WO2019239650A1 - Superconducting electromagnet device - Google Patents

Superconducting electromagnet device Download PDF

Info

Publication number
WO2019239650A1
WO2019239650A1 PCT/JP2019/008439 JP2019008439W WO2019239650A1 WO 2019239650 A1 WO2019239650 A1 WO 2019239650A1 JP 2019008439 W JP2019008439 W JP 2019008439W WO 2019239650 A1 WO2019239650 A1 WO 2019239650A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
refrigerant
coil
container
superconducting coil
Prior art date
Application number
PCT/JP2019/008439
Other languages
French (fr)
Japanese (ja)
Inventor
学 青木
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019239650A1 publication Critical patent/WO2019239650A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/81Containers; Mountings

Definitions

  • the present invention relates to a superconducting electromagnet apparatus.
  • the superconducting electromagnet device is composed of a superconducting coil and a permanent current switch installed in parallel to the superconducting coil, and supplies the current from the exciting power source to the superconducting coil with the permanent current switch open, and then closes the permanent current switch. In this state, the current supplied from the exciting power supply is reduced to zero, so that a permanent current operation in which the current continues to flow through the superconducting closed circuit composed of the superconducting coil and the permanent current switch with almost no attenuation is obtained. Thereby, the superconducting electromagnet apparatus can hold the magnetic field for a long time.
  • a phenomenon called quench is also known as a phenomenon in which the superconducting coil loses the superconducting state due to some abnormality.
  • mechanical disturbance generated in the superconducting coil is included in one of the factors through experiments and the like. That is, when a temperature rise exceeding the critical temperature occurs in the superconducting member constituting the superconducting coil due to mechanical disturbance, more specifically, a part of the superconducting coil undergoes normal conducting transition due to the mechanical disturbance, and at that site. There may be a case where Joule heat generation exceeds the cooling capacity of the cooling means. In this case, the normal conducting region is expanded, and the magnetic energy in the superconducting coil is consumed as thermal energy in the normal conducting region, and as a result, the superconducting coil is in the normal conducting transition and cannot maintain the magnetic field.
  • JP 2009-188065 A Japanese Patent Application Laid-Open No. 06-342721
  • a superconducting electromagnet apparatus that employs a conductive cooling system or an indirect cooling system has the advantage of reducing the amount of helium used. However, compared with immersion cooling, it is less susceptible to frictional heat generated by the displacement of the superconducting coil due to electromagnetic force when energized and the release of thermal energy due to mechanical disturbances such as cracking of the resin that fixes the superconducting wire. The degree is small.
  • the heat capacity per unit volume of liquid helium in a cryogenic region of 5K or less is larger than that of metal, and is about 600 times that of oxygen-free copper, for example. This fact means that when the same mechanical disturbance occurs, the temperature increase in the conduction cooling method or the indirect cooling method tends to increase in principle with respect to the temperature increase in the immersion cooling method.
  • the conventional superconducting electromagnet apparatus has a strong connection between the amount of refrigerant used and the cooling performance, and it has been difficult to achieve both reduction of the refrigerant usage fee and maintenance of the cooling performance.
  • a main object of the present invention is to provide a novel superconducting electromagnet cooling system and a superconducting electromagnet apparatus using the same.
  • the present invention provides a vacuum vessel, a radiation shield contained in the vacuum vessel, a plurality of superconducting coils contained in the radiation shield, and a coil vessel that houses the superconducting coil
  • a superconducting electromagnet apparatus comprising: the coil container; a refrigerant container that stores the refrigerant; a refrigerant pipe that communicates the coil container and the refrigerant container; a trap member that is supplied with refrigerant from the refrigerant pipe; and the refrigerant
  • a cooling system for a superconducting coil including a refrigerator provided in the container, wherein the trap member is provided between the inner wall of the coil container and the surface of the superconducting coil.
  • FIG. 1 schematically shows a cross section of the superconducting electromagnet apparatus 1 according to the first embodiment.
  • the main elements constituting the superconducting electromagnet apparatus 1 include a vacuum vessel 2, a radiation shield 3 contained in the vacuum vessel 2, a coil vessel 11 contained in the radiation shield 3, and a superconducting coil 4 contained in the coil vessel 11. Can be mentioned.
  • the superconducting coil 4 in this embodiment has a central axis 21 corresponding to the center line of the coil winding oriented in the vertical direction.
  • the central axis 21 of the superconducting coil 4 may be oriented in the horizontal direction, and there is an opening 24 that penetrates the vacuum vessel 2 and the radiation shield 3.
  • a plurality of vacuum containers 2 and coil containers 11 may be provided, and the superconducting coils 4 may be provided according to the number of them.
  • a plurality of superconducting coils 4 may be provided inside one coil container 11. In the example shown in FIG. 1, two superconducting coils 4 are housed in one coil container 11 to constitute one superconducting electromagnet, and the superconducting electromagnet apparatus 1 is provided with four superconducting magnets.
  • the superconducting electromagnet apparatus 1 when applied as a static magnetic field generation source of a magnetic resonance imaging apparatus, a space for inserting a subject is changed by changing the arrangement and structure of the vacuum vessel 2 and a refrigerant pipe 6 described later. It is good to form.
  • a trap member 5 that temporarily traps the refrigerant and a refrigerant pipe 6 that is a refrigerant circulation channel are provided.
  • the trap member 5 is made of a good thermal conductor (for example, aluminum), and is placed so as to face the inner diameter surface of the superconducting coil 4 as shown in the figure.
  • the trap member 5 is provided with a gap through which liquid helium permeates, a groove or a dent that stays in the interior or surface of the trap member 5.
  • the trap member 5 can adopt a porous shape such as a porous member, or a slit or groove shape provided along the circumferential direction of the superconducting coil 4 and can trap the refrigerant. Any form can be used.
  • the refrigerant pipe 6 is provided so that the refrigerant is supplied to the trap member 5.
  • the refrigerant pipe 6 includes an introduction path for introducing the refrigerant into the coil container 11 and a discharge path for discharging the refrigerant from the coil container 11, and has a refrigerant pipe 6 corresponding to both flow paths. This constitutes the refrigerant circulation path.
  • the refrigerant pipe 6 connected from the lower side in the vertical direction of the coil container 11 may pass through the introduction path and the refrigerant pipe 6 connected from the upper side of the coil container 11. That is, the expressions “introduction path” and “discharge path” are names that are simply called from the main circulation direction of the refrigerant.
  • the refrigerant pipe 6 is connected to a refrigerant container 31 that stores the refrigerant, and basically, the refrigerant circulation path is configured by the refrigerant container 31, the refrigerant pipe 6, and the coil container 11.
  • the refrigerant container 31 is provided with the refrigerator 12 so that the temperature of the refrigerant circulating by the refrigerator 12 is maintained, while the vaporized refrigerant is liquefied again.
  • a permanent current switch 9 may be installed in the refrigerant container 11 as shown in FIG. By installing the permanent current switch 9 so as to be immersed in the refrigerant stored in the refrigerant container 31, it is possible to stabilize the circuit through which the permanent current flows. Note that the permanent current switch 9 may not be installed in the case of not operating in the permanent current mode, for example, in the case of the power supply type.
  • the internal space of the refrigerant container 31 is not limited to a permanent current switch, an energization cable for drawing current from the outside during excitation, a pressure sensor for measuring the internal pressure of the refrigerant container 31, and a temperature monitoring function.
  • a temperature sensor or the like may be provided.
  • the superconducting electromagnet apparatus 1 is further connected to an external communication pipe 32 for supplying or discharging the refrigerant from the outside to the refrigerant circulation system including the refrigerant container 31, the refrigerant pipe 6 and the coil container 11. Is done.
  • the supply and discharge pipes may be common or may be provided as individual pipes depending on their roles.
  • the external communication pipe 32 is provided so as to penetrate the vacuum vessel 2 and the radiation shield 3 as shown in FIG.
  • the external communication pipe 32 is provided with a valve 72 and a valve 73 so that the connection between the refrigerant container 11 and the external space can be switched as necessary.
  • the external communication pipe 32 may be configured to be connected to the refrigerant pipe 6 connected to the coil container 11 or to be connected to the coil container 11. Since the external communication pipe 32 has a structure that connects a cryogenic environment and a room temperature environment, it is preferable to use a member having low thermal conductivity so that heat penetration through the pipe is minimized.
  • FIG. 2 is a schematic diagram of a circuit configuration of the superconducting electromagnet apparatus 1.
  • the superconducting electromagnet apparatus 1 includes eight superconducting coils 4, and these superconducting coils 4 are connected in series. Protection resistors 10 are connected in parallel to these superconducting coils 4. In the example shown in FIG. 2, one protective resistor 10 is provided in parallel to the four superconducting coils 4 connected in series, so that the magnetic energy of the superconducting coil 4 can be consumed as needed. Consists of.
  • the superconducting coil 4 and the permanent current switch 9 constitute a closed circuit.
  • the permanent current switch 9 is also formed of a superconducting member in the same manner as the superconducting coil 4 and can be kept at a critical temperature or less to be in a superconducting state.
  • an excitation power source 13 and a current breaker 14 are installed outside the vacuum vessel 2.
  • the following steps are executed to energize a current in a superconducting circuit composed of the superconducting coil 4 and the permanent current switch 9.
  • the electric circuit breaker 14 is closed, and current is supplied from the excitation power supply 13 to the superconducting coil 4.
  • the heating of the permanent current switch 9 is then stopped and cooled.
  • the cooled permanent current switch 9 transitions to the superconducting state and becomes a state where the electric resistance is minimized (closed state)
  • the current supplied from the excitation power supply 13 is subsequently made zero and the current breaker 14 is opened.
  • the operation is a permanent current operation in which the current continues to flow in the superconducting closed circuit including the superconducting coil 4 and the permanent current switch 9 with almost no attenuation.
  • the superconducting electromagnet apparatus 1 can hold a magnetic field for a long time.
  • FIG. 3 is an enlarged view of a part of the schematic cross-sectional view of the apparatus centering on the superconducting coil 4 of the superconducting electromagnet apparatus 1.
  • the superconducting coil 4 is cooled while being accommodated in the coil container 11, and the conducting wire (superconducting wire 34) that supplies current to the superconducting coil 4 is also cooled. That is, the superconducting wire 34 is drawn into the refrigerant container 31 through the refrigerant pipe 6 connecting the coil container 11 and the refrigerant container 31.
  • the plurality of superconducting wires 34 drawn into the refrigerant container 11 are connected as in the circuit shown in FIG.
  • the trap member 5 is provided between the superconducting coil 4 and the wall surface of the refrigerant container 11.
  • the position where the trap member 5 is provided is on the inner diameter side of the superconducting coil 4 in the example shown in FIG. 3, but is not limited thereto, and may be on the outer diameter side, the upper surface side, or the lower surface side.
  • the trap member 5 has a space through which liquid helium permeates, and is preferably made of metal from the viewpoint of heat transfer.
  • the following coil molding process can be considered.
  • an aluminum wire is wound around a winding frame (not shown).
  • a superconducting wire is wound so as to cover the winding of the aluminum wire, and each is integrated with a resin or the like.
  • the process of integration with resin or the like is preferably a process other than the resin impregnation molding method.
  • the resin impregnation molding method fills the voids inside the aluminum winding with the resin, and reduces the gap through which liquid helium penetrates.
  • a superconducting wire and an aluminum wire previously coated with a self-bonding resin are employed, and a self-bonding method in which a wire coated with a resin is wound and then heated to be integrated is effective.
  • a self-bonding method as a resin impregnation method, a gap is easily secured between the wires, and a flow path for liquid helium to pass is easily secured.
  • the trap member 5 and the superconducting coil 4 are separated from a winding frame (not shown) and accommodated in the coil container 11.
  • the coil container 11 is configured by a combination of a plurality of members, and is integrated by welding or the like after the trap member 5 and the superconducting coil 4 are installed.
  • the upper part of the coil container 11 is constituted by a container member 11a
  • the lower part is constituted by a container member 11c
  • the outer surface and the partition surface of the two superconducting coils 4 are constituted by the container member 11b.
  • the inner diameter surface of the coil container 11 may be provided integrally with either the container member 11a or the coil container 11c.
  • the pattern of the member which comprises this coil container 11 is not restricted to what was mentioned above, A free structure can be employ
  • the external communication pipe 32 can be used not only for supplying liquid helium into the apparatus but also for cooling the superconducting coil 4 from room temperature. At that time, the superconducting coil 4 can be cooled as described above by supplying and discharging the refrigerant in the direction of the arrow 20 and allowing the refrigerant to pass through the trap member 5. When quenching occurs, the vaporized helium is discharged out of the apparatus through the check valve 72 provided in the external communication pipe 32, thereby preventing the apparatus from being damaged by the vaporized helium. .
  • the superconducting electromagnet apparatus 1 described in the present embodiment reduces the amount of helium used by limiting liquid helium to the refrigerant container 31, the refrigerant circulation path 6, and the coil container 11. Furthermore, in the coil container 11, the volume occupied by the liquid helium is reduced by providing the trap member 5 in a region other than the superconducting coil 4. Thereby, the usage-amount of helium can be reduced compared with the conventional immersion cooling. In addition, by adopting a structure in which the liquid helium that has passed through the trap member 5 is in direct contact with the superconducting coil 4, it is possible to reduce the amount of helium used and suppress an increase in coil temperature when a mechanical disturbance occurs. Become.
  • FIG. 5 shows a cross section of the superconducting electromagnet apparatus 1 according to the second embodiment.
  • the second embodiment is different from the first embodiment shown in FIG. 1 in that the central axis 21 of the superconducting electromagnet 4 faces the horizontal direction.
  • the surface which the superconducting coil 4 and the coil container 11 contact differs in that the groove
  • FIG. 6 shows a cross-sectional view of the superconducting electromagnet apparatus 1 shown in FIG.
  • the liquid helium circulates in the external communication pipe 32 in the direction of the arrow 20 and cools the superconducting coil 4 through the trap member 5.
  • the same effect as that of the first embodiment can be obtained even in the superconducting electromagnet apparatus 1 in which the central axis 21 faces the horizontal direction. Further, since the helium gas vaporized when the superconducting coil 4 is cooled moves upward in the trap member 5 by buoyancy, the helium gas can be obtained without providing the coil container 11 with the groove 52 for preventing the helium gas from staying. It is possible to reach the refrigerant container 31 without stagnation and re-liquefy.
  • FIG. 7 shows a cross section of the superconducting electromagnet apparatus 1 according to the third embodiment.
  • FIG. 8 schematically shows a circuit of the superconducting electromagnet apparatus 1.
  • a plurality of superconducting coils 8 having a higher critical temperature than that of the superconducting coil 4 used in the first embodiment shown in FIG. 1 are additionally installed inside the apparatus. It is different in that it is thermally connected by a high thermal conductor 80 having a high height. Further, the superconducting coil 8 having a high critical temperature is different in that it is energized from an excitation power source 13b different from the superconducting coil 4.
  • the superconducting coil 8 connected to the refrigerant circuit 6 and having a high critical temperature is also maintained in the superconducting state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

Provided are novel cooling system for a superconducting electromagnet, and a superconducting electromagnet device in which the cooling system is used. The superconducting electromagnet device according to the present invention comprises a vacuum container, a radiation shield contained within the vacuum container, a plurality of superconducting coils contained within the radiation shield, and a coil container that accommodates the superconducting coils, wherein the superconducting electromagnet device is characterized by comprising a cooling system for superconducting coils, the cooling system including the coil container, a refrigerant container in which a refrigerant accumulates, refrigerant piping through which the coil container and the refrigerant container communicate, a trap member to which the refrigerant is supplied from the refrigerant piping, and a refrigerator provided to the refrigerant container, and the trap member being provided between the inner wall of the coil container and the surface of the superconducting coils. The superconducting electromagnet device is further characterized in that the trap member is a transcalent body having a gap through which the refrigerant can penetrate.

Description

超電導電磁石装置Superconducting magnet system
 本発明は、超電導電磁石装置に関する。 The present invention relates to a superconducting electromagnet apparatus.
 超電導電磁石装置は、超電導コイルと、それに並列に設置された永久電流スイッチから構成され、上記の永久電流スイッチを開にした状態で励磁電源から超電導コイルに電流供給し、その後、永久電流スイッチを閉にした状態で励磁電源からの供給電流を減少させゼロにすることで、超電導コイルおよび永久電流スイッチからなる超電導状態の閉回路に電流がほとんど減衰することなく流れ続ける永久電流運転となる。これにより超電導電磁石装置は、長期に渡って磁場を保持することが可能である。 The superconducting electromagnet device is composed of a superconducting coil and a permanent current switch installed in parallel to the superconducting coil, and supplies the current from the exciting power source to the superconducting coil with the permanent current switch open, and then closes the permanent current switch. In this state, the current supplied from the exciting power supply is reduced to zero, so that a permanent current operation in which the current continues to flow through the superconducting closed circuit composed of the superconducting coil and the permanent current switch with almost no attenuation is obtained. Thereby, the superconducting electromagnet apparatus can hold the magnetic field for a long time.
 一方で、超電導コイルが何らかの異常によって超電導状態を喪失する現象として、クエンチと呼ばれる現象も知られている。クエンチ現象の生ずる理由や機序については様々な研究が進められているが、実験等を通じて、超電導コイル内に生じる機械的擾乱がその要因の一つに含まれると考えられている。すなわち機械的擾乱により、超電導コイルを構成する超電導部材において臨界温度を超える温度上昇が発生した場合、より具体的には、機械的擾乱によって超電導コイルの一部が常電導転移し、その部位でのジュール発熱が冷却手段による冷却能力を上回る場合が起こりうる。この場合、常電導領域が拡大し、超電導コイル内の磁気エネルギーがその常電導領域で熱エネルギーとして消費され、結果的に超電導コイルが常電導転移して磁場を保持できなくなる。 On the other hand, a phenomenon called quench is also known as a phenomenon in which the superconducting coil loses the superconducting state due to some abnormality. Various studies have been conducted on the reason and mechanism of the occurrence of the quenching phenomenon, and it is considered that mechanical disturbance generated in the superconducting coil is included in one of the factors through experiments and the like. That is, when a temperature rise exceeding the critical temperature occurs in the superconducting member constituting the superconducting coil due to mechanical disturbance, more specifically, a part of the superconducting coil undergoes normal conducting transition due to the mechanical disturbance, and at that site. There may be a case where Joule heat generation exceeds the cooling capacity of the cooling means. In this case, the normal conducting region is expanded, and the magnetic energy in the superconducting coil is consumed as thermal energy in the normal conducting region, and as a result, the superconducting coil is in the normal conducting transition and cannot maintain the magnetic field.
 従来の超電導電磁石装置は、上記の超電導コイルや永久電流スイッチに代表される構成素子を超電導状態に保持するため、液体ヘリウムや液体窒素に代表される冷媒に浸漬させて使用する浸漬冷却方式が多く採用されている。したがってクエンチ現象が発生すると、冷却のために充填されていた液体ヘリウムが気化して装置外に放出されるため、再充填に必要な冷却費用負担が生じることや、再充填し再励磁するまでの期間、装置が使用不可となるといった問題が発生する。加えて、その冷却に用いる冷媒のひとつであるヘリウムは資源枯渇が問題となっており、使用量低減が課題となっている。そこで、冷凍機と構成素子とを熱伝導性の良い金属で熱的に接続して冷却する伝導冷却方式や、液体ヘリウムを循環させた配管と冷却対象とを熱的に接触させて冷却する間接冷却方式が提案されている。(例えば特許文献1および2) Conventional superconducting electromagnet devices have many immersion cooling systems that are used by immersing them in a refrigerant typified by liquid helium or liquid nitrogen in order to keep the constituent elements typified by the above superconducting coil and permanent current switch in a superconducting state. It has been adopted. Therefore, when the quench phenomenon occurs, the liquid helium that has been filled for cooling is vaporized and released outside the apparatus, resulting in a burden of cooling costs necessary for refilling, and until refilling and re-excitation. There is a problem that the device becomes unusable for a period of time. In addition, helium, which is one of the refrigerants used for cooling, has a problem of resource depletion, and reduction of the amount of use has been a problem. Therefore, a cooling system that cools the refrigerator and components by thermally connecting them with a metal with good thermal conductivity, or an indirect system that cools by bringing the pipe in which liquid helium is circulated into contact with the object to be cooled. Cooling methods have been proposed. (For example, Patent Documents 1 and 2)
特開2009-188065号公報JP 2009-188065 A 特開平06-342721号公報Japanese Patent Application Laid-Open No. 06-342721
 伝導冷却方式や間接冷却方式を採用した超電導電磁石装置は、ヘリウムの使用量を低減するメリットがある。しかし、通電した際の電磁力で超電導コイルが変位することで発生する摩擦発熱や、超電導線材を固定する樹脂が割れるといった機械的擾乱による熱エネルギーの解放に対して、浸漬冷却と比較して裕度が小さい。 A superconducting electromagnet apparatus that employs a conductive cooling system or an indirect cooling system has the advantage of reducing the amount of helium used. However, compared with immersion cooling, it is less susceptible to frictional heat generated by the displacement of the superconducting coil due to electromagnetic force when energized and the release of thermal energy due to mechanical disturbances such as cracking of the resin that fixes the superconducting wire. The degree is small.
 例えば、5K以下の極低温領域での液体ヘリウムの単位体積あたりの熱容量は金属と比較して大きく、例えば無酸素銅のそれと比較して約600倍である。この事実は、同じ機械的擾乱が発生した場合、浸漬冷却方式における温度上昇に対して伝導冷却方式または間接冷却方式における温度上昇は、原理的に大きくなりやすいことを意味する。 For example, the heat capacity per unit volume of liquid helium in a cryogenic region of 5K or less is larger than that of metal, and is about 600 times that of oxygen-free copper, for example. This fact means that when the same mechanical disturbance occurs, the temperature increase in the conduction cooling method or the indirect cooling method tends to increase in principle with respect to the temperature increase in the immersion cooling method.
 このように従来の超電導電磁石装置は、冷媒の使用量と冷却性能との間に強い結びつきがあり、冷媒の使用料の削減と冷却性能の維持とを両立させることが難しかった。 As described above, the conventional superconducting electromagnet apparatus has a strong connection between the amount of refrigerant used and the cooling performance, and it has been difficult to achieve both reduction of the refrigerant usage fee and maintenance of the cooling performance.
 そこで、本発明の主たる目的は、新規な超電導電磁石の冷却系統およびそれを用いた超電導電磁石装置を提供することである。 Therefore, a main object of the present invention is to provide a novel superconducting electromagnet cooling system and a superconducting electromagnet apparatus using the same.
 前記課題を解決するために、本発明は、真空容器と、前記真空容器に内包された輻射シールドと、前記輻射シールドに内包された複数の超電導コイルと、前記超電導コイルを収容するコイル容器と、を備えた超電導電磁石装置において、前記コイル容器と、冷媒を貯留する冷媒容器と、前記コイル容器および前記冷媒容器を連通させる冷媒配管と、前記冷媒配管から冷媒が供給されるトラップ部材と、前記冷媒容器に設けられた冷凍機と、を含む超電導コイルの冷却系統を備え、前記トラップ部材は、前記コイル容器内壁と前記超電導コイル表面との間に設けられていることを特徴とする。 In order to solve the above problems, the present invention provides a vacuum vessel, a radiation shield contained in the vacuum vessel, a plurality of superconducting coils contained in the radiation shield, and a coil vessel that houses the superconducting coil, A superconducting electromagnet apparatus comprising: the coil container; a refrigerant container that stores the refrigerant; a refrigerant pipe that communicates the coil container and the refrigerant container; a trap member that is supplied with refrigerant from the refrigerant pipe; and the refrigerant A cooling system for a superconducting coil including a refrigerator provided in the container, wherein the trap member is provided between the inner wall of the coil container and the surface of the superconducting coil.
 本発明によれば、冷媒の使用量を低減しつつも冷却性能が高い超電導電磁石の冷却系統、およびそれを用いた超電導電磁石装置を提供することができる。 According to the present invention, it is possible to provide a superconducting electromagnet cooling system with high cooling performance while reducing the amount of refrigerant used, and a superconducting electromagnet apparatus using the same.
第1の実施形態に係る超電導電磁石装置の断面を示した図である。It is the figure which showed the cross section of the superconducting electromagnet apparatus which concerns on 1st Embodiment. 第1の実施形態に係る回路構成を模式的に示した図である。It is the figure which showed typically the circuit structure concerning 1st Embodiment. 第1の実施形態に係る装置断面の一部の拡大図である。It is a partial enlarged view of a device cross section according to the first embodiment. 第1の実施形態に係るコイル容器を構成する部材を示した図である。It is the figure which showed the member which comprises the coil container which concerns on 1st Embodiment. 第2の実施形態に係る装置断面を示した図である。It is the figure which showed the apparatus cross section which concerns on 2nd Embodiment. 第2の実施形態に係る装置断面を示した図である。It is the figure which showed the apparatus cross section which concerns on 2nd Embodiment. 第3の実施形態に係る装置断面を示した図である。It is the figure which showed the apparatus cross section which concerns on 3rd Embodiment. 第3の実施形態に係る回路構成を模式的に示した図である。It is the figure which showed typically the circuit structure concerning 3rd Embodiment.
 本発明の実施形態について、適宜図面を参照しながら詳細に説明する。なお、下記はあくまでも実施例であり、本発明の実施態様を下記具体的内容に限定することを意図する趣旨ではない。 Embodiments of the present invention will be described in detail with reference to the drawings as appropriate. The following are only examples, and are not intended to limit the embodiments of the present invention to the following specific contents.
[第1の実施形態]
 以下、本発明の第1の実施形態について、図1、図2、図3及び図4を参照して説明する。
[First embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIG. 1, FIG. 2, FIG. 3, and FIG.
 図1は、第1の実施形態に係る超電導電磁石装置1の断面を模式的に示す。超電導電磁石装置1を構成する主な要素としては、真空容器2、真空容器2に内包された輻射シールド3、輻射シールド3に内包されたコイル容器11、コイル容器11に収容された超電導コイル4が挙げられる。 FIG. 1 schematically shows a cross section of the superconducting electromagnet apparatus 1 according to the first embodiment. The main elements constituting the superconducting electromagnet apparatus 1 include a vacuum vessel 2, a radiation shield 3 contained in the vacuum vessel 2, a coil vessel 11 contained in the radiation shield 3, and a superconducting coil 4 contained in the coil vessel 11. Can be mentioned.
 なお、本実施形態における超電導コイル4は、コイル巻線の中心線に相当する中心軸21が鉛直方向を向いたものである。ここで、超電導コイル4の中心軸21は水平方向を向くものであってもよく、真空容器2および輻射シールド3を貫いた開口部24が存在する。真空容器2やコイル容器11は複数個が設けられてよく、超電導コイル4もその個数に応じて設けられてもよい。また、超電導コイル4については一つのコイル容器11の内部に複数個が設けられてもよい。図1に示す例では、一つのコイル容器11に二つの超電導コイル4が納められて一つの超電導電磁石を構成しており、超電導電磁石装置1はこれら超電導電磁石を四個備える態様となっている。 In addition, the superconducting coil 4 in this embodiment has a central axis 21 corresponding to the center line of the coil winding oriented in the vertical direction. Here, the central axis 21 of the superconducting coil 4 may be oriented in the horizontal direction, and there is an opening 24 that penetrates the vacuum vessel 2 and the radiation shield 3. A plurality of vacuum containers 2 and coil containers 11 may be provided, and the superconducting coils 4 may be provided according to the number of them. A plurality of superconducting coils 4 may be provided inside one coil container 11. In the example shown in FIG. 1, two superconducting coils 4 are housed in one coil container 11 to constitute one superconducting electromagnet, and the superconducting electromagnet apparatus 1 is provided with four superconducting magnets.
 また、超電導電磁石装置1を磁気共鳴イメージング装置の静磁場発生源として応用する場合は、真空容器2や後述する冷媒配管6の配置や構造を変化させて、被検者を挿入するための空間を形成するとよい。 Further, when the superconducting electromagnet apparatus 1 is applied as a static magnetic field generation source of a magnetic resonance imaging apparatus, a space for inserting a subject is changed by changing the arrangement and structure of the vacuum vessel 2 and a refrigerant pipe 6 described later. It is good to form.
 コイル容器11の内側には、超電導コイル4の他に、冷媒を一時的にトラップするトラップ部材5、冷媒の循環流路である冷媒配管6が供えられる。トラップ部材5は熱良導体(たとえばアルミニウム)から構成され、図示するように超電導コイル4の内径面と相対するように設置される。また、トラップ部材5は、その内部あるいは表面に液体ヘリウムが浸透する空隙や、滞留する溝や凹みを備える。これらの他にも、トラップ部材5は、多孔質部材のようなポーラス状、あるいは超電導コイル4の周回方向に沿うように設けられたスリットや溝状の形状が採用可能であり、冷媒をトラップできるのであればどのような形態をとってもよい。 Inside the coil container 11, in addition to the superconducting coil 4, a trap member 5 that temporarily traps the refrigerant and a refrigerant pipe 6 that is a refrigerant circulation channel are provided. The trap member 5 is made of a good thermal conductor (for example, aluminum), and is placed so as to face the inner diameter surface of the superconducting coil 4 as shown in the figure. Moreover, the trap member 5 is provided with a gap through which liquid helium permeates, a groove or a dent that stays in the interior or surface of the trap member 5. In addition to these, the trap member 5 can adopt a porous shape such as a porous member, or a slit or groove shape provided along the circumferential direction of the superconducting coil 4 and can trap the refrigerant. Any form can be used.
 冷媒配管6は、トラップ部材5に対して冷媒が供給されるように設けられる。冷媒配管6には、コイル容器11の内部に冷媒を導入するための導入路と、コイル容器11から冷媒を排出するための排出路が含まれ、双方の流路に対応する冷媒配管6を有することで冷媒の循環経路を構成する。たとえば図1であれば、コイル容器11の鉛直方向下方から 接続される冷媒配管6を導入路、コイル容器11の上方から接続される冷媒配管6を通過してもよい。すなわち、導入路や排出路という表現は単に冷媒の主な循環方向から呼ぶ名称である。 The refrigerant pipe 6 is provided so that the refrigerant is supplied to the trap member 5. The refrigerant pipe 6 includes an introduction path for introducing the refrigerant into the coil container 11 and a discharge path for discharging the refrigerant from the coil container 11, and has a refrigerant pipe 6 corresponding to both flow paths. This constitutes the refrigerant circulation path. For example, in FIG. 1, the refrigerant pipe 6 connected from the lower side in the vertical direction of the coil container 11 may pass through the introduction path and the refrigerant pipe 6 connected from the upper side of the coil container 11. That is, the expressions “introduction path” and “discharge path” are names that are simply called from the main circulation direction of the refrigerant.
 冷媒配管6は、冷媒を貯留する冷媒容器31と接続され、基本的にこれら冷媒容器31、冷媒配管6およびコイル容器11によって冷媒の循環経路は構成される。冷媒容器31には冷凍機12が供えつけられており、冷凍機12によって循環する冷媒の温度が維持され、一方で気化した冷媒は再度液化されるように構成されている。 The refrigerant pipe 6 is connected to a refrigerant container 31 that stores the refrigerant, and basically, the refrigerant circulation path is configured by the refrigerant container 31, the refrigerant pipe 6, and the coil container 11. The refrigerant container 31 is provided with the refrigerator 12 so that the temperature of the refrigerant circulating by the refrigerator 12 is maintained, while the vaporized refrigerant is liquefied again.
 また、冷媒容器11の内部には、超電導電磁石装置1がいわゆる永久電流モードで運転することを想定したものであれば、図1に示すように永久電流スイッチ9が設置されていてもよい。永久電流スイッチ9を冷媒容器31に貯留された冷媒に浸漬するように設置することで、永久電流が流れる回路の安定化を図ることができる。なお、永久電流モードでは運転しない、例えば電源駆動式の場合は永久電流スイッチ9は設置されてなくても良い。また、冷媒容器31の内部空間については、永久電流スイッチに限らず、励磁時に外部から電流を引き込むための通電ケーブルや、冷媒容器31の内部圧力計測のための圧力センサ、温度をモニタリングするための温度センサ等が設けられても良い。 Further, if it is assumed that the superconducting electromagnet apparatus 1 operates in a so-called permanent current mode, a permanent current switch 9 may be installed in the refrigerant container 11 as shown in FIG. By installing the permanent current switch 9 so as to be immersed in the refrigerant stored in the refrigerant container 31, it is possible to stabilize the circuit through which the permanent current flows. Note that the permanent current switch 9 may not be installed in the case of not operating in the permanent current mode, for example, in the case of the power supply type. In addition, the internal space of the refrigerant container 31 is not limited to a permanent current switch, an energization cable for drawing current from the outside during excitation, a pressure sensor for measuring the internal pressure of the refrigerant container 31, and a temperature monitoring function. A temperature sensor or the like may be provided.
 超電導電磁石装置1には、更に、冷媒容器31、冷媒配管6およびコイル容器11から構成される冷媒の循環系に対して、冷媒を外部から供給または外部へ放出するために外部連通配管32が接続される。供給用と排出用の配管は共通であってもよいし、役割に応じて個別の配管として設けてもよい。 The superconducting electromagnet apparatus 1 is further connected to an external communication pipe 32 for supplying or discharging the refrigerant from the outside to the refrigerant circulation system including the refrigerant container 31, the refrigerant pipe 6 and the coil container 11. Is done. The supply and discharge pipes may be common or may be provided as individual pipes depending on their roles.
 外部連通配管32は、図1に示すように、真空容器2と輻射シールド3を貫通するように設けられる。なお外部連通配管32にはバルブ72、バルブ73が設けられ、必要に応じて冷媒容器11と外部空間との接続を切り替えることが可能なように構成されている。また、外部連通配管32は、コイル容器11と接続された冷媒配管6と接続される、またはコイル容器11と接続されるように構成されてもよい。外部連通配管32は極低温環境と常温環境とをむすぶ構成でもあるため、この配管を介しての熱侵入は極力小さくなるよう熱伝導性の低い部材を利用するとよい。 The external communication pipe 32 is provided so as to penetrate the vacuum vessel 2 and the radiation shield 3 as shown in FIG. The external communication pipe 32 is provided with a valve 72 and a valve 73 so that the connection between the refrigerant container 11 and the external space can be switched as necessary. Further, the external communication pipe 32 may be configured to be connected to the refrigerant pipe 6 connected to the coil container 11 or to be connected to the coil container 11. Since the external communication pipe 32 has a structure that connects a cryogenic environment and a room temperature environment, it is preferable to use a member having low thermal conductivity so that heat penetration through the pipe is minimized.
 図2は超電導電磁石装置1の回路構成の模式図である。超電導電磁石装置1は超電導コイル4を八個備えており、これらの超電導コイル4は直列に接続されている。
 これらの超電導コイル4に対して保護抵抗10がそれぞれ並列に接続される。図2に示す例では四つの直列に接続された超電導コイル4に対して一つの保護抵抗10が並列に設けられており、必要に応じて超電導コイル4の磁気エネルギーを消費することが可能なように構成される。
FIG. 2 is a schematic diagram of a circuit configuration of the superconducting electromagnet apparatus 1. The superconducting electromagnet apparatus 1 includes eight superconducting coils 4, and these superconducting coils 4 are connected in series.
Protection resistors 10 are connected in parallel to these superconducting coils 4. In the example shown in FIG. 2, one protective resistor 10 is provided in parallel to the four superconducting coils 4 connected in series, so that the magnetic energy of the superconducting coil 4 can be consumed as needed. Consists of.
 電流遮断器14を 開にした場合、超電導コイル4と永久電流スイッチ9とで閉回路が構成される。なお、永久電流スイッチ9も超電導コイル4と同様に超電導部材によって形成されており、臨界温度以下に保たれ超電導状態をとることが可能である。 When the current breaker 14 is cleaved, the superconducting coil 4 and the permanent current switch 9 constitute a closed circuit. The permanent current switch 9 is also formed of a superconducting member in the same manner as the superconducting coil 4 and can be kept at a critical temperature or less to be in a superconducting state.
 上記のような回路構成をとる超電導コイル4に対して励磁に必要な電流を供給するために、真空容器2の外には、励磁電源13、電流遮断器14が設置されている。 In order to supply a current necessary for excitation to the superconducting coil 4 having the above circuit configuration, an excitation power source 13 and a current breaker 14 are installed outside the vacuum vessel 2.
 超電導コイル4と永久電流スイッチ9とから構成される超電導状態の回路に電流を通電するにあたっては次のステップが実行される。まず、永久電流スイッチ9を加熱等により電気抵抗が存在する状態(開状態)で、電気遮断機14を閉とし、励磁電源13から超電導コイル4に電流を供給する。徐々に通電量を上昇させ目標とする電流値に達したら、その後、永久電流スイッチ9の加熱を停止して冷却する。冷却された永久電流スイッチ9が超電導状態へ遷移し電気抵抗が極小となる状態(閉状態)となれば、続いて励磁電源13から供給する電流をゼロにして電流遮断器14を開とする。これにより、超電導コイル4および永久電流スイッチ9からなる超電導状態の閉回路に電流がほとんど減衰することなく流れ続ける永久電流運転となる。以上より、超電導電磁石装置1は、長期に渡って磁場を保持することが可能である。 The following steps are executed to energize a current in a superconducting circuit composed of the superconducting coil 4 and the permanent current switch 9. First, in a state where the permanent current switch 9 is in an electric resistance state (open state) due to heating or the like, the electric circuit breaker 14 is closed, and current is supplied from the excitation power supply 13 to the superconducting coil 4. When the energization amount is gradually increased and the target current value is reached, the heating of the permanent current switch 9 is then stopped and cooled. When the cooled permanent current switch 9 transitions to the superconducting state and becomes a state where the electric resistance is minimized (closed state), the current supplied from the excitation power supply 13 is subsequently made zero and the current breaker 14 is opened. As a result, the operation is a permanent current operation in which the current continues to flow in the superconducting closed circuit including the superconducting coil 4 and the permanent current switch 9 with almost no attenuation. As described above, the superconducting electromagnet apparatus 1 can hold a magnetic field for a long time.
 図3は、超電導電磁石装置1の超電導コイル4を中心とした装置の断面概要図の一部を拡大した図である。超電導コイル4はコイル容器11に収容された状態で冷却され、超電導コイル4に電流を供給する導線(超電導線34)も同様に冷却される。すなわち、超電導線34はコイル容器11と冷媒容器31とを接続する冷媒配管6の内部を通り、冷媒容器31の内部へ引き込まれている。他の超電導コイル4に電流を供給する超電導線34についても、冷媒容器11へ引き込まれた複数の超電導線34は図2に示す回路のように接続されている。 FIG. 3 is an enlarged view of a part of the schematic cross-sectional view of the apparatus centering on the superconducting coil 4 of the superconducting electromagnet apparatus 1. The superconducting coil 4 is cooled while being accommodated in the coil container 11, and the conducting wire (superconducting wire 34) that supplies current to the superconducting coil 4 is also cooled. That is, the superconducting wire 34 is drawn into the refrigerant container 31 through the refrigerant pipe 6 connecting the coil container 11 and the refrigerant container 31. Also for the superconducting wires 34 that supply current to the other superconducting coils 4, the plurality of superconducting wires 34 drawn into the refrigerant container 11 are connected as in the circuit shown in FIG.
 ここで、超電導コイル4と冷媒容器11との壁面との間にトラップ部材5が設けられる。トラップ部材5が設けられる位置は、図3に占める例では超電導コイル4の内径側としているが、これに限らず外径側や上面側、または下面側でもよい。 トラップ部材5は液体ヘリウムが浸透する空隙を備え、伝熱性の観点から金属から構成されていることが望ましい。例えばアルミニウム線で構成されるコイル状の金属部材を超電導コイル4の内径面沿って形成することが候補として考えられる。 Here, the trap member 5 is provided between the superconducting coil 4 and the wall surface of the refrigerant container 11. The position where the trap member 5 is provided is on the inner diameter side of the superconducting coil 4 in the example shown in FIG. 3, but is not limited thereto, and may be on the outer diameter side, the upper surface side, or the lower surface side. The trap member 5 has a space through which liquid helium permeates, and is preferably made of metal from the viewpoint of heat transfer. For example, it is conceivable as a candidate to form a coiled metal member made of an aluminum wire along the inner diameter surface of the superconducting coil 4.
 なお、このようなコイル構造を実現するにあたっては、次のようなコイル成型処理が考えられる。まず、図示していない巻枠に対してアルミニウム線が巻線される。続いて、アルミニウム線の巻線を覆うようにして超電導線材が巻線され、それぞれを樹脂等によって一体化する。なお、樹脂等による一体化の処理は、樹脂含浸成形法以外の処理が望ましい。樹脂含浸成形法はアルミニウム巻線の内部の空隙を樹脂によって埋めてしまい、液体ヘリウムが浸透する隙間を少なくしてしまう。そこで成形方法としては、予め自己融着樹脂によって被覆された超電導線材およびアルミニウム線を採用し、樹脂によって被覆された線材を巻線し、その後に加熱して一体化する自己融着法が有効な方法として挙げられる。自己融着法は、樹脂含浸法として線材の間に空隙が確保されやすく、液体ヘリウムが通過するための流路を確保しやすい。 In order to realize such a coil structure, the following coil molding process can be considered. First, an aluminum wire is wound around a winding frame (not shown). Subsequently, a superconducting wire is wound so as to cover the winding of the aluminum wire, and each is integrated with a resin or the like. In addition, the process of integration with resin or the like is preferably a process other than the resin impregnation molding method. The resin impregnation molding method fills the voids inside the aluminum winding with the resin, and reduces the gap through which liquid helium penetrates. Therefore, as a forming method, a superconducting wire and an aluminum wire previously coated with a self-bonding resin are employed, and a self-bonding method in which a wire coated with a resin is wound and then heated to be integrated is effective. As a method. In the self-bonding method, as a resin impregnation method, a gap is easily secured between the wires, and a flow path for liquid helium to pass is easily secured.
 コイルの成形が終了した後、トラップ部材5と超電導コイル4は図示していない巻枠から分離され、コイル容器11の内部に収容される。なお、このような収容作業のために、コイル容器11は複数の部材の組み合わせによって構成されており、トラップ部材5と超電導コイル4を設置してから溶接等で一体化される。たとえば図3に示す例であれば、コイル容器11の上部は容器部材11a、下部は容器部材11c、外側面及び二つの超電導コイル4の仕切り面は容器部材11bにより構成される。コイル容器11の内径面は容器部材11aまたはコイル容器11cのいずれかと一体的に設けておいてよい。なお、このコイル容器11を構成する部材のパターンは上述するものに限られず、自由な構成を採用することができる。 After the formation of the coil is completed, the trap member 5 and the superconducting coil 4 are separated from a winding frame (not shown) and accommodated in the coil container 11. In addition, for such accommodation operation, the coil container 11 is configured by a combination of a plurality of members, and is integrated by welding or the like after the trap member 5 and the superconducting coil 4 are installed. For example, in the example shown in FIG. 3, the upper part of the coil container 11 is constituted by a container member 11a, the lower part is constituted by a container member 11c, and the outer surface and the partition surface of the two superconducting coils 4 are constituted by the container member 11b. The inner diameter surface of the coil container 11 may be provided integrally with either the container member 11a or the coil container 11c. In addition, the pattern of the member which comprises this coil container 11 is not restricted to what was mentioned above, A free structure can be employ | adopted.
 また、図3に示すような2つの超電導コイル4を一つのコイル容器11に収める場合、両コイルに挟まれた仕切り板に相当する部分には、図4に示すような液体ヘリウムが通過する開口部51が設けられる。また、超電導コイルの鉛直方向上面に当たる部材11aおよび11bには、図4に示すような溝52が設けられる。 Further, when two superconducting coils 4 as shown in FIG. 3 are housed in one coil container 11, an opening through which liquid helium passes as shown in FIG. 4 is formed in a portion corresponding to a partition plate sandwiched between both coils. A part 51 is provided. Further, grooves 52 as shown in FIG. 4 are provided in the members 11a and 11b which contact the upper surface in the vertical direction of the superconducting coil.
 このような開口部51や溝52により、超電導コイル4を冷却する際に気化したヘリウムガスは、コイル容器内で滞留せず溝52を通じてトラップ部材5側に移動し、冷媒循環路6を通じて冷媒容器31に戻り、冷凍機12にて再液化することが可能となる。 The helium gas vaporized when the superconducting coil 4 is cooled by the opening 51 and the groove 52 does not stay in the coil container, moves to the trap member 5 side through the groove 52, and passes through the refrigerant circulation path 6 to form the refrigerant container. It returns to 31 and it becomes possible to reliquefy with the refrigerator 12. FIG.
 ここで外部連通配管32は、液体ヘリウムを装置内に供給する以外にも、超電導コイル4を常温から冷却する際にも用いることができる。その際、矢印20の方向に冷媒を供給・排出し、トラップ部材5の内部に冷媒を通過させることで上述のように超電導コイル4を冷却することが可能となっている。なお、クエンチが発生した場合は、外部連通配管32に設けられた逆止弁72を通じ気化したヘリウムが装置外へ排出されることで、気化したヘリウムによる装置の破損を防止することが可能となる。 Here, the external communication pipe 32 can be used not only for supplying liquid helium into the apparatus but also for cooling the superconducting coil 4 from room temperature. At that time, the superconducting coil 4 can be cooled as described above by supplying and discharging the refrigerant in the direction of the arrow 20 and allowing the refrigerant to pass through the trap member 5. When quenching occurs, the vaporized helium is discharged out of the apparatus through the check valve 72 provided in the external communication pipe 32, thereby preventing the apparatus from being damaged by the vaporized helium. .
 以上のように、本実施形態に記載の超電導電磁石装置1は、液体ヘリウムを冷媒容器31と冷媒循環路6と、コイル容器11とに制限して配置することでヘリウムの使用量を低減する。さらにコイル容器11の内部においては、超電導コイル4以外の領域にトラップ部材5を設けることで液体ヘリウムが占有する体積を低減する。これによりヘリウムの使用量を従来の浸漬冷却と比較して低減可能となる。また、トラップ部材5を透過した液体ヘリウムが超電導コイル4に直接接触する構造とすることで、ヘリウムの使用量を低減しつつ、機械的擾乱が発生した際のコイル温度上昇を抑えることが可能となる。 As described above, the superconducting electromagnet apparatus 1 described in the present embodiment reduces the amount of helium used by limiting liquid helium to the refrigerant container 31, the refrigerant circulation path 6, and the coil container 11. Furthermore, in the coil container 11, the volume occupied by the liquid helium is reduced by providing the trap member 5 in a region other than the superconducting coil 4. Thereby, the usage-amount of helium can be reduced compared with the conventional immersion cooling. In addition, by adopting a structure in which the liquid helium that has passed through the trap member 5 is in direct contact with the superconducting coil 4, it is possible to reduce the amount of helium used and suppress an increase in coil temperature when a mechanical disturbance occurs. Become.
[第2の実施形態]
 図5に第2の実施形態に係る超電導電磁石装置1の断面を示す。第2の実施形態は、図1に示す第1の実施形態と比較して、超電導電磁石4の中心軸21が水平方向を向いている点で異なる。また、超電導コイル4とコイル容器11が接触する面には、第1の実施形態にある溝52が設けられていない点で異なる。
 図6に、図5に示した超電導電磁石装置1のA-A’断面図を示す。液体ヘリウムは外部連通配管32を矢印20の方向に循環し、トラップ部材5を通じて超電導コイル4を冷却する。
[Second Embodiment]
FIG. 5 shows a cross section of the superconducting electromagnet apparatus 1 according to the second embodiment. The second embodiment is different from the first embodiment shown in FIG. 1 in that the central axis 21 of the superconducting electromagnet 4 faces the horizontal direction. Moreover, the surface which the superconducting coil 4 and the coil container 11 contact differs in that the groove | channel 52 which is 1st Embodiment is not provided.
FIG. 6 shows a cross-sectional view of the superconducting electromagnet apparatus 1 shown in FIG. The liquid helium circulates in the external communication pipe 32 in the direction of the arrow 20 and cools the superconducting coil 4 through the trap member 5.
 このような構造をとることで中心軸21が水平方向を向いた超電導電磁石装置1でも第1の実施形態と同様の効果を得ることができる。さらに、超電導コイル4を冷却する際に気化したヘリウムガスはトラップ部材5の内部を浮力にて上方に移動することから、ヘリウムガスの滞留を防止する溝52をコイル容器11に設けずともヘリウムガスを滞留させることなく冷媒容器31まで到達させ、再液化することが可能となる。 By adopting such a structure, the same effect as that of the first embodiment can be obtained even in the superconducting electromagnet apparatus 1 in which the central axis 21 faces the horizontal direction. Further, since the helium gas vaporized when the superconducting coil 4 is cooled moves upward in the trap member 5 by buoyancy, the helium gas can be obtained without providing the coil container 11 with the groove 52 for preventing the helium gas from staying. It is possible to reach the refrigerant container 31 without stagnation and re-liquefy.
[第3の実施形態]
 図7に第3の実施形態に関わる超電導電磁石装置1の断面を示す。また、図8に超電導電磁石装置1の回路を模式的に示す。第3の実施形態は、図1に示す第1の実施形態で用いられる超電導コイル4より臨界温度が高い複数の超電導コイル8が装置内部に追加設置され、それらは冷媒循環路6と熱伝導率の高い高熱伝導体80にて熱的に接続されている点で異なる。また、臨界温度が高い超電導コイル8は、超電導コイル4とは異なる励磁電源13bから通電されている点で異なる。
[Third Embodiment]
FIG. 7 shows a cross section of the superconducting electromagnet apparatus 1 according to the third embodiment. FIG. 8 schematically shows a circuit of the superconducting electromagnet apparatus 1. In the third embodiment, a plurality of superconducting coils 8 having a higher critical temperature than that of the superconducting coil 4 used in the first embodiment shown in FIG. 1 are additionally installed inside the apparatus. It is different in that it is thermally connected by a high thermal conductor 80 having a high height. Further, the superconducting coil 8 having a high critical temperature is different in that it is energized from an excitation power source 13b different from the superconducting coil 4.
 ここで、超電導コイル4が臨界温度以下で維持されている場合は、冷媒循環路6と接続された臨界温度の高い超電導コイル8も超電導状態が保持されることとなる。 Here, when the superconducting coil 4 is maintained below the critical temperature, the superconducting coil 8 connected to the refrigerant circuit 6 and having a high critical temperature is also maintained in the superconducting state.
 このような構造をとることで、第1の実施形態と同様の効果を得ることができるだけでなく、冷凍機を増設せずとも新たな超電導コイルを追加することが可能となり、超電導電磁石装置の設置後においてもさらに強力な磁場を発生可能な超電導電磁石装置を導入することが可能となる。 By adopting such a structure, it is possible not only to obtain the same effect as in the first embodiment, but also to add a new superconducting coil without adding a refrigerator, and to install a superconducting electromagnet apparatus. It becomes possible to introduce a superconducting electromagnet apparatus capable of generating a stronger magnetic field later.
1                                          超電導電磁石装置
2                                          真空容器
3                                          輻射シールド
4                                          超電導コイル
5                                          トラップ部材
6                                          冷媒配管
7                                          冷媒
8                                          臨界温度が高い超電導コイル
9                                          永久電流スイッチ
10                                      保護抵抗
11                                      コイル容器
12                                      冷凍機
13                                      直流電源
14                                      電流遮断器
20                                      気化した冷媒の進行方向を示す矢印
21                                      超電導電磁石装置の中心軸
24                                      開口部
31                                      冷媒容器
32                                      外部連通配管
34                                      超電導線
51                                      開口部
52                                      溝
72                                      逆止弁
73                                      バルブ
81                                      高熱伝導体
DESCRIPTION OF SYMBOLS 1 Superconducting magnet apparatus 2 Vacuum vessel 3 Radiation shield 4 Superconducting coil 5 Trap member 6 Refrigerant piping 7 Refrigerant 8 Superconducting coil 9 with high critical temperature Permanent current switch 10 Protection resistor 11 Coil vessel 12 Refrigerator 13 DC power supply 14 Current breaker 20 Vaporization Arrow indicating the direction of travel of the cooled refrigerant Central axis 24 opening 31 refrigerant container 32 external communication pipe 34 superconducting wire guiding electromagnetic device 51 opening 52 groove 72 check valve 73 valve 81 the high thermal conductive body

Claims (9)

  1.  真空容器と、前記真空容器に内包された輻射シールドと、前記輻射シールドに内包された複数の超電導コイルと、前記超電導コイルを収容するコイル容器と、を備えた超電導電磁石装置において、
     前記コイル容器と、冷媒を貯留する冷媒容器と、前記コイル容器および前記冷媒容器を連通させる冷媒配管と、前記冷媒配管から冷媒が供給されるトラップ部材と、前記冷媒容器に設けられた冷凍機と、を含む超電導コイルの冷却系統を備え、
     前記トラップ部材は、前記コイル容器内壁と前記超電導コイル表面との間に設けられていることを特徴とする超電導電磁石装置。
    In a superconducting electromagnet apparatus comprising: a vacuum vessel; a radiation shield contained in the vacuum vessel; a plurality of superconducting coils contained in the radiation shield; and a coil vessel containing the superconducting coil.
    The coil container, a refrigerant container for storing refrigerant, a refrigerant pipe for communicating the coil container and the refrigerant container, a trap member to which a refrigerant is supplied from the refrigerant pipe, and a refrigerator provided in the refrigerant container; A superconducting coil cooling system including
    The superconducting electromagnet apparatus according to claim 1, wherein the trap member is provided between an inner wall of the coil container and a surface of the superconducting coil.
  2.  前記トラップ部材は、冷媒が浸透可能な空隙を有する熱良導体であること、を特徴とする請求項1に記載の超電導電磁石装置。 The superconducting electromagnet apparatus according to claim 1, wherein the trap member is a good thermal conductor having a gap through which a refrigerant can permeate.
  3.  前記冷媒容器は、前記冷媒配管を通じて冷媒をコイル容器に供給し、前記コイル容器内で気化した冷媒を前記冷媒配管を通じて回収し、
     前記冷凍機は、前記冷媒容器が回収した気化した冷媒を液化することを特徴とする請求項1または2に記載の超電導電磁石装置。
    The refrigerant container supplies the refrigerant to the coil container through the refrigerant pipe, collects the refrigerant vaporized in the coil container through the refrigerant pipe,
    The superconducting electromagnet apparatus according to claim 1, wherein the refrigerator liquefies the vaporized refrigerant collected by the refrigerant container.
  4.  前記超電導コイルの超電導線は、前記冷媒配管を通じて前記冷媒容器内に導入され、前記冷媒容器内で永久電流スイッチや他の超電導コイルの超電導線と接続されることを特徴とする請求項1及至3のいずれか1項に記載の超電導電磁石装置。 4. The superconducting wire of the superconducting coil is introduced into the refrigerant container through the refrigerant pipe, and is connected to a permanent current switch or a superconducting wire of another superconducting coil in the refrigerant container. The superconducting electromagnet apparatus according to any one of the above.
  5.  前記冷媒容器を通じて装置外からコイル容器内に冷媒を供給し装置外へ冷媒を排出する配管をさらに備え、前記トラップ部材に浸透する冷媒は当該配管から供給されたものであることを特徴とする請求項1乃至4のいずれか1項に記載の超電導電磁石装置。 A pipe for supplying a refrigerant from outside the apparatus through the refrigerant container to the inside of the coil container and discharging the refrigerant to the outside of the apparatus is further provided, and the refrigerant penetrating the trap member is supplied from the pipe. Item 5. The superconducting electromagnet device according to any one of Items 1 to 4.
  6.  前記超電導コイルより高い臨界温度を有する超電導コイルをさらに備え、当該超電導コイルは前記冷媒配管と熱的に接触することを特徴とする請求項1及至5のいずれか1項に記載の超電導電磁石装置。 The superconducting electromagnet apparatus according to any one of claims 1 to 5, further comprising a superconducting coil having a higher critical temperature than the superconducting coil, wherein the superconducting coil is in thermal contact with the refrigerant pipe.
  7.  前記コイル容器は、前記超電導コイルの鉛直方向上面と接触する面に溝を有し、前記溝は前記超電導コイル及び前記トラップ部材と接触する形状であることを特徴とする請求項1乃至6のいずれか1項に記載の超電導電磁石装置。 The said coil container has a groove | channel on the surface which contacts the perpendicular direction upper surface of the said superconducting coil, The said groove | channel is a shape which contacts the said superconducting coil and the said trap member, Any one of Claim 1 thru | or 6 characterized by the above-mentioned. The superconducting electromagnet apparatus according to claim 1.
  8.  前記超電導コイルの中心軸は鉛直方向を向き、前記超電導コイルは水平方向に設けた開口部を挟んで配置されることを特徴とする請求項1乃至7のいずれか1項に記載の超電導電磁石装置。 The superconducting electromagnet apparatus according to any one of claims 1 to 7, wherein a central axis of the superconducting coil faces a vertical direction, and the superconducting coil is disposed across an opening provided in a horizontal direction. .
  9.  前記超電導コイルの中心軸は水平方向を向いていることを特徴とする請求項1乃至6のいずれか1項に記載の超電導電磁石装置。 The superconducting electromagnet device according to any one of claims 1 to 6, wherein a central axis of the superconducting coil is oriented in a horizontal direction.
PCT/JP2019/008439 2018-06-15 2019-03-04 Superconducting electromagnet device WO2019239650A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018114134A JP2019220495A (en) 2018-06-15 2018-06-15 Superconducting electromagnet device
JP2018-114134 2018-06-15

Publications (1)

Publication Number Publication Date
WO2019239650A1 true WO2019239650A1 (en) 2019-12-19

Family

ID=68842484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008439 WO2019239650A1 (en) 2018-06-15 2019-03-04 Superconducting electromagnet device

Country Status (2)

Country Link
JP (1) JP2019220495A (en)
WO (1) WO2019239650A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014409A (en) * 1983-07-05 1985-01-25 Hitachi Ltd Forced cooling superconductive coil apparatus
JPS62183400U (en) * 1986-05-14 1987-11-20
JPH03116908A (en) * 1989-09-29 1991-05-17 Toshiba Corp Superconducting electromagnet
JP2002372353A (en) * 2001-06-18 2002-12-26 Mitsubishi Electric Corp Cryogenic equipment
JP4514346B2 (en) * 2000-02-28 2010-07-28 大陽日酸株式会社 Superconducting material cooling device
JP2012178485A (en) * 2011-02-28 2012-09-13 Hitachi Ltd Superconducting electromagnet device
JP2013118228A (en) * 2011-12-01 2013-06-13 Hitachi Ltd Superconductive electromagnet device, cooling method of the same, and magnetic resonance imaging apparatus
JP5649373B2 (en) * 2010-08-30 2015-01-07 大陽日酸株式会社 Superconducting member cooling apparatus and temperature maintaining method for subcooled liquid nitrogen in a heat insulating container
JP2016049159A (en) * 2014-08-29 2016-04-11 株式会社日立製作所 Superconducting magnet and magnetic resonance imaging apparatus
JP2017157768A (en) * 2016-03-04 2017-09-07 株式会社日立製作所 Superconducting electromagnet apparatus, and magnetic resonance imaging apparatus
WO2018003420A1 (en) * 2016-06-30 2018-01-04 株式会社日立製作所 Superconducting magnet device and magnetic resonance tomographic imaging device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014409A (en) * 1983-07-05 1985-01-25 Hitachi Ltd Forced cooling superconductive coil apparatus
JPS62183400U (en) * 1986-05-14 1987-11-20
JPH03116908A (en) * 1989-09-29 1991-05-17 Toshiba Corp Superconducting electromagnet
JP4514346B2 (en) * 2000-02-28 2010-07-28 大陽日酸株式会社 Superconducting material cooling device
JP2002372353A (en) * 2001-06-18 2002-12-26 Mitsubishi Electric Corp Cryogenic equipment
JP5649373B2 (en) * 2010-08-30 2015-01-07 大陽日酸株式会社 Superconducting member cooling apparatus and temperature maintaining method for subcooled liquid nitrogen in a heat insulating container
JP2012178485A (en) * 2011-02-28 2012-09-13 Hitachi Ltd Superconducting electromagnet device
JP2013118228A (en) * 2011-12-01 2013-06-13 Hitachi Ltd Superconductive electromagnet device, cooling method of the same, and magnetic resonance imaging apparatus
JP2016049159A (en) * 2014-08-29 2016-04-11 株式会社日立製作所 Superconducting magnet and magnetic resonance imaging apparatus
JP2017157768A (en) * 2016-03-04 2017-09-07 株式会社日立製作所 Superconducting electromagnet apparatus, and magnetic resonance imaging apparatus
WO2018003420A1 (en) * 2016-06-30 2018-01-04 株式会社日立製作所 Superconducting magnet device and magnetic resonance tomographic imaging device

Also Published As

Publication number Publication date
JP2019220495A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
JP5852425B2 (en) Superconducting electromagnet apparatus, cooling method thereof, and magnetic resonance imaging apparatus
US6107905A (en) Superconducting magnet apparatus
US7559205B2 (en) Cryogen tank for cooling equipment
US7616083B2 (en) Resin-impregnated superconducting magnet coil comprising a cooling layer
CN107110928B (en) System and method for cooling a magnetic resonance imaging apparatus
US8922308B2 (en) Systems and methods for alternatingly switching a persistent current switch between a first mode and a second mode
JP6695324B2 (en) Cooling device for superconducting magnet structure of MRI system
US9575149B2 (en) System and method for cooling a magnetic resonance imaging device
EP3703142B1 (en) Systems and methods for cooling a superconducting switch using dual cooling paths
US5979176A (en) Refrigerator
WO2019239650A1 (en) Superconducting electromagnet device
JP2007173460A (en) Superconducting electromagnet device
JP6491828B2 (en) Superconducting magnet system
JP2020092278A (en) Apparatus for ultralow temperature cooling
JP2017157768A (en) Superconducting electromagnet apparatus, and magnetic resonance imaging apparatus
JP2014192490A (en) Permanent current switch and superconducting device having the same
US20200058423A1 (en) Thermal bus heat exchanger for superconducting magnet
JP6021791B2 (en) Permanent current switch and superconducting device equipped with it
CN112136189B (en) Superconducting magnet
JP2013138057A (en) Superconducting magnet device
GB2458265A (en) Low field, cryogenic, termination reservoir
US20160071638A1 (en) Superconducting magnet device including a cryogenic cooling bath and cooling pipes
WO2014155476A1 (en) Superconducting magnet device
GB2431982A (en) Cryostat Heat Influx Reduction
JP2009243697A (en) Cryogenic cooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19820100

Country of ref document: EP

Kind code of ref document: A1