒循環型の冷却方式を採用した超電導磁石装置において、ヒータ加熱によって気化する冷媒の量を低減可能な超電導磁石装置および磁気共鳴断層撮影装置を提供できる。 According to the present invention, it is possible to provide a superconducting magnet apparatus and a magnetic resonance tomography apparatus capable of reducing the amount of refrigerant vaporized by heating a heater in a superconducting magnet apparatus adopting a refrigerant circulation type cooling system.
第1の実施形態に係る超電導磁石装置1の断面を模式的に示す図である。It is a figure which shows typically the cross section of the superconducting magnet apparatus 1 which concerns on 1st Embodiment. 第1の実施形態に係る超電導磁石装置1を回路として模式的に示す図である。It is a figure which shows typically the superconducting magnet apparatus 1 which concerns on 1st Embodiment as a circuit. 図1に示された超電導磁石装置1に関し、冷媒循環流路6および冷媒容器8のみを抽出し図示した鳥瞰図である。FIG. 2 is a bird's eye view of the superconducting magnet device 1 shown in FIG. 1 in which only the refrigerant circulation channel 6 and the refrigerant container 8 are extracted and illustrated. 第2の実施形態に係る超電導磁石装置1の断面図を示す。Sectional drawing of the superconducting magnet apparatus 1 which concerns on 2nd Embodiment is shown. 図4に示された超電導磁石装置1に関し、冷媒循環流路6と冷媒容器8のみを取り出し図示した鳥瞰図である。FIG. 5 is a bird's-eye view showing only the refrigerant circulation flow path 6 and the refrigerant container 8 with respect to the superconducting magnet device 1 shown in FIG. 4. 第4の実施形態に係る超電導磁石装置1の特に超電導コイル4とコイルボビン5に関する断面図である。It is sectional drawing regarding the superconducting coil 4 and the coil bobbin 5 of the superconducting magnet apparatus 1 which concerns on 4th Embodiment. は図6に示した超電導磁石装置1のA-A断面図である。FIG. 7 is a cross-sectional view of the superconducting magnet device 1 shown in FIG. 6 taken along the line AA. 図6に示した超電導磁石装置1のB-B断面図であるFIG. 7 is a BB sectional view of the superconducting magnet device 1 shown in FIG. 図6に示した超電導磁石装置1の冷媒循環流路6と冷媒容器8、永久電流スイッチ9のみを取りだした鳥瞰図である。FIG. 7 is a bird's-eye view showing only the refrigerant circulation flow path 6, the refrigerant container 8, and the permanent current switch 9 of the superconducting magnet device 1 shown in FIG. 6. 第5の実施形態に係る超電導磁石装置の断面図を示す。Sectional drawing of the superconducting magnet apparatus which concerns on 5th Embodiment is shown. 磁気共鳴イメージング装置の概要図である。1 is a schematic diagram of a magnetic resonance imaging apparatus.
 次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
(第1の実施形態)
 以下、本発明の第1の実施形態に係る超電導磁石装置1ついて、図1、図2、図3を参照して説明する。図1は第1の実施形態に係る超電導磁石装置1の断面を模式的に示す。
(First embodiment)
Hereinafter, a superconducting magnet device 1 according to a first embodiment of the present invention will be described with reference to FIGS. 1, 2, and 3. FIG. 1 schematically shows a cross section of a superconducting magnet device 1 according to the first embodiment.
 超電導磁石装置1は、真空容器2、真空容器2に内包された輻射シールド3、輻射シールド3に内包された複数の超電導コイル4、超電導コイル4が固定されたコイルボビン5、冷媒循環流路6、冷媒循環流路6に内包された冷媒7、冷媒7を格納する冷媒容器8、永久電流スイッチ9、冷媒容器8に取り付けられた冷凍機12を基本的な構成とする。冷媒7は例えば液体ヘリウムや液体窒素が利用できる。また、図1に示す真空容器2や輻射シールド3の形状は、超電導磁石装置1を構成する支持構造や構成部材が許容される範囲で任意の形状を採ることができる。 The superconducting magnet device 1 includes a vacuum vessel 2, a radiation shield 3 contained in the vacuum vessel 2, a plurality of superconducting coils 4 contained in the radiation shield 3, a coil bobbin 5 to which the superconducting coil 4 is fixed, a refrigerant circulation channel 6, The basic configuration includes a refrigerant 7 contained in the refrigerant circulation channel 6, a refrigerant container 8 storing the refrigerant 7, a permanent current switch 9, and a refrigerator 12 attached to the refrigerant container 8. As the refrigerant 7, for example, liquid helium or liquid nitrogen can be used. Moreover, the shape of the vacuum vessel 2 and the radiation shield 3 shown in FIG. 1 can take any shape as long as the support structure and the constituent members constituting the superconducting magnet device 1 are allowed.
 なお、本実施形態の超電導コイル4の中心軸21は鉛直方向を向いている。中心軸21とは、超電導コイル4の巻線中心軸であって、超電導コイル4の通電時に発生する磁場の方向と一致する。また、冷媒循環流路6は、伝熱部材である熱伝導パス11を介して超電導コイル4とコイルボビン5とに熱的に接触し冷却する構造となっている。そのため熱伝導パス11は、熱伝導率の高い良導体から構成され、具体的には銅の網線などが利用される。また、永久電流スイッチ9も超電導コイル4と同様に冷媒循環流路6によって冷却される。この冷媒循環流路6と熱伝導パス11とから主に本実施例の冷却手段は構成される。 Note that the central axis 21 of the superconducting coil 4 of the present embodiment is oriented in the vertical direction. The central axis 21 is the winding central axis of the superconducting coil 4 and coincides with the direction of the magnetic field generated when the superconducting coil 4 is energized. The refrigerant circulation channel 6 has a structure in which the superconducting coil 4 and the coil bobbin 5 are thermally contacted and cooled via a heat conduction path 11 which is a heat transfer member. Therefore, the heat conduction path 11 is composed of a good conductor having high heat conductivity, and specifically, a copper mesh wire or the like is used. Further, the permanent current switch 9 is also cooled by the refrigerant circulation passage 6 in the same manner as the superconducting coil 4. The refrigerant circulation channel 6 and the heat conduction path 11 mainly constitute the cooling means of this embodiment.
 図2は、超電導磁石装置1を回路として模式的に示す。この図に示されるように、保護抵抗10は超電導コイル4の設置数と同数が備えられ、それぞれの保護抵抗10が各超電導コイル4に対して並列に設置されている。超電導コイル4を励磁する際の電流源である直流電源13や電流遮断器14は真空容器2の外部に設置されている。真空容器2の内部は、超電導コイル4並びに永久電流スイッチ9が設置され、臨界温度以下に保たれ超電導状態となっている。 FIG. 2 schematically shows the superconducting magnet device 1 as a circuit. As shown in this figure, the protective resistors 10 are provided in the same number as the number of superconducting coils 4 installed, and each protective resistor 10 is installed in parallel to each superconducting coil 4. A DC power source 13 and a current breaker 14 that are current sources for exciting the superconducting coil 4 are installed outside the vacuum vessel 2. A superconducting coil 4 and a permanent current switch 9 are installed inside the vacuum vessel 2 and are kept below the critical temperature and are in a superconducting state.
 この図2に示されるような回路において、永久電流を発生させる手順は例えば次のとおりである。はじめに永久電流スイッチ9を開にした状態で直流電源13から超電導コイル4に電流供給する。その後、永久電流スイッチ9を閉にした状態で直流電源13からの供給電流をゼロにして電流遮断器14を開とする。結果、超電導コイル4および永久電流スイッチ9からなる超電導状態の閉回路に電流がほとんど減衰することなく流れ続ける永久電流運転となる。これにより超電導磁石装置1は、長期に渡って磁場を保持することが可能である。なお、永久電流スイッチ9を開にする場合は永久電流スイッチ9を常伝導状態に転移させ、電気抵抗を発生させることを言う。また永久電流スイッチ9を超電導状態に移行させ電気抵抗を極めて低い状態とすることで、永久電流スイッチ9を閉とする。 In the circuit as shown in FIG. 2, for example, the procedure for generating a permanent current is as follows. First, current is supplied from the DC power supply 13 to the superconducting coil 4 with the permanent current switch 9 opened. Thereafter, with the permanent current switch 9 closed, the supply current from the DC power supply 13 is made zero and the current breaker 14 is opened. As a result, the operation is a permanent current operation in which the current continues to flow in the superconducting closed circuit composed of the superconducting coil 4 and the permanent current switch 9 with almost no attenuation. Thereby, the superconducting magnet apparatus 1 can hold a magnetic field for a long time. When the permanent current switch 9 is opened, it means that the permanent current switch 9 is changed to a normal conduction state and an electric resistance is generated. Moreover, the permanent current switch 9 is closed by shifting the permanent current switch 9 to the superconducting state and setting the electrical resistance to a very low state.
 図3は図1に示された超電導磁石装置1に関し、冷媒循環流路6および冷媒容器8のみを抽出したものであって超電導磁石装置1における冷媒の流路の鳥瞰図を示す。この冷媒循環の経路と、経路を冷媒7が循環する仕組みは以下のように説明される。 FIG. 3 shows a bird's-eye view of the refrigerant flow path in the superconducting magnet device 1 with respect to the superconducting magnet device 1 shown in FIG. The refrigerant circulation path and the mechanism by which the refrigerant 7 circulates along the path will be described as follows.
 冷媒循環流路6は、永久電流スイッチ9に熱的に接触した冷媒循環部6d、超電導コイル4と熱的に接触した冷媒循環部6e、冷媒循環部6dおよび冷媒容器8とを接続する冷媒循環部6c(6aおよび6b)とから構成される。 The refrigerant circulation channel 6 is connected to the refrigerant circulation part 6d that is in thermal contact with the permanent current switch 9, the refrigerant circulation part 6e that is in thermal contact with the superconducting coil 4, the refrigerant circulation part 6d, and the refrigerant container 8. It is comprised from the part 6c (6a and 6b).
 冷媒循環部6dおよび6eを流れる冷媒7は、冷媒容器8や冷媒循環部6cにおける冷媒7よりも単位体積あたりの密度が小さい。この密度差によって浮力が生じ、冷媒7は鉛直方向下から上へ向かう力を有し冷媒循環流路6に沿って移動する。なお冷媒循環部6dおよび6eを流れる冷媒7の密度が小さくなる理由は、永久電流スイッチ9および超電導コイル4と熱的に接続されるため、これらの熱源から熱を吸収した冷媒7が気化または温度上昇して単位質量あたりの体積が大きくなるためである。浮力によって移動する冷媒7は冷媒循環流路6に沿って移動した後、冷媒容器8に戻り、冷凍機12によって冷却凝縮または冷却され、再び冷媒循環流路6に供給される。図中の20の符号は、以上で説明した冷媒7の循環方向を示す。 The refrigerant 7 flowing through the refrigerant circulation parts 6d and 6e has a lower density per unit volume than the refrigerant 7 in the refrigerant container 8 and the refrigerant circulation part 6c. Buoyancy is generated by this density difference, and the refrigerant 7 moves along the refrigerant circulation passage 6 with a force from the bottom to the top in the vertical direction. The reason why the density of the refrigerant 7 flowing through the refrigerant circulation parts 6d and 6e is reduced is that the refrigerant 7 thermally absorbs heat from these heat sources because it is thermally connected to the permanent current switch 9 and the superconducting coil 4. This is because the volume per unit mass increases. The refrigerant 7 that moves due to buoyancy moves along the refrigerant circulation channel 6, then returns to the refrigerant container 8, is cooled and condensed or cooled by the refrigerator 12, and is supplied to the refrigerant circulation channel 6 again. Reference numeral 20 in the figure indicates the circulation direction of the refrigerant 7 described above.
 以上のようにループ型サーモサイフォンは冷媒循環部で生じる冷媒7の密度差を利用した冷媒循環方式であるため、冷媒7を循環させるためのポンプ等が不要となる利点がある。また、冷媒7の使用量は冷媒容器8および冷媒循環流路6を循環する流れが作られる程度で十分のため、浸漬冷却方式と比較して冷媒7の使用量は少量であっても冷却状態の保持が可能となる。 As described above, since the loop thermosyphon is a refrigerant circulation system that utilizes the density difference of the refrigerant 7 generated in the refrigerant circulation section, there is an advantage that a pump or the like for circulating the refrigerant 7 is unnecessary. Further, since the amount of the refrigerant 7 used is sufficient to create a flow that circulates through the refrigerant container 8 and the refrigerant circulation passage 6, the cooling state is maintained even if the amount of the refrigerant 7 used is small compared to the immersion cooling method. Can be maintained.
 ただし、上記方式は、永久電流スイッチ9をヒータ等で加熱して常電導転移させる際(開状態とする際)、冷媒7の自然循環を能動的に制御して冷却を停止することが困難である。なぜならヒータの加熱によって永久電流スイッチ9の一部が常伝導転移したとしても、ヒータの加熱が停止されるとその一部は、循環している冷媒7の作用によってすぐに温度が低下し超電導状態に戻ってしまう。そのため、永久電流スイッチ9の開状態を保持するには加熱を継続する必要があった。また、ヒータ加熱で気化した冷媒7による超電導磁石装置1の内部圧力の上昇を避けるため冷媒7を装置外へ放出する必要が生じ、その放出量が浸漬冷却と同様に多くなってしまう。放出量の増大を回避するために伝導冷却方式を用いることも検討される。しかし、永久電流スイッチ9を冷却して閉状態にする際、冷媒の潜熱や顕熱を利用できるループ型サーモサイフォン方式と比較して、冷却時間が長くなりやすい。 However, in the above method, it is difficult to stop the cooling by actively controlling the natural circulation of the refrigerant 7 when the permanent current switch 9 is heated by a heater or the like and is switched to the normal conduction state (when it is opened). is there. This is because even if a part of the permanent current switch 9 is changed to normal conduction by heating of the heater, when the heating of the heater is stopped, the part of the permanent current switch 9 is immediately cooled down by the action of the circulating refrigerant 7 and is in a superconducting state. Will return to. Therefore, it is necessary to continue heating to keep the permanent current switch 9 open. Further, in order to avoid an increase in the internal pressure of the superconducting magnet apparatus 1 due to the refrigerant 7 vaporized by the heater heating, it is necessary to discharge the refrigerant 7 to the outside of the apparatus, and the discharge amount increases as in the case of immersion cooling. It is also considered to use a conduction cooling method in order to avoid an increase in the discharge amount. However, when the permanent current switch 9 is cooled and closed, the cooling time tends to be longer compared to the loop thermosyphon system that can utilize the latent heat or sensible heat of the refrigerant.
 また、冷却手段がループ式サーモサイフォン型ではなく強制循環型であっても、循環に利用されるポンプ等が停止しても冷媒の循環が停止するまではタイムラグは発生する。したがってループ式サーモサイフォン型の冷却と同様に、永久電流スイッチ9が臨界温度以上を保つように一定時間はヒータを加熱し続ける必要がある。 Also, even if the cooling means is not a loop thermosyphon type but a forced circulation type, a time lag occurs until the refrigerant circulation stops even if the pump used for circulation stops. Therefore, similarly to the loop thermosiphon type cooling, it is necessary to continue heating the heater for a certain period of time so that the permanent current switch 9 maintains a critical temperature or higher.
 そこで本実施例の超電導磁石装置1は、冷媒容器8から永久電流スイッチ9と接触した熱伝導パス11の配置箇所までの区間において、冷媒循環流路6を流れる冷媒7を排出もしくは遮蔽して、冷媒7の循環を停止する停止手段を備える。この停止手段の具体的な構想を以降で説明する。なお、以降の説明はループ式サーモサイフォン型を採用した場合を例とするが、強制循環型であっても同様に適用できる。 Therefore, the superconducting magnet device 1 of the present embodiment discharges or shields the refrigerant 7 flowing through the refrigerant circulation channel 6 in the section from the refrigerant container 8 to the arrangement position of the heat conduction path 11 in contact with the permanent current switch 9. Stop means for stopping the circulation of the refrigerant 7 is provided. A specific concept of this stopping means will be described below. In the following description, the case of adopting the loop thermosiphon type is taken as an example, but the same applies to the forced circulation type.
 本実施例の超電導磁石装置1は、冷媒7の循環を停止する停止手段として、図1および図3に示す構造を有する。これらの構造は主に、冷媒循環部6cと、循環抑制手段である加熱ヒータ52と、分岐配管6f、および分岐配管6fの開閉手段とから構成される。また基本的な構造に冷媒貯留部15を加えてもよい。 The superconducting magnet device 1 of the present embodiment has a structure shown in FIGS. 1 and 3 as a stopping means for stopping the circulation of the refrigerant 7. These structures are mainly composed of the refrigerant circulation section 6c, the heater 52 as circulation suppression means, the branch pipe 6f, and the opening / closing means of the branch pipe 6f. Moreover, you may add the refrigerant | coolant storage part 15 to a basic structure.
 冷媒循環部6cは、冷媒循環流路6の一部に設けられた鉛直方向上下に関する蛇行部である。図3に示すように、冷媒循環部6aおよび冷媒循環部6bとから構成される。冷媒循環部6aは、冷媒容器8の底部近傍に接続され、冷媒容器8の底部近傍から鉛直方向上に向かう配管である。また冷媒循環部6bは冷媒循環部6aの上端部から下方に向かう配管である。冷媒循環部6aと冷媒循環部6bとの接続構造は、互いの端部に冷媒貯留部15が設けられ、冷媒循環部6aの上端および冷媒循環部6bの上端が冷媒貯留部15に接続された構造である。具体的には図1に示されるように、冷媒循環部6cの上下折り返し位置に冷媒貯留部15を設けられた構造となる。なお、冷媒貯留部15は、冷媒貯留部15として配管と異なる容器が用いられてもよいし、冷媒貯留部15として別部材を設けずに冷媒循環部6aおよび冷媒循環部6bの端部近傍の直径を拡張し、拡張部同士を接続することで形成してもよい。 The refrigerant circulation portion 6 c is a meandering portion that is provided in a part of the refrigerant circulation passage 6 and that is vertically related to the vertical direction. As shown in FIG. 3, it is comprised from the refrigerant | coolant circulation part 6a and the refrigerant | coolant circulation part 6b. The refrigerant circulation unit 6 a is a pipe that is connected to the vicinity of the bottom of the refrigerant container 8 and that extends upward from the vicinity of the bottom of the refrigerant container 8. Moreover, the refrigerant | coolant circulation part 6b is piping which goes below from the upper end part of the refrigerant | coolant circulation part 6a. In the connection structure between the refrigerant circulation unit 6a and the refrigerant circulation unit 6b, the refrigerant storage unit 15 is provided at each end, and the upper end of the refrigerant circulation unit 6a and the upper end of the refrigerant circulation unit 6b are connected to the refrigerant storage unit 15. Structure. Specifically, as illustrated in FIG. 1, the refrigerant storage unit 15 is provided at the upper and lower folding position of the refrigerant circulation unit 6 c. In addition, the refrigerant | coolant storage part 15 may use a container different from piping as the refrigerant | coolant storage part 15, and does not provide another member as the refrigerant | coolant storage part 15, but the edge vicinity of the refrigerant | coolant circulation part 6a and the refrigerant | coolant circulation part 6b. You may form by expanding a diameter and connecting expansion parts.
 冷媒貯留部15を冷媒循環部と異なる材質で構成する場合、冷媒循環部よりも熱伝導性に優れた材質で作られることが望ましい。冷媒貯留部15は永久電流スイッチ9を開とする際に、加熱ヒータ51によって熱せられ、内部の冷媒7は速やかに蒸発させられる必要がある。したがって銅やアルミによって構成されることが望ましい。なお、冷媒貯留部15と接続される冷媒循環部6cや冷媒容器8は熱伝導率が低い材質、例えばステンレス鋼で構成される。熱伝導率が低い材質で構成することで、冷媒貯留部15が熱せられた場合にも、超電導コイル4に対する熱伝達を低減でき、超電導コイル4の温度を省冷媒で効率的に維持することができる。 When the refrigerant storage unit 15 is made of a material different from that of the refrigerant circulation unit, it is desirable that the refrigerant storage unit 15 be made of a material having higher thermal conductivity than the refrigerant circulation unit. The refrigerant reservoir 15 is heated by the heater 51 when the permanent current switch 9 is opened, and the internal refrigerant 7 needs to be quickly evaporated. Therefore, it is desirable to be made of copper or aluminum. In addition, the refrigerant | coolant circulation part 6c and the refrigerant | coolant container 8 which are connected with the refrigerant | coolant storage part 15 are comprised with a material with low heat conductivity, for example, stainless steel. By constituting with a material having low thermal conductivity, even when the refrigerant reservoir 15 is heated, heat transfer to the superconducting coil 4 can be reduced, and the temperature of the superconducting coil 4 can be efficiently maintained with refrigerant saving. it can.
 また冷媒貯留部15は鉛直方向において、冷媒容器8に収容された冷媒7の液面より低い位置となるように設置される。冷媒貯留部15の内部に充填される冷媒7は、冷媒容器8の内部に収容された冷媒7の自重によって、重力に逆らい冷媒循環部6aを上昇し流入するためである。 In addition, the refrigerant reservoir 15 is installed in a vertical direction so as to be lower than the liquid level of the refrigerant 7 accommodated in the refrigerant container 8. This is because the refrigerant 7 filled in the refrigerant reservoir 15 rises and flows in the refrigerant circulation unit 6 a against gravity due to the dead weight of the refrigerant 7 accommodated in the refrigerant container 8.
 加熱ヒータ51は少なくとも蛇行部の近傍に設けられ、冷媒循環部6cを流れる冷媒7を蒸発させることによって冷媒7が循環できないようにする。加熱ヒータ51の取り付け位置は、図3に示されるような冷媒貯留部15、もしくは冷媒循環部6aもしくは6bとする。冷媒循環部6aや6bに加熱ヒータ51が設けられたとしても、加熱によって生じる気泡は分岐配管6fに向かい冷媒7の循環を停止させるようにはたらく。 The heater 51 is provided at least in the vicinity of the meandering portion, and prevents the refrigerant 7 from circulating by evaporating the refrigerant 7 flowing through the refrigerant circulation portion 6c. The attachment position of the heater 51 is set to the refrigerant | coolant storage part 15 as shown in FIG. 3, or the refrigerant | coolant circulation part 6a or 6b. Even if the heaters 51 are provided in the refrigerant circulation sections 6a and 6b, the bubbles generated by the heating work toward the branch pipe 6f so as to stop the circulation of the refrigerant 7.
 加熱ヒータ51は永久電流スイッチ9を加熱する加熱ヒータ52と同様のタイミングで動作する。したがって電源や導線が加熱ヒータ52と共通化することで、加熱タイミングを容易に同期化でき、構造を簡素化することができる。また、加熱ヒータ51は一般的な電熱ヒータであって、例えばニクロム線ヒータが利用可能である。 The heater 51 operates at the same timing as the heater 52 that heats the permanent current switch 9. Therefore, by sharing the power source and the conductive wire with the heater 52, the heating timing can be easily synchronized, and the structure can be simplified. The heater 51 is a general electric heater, and for example, a nichrome wire heater can be used.
 分岐配管6fは、真空容器2の外部まで達する配管であって、加熱ヒータ51の動作によって蒸発した冷媒7を排出する配管である。また分岐配管6fに冷媒7の液面を検出する手段として圧力センサや温度センサが取り付けられてもよい。永久電流運転下において冷媒7の液面位置(定格状態の液面位置)は、冷媒容器8と分岐配管6fとで同程度なる。分岐配管6fに冷媒7の液面を検出することは次のような利点がある。 The branch pipe 6 f is a pipe that reaches the outside of the vacuum vessel 2 and that discharges the refrigerant 7 evaporated by the operation of the heater 51. A pressure sensor or a temperature sensor may be attached to the branch pipe 6f as means for detecting the liquid level of the refrigerant 7. Under the permanent current operation, the liquid level position (the liquid level position in the rated state) of the refrigerant 7 is approximately the same between the refrigerant container 8 and the branch pipe 6f. Detecting the liquid level of the refrigerant 7 in the branch pipe 6f has the following advantages.
 本実施例の超電導磁石装置1は、ループ型サーモサイフォン式の冷却方式を採用している。そのため、冷媒循環流路6や冷媒貯留部15に気泡がたまると冷媒7の搬送力の元である密度差由来の浮力が効率的に伝達されず、冷媒7の循環が止まる、あるいは効率が落ちてしまう可能性がある。特に本実施例の冷媒循環部6cおよび冷媒貯留部15から構成される蛇行部は、永久電流運転下において熱源が無い。冷媒7は冷媒容器8における冷媒7の密度と冷媒循環部6d内の冷媒7の密度との差から生じる圧力によって搬送される。したがって冷媒7を効率的に循環させるためには、蛇行部における冷媒7の循環効率の低下を抑制し、かつ効率の低下が発生した場合は早急にそれを検知できることが望ましい。そこで分岐配管6fに冷媒7の液面位置を検知する手段や、冷媒7の貯留状態を推定する手段を設けてもよい。 The superconducting magnet device 1 of this embodiment employs a loop thermosyphon cooling system. For this reason, when bubbles accumulate in the refrigerant circulation channel 6 and the refrigerant reservoir 15, the buoyancy derived from the density difference that is the source of the conveying force of the refrigerant 7 is not efficiently transmitted, and the circulation of the refrigerant 7 stops or the efficiency decreases. There is a possibility that. In particular, the meandering part constituted by the refrigerant circulation part 6c and the refrigerant storage part 15 of the present embodiment has no heat source under a permanent current operation. The refrigerant 7 is conveyed by the pressure generated from the difference between the density of the refrigerant 7 in the refrigerant container 8 and the density of the refrigerant 7 in the refrigerant circulation unit 6d. Therefore, in order to efficiently circulate the refrigerant 7, it is desirable to suppress a decrease in the circulation efficiency of the refrigerant 7 in the meandering portion, and to detect it immediately when a decrease in efficiency occurs. Therefore, a means for detecting the liquid level position of the refrigerant 7 and a means for estimating the storage state of the refrigerant 7 may be provided in the branch pipe 6f.
 具体的な手段の候補の一つである温度センサは、定格状態の液面位置よりも低い位置、例えば定格状態で液中に取り付けられることで、温度センサの検出温度が定格状態よりも高くなった場合に液面が低下していることを把握できる。また、圧力センサは、予め定格状態におけるガス圧の情報を取得しておくことで、定格状態にも関わらずそれよりも高いガス圧が計測される場合、過剰な冷媒7の蒸発が発生していることを検知できる。冷媒貯留部15の冷媒7が枯渇している場合は、分岐配管6fから貯留しているガスを排出し、液化した冷媒7を補給することで、冷媒7の量を適切な状態に戻すことができる。 The temperature sensor, which is one of the concrete means candidates, is installed in the liquid at a position lower than the liquid level position in the rated state, for example, in the rated state, so that the detected temperature of the temperature sensor becomes higher than the rated state. It can be seen that the liquid level is lowered. In addition, the pressure sensor obtains information on the gas pressure in the rated state in advance, and if a higher gas pressure is measured in spite of the rated state, excessive evaporation of the refrigerant 7 occurs. Can be detected. When the refrigerant 7 in the refrigerant reservoir 15 is depleted, the amount of the refrigerant 7 can be returned to an appropriate state by discharging the gas stored from the branch pipe 6f and replenishing the liquefied refrigerant 7. it can.
 分岐配管6fの開閉を制御する手段は、例えば図1に示されるようなバルブ61である。バルブ61は真空容器2の外部に設けられ、手動、自動のいずれで操作されてもよい。冷媒7の循環を停止させる場合は、加熱ヒータ51を動作させて冷媒7を蒸発させる。後述する動作によって永久電流スイッチ9を開状態となった後、バルブ61が開放されると気化した冷媒7は外部へ排出される。この排出によって蛇行部に過大な圧力が加わることを防止して冷媒7の循環を停止させることができる。また図1に示されるように分岐配管6fから冷媒容器8へ戻る流路を設け、分岐配管6fで発生する冷媒ガスを再度液化して利用する構成を採用してもよい。冷媒容器8に戻る流路を設けることで、冷媒7の消費量を更に削減することができる。 The means for controlling the opening and closing of the branch pipe 6f is, for example, a valve 61 as shown in FIG. The valve 61 is provided outside the vacuum vessel 2 and may be operated either manually or automatically. When stopping the circulation of the refrigerant 7, the heater 51 is operated to evaporate the refrigerant 7. After the permanent current switch 9 is opened by an operation described later, when the valve 61 is opened, the vaporized refrigerant 7 is discharged to the outside. This discharge can prevent an excessive pressure from being applied to the meandering portion and stop the circulation of the refrigerant 7. Further, as shown in FIG. 1, a configuration may be employed in which a flow path returning from the branch pipe 6f to the refrigerant container 8 is provided and the refrigerant gas generated in the branch pipe 6f is liquefied again and used. By providing the flow path returning to the refrigerant container 8, the consumption amount of the refrigerant 7 can be further reduced.
 以上で説明した本実施例の超電導磁石装置1において、永久電流スイッチ9の開閉は次のように実行される。 In the superconducting magnet device 1 of the present embodiment described above, the permanent current switch 9 is opened and closed as follows.
 永久電流スイッチ9を閉状態から開状態へ切り替える場合は、バルブ61および62が閉じた状態で加熱ヒータ51に通電が実行される。加熱ヒータ51によって蛇行部を循環する冷媒7が気化する。気化した冷媒7または温度上昇により密度が小さくなった冷媒7が浮力を得て、冷媒貯留部15に滞留する。滞留した冷媒7は蛇行部において冷媒7の循環を妨げ、永久電流スイッチ9に向かう冷媒7の循環が停止される。加熱ヒータ51の通電に併せて加熱ヒータ52にも通電が実行され、永久電流スイッチ9と熱的に接触した冷媒循環部6d内の冷媒7が気化または温度上昇し、得られた浮力によって冷媒7は冷媒容器8に戻る。 When switching the permanent current switch 9 from the closed state to the open state, the heater 51 is energized with the valves 61 and 62 closed. The refrigerant 7 circulating through the meandering portion is vaporized by the heater 51. The vaporized refrigerant 7 or the refrigerant 7 whose density has decreased due to the temperature rise obtains buoyancy and stays in the refrigerant reservoir 15. The accumulated refrigerant 7 hinders the circulation of the refrigerant 7 in the meandering portion, and the circulation of the refrigerant 7 toward the permanent current switch 9 is stopped. The heater 52 is energized in conjunction with the energization of the heater 51, the refrigerant 7 in the refrigerant circulation section 6d that is in thermal contact with the permanent current switch 9 vaporizes or rises in temperature, and the resulting buoyancy causes the refrigerant 7 Returns to the refrigerant container 8.
 加熱ヒータ52に対する通電によって、永久電流スイッチ9と冷媒循環部6d内に存在する冷媒7が蒸発し液面高さが速やかに低下する。液面高さが永久電流スイッチ9より低くなった時点で、換言すれば液面高さの位置に液化した冷媒7の液面高さが永久電流スイッチ9と直接または間接的に熱接触する位置よりも低くなった時点で、加熱ヒータ51および加熱ヒータ52への通電は停止されてよい。そのような停止時点では、冷媒循環部6dを介した永久電流スイッチ9の冷却速度は定格状態と比較して低下し、液化した冷媒7による永久電流スイッチ9の冷却が抑制されているため、ヒータ通電による加熱を継続しなくとも永久電流スイッチ9を開状態に保たれるからである。 By energizing the heater 52, the permanent current switch 9 and the refrigerant 7 existing in the refrigerant circulation part 6d evaporate, and the liquid level rapidly decreases. In other words, when the liquid level is lower than the permanent current switch 9, in other words, the position where the liquid level of the refrigerant 7 liquefied at the liquid level is in direct or indirect thermal contact with the permanent current switch 9. When it becomes lower than that, the energization to the heater 51 and the heater 52 may be stopped. At such a stop point, the cooling rate of the permanent current switch 9 via the refrigerant circulation portion 6d is lower than the rated state, and the cooling of the permanent current switch 9 by the liquefied refrigerant 7 is suppressed, so the heater This is because the permanent current switch 9 can be kept open without continuing heating by energization.
 なお、冷媒7の液面高さが十分に低下した後も加熱ヒータ52に対する通電は継続されてもよい。通電が継続されることによって、永久電流スイッチ9の温度も速やかに上昇し開状態に移行することができる。また、図1によれば永久電流スイッチ9および加熱される冷媒循環部6dの部位は、鉛直方向において略同位置となるように配置されている。このような配置関係によって、両構造を1個の加熱ヒータ52でまとめて加熱することができ構成が簡素化される。なお、永久電流スイッチ9および冷媒循環部6dが熱伝導パス11によって接続され、それぞれに対する熱伝導パス11の取り付け位置が鉛直方向で異なっている場合は、それぞれの取り付け位置に加熱ヒータが設けられてもよい。 Note that energization of the heater 52 may be continued even after the liquid level of the refrigerant 7 has sufficiently decreased. By continuing the energization, the temperature of the permanent current switch 9 can also rise quickly and shift to the open state. Further, according to FIG. 1, the part of the permanent current switch 9 and the heated refrigerant circulation portion 6 d are arranged so as to be substantially in the same position in the vertical direction. With such an arrangement relationship, both structures can be heated together by one heater 52, and the configuration is simplified. In addition, when the permanent current switch 9 and the refrigerant circulation part 6d are connected by the heat conduction path 11, and the attachment position of the heat conduction path 11 with respect to each differs in the vertical direction, a heater is provided at each attachment position. Also good.
 また、ループ型サーモサイフォン方式の場合、永久電流スイッチ9の冷媒循環部6dに対する熱的な接続位置および冷媒貯留部15の設置位置は、冷媒容器8の液面高さよりも低くかつ液面高さ近傍であることが望ましい。永久電流運転下において、冷媒容器8、分岐配管6fおよび冷媒循環部6dの液面高さは略同等であって、冷媒7の循環停止の際には分岐配管6fおよび冷媒循環部6dに存在する冷媒7を蒸発させて除く必要がある。したがって冷媒容器8の液面高さに近い位置に、上述した接続位置および設置位置を設けることによって、蒸発させる冷媒7を少量化し、迅速に冷媒7の液面高さを低下させ冷媒7の循環を停止させることができる。 In the case of the loop thermosyphon system, the thermal connection position of the permanent current switch 9 to the refrigerant circulation part 6d and the installation position of the refrigerant storage part 15 are lower than the liquid level height of the refrigerant container 8 and the liquid level height. It is desirable to be in the vicinity. Under the permanent current operation, the liquid level of the refrigerant container 8, the branch pipe 6f, and the refrigerant circulation part 6d is substantially equal, and exists in the branch pipe 6f and the refrigerant circulation part 6d when the circulation of the refrigerant 7 is stopped. It is necessary to evaporate and remove the refrigerant 7. Therefore, by providing the connection position and the installation position described above at a position close to the liquid level of the refrigerant container 8, the amount of the refrigerant 7 to be evaporated can be reduced, and the liquid level of the refrigerant 7 can be quickly reduced to circulate the refrigerant 7. Can be stopped.
 また、分岐配管6fと冷媒容器8との接続部位は冷媒容器8内の冷媒7の液面より高い位置とする。この位置であれば、重力により冷媒7が分岐配管6f内へ逆流してくることを防ぐことが可能である。また、分岐配管6fはステンレス等の熱伝導率が低い材料を採用することで、加熱部位以外の分岐配管6fを通じた熱伝導を抑制し、これによって永久電流スイッチ9が冷却され閉状態になることを避けることが可能となる。なお冷媒循環部6d内の液面調整を迅速に実行するために、冷媒循環部6dを二つの材質で構成してもよい。例えば、加熱ヒータ52が設置される部位をアルミ等の高熱伝導部材で構成し、他の部位をステンレス鋼で構成し、互いが異材継手によって接合されるように構成する。 Further, the connecting portion between the branch pipe 6f and the refrigerant container 8 is set to a position higher than the liquid level of the refrigerant 7 in the refrigerant container 8. At this position, it is possible to prevent the refrigerant 7 from flowing back into the branch pipe 6f due to gravity. Further, the branch pipe 6f employs a material having a low thermal conductivity such as stainless steel, thereby suppressing the heat conduction through the branch pipe 6f other than the heating portion, thereby the permanent current switch 9 is cooled and closed. Can be avoided. In order to quickly adjust the liquid level in the refrigerant circulation part 6d, the refrigerant circulation part 6d may be made of two materials. For example, the part where the heater 52 is installed is made of a high heat conductive member such as aluminum, and the other part is made of stainless steel so that they are joined by a dissimilar material joint.
 なお、上述の例ではループ式サーモサイフォン型の冷却方式を採用した場合を挙げた。ポンプ等を用いて冷媒7を強制的に循環させる方式を採用した場合は、ポンプ等を停止した上で、上記と同様の手順に沿って永久電流スイッチ9を閉状態から開状態へ移行させる。なおポンプ等を停止すると、超電導コイル4に対する冷媒7の循環が停止するため、固体冷媒の蓄熱を利用した冷却や伝導冷却等を併用して、超電導コイル4の冷却を継続するとよい。あるいは互いに独立した冷媒容器8を複数設け、超電導コイル4を冷却する冷媒7の循環と、永久電流スイッチ9を冷却する冷媒7の循環を切り離して構成してもよい。 In the above example, the case where a loop-type thermosiphon-type cooling method is employed has been described. When the method of forcibly circulating the refrigerant 7 using a pump or the like is employed, the permanent current switch 9 is shifted from the closed state to the open state according to the same procedure as described above after stopping the pump or the like. When the pump or the like is stopped, the circulation of the refrigerant 7 with respect to the superconducting coil 4 is stopped. Therefore, the cooling of the superconducting coil 4 may be continued using cooling or conduction cooling using heat storage of the solid refrigerant together. Alternatively, a plurality of independent refrigerant containers 8 may be provided, and the circulation of the refrigerant 7 for cooling the superconducting coil 4 and the circulation of the refrigerant 7 for cooling the permanent current switch 9 may be separated.
 以上、永久電流スイッチ9を閉状態から開状態へ移行する場合について説明した。永久電流スイッチ9を冷却して開状態から閉状態とする場合は、次の手順によって実行される。まず、図1に示すバルブ61を開にして、冷媒貯留部15に滞留していた密度が小さい冷媒7を超電導磁石装置1の外へ排出する。なお、分岐配管6fを介して大気が流入しないように、分岐配管6fの排出側端部とバルブ61との間には逆止弁71が設けられている。 The case where the permanent current switch 9 is shifted from the closed state to the open state has been described above. When the permanent current switch 9 is cooled to change from the open state to the closed state, the following procedure is executed. First, the valve 61 shown in FIG. 1 is opened, and the low-density refrigerant 7 staying in the refrigerant reservoir 15 is discharged out of the superconducting magnet device 1. A check valve 71 is provided between the discharge side end of the branch pipe 6f and the valve 61 so that the atmosphere does not flow through the branch pipe 6f.
 冷媒7の排出によって冷媒貯留部15の内圧が低減し、冷媒容器8に貯留された冷媒7の自重によって生じる圧力がその内圧を上回ると、冷媒7が冷媒容器8から冷媒循環部6aを通って冷媒貯留部15へ流れこむ。流れ込んだ冷媒7によって冷媒貯留部15が十分に冷却されると、冷媒循環部6cは基本的に熱源を持たないため、冷媒7は冷媒容器8に貯留された状態と同程度の密度を維持したまま冷媒循環部6dに流れ込む。 When the internal pressure of the refrigerant reservoir 15 is reduced by the discharge of the refrigerant 7 and the pressure generated by the dead weight of the refrigerant 7 stored in the refrigerant container 8 exceeds the internal pressure, the refrigerant 7 passes from the refrigerant container 8 through the refrigerant circulation unit 6a. It flows into the refrigerant reservoir 15. When the refrigerant reservoir 15 is sufficiently cooled by the refrigerant 7 that has flowed in, the refrigerant circulation unit 6c basically has no heat source, so that the refrigerant 7 maintains the same density as the state stored in the refrigerant container 8. The refrigerant flows into the refrigerant circulation section 6d as it is.
 永久電流スイッチ9は冷媒循環部6dに対する熱源となるため、これによって冷媒7の密度差が生じ、冷媒7の循環が再開する。冷媒循環部6d内部の冷媒液面が永久電流スイッチ9と熱的に接触する位置以上に上昇し保持されることで、永久電流スイッチ9が冷却され始める。なお、永久電流スイッチ9の閉状態を保つ場合、冷媒循環部6cは基本的に熱源を有さないものの輻射熱等の影響を完全に除外することは難しい。遮蔽されず冷媒循環部6aおよび6bに入る熱によって気化した冷媒7が冷媒貯留部15に滞留することで冷媒循環を妨げてしまう。そのような状態が発生することを抑制するために、バルブ61は閉、バルブ62は開としておき、気化した冷媒7が冷媒循環部6gを通じて冷媒容器8へ戻るようにしておくとよい。なお、冷媒循環部6gは、超電導磁石装置1を稼働させる準備段階にて、冷媒容器8へ冷媒7を供給するための流路として利用可能である。また分岐配管6fの大気側末端と同様に、大気流入を防ぐために逆止弁72が設けられる。 Since the permanent current switch 9 serves as a heat source for the refrigerant circulation section 6d, the density difference of the refrigerant 7 is caused thereby, and the circulation of the refrigerant 7 is resumed. The permanent liquid switch 9 starts to be cooled when the liquid level inside the refrigerant circulation section 6d rises and is held above the position where it is in thermal contact with the permanent current switch 9. Note that when the permanent current switch 9 is kept closed, it is difficult to completely eliminate the influence of radiant heat or the like, although the refrigerant circulation portion 6c basically has no heat source. The refrigerant 7 vaporized by the heat entering the refrigerant circulation parts 6 a and 6 b without being shielded stays in the refrigerant storage part 15, thereby preventing refrigerant circulation. In order to suppress the occurrence of such a state, it is preferable that the valve 61 is closed and the valve 62 is opened so that the vaporized refrigerant 7 returns to the refrigerant container 8 through the refrigerant circulation portion 6g. Note that the refrigerant circulation unit 6g can be used as a flow path for supplying the refrigerant 7 to the refrigerant container 8 in a preparation stage in which the superconducting magnet device 1 is operated. A check valve 72 is provided in order to prevent atmospheric inflow, similarly to the atmospheric end of the branch pipe 6f.
 また冷媒7を循環させる方式として強制循環を採用した場合は、上述と同様に冷媒貯留部15に滞留したガス状の冷媒7を排出した後に、ポンプ等を再稼働させればよい。 Further, when forced circulation is adopted as a method of circulating the refrigerant 7, the pump or the like may be restarted after discharging the gaseous refrigerant 7 retained in the refrigerant reservoir 15 as described above.
 このように本実施形態の超電導磁石装置1は、冷媒循環型の超電導磁石装置において冷媒の循環を部分的に停止することで永久電流スイッチ9の開閉を迅速に実行できる。また冷媒貯留部15および蛇行部を備えた冷媒循環部6cを有し、この部分の選択的な加熱によって部分的な循環停止を実行できるため、消費される冷媒7の量は従来と比較して少量にできる。また従来よりも永久電流スイッチ9のヒータ加熱時間を低減することもでき、超電導磁石装置の励消磁における待ち時間の短縮もできる。また、特にループ型サーモサイフォンでは冷媒循環を能動的に制御することが可能となることで、永久電流スイッチ9の開閉に要する時間を浸漬冷却と同等とするという顕著な効果を奏し得る。 As described above, the superconducting magnet device 1 of the present embodiment can quickly open and close the permanent current switch 9 by partially stopping the circulation of the refrigerant in the refrigerant circulation type superconducting magnet device. Moreover, since the refrigerant | coolant storage part 15 and the refrigerant | coolant circulation part 6c provided with the meandering part are included and partial circulation stop can be performed by the selective heating of this part, the quantity of the refrigerant | coolant 7 consumed compared with the past Can be made in small quantities. In addition, the heater heating time of the permanent current switch 9 can be reduced as compared with the prior art, and the waiting time for excitation and demagnetization of the superconducting magnet device can be shortened. In particular, in the loop thermosyphon, since it is possible to actively control the refrigerant circulation, it is possible to achieve a remarkable effect that the time required for opening and closing the permanent current switch 9 is equivalent to that of immersion cooling.
(第2の実施形態)
 図4は、第2の実施形態に係る超電導磁石装置1の断面図を示す。また図5は冷媒循環流路6と冷媒容器8のみを取り出し図示した鳥瞰図である。第2の実施形態は、図1に示す第1の実施形態と比較して、超電導磁石装置1の外へ冷媒7を導く分岐配管6fに更に分岐を設け、ガス冷媒導入手段であるガスボンベ81を取り付け、ガスボンベ81から冷媒貯留部15へ気化した冷媒7を供給可能とした点が異なる。本実施例における冷媒7の循環を停止する停止手段は、主に、冷媒循環部6c、循環抑制手段であるガスボンベ81および分岐配管6fとから構成される。またこれに冷媒貯留部15を加えてもよい。この構造を採用することで、冷媒貯留部15を加熱するヒータを省略でき、真空容器2の内部に収容される部品点数が削減され、構造が簡素化される。
(Second Embodiment)
FIG. 4 shows a cross-sectional view of the superconducting magnet device 1 according to the second embodiment. FIG. 5 is a bird's-eye view showing only the refrigerant circulation channel 6 and the refrigerant container 8 taken out. Compared with the first embodiment shown in FIG. 1, the second embodiment further includes a branch pipe 6 f that leads the refrigerant 7 to the outside of the superconducting magnet device 1, and a gas cylinder 81 that is a gas refrigerant introduction unit is provided. The difference is that the vaporized refrigerant 7 can be supplied from the gas cylinder 81 to the refrigerant reservoir 15. The stop means for stopping the circulation of the refrigerant 7 in this embodiment is mainly composed of the refrigerant circulation portion 6c, a gas cylinder 81 which is a circulation suppression means, and a branch pipe 6f. Moreover, you may add the refrigerant | coolant storage part 15 to this. By adopting this structure, a heater for heating the refrigerant reservoir 15 can be omitted, the number of parts housed in the vacuum container 2 is reduced, and the structure is simplified.
 第2の実施形態に係る超電導磁石装置1において、永久電流スイッチ9を閉状態から開状態へ移行する操作は次のように実行される。まずバルブ61およびバルブ62が閉じられ、次にバルブ63が開放される。バルブ63が開となった後、ガスボンベ81からガス状の冷媒7が分岐配管6fへ導入される。導入されたガス状の冷媒7は、バルブ61およびバルブ62が閉じられているため、分岐配管6fの下方にある冷媒7の液面を押し下げるような圧力を生む。この圧力を導入量によって制御し、冷媒貯留部15から液体の冷媒7が無くなる程度までガス状の冷媒7を導入すると、冷媒循環部6cにおける冷媒7の循環が停止される。以降は第1の実施形態と同様に加熱ヒータ52に電流が供給され、冷媒循環部6dが加熱されることで永久電流スイッチ9は速やかに開状態へ移行する。 In the superconducting magnet device 1 according to the second embodiment, the operation of moving the permanent current switch 9 from the closed state to the open state is performed as follows. First, the valve 61 and the valve 62 are closed, and then the valve 63 is opened. After the valve 63 is opened, the gaseous refrigerant 7 is introduced from the gas cylinder 81 into the branch pipe 6f. The introduced gaseous refrigerant 7 generates a pressure that pushes down the liquid level of the refrigerant 7 below the branch pipe 6f because the valve 61 and the valve 62 are closed. When this pressure is controlled by the introduction amount and the gaseous refrigerant 7 is introduced to the extent that the liquid refrigerant 7 disappears from the refrigerant reservoir 15, the circulation of the refrigerant 7 in the refrigerant circulation unit 6c is stopped. Thereafter, as in the first embodiment, current is supplied to the heater 52, and the refrigerant circulation section 6d is heated, so that the permanent current switch 9 quickly shifts to the open state.
 また永久電流スイッチ9を開状態から閉状態へ移行する際は次の手順が実行される。まずバルブ63が閉じられ、次にバルブ61が開かれる。これによって、分岐配管6fおよび冷媒貯留部15に収容されたガス状態の冷媒7がバルブ61を通って排出される。冷媒7の排出は、分岐配管6fにおける液面と冷媒容器8の液面とが同程度となるまで続く。冷媒7の排出圧が低下し、冷媒貯留部15に液化した冷媒7が充填された時点でバルブ61は締め直される。以降、冷媒循環部6cおよび冷媒貯留部15が十分に冷却され、冷媒容器8における冷媒7の密度と同程度なれば、永久電流スイッチ9を熱源として再び冷媒7の循環が始まる。 Also, when the permanent current switch 9 is shifted from the open state to the closed state, the following procedure is executed. First, the valve 63 is closed, and then the valve 61 is opened. As a result, the gaseous refrigerant 7 accommodated in the branch pipe 6 f and the refrigerant reservoir 15 is discharged through the valve 61. The discharge of the refrigerant 7 continues until the liquid level in the branch pipe 6f and the liquid level of the refrigerant container 8 become approximately the same. The valve 61 is retightened when the discharge pressure of the refrigerant 7 decreases and the refrigerant 7 is filled with the liquefied refrigerant 7. Thereafter, when the refrigerant circulation unit 6c and the refrigerant storage unit 15 are sufficiently cooled and have the same density as the refrigerant 7 in the refrigerant container 8, the circulation of the refrigerant 7 starts again using the permanent current switch 9 as a heat source.
 なお、バルブ63を閉じて以降、バルブ62は開閉いずれの状態であってもよい。ガス状の冷媒7がバルブ61を通って排出される間も、開状態が維持されることで大気中に放出される冷媒7の一部を回収し、冷媒容器8へ戻すことができる。一方。バルブ62が閉状態であれば、ガス状の冷媒7が冷媒容器8へ流れこまない。結果、循環が維持されている期間以上の冷凍機12の出力が求められることは無くなるため、小型の冷凍機であっても超電導磁石装置1を安定的に可動させることができる。 It should be noted that after the valve 63 is closed, the valve 62 may be open or closed. While the gaseous refrigerant 7 is discharged through the valve 61, it is possible to collect a part of the refrigerant 7 released into the atmosphere and return it to the refrigerant container 8 by maintaining the open state. on the other hand. If the valve 62 is closed, the gaseous refrigerant 7 does not flow into the refrigerant container 8. As a result, since the output of the refrigerator 12 over the period during which the circulation is maintained is not required, the superconducting magnet device 1 can be stably moved even with a small refrigerator.
 以上で説明した第2の実施形態に係る超電導磁石装置1であれば、第1の実施形態と同様の効果を得ることができるだけでなく、冷媒7の循環停止に要する時間が、加熱による冷媒7の相変化時間を必要としないため第1の実施形態よりもさらに短縮される。また冷媒7の循環を停止するために、熱を利用する必要が無いため、冷媒循環部6cや冷媒貯留部15を全て熱伝導性の低い部材で構成し、真空容器2の外部からの入熱量を小さくことのみに焦点を当てた設計等を可能とし、設計上の制約条件を緩和できる。 With the superconducting magnet device 1 according to the second embodiment described above, not only can the same effect as in the first embodiment be obtained, but the time required to stop the circulation of the refrigerant 7 can be reduced by the heating of the refrigerant 7. Since this phase change time is not required, the time is further shortened compared with the first embodiment. Further, since it is not necessary to use heat in order to stop the circulation of the refrigerant 7, the refrigerant circulation part 6c and the refrigerant storage part 15 are all constituted by members having low thermal conductivity, and the amount of heat input from the outside of the vacuum vessel 2 It is possible to design with a focus only on reducing the size, and to ease the design constraints.
(第3の実施形態)
 図5は第3の実施形態に係る超電導磁石装置1の断面図を示す。第3の実施形態は、第1の実施形態と比較して、永久電流スイッチ9に熱的に接触した冷媒循環部6dが超電導コイル4と熱的に接触した6eから延長された構造となっている点で異なる。なお、本実施形態は第1の実施形態と同様に加熱ヒータ51を有する構造だが、第2の実施形態のようにガス状の冷媒7を導入する体系としてもよい。本実施例のように冷媒循環部6cおよび冷媒循環部6dを、冷媒循環部6eから分岐させる構造をとることで、永久電流スイッチ9を超電導コイル4の近傍に配置し、真空容器2をはじめとして格納容器全体をコンパクト化することが可能となる。
(Third embodiment)
FIG. 5 shows a cross-sectional view of the superconducting magnet device 1 according to the third embodiment. Compared with the first embodiment, the third embodiment has a structure in which the refrigerant circulation portion 6d that is in thermal contact with the permanent current switch 9 is extended from 6e that is in thermal contact with the superconducting coil 4. Is different. Although this embodiment has a structure having the heater 51 as in the first embodiment, it may have a system in which the gaseous refrigerant 7 is introduced as in the second embodiment. By adopting a structure in which the refrigerant circulation part 6c and the refrigerant circulation part 6d are branched from the refrigerant circulation part 6e as in the present embodiment, the permanent current switch 9 is arranged in the vicinity of the superconducting coil 4, and the vacuum vessel 2 and the like The entire containment vessel can be made compact.
 なお、図5に示される体系は、加熱ヒータ51によって冷媒貯留部15が加熱されると、その熱が冷媒循環部6cを経路として冷媒循環部6eへ伝わりやすくなる。したがって冷媒循環部6aは熱伝導率が低いステンレス鋼材を採用し、冷媒循環部6eに対する入熱量を軽減することが望ましい。そのように構成は、加熱ヒータ51の発熱に由来する超電導コイル4に対する熱負荷を小さくし、超電導磁石装置1の温度安定化に寄与する。 In the system shown in FIG. 5, when the refrigerant reservoir 15 is heated by the heater 51, the heat is easily transmitted to the refrigerant circulation part 6e through the refrigerant circulation part 6c. Therefore, it is desirable to employ a stainless steel material having a low thermal conductivity for the refrigerant circulation portion 6a to reduce the amount of heat input to the refrigerant circulation portion 6e. Such a configuration reduces the thermal load on the superconducting coil 4 derived from the heat generated by the heater 51 and contributes to temperature stabilization of the superconducting magnet device 1.
(第4の実施形態)
 図6は第4の実施形態に係る超電導磁石装置1の断面図であって、特に超電導コイル4とコイルボビン5に関するものを示す。図7は図6に示した超電導磁石装置1のA-A断面図である。図8は図6に示した超電導磁石装置1のB-B断面図である。図9は、図6に示した超電導磁石装置1の冷媒循環流路6と冷媒容器8、永久電流スイッチ9のみを取りだした鳥瞰図である。
(Fourth embodiment)
FIG. 6 is a cross-sectional view of the superconducting magnet device 1 according to the fourth embodiment, and particularly relates to the superconducting coil 4 and the coil bobbin 5. FIG. 7 is a cross-sectional view of the superconducting magnet device 1 shown in FIG. FIG. 8 is a BB cross-sectional view of the superconducting magnet device 1 shown in FIG. FIG. 9 is a bird's eye view in which only the refrigerant circulation flow path 6, the refrigerant container 8, and the permanent current switch 9 of the superconducting magnet apparatus 1 shown in FIG. 6 are taken out.
 第4の実施形態は、第1の実施形態と比較して、超電導コイル4の中心軸21が水平方向を向いている点、および超電導コイル4と熱的に接触する冷媒循環部6eは超電導コイル4と中心軸21を共有するような複数の円弧状の部材として構成される点が異なる。なお図7および図8は示す例のように、本実施例の超電導磁石装置1は、中心軸21に対して垂直な断面を取得した際に、内周面の断面が円または楕円の形状となるように真空容器2が構成され、中心軸21の方向に沿って開放空間を形成することができる。また、真空容器2や輻射シールド3の外周面は、利用形態に応じて任意の形状が採用される。なお、図6に示されるように超電導磁石装置1は中心軸21の方向に向かって複数の超電導コイル4を備える。各超電導コイル4の直径は異なっていてもよい。 The fourth embodiment is different from the first embodiment in that the central axis 21 of the superconducting coil 4 is oriented in the horizontal direction and the refrigerant circulation part 6e that is in thermal contact with the superconducting coil 4 is a superconducting coil. 4 and the central axis 21 are different from each other in that they are configured as a plurality of arcuate members. 7 and 8, the superconducting magnet device 1 according to the present embodiment has a circular or elliptical cross section on the inner peripheral surface when a cross section perpendicular to the central axis 21 is obtained. Thus, the vacuum container 2 is configured, and an open space can be formed along the direction of the central axis 21. Moreover, arbitrary shapes are employ | adopted for the outer peripheral surface of the vacuum vessel 2 or the radiation shield 3 according to a utilization form. As shown in FIG. 6, the superconducting magnet device 1 includes a plurality of superconducting coils 4 in the direction of the central axis 21. The diameter of each superconducting coil 4 may be different.
 第4の実施形態に係る超電導磁石装置1は、超電導コイル4の中心軸21が水平方向を向いているため、冷媒循環部6eの形状が第1から第3の実施形態と異なる。図8および図9が、本実施形態における冷媒循環部6eを示す。冷媒循環部6eは、超電導コイル4の外周曲面に沿うように形成された弧状配管と、中心軸21の方向に冷媒7を循環させるための水平配管とから主に構成される。外周曲面に沿って弧状配管を設けることによって、冷媒循環部6eを流れる冷媒7は超電導コイル4の冷却について集中的に利用され、冷却効率を向上できる。 In the superconducting magnet device 1 according to the fourth embodiment, since the central axis 21 of the superconducting coil 4 faces the horizontal direction, the shape of the refrigerant circulation portion 6e is different from those of the first to third embodiments. 8 and 9 show the refrigerant circulation section 6e in the present embodiment. The refrigerant circulation section 6 e is mainly composed of an arc-shaped pipe formed along the outer peripheral curved surface of the superconducting coil 4 and a horizontal pipe for circulating the refrigerant 7 in the direction of the central axis 21. By providing the arc-shaped pipe along the outer peripheral curved surface, the refrigerant 7 flowing through the refrigerant circulating portion 6e is intensively used for cooling the superconducting coil 4, and the cooling efficiency can be improved.
 なお、弧状配管の配置は、超電導コイルの外周に沿う態様には限られない。構造的に許容されるのであれば内周面に沿うように構成されてもよく、その場合、例えばコイルボビン5を貫くような熱伝導パス11を設けることで超電導コイル4が冷却される。また弧状配管が、超電導コイル4と中心軸21の方向において異なる位置に設けられてもよい。例えば図6におけるA-A線位置に弧状配管もしくは直管が配置されてもよい。この場合もコイルボビン5を貫くように熱伝導パス11を設けることで超電導コイル4は冷却される。このように、外周曲面に沿わないような配管構造は、中心軸21に対して真空容器2の内部構造が径方向に拡大することを抑制し、超電導磁石装置1を小型化する上で有用である。 In addition, arrangement | positioning of arc-shaped piping is not restricted to the aspect in alignment with the outer periphery of a superconducting coil. If it is structurally acceptable, it may be configured along the inner peripheral surface. In this case, for example, the superconducting coil 4 is cooled by providing a heat conduction path 11 penetrating the coil bobbin 5. Arc-shaped pipes may be provided at different positions in the direction of the superconducting coil 4 and the central axis 21. For example, an arcuate pipe or a straight pipe may be arranged at the position AA in FIG. Also in this case, the superconducting coil 4 is cooled by providing the heat conduction path 11 so as to penetrate the coil bobbin 5. As described above, the piping structure that does not follow the outer peripheral curved surface is useful for suppressing the internal structure of the vacuum vessel 2 from expanding in the radial direction with respect to the central shaft 21 and miniaturizing the superconducting magnet device 1. is there.
 また、このような構造をとることで第1の実施形態と同様の効果を得ることができるとともに、図11(a)に示すように中心軸21が水平方向を向いた磁気共鳴断層撮像装置(水平型磁気共鳴イメージング装置、水平型のMRI装置)に超電導磁石装置1を適用可能となる。図11の(a)は、水平型のMRI装置100の概要図である。 Further, by adopting such a structure, the same effect as that of the first embodiment can be obtained, and a magnetic resonance tomography apparatus (with the central axis 21 oriented in the horizontal direction as shown in FIG. 11A) ( The superconducting magnet apparatus 1 can be applied to a horizontal magnetic resonance imaging apparatus and a horizontal MRI apparatus. FIG. 11A is a schematic diagram of a horizontal MRI apparatus 100.
 MRI装置は、撮像に際して静的かつ強力な磁場(静磁場)を必要とし、この静磁場を発生させるコンポーネントとして超電導磁石装置が利用される。本実施例の超電導磁石装置1は、この静磁場を発生させる装置(静磁場発生装置)として利用できる。従来のMRI装置における静磁場発生装置は液体ヘリウムによる浸漬冷却方式を採用しているため、超電導磁石の励消磁に伴うヘリウムの消費量が膨大であった。一方、本実施形態の超電導磁石装置1を適用したMRI装置100は、冷媒7の使用量が浸漬冷却と比較して顕著に少量で済み、かつ消費量を原則として冷媒貯留部15の容積分に抑制することもできる。 The MRI apparatus requires a static and strong magnetic field (static magnetic field) for imaging, and a superconducting magnet apparatus is used as a component for generating the static magnetic field. The superconducting magnet device 1 of the present embodiment can be used as a device (static magnetic field generator) that generates this static magnetic field. Since the static magnetic field generator in the conventional MRI apparatus employs an immersion cooling method using liquid helium, the consumption of helium accompanying energization and demagnetization of the superconducting magnet is enormous. On the other hand, in the MRI apparatus 100 to which the superconducting magnet apparatus 1 of the present embodiment is applied, the amount of the refrigerant 7 used is significantly smaller than that of the immersion cooling, and the consumption amount is in principle the volume of the refrigerant reservoir 15. It can also be suppressed.
(第5の実施形態)
 図10は、第5の実施形態に係る超電導磁石装置1の断面図を示す。第5の実施形態は第1の実施形態と比較して、超電導コイル4に熱的に接触する冷媒循環部6eを複数設け、中心軸21と直交して真空容器2および輻射シールド3によって開口部22が形成される点で異なる。
(Fifth embodiment)
FIG. 10 is a cross-sectional view of the superconducting magnet device 1 according to the fifth embodiment. Compared with the first embodiment, the fifth embodiment is provided with a plurality of refrigerant circulation portions 6 e that are in thermal contact with the superconducting coil 4, and is opened by the vacuum vessel 2 and the radiation shield 3 perpendicular to the central axis 21. The difference is that 22 is formed.
 このような構造をとることで第1の実施形態と同様の効果が得ることができるとともに、中心軸21が垂直方向を向いた磁気共鳴断層撮像装置(垂直型磁気共鳴イメージング装置、垂直型のMRI装置)に超電導磁石装置1を適用可能となる。図11(b)は、垂直型のMRI装置100の概要図である。この場合も本実施形態の超電導磁石装置1を適用したMRI装置100は、冷媒7の使用量が浸漬冷却と比較して顕著に少量で済み、かつ消費量を原則として冷媒貯留部15の容積分に抑制することもできる。 By adopting such a structure, the same effects as those of the first embodiment can be obtained, and a magnetic resonance tomography apparatus (vertical magnetic resonance imaging apparatus, vertical MRI with the central axis 21 oriented in the vertical direction) can be obtained. The superconducting magnet device 1 can be applied to the device. FIG. 11B is a schematic diagram of the vertical MRI apparatus 100. Also in this case, the MRI apparatus 100 to which the superconducting magnet apparatus 1 of the present embodiment is applied requires a remarkably small amount of the refrigerant 7 to be used as compared with the immersion cooling, and the consumption amount is in principle the volume of the refrigerant reservoir 15. It can also be suppressed.
 以上、本発明に関し複数の実施形態を例に挙げて説明した。ただし本発明はこれらの実施形態に限られるものではなく、発明の要旨を越えない範囲において、構造や材質を変更、追加、削除してよいことは言うまでもない。また、上述の実施例では、冷媒7として液体ヘリウムを挙げているが、超電導コイル4が高温超伝導線材で構成されている場合などは、液体窒素等を用いてよい。また冷媒循環型の冷却方式と伝導冷却方式を組み合わせてもよい。また本実施例の超電導磁石装置1が有する冷却システムは、先に挙げたMRI装置以外の分野として、例えば加速器用超電導磁石や、粒子線治療装置の超電導回転ガントリ、超電導フライホール、超電導バルク体などの超電導状態を維持することが求められる機器、部材の全般に適用することができる。 The present invention has been described above by taking a plurality of embodiments as examples. However, the present invention is not limited to these embodiments, and it goes without saying that the structure and material may be changed, added, or deleted without departing from the scope of the invention. In the above-described embodiment, liquid helium is used as the refrigerant 7. However, when the superconducting coil 4 is composed of a high-temperature superconducting wire, liquid nitrogen or the like may be used. A refrigerant circulation type cooling method and a conduction cooling method may be combined. Further, the cooling system of the superconducting magnet apparatus 1 of the present embodiment includes, for example, a superconducting magnet for an accelerator, a superconducting rotating gantry for a particle beam therapy apparatus, a superconducting flyhole, a superconducting bulk body, etc. It can be applied to all devices and members that are required to maintain the superconducting state.
 1             超電導磁石装置(静磁場発生装置)
 2             真空容器
 3             輻射シールド
 4             超電導コイル
 5             コイルボビン
 6             冷媒循環流路(冷却手段)
 6a、6b、6c 冷媒循環部(蛇行部)(停止手段)
 6d、6e、6g 冷媒循環部
 6f           分岐配管(停止手段)
 7             冷媒
 8             冷媒容器(冷却手段)
 9             永久電流スイッチ
 10           保護抵抗
 11           熱伝導パス(伝熱部材)(冷却手段)
 12           冷凍機
 13           直流電源
 14           電流遮断器
 15           冷媒貯留部(蛇行部)(停止手段)
 20           冷媒の循環方向
 21           中心軸
 22           開口部
 51、52     加熱ヒータ(加熱用ヒータ)(循環抑制手段)(停止手段)
 61、62、63 バルブ
 71、72     逆止弁
 81           ガスボンベ(ガス冷媒導入手段)(循環抑制手段)(停止手段)
 100         MRI装置(磁気共鳴断層撮影装置)
1 Superconducting magnet device (static magnetic field generator)
2 Vacuum container 3 Radiation shield 4 Superconducting coil 5 Coil bobbin 6 Refrigerant circulation channel (cooling means)
6a, 6b, 6c Refrigerant circulation part (meandering part) (stopping means)
6d, 6e, 6g Refrigerant circulation part 6f Branch piping (stopping means)
7 Refrigerant 8 Refrigerant container (cooling means)
9 Permanent current switch 10 Protection resistance 11 Heat conduction path (heat transfer member) (cooling means)
12 Refrigerator 13 DC power supply 14 Current breaker 15 Refrigerant storage part (meandering part) (stop means)
20 Refrigerant circulation direction 21 Central axis 22 Opening 51, 52 Heating heater (heating heater) (circulation suppression means) (stopping means)
61, 62, 63 Valve 71, 72 Check valve 81 Gas cylinder (gas refrigerant introduction means) (circulation suppression means) (stop means)
100 MRI system (magnetic resonance tomography)

Claims (10)

  1.  超電導コイルと、
     前記超電導コイルに接続された永久電流スイッチと、
     前記超電導コイルおよび前記永久電流スイッチを冷却し、流路を冷媒が循環する冷媒循環型の冷却手段と、
     を少なくとも有する超電導磁石装置であって、
     前記冷却手段は少なくとも、
     液化した冷媒を貯留する冷媒容器と、前記冷媒を循環させる冷媒循環流路と、前記冷媒循環流路と前記超電導コイルおよび前記永久電流スイッチとを熱的に接触させる伝熱部材と、
     を有し、
     前記冷媒容器から前記永久電流スイッチと接触した前記伝熱部材の配置箇所までの区間において、前記冷媒循環流路を流れる前記冷媒の循環を停止する停止手段を有する
     超電導磁石装置。
    A superconducting coil;
    A permanent current switch connected to the superconducting coil;
    Refrigerant circulation type cooling means for cooling the superconducting coil and the permanent current switch and circulating a refrigerant through the flow path;
    A superconducting magnet device having at least
    The cooling means is at least
    A refrigerant container for storing the liquefied refrigerant; a refrigerant circulation passage for circulating the refrigerant; a heat transfer member that thermally contacts the refrigerant circulation passage, the superconducting coil, and the permanent current switch;
    Have
    A superconducting magnet apparatus having stop means for stopping circulation of the refrigerant flowing through the refrigerant circulation passage in a section from the refrigerant container to an arrangement position of the heat transfer member in contact with the permanent current switch.
  2.  請求項1に記載の超電導磁石装置であって、
     前記停止手段は少なくとも、
     前記冷媒循環流路に形成された鉛直方向に関して上下に蛇行する少なくとも一つの蛇行部と、
     前記蛇行部に設けられた循環抑制手段と、
     前記蛇行部から分岐して前記超電導磁石装置の外部まで連通した分岐配管と、
     を構成に有する
     超電導磁石装置。
    The superconducting magnet device according to claim 1,
    The stopping means is at least
    At least one meandering portion that meanders up and down in the vertical direction formed in the refrigerant circulation channel;
    A circulation suppression means provided in the meandering portion;
    A branch pipe branched from the meandering portion and communicating to the outside of the superconducting magnet device;
    A superconducting magnet device having the structure.
  3.  請求項2に記載の超電導磁石装置であって、
     前記循環抑制手段として機能する加熱用ヒータを備え、
     前記加熱用ヒータは前記蛇行部を流れる前記冷媒を蒸発させて前記冷媒の循環を遮蔽する
     超電導磁石装置。
    The superconducting magnet device according to claim 2,
    A heating heater that functions as the circulation suppressing means;
    The heating heater is a superconducting magnet device that evaporates the refrigerant flowing through the meandering portion and shields the circulation of the refrigerant.
  4.  請求項2または請求項3に記載の超電導磁石装置であって、
     前記循環抑制手段として機能するガス状態の前記冷媒を前記蛇行部に導入するガス冷媒導入手段を備え、
     前記ガス冷媒導入手段は、前記蛇行部にガス状態の前記冷媒を導入し、前記蛇行部を流れる前記冷媒の循環を遮蔽する
     超電導磁石装置。
    The superconducting magnet device according to claim 2 or 3, wherein
    Gas refrigerant introduction means for introducing the refrigerant in a gas state functioning as the circulation suppression means into the meandering portion;
    The superconducting magnet device, wherein the gas refrigerant introduction means introduces the refrigerant in a gas state into the meandering portion and shields circulation of the refrigerant flowing through the meandering portion.
  5.  請求項4に記載の超電導磁石装置であって、
     前記ガス冷媒導入手段は、前記分岐配管に接続されて前記蛇行部まで接続される
     超電導磁石装置。
    The superconducting magnet device according to claim 4,
    The superconducting magnet device, wherein the gas refrigerant introducing means is connected to the branch pipe and connected to the meandering portion.
  6.  請求項2または請求項3に記載の超電導磁石装置であって、
     前記冷媒循環流路は、前記蛇行部の上下方向折り返し位置に冷媒貯留部を有し、
     前記循環抑制手段および前記分岐配管は前記冷媒貯留部に設けられる
     超電導磁石装置。
    The superconducting magnet device according to claim 2 or 3, wherein
    The refrigerant circulation flow path has a refrigerant storage part at a vertical folding position of the meandering part,
    The circulation suppressing means and the branch pipe are superconducting magnet devices provided in the refrigerant reservoir.
  7.  請求項1から請求項3のいずれか1項に記載の超電導磁石装置であって、
     前記分岐配管から前記超電導コイルが収容された真空容器の外部を経由して前記冷媒容器に通じる流路が設けられている
     超電導磁石装置。
    The superconducting magnet device according to any one of claims 1 to 3,
    A superconducting magnet apparatus, wherein a flow path is provided from the branch pipe to the refrigerant container via the outside of a vacuum container in which the superconducting coil is accommodated.
  8.  請求項1から請求項3のいずれか1項の超電導磁石装置であって、
     前記超電導コイルの中心軸は鉛直方向を向いている
     超電導磁石装置。
    The superconducting magnet device according to any one of claims 1 to 3,
    A superconducting magnet device in which a central axis of the superconducting coil is oriented in a vertical direction.
  9.  請求項1から請求項3のいずれか1項に記載の超電導磁石装置であって、
     前記超電導コイルの中心軸は水平方向を向いている
     超電導磁石装置。
    The superconducting magnet device according to any one of claims 1 to 3,
    A superconducting magnet device in which the central axis of the superconducting coil is oriented horizontally.
  10.  請求項1から請求項3のいずれか1項に記載の超電導磁石装置を静磁場発生装置として備える磁気共鳴断層撮影装置。 A magnetic resonance tomography apparatus comprising the superconducting magnet device according to any one of claims 1 to 3 as a static magnetic field generator.
PCT/JP2017/020897 2016-06-30 2017-06-06 Superconducting magnet device and magnetic resonance tomographic imaging device WO2018003420A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-129542 2016-06-30
JP2016129542A JP6655487B2 (en) 2016-06-30 2016-06-30 Superconducting magnet device

Publications (1)

Publication Number Publication Date
WO2018003420A1 true WO2018003420A1 (en) 2018-01-04

Family

ID=60786319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020897 WO2018003420A1 (en) 2016-06-30 2017-06-06 Superconducting magnet device and magnetic resonance tomographic imaging device

Country Status (2)

Country Link
JP (1) JP6655487B2 (en)
WO (1) WO2018003420A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019239650A1 (en) * 2018-06-15 2019-12-19 株式会社日立製作所 Superconducting electromagnet device
US11651919B2 (en) 2019-03-22 2023-05-16 Koninklijke Philips N.V. System for controlling temperature of persistent current switch
CN116564643A (en) * 2023-07-10 2023-08-08 苏州八匹马超导科技有限公司 Superconducting magnet device, ultralow temperature system and cooling method of superconducting magnet device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6556414B1 (en) * 2018-04-09 2019-08-07 三菱電機株式会社 Superconducting magnet device
WO2019198266A1 (en) * 2018-04-09 2019-10-17 三菱電機株式会社 Superconducting magnet device
JP7280571B2 (en) * 2019-09-20 2023-05-24 住友電気工業株式会社 Persistent current switch and superconducting device
CN115762953B (en) * 2023-01-10 2023-06-02 苏州八匹马超导科技有限公司 Superconducting magnet cooling device and superconducting magnet equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214588A (en) * 1985-03-20 1986-09-24 Hitachi Ltd Superconducting apparatus
JPS63283437A (en) * 1987-05-11 1988-11-21 Hitachi Ltd Superconductive battery
JP2009246231A (en) * 2008-03-31 2009-10-22 Toshiba Corp Cryogenic cooling control apparatus and method of controlling the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214588A (en) * 1985-03-20 1986-09-24 Hitachi Ltd Superconducting apparatus
JPS63283437A (en) * 1987-05-11 1988-11-21 Hitachi Ltd Superconductive battery
JP2009246231A (en) * 2008-03-31 2009-10-22 Toshiba Corp Cryogenic cooling control apparatus and method of controlling the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019239650A1 (en) * 2018-06-15 2019-12-19 株式会社日立製作所 Superconducting electromagnet device
US11651919B2 (en) 2019-03-22 2023-05-16 Koninklijke Philips N.V. System for controlling temperature of persistent current switch
CN116564643A (en) * 2023-07-10 2023-08-08 苏州八匹马超导科技有限公司 Superconducting magnet device, ultralow temperature system and cooling method of superconducting magnet device
CN116564643B (en) * 2023-07-10 2023-09-26 苏州八匹马超导科技有限公司 Method for cooling superconducting magnet device

Also Published As

Publication number Publication date
JP2018006493A (en) 2018-01-11
JP6655487B2 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
WO2018003420A1 (en) Superconducting magnet device and magnetic resonance tomographic imaging device
JP5852425B2 (en) Superconducting electromagnet apparatus, cooling method thereof, and magnetic resonance imaging apparatus
US5461873A (en) Means and apparatus for convectively cooling a superconducting magnet
US7764153B2 (en) Magnetic field generator
JP2010245524A (en) Apparatus and method of cooling superconducting magnetic assembly
JP4691350B2 (en) Low eddy current cryogen circuit for superconducting magnets.
US20160189841A1 (en) Cooling system and method for a magnetic resonance imaging device
JP6139784B2 (en) Method and apparatus for controlling a cooling loop for a superconducting magnet system in response to a magnetic field
US20160116555A1 (en) Superconducting Magnet, MRI Apparatus and NMR Apparatus
KR20140056145A (en) Cooling device for a super conductor and super conducting synchronous machine
JP5304479B2 (en) Heat transport device, electronic equipment
JP6647918B2 (en) Superconducting electromagnet apparatus and magnetic resonance imaging apparatus
JP4814630B2 (en) Superconducting magnet system
ES2945579T3 (en) Systems and procedures for cooling a superconducting switch using double cooling paths
JP5833284B2 (en) Cooling system
JP6491828B2 (en) Superconducting magnet system
JP2009516381A (en) Superconducting magnet system
KR20170053691A (en) Arrangement for cryogenic cooling
JP2010101580A (en) Cryogenic refrigerant recondensing device and superconducting magnet device
JP2021510931A (en) Superconducting magnet with thermal battery
JP2017069358A (en) Super conducting magnet device
WO2019239650A1 (en) Superconducting electromagnet device
WO2014155476A1 (en) Superconducting magnet device
Guiping et al. Investigation of effects of auxiliary measures for startup of loop heat pipes
JP2018010947A (en) Permanent current switch and superconducting magnet device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819785

Country of ref document: EP

Kind code of ref document: A1