JP5649373B2 - Superconducting member cooling apparatus and temperature maintaining method for subcooled liquid nitrogen in a heat insulating container - Google Patents

Superconducting member cooling apparatus and temperature maintaining method for subcooled liquid nitrogen in a heat insulating container Download PDF

Info

Publication number
JP5649373B2
JP5649373B2 JP2010191698A JP2010191698A JP5649373B2 JP 5649373 B2 JP5649373 B2 JP 5649373B2 JP 2010191698 A JP2010191698 A JP 2010191698A JP 2010191698 A JP2010191698 A JP 2010191698A JP 5649373 B2 JP5649373 B2 JP 5649373B2
Authority
JP
Japan
Prior art keywords
liquid nitrogen
fiber paper
heat insulating
insulating container
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010191698A
Other languages
Japanese (ja)
Other versions
JP2012049413A (en
Inventor
賢悦 上森
賢悦 上森
吉田 茂
茂 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2010191698A priority Critical patent/JP5649373B2/en
Publication of JP2012049413A publication Critical patent/JP2012049413A/en
Application granted granted Critical
Publication of JP5649373B2 publication Critical patent/JP5649373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

本発明は、超電導トランスや超電導マグネット、そのほか各種の超電導コイル、あるいは超電導ケーブルなどの超電導部材、特に高温超電導部材をサブクール液体窒素(過冷却液体窒素)によって低温に冷却・保持するための超電導部材冷却装置、及び断熱容器内のサブクール液体窒素の温度維持方法に関するものである。   The present invention is a superconducting member cooling for cooling and holding a superconducting member such as a superconducting transformer, a superconducting magnet, various other superconducting coils, or a superconducting cable, in particular, a high-temperature superconducting member with subcooled liquid nitrogen (supercooled liquid nitrogen). The present invention relates to a device and a method for maintaining the temperature of subcooled liquid nitrogen in an insulated container.

超電導コイルなどの超電導部材、特に高温超電導を利用した超電導部材を冷却するにあたっては、冷却媒体として比較的安価な液体窒素(LN)の使用が知られている。
液体窒素により高温超電導部材を冷却する方法としては大気圧での飽和液体窒素(−196℃(77K))を使用したり、液体窒素容器を減圧状態にして−196℃より低いサブクール液体窒素を使用していた。上記飽和液体窒素を使用する場合、例えば大気圧での飽和液体窒素を使用する場合、真空断熱されたクライオスタットと称される大気に実質的に開放された冷却容器に超電導部材を収容しておき、その冷却容器内に約77Kの大気圧飽和液体窒素を注入してその液体窒素中に超電導部材を浸漬させ、冷却・保持するのが通常である。
In cooling a superconducting member such as a superconducting coil, particularly a superconducting member using high-temperature superconductivity, the use of relatively inexpensive liquid nitrogen (LN 2 ) as a cooling medium is known.
As a method for cooling the high-temperature superconducting member with liquid nitrogen, saturated liquid nitrogen at atmospheric pressure (−196 ° C. (77 K)) is used, or subcooled liquid nitrogen lower than −196 ° C. is used with the liquid nitrogen container in a reduced pressure state. Was. When using the above saturated liquid nitrogen, for example, when using saturated liquid nitrogen at atmospheric pressure, the superconducting member is accommodated in a cooling container substantially open to the atmosphere called a cryostat that is vacuum insulated, Usually, about 77 K atmospheric pressure saturated liquid nitrogen is injected into the cooling container, and the superconducting member is immersed in the liquid nitrogen, and is cooled and held.

ところで高温超電導部材においては、若干でも温度が下がれば、超電導特性が大幅に向上することが知られている。例えば臨界電流は、77Kから70Kに下がっただけでも数倍に大きくなることが知られている。
そこで大気圧の液体窒素を減圧して例えば65K程度に温度降下させたサブクール液体窒素中に超電導部材を浸漬させて、超電導部材を77Kよりも低い温度まで冷却することが考えられる。その場合、液体窒素中に超電導部材を浸漬させるための容器では、液体窒素の減圧状態を維持させる必要がある。一方、一般に使用されているクライオスタットでは、実質的に大気圧に近い圧力での使用を前提としているため、この種の汎用クライオスタットを減圧した液体窒素に適用しようとすれば、蓋部や電流導入端子等の箇所における封止の点で不充分となり、外部から水分を含む大気圧の空気が内部に吸い込まれて、電流導入端子のガス抜穴での水分凍結による閉塞や超電導部材表面への氷の付着が生じたりし、実用上運転が不可能となるおそれがある。そのため前述の目的のためには、新たに特殊な容器を設計、製作しなければならず、その場合コストの大幅な上昇を招く問題があり、そのため実用化はためらわれていたのが実情である。
By the way, in a high-temperature superconducting member, it is known that the superconducting characteristics will be greatly improved if the temperature is slightly lowered. For example, it is known that the critical current increases several times even if it falls from 77K to 70K.
Therefore, it is conceivable to cool the superconducting member to a temperature lower than 77K by immersing the superconducting member in subcooled liquid nitrogen whose pressure is reduced to about 65K by reducing the pressure of liquid nitrogen at atmospheric pressure. In that case, in a container for immersing the superconducting member in liquid nitrogen, it is necessary to maintain the reduced pressure state of liquid nitrogen. On the other hand, since the cryostat generally used is premised on the use at a pressure substantially close to the atmospheric pressure, if this type of general-purpose cryostat is applied to liquid nitrogen that has been depressurized, a lid or a current introduction terminal is used. It becomes inadequate in terms of sealing at such locations, and atmospheric pressure air containing moisture is sucked into the inside from the outside, clogging due to moisture freezing in the vent hole of the current introduction terminal and ice on the surface of the superconducting member Adhesion may occur and operation may become impossible in practice. Therefore, for the above-mentioned purpose, a special container must be newly designed and manufactured. In this case, there is a problem that causes a significant increase in cost, so that practical use is hesitant. .

また、大気圧の飽和液体窒素中に超電導部材を浸漬させて超電導部材を作動させた場合、超電導部材の発熱によって飽和液体窒素が直ちに気化してガス気泡が発生するため、そのガス気泡によって電気絶縁性が低下したり、冷却効率が低下したりしてしまう問題があるが、前述のように減圧によって例えば65K程度に温度降下された液体窒素中に超電導部材を浸漬させた場合も、減圧下の飽和液体窒素中では超電導部材の発熱によって前記同様に直ちに液体窒素が気化して気泡が発生するから、気泡発生に対する根本的な解決策とはならない。従って、このことも減圧された液体窒素の使用がためらわれていた一因である。   Also, if the superconducting member is operated by immersing the superconducting member in saturated liquid nitrogen at atmospheric pressure, the saturated liquid nitrogen is immediately vaporized by the heat generated by the superconducting member, and gas bubbles are generated. However, even when the superconducting member is immersed in liquid nitrogen whose temperature has been lowered to about 65K by depressurization as described above, there is a problem that the performance is reduced. In saturated liquid nitrogen, liquid nitrogen is immediately vaporized as a result of heat generated by the superconducting member, and bubbles are generated. Therefore, this is also one of the reasons for hesitating to use the reduced pressure liquid nitrogen.

特許文献1には、冷却用容器内に収納されている超電導部材冷却用の液体窒素とは別に熱交換用液体窒素を減圧用容器内に供給し、真空ポンプによりその減圧用容器内を減圧して熱交換用液体窒素を温度降下させ、その温度降下した熱交換用液体窒素と冷却用液体窒素とを熱交換させることにより大気圧でサブクール状態の冷却用液体窒素を得るようにしている超電導部材冷却装置が開示されている。
該冷却用液体窒素の液面下には断熱部材を配設して、冷却用液体窒素の液面(気液界面であるため約77K)とその断熱部材よりも下側との間で熱勾配を与え、またその断熱部材の存在によって液面付近に底部側との間での対流撹拌を阻止できることが記載されている。
しかし、この場合減圧用容器内の熱交換用液体窒素は減圧によって徐々に蒸発気化し、かつその気化ガスがポンプにより排気されて行くので、減圧用容器内の液体窒素液面は急激に低下して行き、遂には減圧用容器内の熱交換器が露出してしまうことになる。このように熱交換器が液面から露出してしまえば、充分な熱交換能率が得られなくなって、冷却用液体窒素を充分なサブクール状態となるように冷却することが困難となるから、実際上は熱交換器が液面から露出する以前に、改めて減圧用容器内に液体窒素を補給しなければならず、またこの液体窒素補給時には運転を一旦停止させなければならないという問題点がある。
In Patent Document 1, liquid nitrogen for heat exchange is supplied into a decompression container separately from the liquid nitrogen for cooling the superconducting member housed in the cooling container, and the inside of the decompression container is decompressed by a vacuum pump. The temperature of the liquid nitrogen for heat exchange is lowered, and the superconducting member is configured to obtain the liquid nitrogen for cooling in the subcooled state at atmospheric pressure by heat exchange between the liquid nitrogen for heat exchange and the liquid nitrogen for cooling. A cooling device is disclosed.
A heat insulating member is disposed below the liquid surface of the cooling liquid nitrogen, and a thermal gradient is formed between the liquid surface of the liquid nitrogen for cooling (about 77 K because it is a gas-liquid interface) and the lower side of the heat insulating member. In addition, it is described that the presence of the heat insulating member can prevent convective stirring between the bottom side and the liquid surface.
However, in this case, the liquid nitrogen for heat exchange in the decompression vessel is gradually evaporated and evaporated by the decompression, and the vaporized gas is exhausted by the pump, so that the liquid nitrogen liquid level in the decompression vessel rapidly decreases. Eventually, the heat exchanger in the decompression vessel will be exposed. If the heat exchanger is exposed from the liquid surface in this way, a sufficient heat exchange efficiency cannot be obtained, and it becomes difficult to cool the cooling liquid nitrogen to a sufficient subcooled state. Above, there is a problem that before the heat exchanger is exposed from the liquid level, liquid nitrogen must be replenished into the decompression vessel, and the operation must be stopped once when the liquid nitrogen is replenished.

特許文献2には供給側容器について液体窒素を冷凍機によって大気圧下でのサブクール冷却状態となる温度まで冷却し、得られたサブクール状態の低温の液体窒素を、冷却容器においてそのまま直接超電導部材を冷却するための冷却媒体として用いることとし、これにより前記特許文献1におけるような減圧用容器や熱交換器を用いないようにして、減圧用容器内への熱交換用液体窒素の補給のための運転停止を回避して、長時間の連続運転を可能とする超電導部材冷却装置が開示されている。
供給側容器内には、液体窒素の液面下にFRPなどの低熱伝導率材料からなる断熱部材を配置することによって、液面付近(約77K)と冷凍機の冷却ヘッド付近(65〜70K)との間で熱勾配層を形成している。しかしながら、断熱部材を配置した領域では、その断熱部材の体積によって液体窒素が排除されていて、断熱部材の周囲のわずかな狭い空隙の部分のみを液体窒素が移動し得る状況となっているから、供給側容器の揺動などによってわずかに液体窒素の蒸発もしくは窒素ガスの凝縮が生じただけで、液面の位置が大きく変動し、そのため温度勾配層が大きく変動してしまうおそれがある。したがって従来技術のような断熱部材を設けた場合は、実際の運転時においては運転状況の安定化、信頼性の向上を図るには未だ不充分である。
In Patent Document 2, liquid nitrogen is cooled to a temperature at which a subcooled cooling state under atmospheric pressure is achieved with a refrigerator in a supply side container, and the obtained supercooling liquid nitrogen in a subcooled state is directly used as a superconducting member in the cooling container. This is used as a cooling medium for cooling, so that the decompression vessel and the heat exchanger as in Patent Document 1 are not used, and the heat exchange liquid nitrogen is supplied into the decompression vessel. A superconducting member cooling device is disclosed that avoids shutdown and enables continuous operation for a long time.
In the supply side container, by disposing a heat insulating member made of a low thermal conductivity material such as FRP under the liquid nitrogen surface, the vicinity of the liquid surface (about 77 K) and the vicinity of the cooling head of the refrigerator (65 to 70 K). A thermal gradient layer is formed between them. However, in the region where the heat insulating member is arranged, liquid nitrogen is excluded by the volume of the heat insulating member, and the liquid nitrogen can move only in a portion of a small narrow gap around the heat insulating member. Even if liquid nitrogen is slightly evaporated or nitrogen gas is condensed due to the swinging of the supply side container, the position of the liquid level is greatly fluctuated, so that the temperature gradient layer may be fluctuated greatly. Therefore, when the heat insulating member as in the prior art is provided, it is still insufficient to stabilize the operation state and improve the reliability during actual operation.

特許文献3には液面上に空間を残して液体窒素を収容しかつその液面上の空間に大気圧等の窒素ガス圧力が加えられる液体窒素容器内の液体窒素を、大気圧下でのサブクール温度とし、その大気圧下でのサブクール温度の液体窒素によって超電導部材を冷却するように構成した超電導部材冷却装置において、前記液体窒素容器内の液体窒素の液面よりも下方の位置から、液面上方の位置までの間にわたって、連続孔を有する多孔質断熱材からなる対流阻止部材を配置した超電導部材冷却装置が開示されている。連続孔を有する多孔質断熱材としては、連続気泡ウレタン系発泡体のほか、例えば連続気泡ポリエチレン系発泡体、アクリロニトリルーブタジエンゴム系発泡体、エチレンプロピレンゴム系発泡体等を使用することができることが記載されている。   In Patent Document 3, liquid nitrogen in a liquid nitrogen container in which liquid nitrogen is stored leaving a space on the liquid surface and nitrogen gas pressure such as atmospheric pressure is applied to the space on the liquid surface is obtained under atmospheric pressure. In the superconducting member cooling device configured to cool the superconducting member with liquid nitrogen at the subcooling temperature under the atmospheric pressure at a subcooling temperature, from the position below the liquid surface of the liquid nitrogen in the liquid nitrogen container, the liquid A superconducting member cooling device is disclosed in which a convection blocking member made of a porous heat insulating material having continuous pores is disposed over a position above the surface. As the porous heat insulating material having continuous pores, in addition to the open-cell urethane foam, for example, open-cell polyethylene foam, acrylonitrile-butadiene rubber foam, ethylene propylene rubber foam, etc. can be used. Have been described.

特許文献3において、サブクール液体窒素は、飽和温度の液体ではないため超電導部材による極度の発熱がない限り沸騰することはない。また気相部が大気圧であるため取扱いが容易でかつ外気の混入(特に水分)の心配がないというメリットがある。以上のことよりサブクール液体窒素はより低い温度の液体窒素を供給することで、より低い温度で超電導部材の冷却が可能となり、超電導電力機器の性能をアップさせることができる。
非特許文献1には、クライオスタット内に大気圧での飽和温度(77K)の液体窒素を収納して、その後該クライオスタット内の液体窒素の液面上の圧力を大気圧より僅かに高い7kPaGに制御して、クライオスタットを静置させた状態で、底部に66Kの液体窒素を静かに導入し、上部から77Kの液体窒素を排出して液面を一定に維持した場合に、液面では7kPaGの飽和温度(約77K)の液体窒素が存在し、そして液面から約30mm以上の深さでは66Kのサブクール液体窒素が存在する実験結果が示されている。すなわち、この場合には液面から約30mmの深さの間に温度勾配層が形成されていることが分かる。また、底部に導入する66Kの液体窒素をヒータで温度制御して実質的に70Kの液体窒素を導入したようにすると液面から約15〜20mmの深さまでに温度勾配層が形成されることが示されている。
すなわち非特許文献1には、条件に応じて、液体窒素の液面と、液面から15〜30mmの深さまでの間で温度勾配層が形成されていることが示されている。
In Patent Document 3, subcooled liquid nitrogen is not a liquid having a saturation temperature, and therefore does not boil unless extreme heat is generated by the superconducting member. Further, since the gas phase part is at atmospheric pressure, it is easy to handle, and there is an advantage that there is no concern about mixing of outside air (particularly moisture). As described above, the subcooled liquid nitrogen supplies liquid nitrogen having a lower temperature, whereby the superconducting member can be cooled at a lower temperature and the performance of the superconducting power device can be improved.
In Non-Patent Document 1, liquid nitrogen having a saturation temperature (77 K) at atmospheric pressure is stored in a cryostat, and thereafter the pressure on the liquid surface of liquid nitrogen in the cryostat is controlled to 7 kPaG slightly higher than atmospheric pressure. Then, with the cryostat still standing, when 66K liquid nitrogen is gently introduced into the bottom and 77K liquid nitrogen is discharged from the top to keep the liquid level constant, the liquid level is saturated at 7 kPaG. Experimental results are shown in which liquid nitrogen at a temperature (about 77 K) is present and 66 K subcooled liquid nitrogen is present at a depth of about 30 mm or more from the liquid surface. That is, in this case, it can be seen that a temperature gradient layer is formed at a depth of about 30 mm from the liquid surface. Moreover, if the temperature of 66K liquid nitrogen introduced into the bottom is controlled by a heater so that substantially 70K liquid nitrogen is introduced, a temperature gradient layer may be formed to a depth of about 15 to 20 mm from the liquid level. It is shown.
That is, Non-Patent Document 1 shows that a temperature gradient layer is formed between the liquid level of liquid nitrogen and a depth of 15 to 30 mm from the liquid level depending on conditions.

ところで、サブクール液体窒素を用いる場合に重要なのは、液体窒素表面に形成される温度勾配層を如何に安定させるかである。もし安定できない場合には、液全体が撹拌されるために液面付近の液温が窒素ガス圧力に対する飽和温度以下の温度となり気相部のガスを凝縮し減圧してしまう。すなわち液体窒素全体の飽和化により、沸騰が起こり易い状況と成る。また容器内部へ外気(特に水分)の混入を招くおそれがある。
実際の運転時で液体窒素容器自体が揺動、振動を伴うような状況下では容器内部の液体窒素が大きく攪拌されるため温度勾配層が乱されて、たとえ前述のような断熱部材や多孔質断熱材を設けていても、運転状況が不安定化し、また液面での液体窒素の気化や逆に窒素ガスの凝縮が生じたりして、液面位置が変動してしまい、それに伴って温度勾配層が不安定となり、運転状況が不安定化し、冷却効率の低下、システムの信頼性の低下を招いてしまうおそれがある。
By the way, what is important when subcooled liquid nitrogen is used is how to stabilize the temperature gradient layer formed on the surface of liquid nitrogen. If the liquid cannot be stabilized, the whole liquid is agitated, so that the liquid temperature near the liquid surface becomes a temperature equal to or lower than the saturation temperature with respect to the nitrogen gas pressure, and the gas in the gas phase is condensed and decompressed. In other words, boiling of the liquid nitrogen is likely to occur due to the saturation of the entire liquid nitrogen. Moreover, there is a possibility that outside air (especially moisture) may be mixed into the container.
In situations where the liquid nitrogen container itself oscillates and vibrates during actual operation, the liquid nitrogen inside the container is greatly agitated and the temperature gradient layer is disturbed. Even if heat insulating material is provided, the operation status becomes unstable, and the liquid surface position fluctuates due to vaporization of liquid nitrogen on the liquid surface and conversely condensation of nitrogen gas. The gradient layer becomes unstable, the operation status becomes unstable, and cooling efficiency and system reliability may be reduced.

特開平10−054637号公報Japanese Patent Laid-Open No. 10-054637 特開平10−325661号公報Japanese Patent Laid-Open No. 10-325661 特開2001−345208号公報JP 2001-345208 A

S.Yoshida, etc.,“1 ATM SUBCOOLED LIQUID NITROGEN CRYOGENIC SYSTEM FOR OXIDE SUPERCONDUCTING POWER TRANSFORMER”, Advances in Cryogenic Engineering Vol.43, 1998、p.1191-1198S. Yoshida, etc., “1 ATM SUBCOOLED LIQUID NITROGEN CRYOGENIC SYSTEM FOR OXIDE SUPERCONDUDUTING POWER TRANSFORMER”, Advances in Cryogenic Engineering Vol.43, 1998, p.1191-1198

温度勾配層形成部にFRPなどの低熱伝導率材料を配設すると、その断熱部材の体積によって液体窒素が排除されるので、断熱部材の周囲のわずかな狭い空隙の部分のみを液体窒素が移動し得る状況となっている場合に、わずかに液体窒素の蒸発もしくは窒素ガスの凝縮が生じただけで、液面の位置が大きく変動し、そのため温度勾配層が大きく変動してしまうおそれがあった。
また、スポンジ形状の多孔質断熱材等の連続気泡樹脂系発泡体は、容器静置下においては容器内部で発生する小さな動乱に対する液体窒素温度勾配層保持の役目は果たすものの、容器自体が常に揺動、振動を伴うような状況下では、多孔質断熱材の内部の液体窒素が大きく揺れるため温度勾配層を保持することは不十分であった。
そこで、本発明は、振動、揺動下においても断熱容器内のサブクール液体窒素の温度勾配層を保持し、液面付近における窒素ガスの凝縮による減圧及び減圧による液体窒素の飽和温度化を防止し、安定的にサブクール液体窒素を供給等することが可能な超電導部材冷却装置、及び断熱容器内のサブクール液体窒素の温度維持方法を提供することを目的とする。
When a low thermal conductivity material such as FRP is disposed in the temperature gradient layer forming part, liquid nitrogen is excluded by the volume of the heat insulating member, so that the liquid nitrogen moves only in a small narrow gap around the heat insulating member. In the situation where it is possible to obtain the liquid level, the liquid level position fluctuates greatly and the temperature gradient layer may fluctuate greatly even if the liquid nitrogen is slightly evaporated or the nitrogen gas is condensed.
In addition, an open-cell resin foam such as a sponge-shaped porous heat insulating material plays a role of maintaining a liquid nitrogen temperature gradient layer against small turbulence generated inside the container when the container is left standing, but the container itself is always shaken. In a situation involving dynamics and vibrations, the liquid nitrogen inside the porous heat insulating material sways greatly, so it was insufficient to maintain the temperature gradient layer.
Therefore, the present invention maintains the temperature gradient layer of subcooled liquid nitrogen in the heat insulating container even under vibration and swinging, and prevents pressure reduction due to nitrogen gas condensation near the liquid surface and saturation of liquid nitrogen due to pressure reduction. An object of the present invention is to provide a superconducting member cooling apparatus capable of stably supplying subcooled liquid nitrogen and a method for maintaining the temperature of subcooled liquid nitrogen in a heat insulating container.

本発明は以上の事情を背景としてなされたものであり、サブクール液体窒素を収容する断熱容器の液体窒素の液面よりも上部の位置から、冷却ヘッドの上面部又は冷却ヘッドの上面部より上の位置までの範囲に渡って、液体窒素に対し吸収性を有するガラス繊維紙を充填してガラス繊維紙充填層を配設し、該ガラス繊維紙充填層に温度勾配層を形成して保持(以下、「形成して保持」を「保持」ということがある。)することより、上記課題を解決できることを見出し、本発明を完成するに至った。   The present invention has been made against the background described above. From the position above the liquid nitrogen level of the heat insulating container containing the subcooled liquid nitrogen, the upper surface of the cooling head or the upper surface of the cooling head. Over the range up to the position, the glass fiber paper having absorptivity to liquid nitrogen is filled and a glass fiber paper packed layer is disposed, and a temperature gradient layer is formed and held in the glass fiber paper packed layer (hereinafter referred to as “the glass fiber paper packed layer”). , “Form and hold” is sometimes referred to as “hold”.), The present inventors have found that the above problems can be solved, and have completed the present invention.

即ち、本発明は、以下の〈1〉ないし〈5〉に記載する発明を要旨とする。〈1〉少なくとも、窒素ガス空間を残してサブクール液体窒素を収容する断熱容器(V1)と、冷却用の冷却ヘッドを液体窒素の液面よりも下方の位置まで浸漬させる冷凍機と、該サブクール液体窒素中に浸漬される、冷却対象の超電導部材とからなる超電導部材冷却装置において、
断熱容器(V1)内の液体窒素の液面よりも上部の位置から、冷却ヘッドの上面部又は冷却ヘッドの上面部より上の位置までの範囲に渡って、液体窒素に対し吸収性を有するガラス繊維紙を該ガラス繊維紙間及び該ガラス繊維紙と断熱容器(V1)の壁面間に空隙が形成されないように充填した、サブクール液体窒素の温度勾配層を保持するためのガラス繊維紙充填層(L1)を設けており、
該ガラス繊維紙充填層には、少なくとも1枚の仕切板が含まれていることを特徴とする、超電導部材冷却装置(以下、第1の態様ということがある)。
That is, the gist of the present invention is the invention described in the following <1> to <5>. <1> At least a heat insulating container (V1) that stores subcooled liquid nitrogen leaving a nitrogen gas space, a refrigerator that immerses a cooling head for cooling to a position below the liquid surface of liquid nitrogen, and the subcooled liquid In a superconducting member cooling device composed of a superconducting member to be cooled, which is immersed in nitrogen,
Glass having absorptivity to liquid nitrogen over a range from a position above the liquid nitrogen level in the heat insulating container (V1) to a position above the upper surface of the cooling head or the upper surface of the cooling head. Glass fiber paper-filled layer for holding a temperature gradient layer of subcooled liquid nitrogen, in which fiber paper is filled between the glass fiber paper and between the glass fiber paper and the wall surface of the heat insulating container (V1). has established the L1),
A superconducting member cooling device (hereinafter sometimes referred to as a first embodiment), wherein the glass fiber paper packed layer includes at least one partition plate .

〈2〉少なくとも、窒素ガス空間を残してサブクール液体窒素が収容されると共に、断熱容器(V3)に該サブクール液体窒素を供給するための送液ポンプが該サブクール液体窒素中に挿入されていて、冷却用の冷却ヘッドを液体窒素の液面よりも下方の位置まで浸漬させる冷凍機を備えた、断熱容器(V2)と、
液面上に窒素ガス空間を残してサブクール液体窒素が断熱容器(V2)から循環されて収容されると共に、冷却対象の超電導部材を該サブクール液体窒素中に浸漬するための断熱容器(V3)とからなる超電導部材冷却装置において、
前記断熱容器(V2)内の液体窒素の液面よりも上部の位置から、冷却ヘッドの上面部又は冷却ヘッドの上面部より上の位置までの範囲に渡って、液体窒素に対し吸収性を有するガラス繊維紙を該繊維紙間及び該繊維紙と断熱容器(V2)の壁面間に空隙が形成されないように充填した、サブクール液体窒素の温度勾配層を保持するためのガラス繊維紙充填層(L2)、
及び前記断熱容器(V3)内の液体窒素の液面よりも上部の位置から、前記超電導部材の上面部又は上面部より上の位置までの範囲に渡って、液体窒素に対し吸収性を有するガラス繊維紙を該繊維紙間及び該繊維紙と断熱容器(V3)の壁面間に空隙が形成されないように充填した、サブクール液体窒素の温度勾配層を保持するためのガラス繊維紙充填層(L3)、を設けており、
前記ガラス繊維紙充填層(L2)と前記ガラス繊維紙充填層(L3)には、それぞれ少なくとも1枚の仕切板が含まれていることを特徴とする、超電導部材冷却装置(以下、第2の態様ということがある)。
<2> At least the subcooled liquid nitrogen is stored leaving a nitrogen gas space, and a liquid feed pump for supplying the subcooled liquid nitrogen to the heat insulating container (V3) is inserted into the subcooled liquid nitrogen, A heat insulating container (V2) equipped with a refrigerator that immerses the cooling head for cooling to a position below the liquid nitrogen liquid level;
A subcooled liquid nitrogen is circulated and accommodated from the heat insulating container (V2) leaving a nitrogen gas space on the liquid surface, and a heat insulating container (V3) for immersing the superconducting member to be cooled in the subcooled liquid nitrogen; In a superconducting member cooling device comprising:
Absorptive to liquid nitrogen over a range from the position above the liquid nitrogen liquid level in the heat insulating container (V2) to the upper surface of the cooling head or the position above the upper surface of the cooling head. Glass fiber paper filled layer (L2) for holding a temperature gradient layer of subcooled liquid nitrogen filled with glass fiber paper so that no gap is formed between the fiber paper and between the fiber paper and the wall surface of the heat insulating container (V2). ),
And the glass which has an absorptivity with respect to liquid nitrogen over the range from the position above the liquid level of the liquid nitrogen in the said heat insulation container (V3) to the upper surface part of the said superconducting member, or a position above an upper surface part. Glass fiber paper filled layer (L3) for holding a temperature gradient layer of subcooled liquid nitrogen, in which fiber paper is filled between the fiber paper and between the fiber paper and the wall surface of the heat insulating container (V3) so as not to form voids. , it has established a,
The glass fiber paper filling layer (L2) and the glass fiber paper filling layer (L3) each include at least one partition plate , a superconducting member cooling device (hereinafter referred to as a second conductive material cooling device). Sometimes referred to as an aspect).

〈3〉少なくとも、窒素ガス空間を残してサブクール液体窒素が収容されると共に、断熱容器(V4)に該サブクール液体窒素を供給するための送液ポンプが該サブクール液体窒素中に挿入されていて、冷却用の冷却ヘッドを液体窒素の液面よりも下方の位置まで浸漬させる冷凍機を備えた、断熱容器(V2)と、
サブクール液体窒素が断熱容器(V2)から循環されて、液面上に空間が形成されないように充填されていると共に、冷却対象の超電導部材が該サブクール液体窒素中に浸漬されている断熱容器(V4)とからなる、超電導部材冷却装置であって、
断熱容器(V2)内の液体窒素の液面よりも上部の位置から、冷却ヘッドの上面部又は冷却ヘッドの上面部より上の位置までの範囲に渡って、液体窒素に対し吸収性を有するガラス繊維紙を該繊維紙間及び該繊維紙と断熱容器(V2)の壁面間に空隙が形成されないように充填した、サブクール液体窒素の温度勾配層を保持するためのガラス繊維紙充填層(L2)を設けており、
該ガラス繊維紙充填層内には、少なくとも1枚の仕切板が含まれていることを特徴とする、超電導部材冷却装置(以下、第3の態様ということがある)。
〈4〉前記ガラス繊維紙充填(L1、L2とL3、又はL2)の垂直方向の厚みが、仕切板の厚みを除いた厚みで20mm以上50mm以下である、前記〈1〉から〈3〉のいずれかに記載の超電導部材冷却装置。
〈5〉少なくとも、窒素ガス空間を残して収容されている断熱容器(V0)内のサブクール液体窒素の温度維持方法において、
該サブクール液体窒素を冷却するための冷凍機の冷却ヘッドを液体窒素の液面よりも下方の位置まで浸漬し、
断熱容器(V0)内の液体窒素の液面よりも上部の位置から、冷却ヘッドの上面部又は冷却ヘッドの上面部より上の位置までの範囲に渡って、液体窒素に対し吸収性を有するガラス繊維紙を該繊維紙間及び該繊維紙と断熱容器(V0)の壁面間に空隙が形成されないように充填したガラス繊維紙充填層(L0)を設けるとともに該ガラス繊維紙充填層内に少なくとも1枚の仕切板を含ませて、該ガラス繊維紙充填層(L0)内にサブクール液体窒素の温度勾配層を保持することを特徴とする、断熱容器内のサブクール液体窒素の温度維持方法(以下、第4の態様ということがある)。
<3> At least the subcooled liquid nitrogen is stored leaving a nitrogen gas space, and a liquid feed pump for supplying the subcooled liquid nitrogen to the heat insulating container (V4) is inserted in the subcooled liquid nitrogen, A heat insulating container (V2) equipped with a refrigerator that immerses the cooling head for cooling to a position below the liquid nitrogen liquid level;
The subcooled liquid nitrogen is circulated from the heat insulating container (V2) and filled so that no space is formed on the liquid surface, and the superconducting member to be cooled is immersed in the subcooled liquid nitrogen (V4). A superconducting member cooling device comprising:
Glass having absorptivity to liquid nitrogen over a range from a position above the liquid nitrogen level in the heat insulating container (V2) to a position above the upper surface of the cooling head or the upper surface of the cooling head. Glass fiber paper packed layer (L2) for holding a temperature gradient layer of subcooled liquid nitrogen, in which fiber paper is filled between the fiber paper and between the fiber paper and the wall surface of the heat insulating container (V2) so as not to form a void. Has been established ,
A superconducting member cooling device (hereinafter sometimes referred to as a third mode), wherein the glass fiber paper packed layer includes at least one partition plate .
<4> From <1> to <3> , the thickness in the vertical direction of the glass fiber paper filling layer (L1, L2 and L3, or L2) is 20 mm or more and 50 mm or less excluding the thickness of the partition plate. The superconducting member cooling device according to any one of the above.
<5> In the method for maintaining the temperature of the subcooled liquid nitrogen in the heat insulating container (V0) accommodated at least leaving the nitrogen gas space,
Immerse the cooling head of the refrigerator for cooling the subcooled liquid nitrogen to a position below the liquid surface of the liquid nitrogen,
Glass having absorptivity to liquid nitrogen over a range from a position above the liquid nitrogen level in the heat insulating container (V0) to a position above the upper surface of the cooling head or the upper surface of the cooling head. at least fiber paper to said fiber sheet and between said fiber paper and the heat insulating container glass fiber paper packed bed filled so voids are not formed between the wall surface of (V0) (L0) and provided Rutotomoni the glass fiber paper packed bed A method for maintaining the temperature of subcooled liquid nitrogen in a heat insulating container (hereinafter referred to as the following), characterized in that a temperature gradient layer of subcooled liquid nitrogen is retained in the glass fiber paper packed layer (L0) by including one partition plate. , Sometimes referred to as a fourth aspect).

(イ)上記〈1〉ないし〈4〉に記載の超電導部材冷却装置において、液体窒素冷却用の冷却ヘッドが液体窒素中に浸漬されている断熱容器(V1等)内の液体窒素の液面よりも上部の位置から、冷却ヘッドの上面部又は冷却ヘッドの上面部より上の位置までの範囲に渡って、ガラス繊維紙充填層(L1等)を設けることにより、
該容器中の液体窒素がガラス繊維紙充填層(L1等)中のガラス繊維紙に吸収されることでそのガラス繊維紙充填層(L1等)で液面から下方へ向かって温度勾配層が形成、保持され、ガラス繊維紙充填層(L1等)を形成するガラス繊維紙の微細ガラス繊維構造に起因して、振動、揺動等を伴うような場合であっても該温度勾配層が従来の連続孔を有する多孔質断熱部材と比較して安定的に維持される。またガラス繊維紙充填層(L1等)は容器壁面との間に大きな隙間が形成されることのないように充填されるので、上下方向の液体窒素の対流をも抑制することができる。
その結果、該容器中の気相部が急激に減圧されることもなく、ガラス繊維紙充填層(L1等)下部の液体窒素の温度の飽和化が抑制されるので安定的にサブクール液体窒素の温度を維持することが可能になる。
(A) In the superconducting member cooling device according to <1> to <4> above, from the liquid nitrogen liquid level in a heat insulating container (V1 or the like) in which a cooling head for cooling liquid nitrogen is immersed in liquid nitrogen. By providing a glass fiber paper filling layer (L1 etc.) over the range from the upper position to the upper surface of the cooling head or the position above the upper surface of the cooling head,
Liquid nitrogen in the container is absorbed by the glass fiber paper in the glass fiber paper filling layer (L1 etc.), so that a temperature gradient layer is formed downward from the liquid level in the glass fiber paper filling layer (L1 etc.). Due to the fine glass fiber structure of the glass fiber paper that is held and forms the glass fiber paper filled layer (L1 etc.), the temperature gradient layer is not It is stably maintained as compared with a porous heat insulating member having continuous pores. Further, since the glass fiber paper filling layer (L1 or the like) is filled so as not to form a large gap with the container wall surface, convection of liquid nitrogen in the vertical direction can also be suppressed.
As a result, the gas phase portion in the container is not suddenly depressurized, and the saturation of the temperature of the liquid nitrogen in the lower part of the glass fiber paper packed layer (L1 etc.) is suppressed, so that the subcooled liquid nitrogen It becomes possible to maintain the temperature.

(ロ)上記〈5〉に記載のサブクール液体窒素の温度維持方法において、断熱容器(V0)内の液体窒素の液面よりも上部の位置から、冷却ヘッドの上部又は上部より上の位置までの範囲に渡って、ガラス繊維紙充填層(L0)を設けて、該ガラス繊維紙充填層(L0)内にサブクール液体窒素の温度勾配層を保持することにより、ガラス繊維紙充填層(L0)を形成するガラス繊維紙の微細ガラス繊維構造に起因して、断熱容器(V0)の下部で何らかの原因による揺動等によって液体窒素の対流や撹拌が生じても、液面近傍の液体窒素にまで対流や撹拌が生ずるおそれが少なく、温度勾配層を安定して保持できるとともに、液面位置を安定化することができる。 (B) In the temperature maintenance method for subcooled liquid nitrogen described in <5> above, from the position above the liquid nitrogen liquid level in the heat insulating container (V0) to the position above the cooling head or above the top. A glass fiber paper filling layer (L0) is provided over the range, and a temperature gradient layer of subcooled liquid nitrogen is retained in the glass fiber paper filling layer (L0). Due to the fine glass fiber structure of the glass fiber paper to be formed, even if convection or agitation of liquid nitrogen occurs due to rocking for some reason in the lower part of the heat insulating container (V0), convection to liquid nitrogen near the liquid surface In addition, the temperature gradient layer can be stably held and the liquid surface position can be stabilized.

冷却ヘッドが浸漬されている断熱容器(V1)内でサブクール液体窒素により超電導部材を冷却する、本発明の超電導部材冷却装置の一例を示す略解図である。It is a schematic diagram which shows an example of the superconducting member cooling device of this invention which cools a superconducting member by subcooled liquid nitrogen within the heat insulation container (V1) in which the cooling head is immersed. 断熱容器(V2)内で冷却ヘッドにより冷却されたサブクール液体窒素が循環される断熱容器(V3)内で、超電導部材を冷却する、本発明の超電導部材冷却装置の一例を示す略解図である。It is a schematic diagram which shows an example of the superconducting member cooling device of this invention which cools a superconducting member in the heat insulating container (V3) by which the subcooled liquid nitrogen cooled by the cooling head is circulated in the heat insulating container (V2). 断熱容器(V2)内で冷却ヘッドにより冷却されたサブクール液体窒素が循環される断熱容器(V4)内で、超電導部材を冷却する、本発明の超電導部材冷却装置の一例を示す略解図である。It is a schematic diagram which shows an example of the superconducting member cooling device of this invention which cools a superconducting member in the heat insulation container (V4) by which the subcooled liquid nitrogen cooled by the cooling head in the heat insulation container (V2) is circulated.

以下、本発明の〔1〕第1の態様の「超電導部材冷却装置」、〔2〕第2の態様の「超電導部材冷却装置」、〔3〕第3の態様の「超電導部材冷却装置」、及び〔4〕第4の態様の「断熱容器内のサブクール液体窒素の温度制御方法」について説明する。
〔1〕第1の態様の「超電導部材冷却装置」
本発明の第1の態様の「超電導部材冷却装置」は、少なくとも、窒素ガス空間を残してサブクール液体窒素を収容する断熱容器(V1)と、冷却用の冷却ヘッドを液体窒素の液面よりも下方の位置まで浸漬させる冷凍機と、該サブクール液体窒素中に浸漬される、冷却対象の超電導部材とからなる超電導部材冷却装置において、断熱容器(V1)内の液体窒素の液面よりも上部の位置から、冷却ヘッドの上面部又は冷却ヘッドの上面部より上の位置までの範囲に渡って、液体窒素に対し吸収性を有するガラス繊維紙を該ガラス繊維紙間及び該ガラス繊維紙と断熱容器(V1)の壁面間に空隙が形成されないように充填した、サブクール液体窒素の温度勾配層を保持するためのガラス繊維紙充填層(L1)を設けており、該ガラス繊維紙充填層内には、少なくとも1枚の仕切板が含まれている
Hereinafter, [1] “superconducting member cooling device” of the first aspect of the present invention, [2] “superconducting member cooling device” of the second aspect, [3] “superconducting member cooling device” of the third aspect, And [4] "Method for controlling temperature of subcooled liquid nitrogen in heat insulating container" of the fourth aspect will be described.
[1] “Superconducting member cooling device” according to the first aspect
The “superconducting member cooling device” according to the first aspect of the present invention includes at least a heat insulating container (V1) that stores subcooled liquid nitrogen leaving a nitrogen gas space, and a cooling head for cooling than the liquid nitrogen level. In a superconducting member cooling device comprising a refrigerator immersed in a lower position and a superconducting member to be cooled, which is immersed in the subcooled liquid nitrogen, the upper part of the liquid nitrogen in the heat insulating container (V1) Glass fiber paper that absorbs liquid nitrogen over the range from the position to the upper surface of the cooling head or the position above the upper surface of the cooling head, and between the glass fiber paper and the glass fiber paper and the heat insulating container gap between the wall surface of (V1) is filled so as not to be formed, and provided with a glass fiber paper filling layer (L1) to maintain the temperature gradient layer of subcooled liquid nitrogen, the glass fiber paper packed bed The, it contains at least one partition plate.

以下に図面を用いて本発明の第1の態様を説明するが、本発明の第1の態様は以下の図1の例示に限定されるものではない。
図1は、第1の態様の超電導部材冷却装置を説明するための略解図であり、該超電導部材冷却装置には、断熱容器(V1)11、並びに該容器内に収納されたサブクール液体窒素14、冷凍機21、ガラス繊維紙充填層(L1)16、及び冷却対象の超電導部材27が含まれ、更に付帯設備として液体窒素供給手段51と窒素ガス供給手段55を設けることができる。
断熱容器(V1)11内において、ガラス繊維紙充填層(L1)を液体窒素の液面よりも上部の位置から、冷却ヘッド25の上面部又は冷却ヘッドの上面部より上の位置までの範囲に渡って設けることができ、超電導部材27はガラス繊維紙充填層(L1)よりも下部方向に配設される。
以下に第1の態様の超電導部材冷却装置を具体的に説明する。
Hereinafter, the first aspect of the present invention will be described with reference to the drawings. However, the first aspect of the present invention is not limited to the illustration of FIG. 1 below.
FIG. 1 is a schematic diagram for explaining the superconducting member cooling device according to the first embodiment. The superconducting member cooling device includes a heat insulating container (V1) 11 and subcooled liquid nitrogen 14 accommodated in the container. The refrigerator 21, the glass fiber paper packed layer (L 1) 16, and the superconducting member 27 to be cooled are included, and liquid nitrogen supply means 51 and nitrogen gas supply means 55 can be provided as additional equipment.
In the heat insulating container (V1) 11, the glass fiber paper packed layer (L1) is in a range from a position above the liquid nitrogen liquid level to a position above the upper surface of the cooling head 25 or the upper surface of the cooling head. The superconducting member 27 is disposed in a lower direction than the glass fiber paper filling layer (L1).
The superconducting member cooling device according to the first aspect will be specifically described below.

(イ)断熱容器(V1)
断熱容器(V1)11は、一般的な汎用のクライオスタットからなるものであって、その外周壁部および底壁部が内槽19Aと外槽19Bからなる真空断熱構造13とされ、また上端には開閉可能な蓋部12が設けられている。この蓋部は、断熱容器(V1)本体に対してOリング等のガスケットを挟んでボルト・ナット等によって真空封止可能な状態で装着することが好ましい。またこの蓋部には汎用のクライオスタットと同様な電流導入端子等用の貫通継手が密封構造で配設されている。この断熱容器(V1)には、例えば液体窒素供給手段51により、液体窒素(LN)が貯蔵されている液体窒素タンク52から、制御弁53および供給管54を介して液体窒素14を供給できるようにすることができ、また、窒素ガス供給手段55により、窒素ガス(GN)が貯蔵されている窒素ガスタンク56から、制御弁57および供給管58を介して窒素ガスを供給できるようにすることができる。
なお蓋部には負圧にも耐用可能な安全弁26を設けることができるが、この安全弁は、内部圧力が外部の大気圧に対して例えば+10kPaを越えた場合に開放されて、内部圧力を負圧〜大気圧+10kPaの範囲内、すなわち負圧から大気圧より若干高い圧力の間に保持するように機能させることができる。そして該容器内に収納され、冷凍機により冷却されるサブクール液体窒素中に超電導部材を浸漬させ、冷却・保持することができる。
(B) Insulated container (V1)
The heat insulating container (V1) 11 is made of a general-purpose cryostat, and the outer peripheral wall portion and the bottom wall portion thereof are a vacuum heat insulating structure 13 including an inner tank 19A and an outer tank 19B, A lid 12 that can be opened and closed is provided. The lid is preferably mounted in a state where it can be vacuum-sealed with bolts, nuts, etc. with a gasket such as an O-ring sandwiched between the main body of the heat insulating container (V1). In addition, a through joint for a current introduction terminal or the like similar to that of a general-purpose cryostat is disposed in the lid portion in a sealed structure. For example, the liquid nitrogen supply means 51 can supply the liquid nitrogen 14 from the liquid nitrogen tank 52 in which the liquid nitrogen (LN 2 ) is stored to the heat insulating container (V1) through the control valve 53 and the supply pipe 54. Further, the nitrogen gas can be supplied from the nitrogen gas tank 56 in which nitrogen gas (GN 2 ) is stored by the nitrogen gas supply means 55 through the control valve 57 and the supply pipe 58. be able to.
Although a safety valve 26 that can withstand negative pressure can be provided in the lid, this safety valve is opened when the internal pressure exceeds, for example, +10 kPa with respect to the external atmospheric pressure, and the internal pressure is reduced. The pressure can be made to function within the range of the pressure to the atmospheric pressure + 10 kPa, that is, between the negative pressure and a pressure slightly higher than the atmospheric pressure. And a superconducting member can be immersed in the subcooled liquid nitrogen accommodated in this container and cooled with a refrigerator, and can be cooled and held.

(ロ)冷凍機、サブクール液体窒素
断熱容器(V1)内には、該容器内の液体窒素14を、大気圧下での飽和液体窒素の温度(約77K)よりも低い温度(例えば65〜70K)に冷却するための冷凍機21が配設されている。この冷凍機は、特に限定されるものではないが、例えば冷凍媒体ガス(通常はヘリウムガス)を圧縮するための圧縮部(コンプレッサ)と、圧縮された高圧の冷凍媒体ガスを膨張させて低温を得るための冷却ヘッド25と、冷却ヘッドと密着させその低温を冷却対象(液体窒素)と熱交換するための熱交換器23、圧縮部からの高圧の媒体ガスと冷却ヘッドから戻る膨張された低圧の媒体ガスの流れを切替えるためのモーターバルブ等の切替部と冷却ヘッドとの間で冷凍媒体ガスを往復させる通路を内部に形成したシリンダ部22とからなる冷凍機を使用することができる。尚、冷却ヘッド25にはヒータ24を設けて、サブクール液体窒素を所定の温度に維持することができる。
図1に示すように冷凍機21の冷却ヘッド25は、断熱容器(V1)11内の液体窒素中に浸漬されている。
(B) In the refrigerator, the subcooled liquid nitrogen insulated container (V1), the liquid nitrogen 14 in the container is cooled to a temperature lower than the temperature of saturated liquid nitrogen (about 77K) under atmospheric pressure (for example, 65 to 70K). ) Is provided with a refrigerator 21 for cooling. This refrigerator is not particularly limited. For example, a compressor (compressor) for compressing a refrigeration medium gas (usually helium gas) and a compressed high-pressure refrigeration medium gas are expanded to lower the temperature. A cooling head 25 for obtaining, a heat exchanger 23 for closely contacting the cooling head and exchanging the low temperature with the object to be cooled (liquid nitrogen), a high-pressure medium gas from the compression section, and an expanded low-pressure returning from the cooling head It is possible to use a refrigerator having a cylinder portion 22 in which a passage for reciprocating the refrigeration medium gas is formed between a switching portion such as a motor valve for switching the flow of the medium gas and the cooling head. The cooling head 25 can be provided with a heater 24 to maintain the subcooled liquid nitrogen at a predetermined temperature.
As shown in FIG. 1, the cooling head 25 of the refrigerator 21 is immersed in the liquid nitrogen in the heat insulating container (V1) 11.

液体窒素をサブクール温度とするための冷凍機としては、GM冷凍機(ギフォード・マクマホン冷凍機)で代表される小型極低温冷凍機を用いることができる。この場合、該冷凍機は、圧縮機、膨張機、循環冷媒管、電源等からなり、圧縮機で圧縮したガス冷媒(主にヘリウムガス)を循環させて、膨張機で発生させた寒冷を冷却ヘッド部で熱交換させ、温められたガスを圧縮機に戻して循環している。冷凍機の圧縮機は、断熱容器の蓋部に載せて容器のシールを確保して固定される。冷却ヘッド25は、鉛直下側に向いて液体窒素に浸漬する状態で配置され、液体窒素との熱交換をよくするための熱交換器23が取り付けられている。冷凍能力としては、例えば、冷却ヘッド60K、周波数50Hzで冷凍出力200Wのものや、更に冷凍出力が1kW級のものもある。   A small cryogenic refrigerator represented by a GM refrigerator (Gifford McMahon refrigerator) can be used as a refrigerator for setting liquid nitrogen to a subcool temperature. In this case, the refrigerator includes a compressor, an expander, a circulating refrigerant pipe, a power source, and the like, and circulates gas refrigerant (mainly helium gas) compressed by the compressor to cool the cold generated by the expander. Heat is exchanged at the head, and the heated gas is returned to the compressor for circulation. The compressor of the refrigerator is placed on the lid portion of the heat insulating container and secured by securing the container seal. The cooling head 25 is arranged in a state of being immersed in liquid nitrogen facing vertically downward, and a heat exchanger 23 for improving heat exchange with liquid nitrogen is attached. As a refrigerating capacity, for example, there are a cooling head of 60 K, a frequency of 50 Hz and a refrigerating output of 200 W, and a refrigerating output of 1 kW class.

(ハ)ガラス繊維紙充填層(L1)
ガラス繊維紙充填層(L1)は、断熱容器(V1)内の液体窒素の液面よりも上部の位置から、冷却ヘッドの上面部又は冷却ヘッドの上面部より上の位置までの範囲に渡って、液体窒素に対し吸収性を有するガラス繊維紙を該ガラス繊維紙間及び該ガラス繊維紙と断熱容器(V1)の壁面間に空隙が形成されないように充填された、液体窒素の温度勾配層を形成、保持するための層である。
(i)ガラス繊維紙
ガラス繊維紙は、ガラス繊維を結合剤を用いて熱融着性、接着等させて得られるシート状のもので、その製造方法は例えば、特公昭36−9601号公報、特開平5−86567号公報等に記載されている。ガラス繊維紙は、ロール状に巻かれたもの、ペーパー状のものが知られており、市販品としてライダルサーマル社(Lydallthermal com.)製の商品名:CryoTherm 233(登録商標)、CryoTherm 234(登録商標)、日本板硝子(株)製の商品名:AGMセパレーター、MCペーパー等が知られている。このようなガラス繊維紙は一般に高い空間率(例えば85%以上)を有していて多量の液体を保持でき、液体窒素等に高い親和性を有していて、数十μm以下の微細ガラス繊維構造のため微毛細管からなり、多量の液体窒素を均一に保持でき、サブクール液体窒素で冷却されても収縮が極め少ないのが特徴である。
(C) Glass fiber paper packed layer (L1)
The glass fiber paper filling layer (L1) extends over a range from a position above the liquid nitrogen level in the heat insulating container (V1) to a position above the top surface of the cooling head or the top surface of the cooling head. A temperature gradient layer of liquid nitrogen filled with glass fiber paper having absorbability with respect to liquid nitrogen so that no gap is formed between the glass fiber paper and between the glass fiber paper and the wall surface of the heat insulating container (V1). It is a layer for forming and holding.
(I) Glass fiber paper Glass fiber paper is a sheet-like material obtained by bonding glass fibers to a heat-fusible or bonded material using a binder, and its production method is, for example, Japanese Patent Publication No. 36-9601, It is described in JP-A-5-86567. Glass fiber paper is known in the form of a roll or paper, and is a commercial product made by Rydal Thermal Co. (trade name): CryoTherm 233 (registered trademark), CryoTherm 234 (registered). Trademarks), trade names manufactured by Nippon Sheet Glass Co., Ltd .: AGM separator, MC paper and the like are known. Such glass fiber paper generally has a high space ratio (for example, 85% or more), can hold a large amount of liquid, has a high affinity for liquid nitrogen, etc., and has a fine glass fiber of several tens of μm or less. Due to its structure, it consists of fine capillaries, which can hold a large amount of liquid nitrogen uniformly, and is characterized by extremely little shrinkage even when cooled with subcooled liquid nitrogen.

(ii)ガラス繊維紙充填層(L1)
ガラス繊維紙充填層(L1)は、液体窒素に対し吸収性を有し、該ガラス繊維紙間及び該ガラス繊維紙と断熱容器(V1)の壁面間に空隙が形成されないように充填された層であれば特に制限されるものではなく、例えば上記ガラス繊維紙がロール状に巻かれたものを平らに伸ばして水平方向にガラス繊維紙間及び該ガラス繊維紙と断熱容器(V1)の壁面間に空隙が形成されないように充填して形成することができる。尚、ガラス繊維紙の長時間の使用により繊維の剥離が発生するのを防止するために、ガラス繊維紙充填層(L1)の上面と下面をステンレス製等の開口部を有する平板、金網、又は樹脂性のネットで挟み込むようにして保持することが望ましい。ガラス繊維紙は液体窒素をよく吸収し、空間率が高いので多量の液体窒素を均一に保持でき、微細ガラス繊維構造に起因して液体窒素の対流を抑制し、かつサブクール液体窒素温度まで冷却されてもその外形形状としての熱収縮率が低いので温度勾配層を保持するガラス繊維紙充填層(L1)形成用の材料として好適であり、わずかな液量の変動で液面位置の変動に及ぼす影響は小さいので液面位置を安定化することができる。また、ガラス繊維紙充填層(L1)は振動、揺動等に対しても該層内の温度勾配層を従来の連続孔を有する多孔質断熱部材と比較的して安定に維持することができる。
従って、ガラス繊維紙充填層(L1)は、温度勾配層を形成する液体窒素自身の揺動を抑制するので、従来知られている連続気泡ウレタン系発泡体、連続気泡ポリエチレン系発泡体、アクリロニトリルーブタジエンゴム系発泡体、エチレンプロピレンゴム系発泡体等よりも温度勾配層の安定性に優れるものである。
(Ii) Glass fiber paper packed layer (L1)
The glass fiber paper-filled layer (L1) has an absorbability with respect to liquid nitrogen, and is a layer filled so that no gap is formed between the glass fiber paper and between the glass fiber paper and the wall surface of the heat insulating container (V1). If it is, it will not restrict | limit in particular, For example, the said glass fiber paper wound in roll shape is extended flatly, between glass fiber paper in the horizontal direction, and between the wall surface of this glass fiber paper and a heat insulation container (V1) It can be formed by filling so as not to form voids. In order to prevent the fiber from peeling due to the long-term use of the glass fiber paper, the upper surface and the lower surface of the glass fiber paper filling layer (L1) have a flat plate having an opening made of stainless steel, a wire mesh, or It is desirable to hold it with a resin net. Glass fiber paper absorbs liquid nitrogen well and has a high space ratio, so it can hold a large amount of liquid nitrogen uniformly, suppresses convection of liquid nitrogen due to the fine glass fiber structure, and is cooled to the subcooled liquid nitrogen temperature. However, it has a low thermal shrinkage rate as its outer shape, so it is suitable as a material for forming the glass fiber paper filled layer (L1) that holds the temperature gradient layer, and a slight change in the liquid amount affects the change in the liquid surface position. Since the influence is small, the liquid surface position can be stabilized. Further, the glass fiber paper-filled layer (L1) can maintain the temperature gradient layer in the layer relatively stably with the porous heat insulating member having the continuous pores even with respect to vibration, swinging, and the like. .
Therefore, since the glass fiber paper filled layer (L1) suppresses the fluctuation of the liquid nitrogen itself forming the temperature gradient layer, the conventionally known open-cell urethane foam, open-cell polyethylene foam, acrylonitrile The stability of the temperature gradient layer is superior to that of a butadiene rubber foam, an ethylene propylene rubber foam, or the like.

ガラス繊維紙充填層(L1)は、該層内で液体窒素の温度勾配層を保持させることにより、液面近傍の液体窒素の温度を大気圧での飽和温度(約77K)とし、冷却対象の超電導部材が浸漬されているガラス繊維紙充填層(L1)より下層部の温度を例えば65〜70K程度の温度までサブクールすると共に、液体窒素の対流や撹拌を抑制して液体窒素の温度勾配層を安定化させる。
ガラス繊維紙充填層(L1)は、蓋部からスタッドボルト等の支持部材(図示せず)によって吊下げられた状態で、或いは蓋部より籠状に吊り下げられた金網内にガラス繊維紙を設置することによって配設することができる。
ガラス繊維紙充填層(L1)は、該層内に仕切板を設けなくとも温度勾配層を安定的に保持することが可能ではあるが、以下でも記載があるように、1又は2以上の仕切板を設けられている。なお、窒素ガス空間部からの侵入熱を防止する観点から液面上の窒素ガス空間に少なくとも5mmのガラス繊維紙充填層(L1)を設けることが好ましい。
さらに、侵入熱の1つの要因である窒素ガス空間部からの対流熱を防止するために、ガラス繊維紙充填層(L1)の上部に、更に10〜50mm程度の厚みのガラス繊維紙充填層、又は他の発泡ポリエチレン等の断熱材を設けることもできる。
前記非特許文献1に記載されているように、温度勾配層がサブクール液体窒素の温度条件等によって、液体窒素の液面と、液面から15〜30mmの深さまでの間で温度勾配層が形成されるという事実からも、液体窒素の液面より下部のガラス繊維紙充填層(L1)の垂直方向の厚みは15mm以上が好ましい。従って、窒素ガス空間部における厚みも考慮すると、ガラス繊維紙充填層(L1)の厚みは20mm以上が好ましい。このような厚みのガラス繊維紙充填層(L1)を設けることにより、液体窒素の対流や撹拌を抑制して液体窒素の温度勾配層を安定化させることができる。一方、該厚みの上限は特に限定されるものではなく、厚みが50mmを超えてもガラス繊維紙充填層(L1)の効果を発揮させる上で特に問題は生じないが、上記機能の更なる向上は期待できない。
The glass fiber paper-filled layer (L1) maintains a temperature gradient layer of liquid nitrogen in the layer, thereby setting the temperature of liquid nitrogen near the liquid surface to a saturation temperature (about 77 K) at atmospheric pressure, While subcooling the temperature of the lower layer from the glass fiber paper packed layer (L1) in which the superconducting member is immersed to a temperature of about 65 to 70 K, for example, a liquid nitrogen temperature gradient layer is formed by suppressing convection and stirring of liquid nitrogen. Stabilize.
The glass fiber paper filling layer (L1) is a glass fiber paper that is suspended from a lid by a support member (not shown) such as a stud bolt or in a wire mesh suspended from a lid. It can arrange | position by installing.
Although the glass fiber paper-filled layer (L1) can stably hold the temperature gradient layer without providing a partition plate in the layer , as described below, one or two or more partitions It is provided with a plate. In addition, it is preferable to provide a glass fiber paper filling layer (L1) of at least 5 mm in the nitrogen gas space on the liquid surface from the viewpoint of preventing intrusion heat from the nitrogen gas space.
Furthermore, in order to prevent convection heat from the nitrogen gas space part which is one factor of intrusion heat, a glass fiber paper filling layer having a thickness of about 10 to 50 mm is further provided on the upper part of the glass fiber paper filling layer (L1), Alternatively, other heat insulating materials such as polyethylene foam can be provided.
As described in Non-Patent Document 1, a temperature gradient layer is formed between the liquid surface of liquid nitrogen and a depth of 15 to 30 mm from the liquid surface depending on the temperature condition of the subcooled liquid nitrogen. In view of the fact, the thickness in the vertical direction of the glass fiber paper filling layer (L1) below the liquid surface of liquid nitrogen is preferably 15 mm or more. Accordingly, considering the thickness in the nitrogen gas space, the thickness of the glass fiber paper filling layer (L1) is preferably 20 mm or more. By providing the glass fiber paper-filled layer (L1) having such a thickness, the liquid nitrogen temperature gradient layer can be stabilized by suppressing convection and stirring of liquid nitrogen. On the other hand, the upper limit of the thickness is not particularly limited, and even if the thickness exceeds 50 mm, there is no particular problem in exerting the effect of the glass fiber paper filling layer (L1), but the above functions are further improved. Cannot be expected.

ガラス繊維紙充填層(L1)内に仕切板を設けない場合のガラス繊維紙充填層(L1)の垂直方向の厚みは上記の通りである。
一方、ガラス繊維紙充填層(L1)内に仕切板を設ける場合には、ガラス繊維紙充填層(L1)の1つのブロックの垂直方向の厚みを5〜10mm程度として、仕切板を設けて積み重ねる構造とすることにより、ガラス繊維紙が液体窒素を吸収して上昇していき、液面で液体窒素が蒸発されるのを抑制することができる。この場合の仕切板は2〜6枚が好ましく、3〜4枚がより好ましく、全体の厚みは20〜50mm(仕切板の厚みを除く)が好ましい。
該仕切板の材料は特に制限されるものではないが液体窒素がサブクールされた際の温度での膨張率が少ない材料が望ましく、例えば厚み1mm程度のステンレス製の仕切板で作製することが好ましい。仕切板は、蓋部からスタッドボルト等の支持部材(図示せず)よって吊下げられた状態で配設することができる。
The vertical thickness of the glass fiber paper filling layer (L1) when no partition plate is provided in the glass fiber paper filling layer (L1) is as described above.
On the other hand, when a partition plate is provided in the glass fiber paper filling layer (L1), the vertical thickness of one block of the glass fiber paper filling layer (L1) is set to about 5 to 10 mm, and the partition plates are provided and stacked. By setting it as a structure, it can suppress that glass fiber paper absorbs liquid nitrogen and raises, and liquid nitrogen evaporates on a liquid level. In this case, the number of partition plates is preferably 2 to 6, more preferably 3 to 4, and the total thickness is preferably 20 to 50 mm (excluding the thickness of the partition plate).
The material of the partition plate is not particularly limited, but a material having a low expansion coefficient at the temperature when liquid nitrogen is subcooled is desirable. For example, the partition plate is preferably made of a stainless partition plate having a thickness of about 1 mm. A partition plate can be arrange | positioned in the state hung from the cover part by support members (not shown), such as a stud bolt.

仕切板と断熱容器(V1)壁との間も空隙があると、その狭い空隙の部分を液体窒素がガラス繊維紙内を移動して蒸発され易くなるので、断熱容器(V1)壁との空隙が極力小さくなるように仕切板を設置することが好ましい。この場合の空隙は0.5〜5mmが好ましく、1〜2mmがより好ましい。
(ニ)超電導部材
本発明における冷却対象の超電導部材は特に制限されるものではなく、超電導トランスや超電導マグネット、そのほか各種の超電導コイル、あるいは超電導ケーブルなどの超電導部材、特に高温超電導部材の冷却に有効である。超電導部材27は図1に示すように蓋部から支持部材20A,20Bによって吊下げた状態とすることができる。
If there is an air gap between the partition plate and the heat insulating container (V1) wall, the liquid nitrogen easily moves through the glass fiber paper through the narrow air gap portion and evaporates, so the air gap with the heat insulating container (V1) wall. It is preferable to install the partition plate so as to minimize the size of the plate. In this case, the gap is preferably 0.5 to 5 mm, more preferably 1 to 2 mm.
(D) Superconducting member The superconducting member to be cooled in the present invention is not particularly limited, and is effective for cooling superconducting members such as superconducting transformers, superconducting magnets, other various superconducting coils, or superconducting cables, particularly high-temperature superconducting members. It is. As shown in FIG. 1, the superconducting member 27 can be suspended from the lid by the supporting members 20A and 20B.

〔2〕第2の態様の「超電導部材冷却装置」
本発明の第2の態様の「超電導部材冷却装置」は、少なくとも、窒素ガス空間を残してサブクール液体窒素が収容されると共に、断熱容器(V3)に該サブクール液体窒素を供給するための送液ポンプがサブクール液体窒素中に挿入されていて、冷却用の冷却ヘッドを液体窒素の液面よりも下方の位置まで浸漬させる冷凍機を備えた、断熱容器(V2)と、液面上に窒素ガス空間を残してサブクール液体窒素が断熱容器(V2)から循環されて収容されると共に、冷却対象の超電導部材を該サブクール液体窒素中に浸漬するための断熱容器(V3)とからなる超電導部材冷却装置において、
前記断熱容器(V2)内の液体窒素の液面よりも上部の位置から、冷却ヘッドの上面部又は冷却ヘッドの上面部より上の位置までの範囲に渡って、液体窒素に対し吸収性を有するガラス繊維紙を該繊維紙間及び該繊維紙と断熱容器(V2)の壁面間に空隙が形成されないように充填した、サブクール液体窒素の温度勾配層を保持するためのガラス繊維紙充填層(L2)、
及び前記断熱容器(V3)内の液体窒素の液面よりも上部の位置から、前記超電導部材の上面部又は上面部より上の位置までの範囲に渡って、液体窒素に対し吸収性を有するガラス繊維紙を該繊維紙間及び該繊維紙と断熱容器(V3)の壁面間に空隙が形成されないように充填した、サブクール液体窒素の温度勾配層を保持するためのガラス繊維紙充填層(L3)、を設けており、
前記ガラス繊維紙充填層(L2)と前記ガラス繊維紙充填層(L3)には、それぞれ少なくとも1枚の仕切板が含まれている
[2] “Superconducting member cooling device” of the second aspect
In the “superconducting member cooling device” according to the second aspect of the present invention, at least the subcooled liquid nitrogen is accommodated leaving the nitrogen gas space, and the liquid feed for supplying the subcooled liquid nitrogen to the heat insulating container (V3). A heat insulating container (V2) having a pump inserted in subcooled liquid nitrogen and having a cooling head for cooling to a position below the liquid level of liquid nitrogen, and nitrogen gas on the liquid level Supercooling member cooling apparatus comprising subcooled liquid nitrogen circulated and accommodated from the heat insulating container (V2) leaving a space, and a heat insulating container (V3) for immersing the superconducting member to be cooled in the subcooled liquid nitrogen In
Absorptive to liquid nitrogen over a range from the position above the liquid nitrogen liquid level in the heat insulating container (V2) to the upper surface of the cooling head or the position above the upper surface of the cooling head. Glass fiber paper filled layer (L2) for holding a temperature gradient layer of subcooled liquid nitrogen filled with glass fiber paper so that no gap is formed between the fiber paper and between the fiber paper and the wall surface of the heat insulating container (V2). ),
And the glass which has an absorptivity with respect to liquid nitrogen over the range from the position above the liquid level of the liquid nitrogen in the said heat insulation container (V3) to the upper surface part of the said superconducting member, or a position above an upper surface part. Glass fiber paper filled layer (L3) for holding a temperature gradient layer of subcooled liquid nitrogen, in which fiber paper is filled between the fiber paper and between the fiber paper and the wall surface of the heat insulating container (V3) so as not to form voids. , it has established a,
Each of the glass fiber paper filling layer (L2) and the glass fiber paper filling layer (L3) includes at least one partition plate .

以下に図2を用いて本発明の第2の態様を説明するが、該第2の態様は以下の図2の例示に限定されるものではない。
図2は、第2の態様の超電導部材冷却装置を説明するための略解図であり、該超電導部材冷却装置には上記したように、超電導部材を冷却するための液体窒素の供給側断熱容器として、断熱容器(V2)31、並びに該容器内に収納されたサブクール液体窒素14、冷凍機21、ガラス繊維紙充填層(L2)16、及び送液ポンプ32が含まれ、更に付帯設備として液体窒素供給手段51と窒素ガス供給手段55とを設けることができる。また、供給側断熱容器から移送されてきた液体窒素で超電導部材を冷却する冷却側断熱容器として、断熱容器(V3)41、並びに該容器内にガラス繊維紙充填層(L3)46、及び冷却対象の超電導部材27が含まれる。
第1の態様では超電導部材の冷却が自然対流熱伝達であるのに対し、第2の態様ではポンプにより強制的に冷却された液体窒素が冷却側断熱容器に送り込まれるため強制対流熱伝達に近い状態であるため、第2の様態の方がより超電導部材を冷却することが可能である。また、供給側断熱容器と冷却側断熱容器が分離していることから、メンテナンスが容易となる。以下に第2の態様の超電導部材冷却装置を、供給側断熱容器と冷却側断熱容器に分けて具体的に説明する。
Hereinafter, the second aspect of the present invention will be described with reference to FIG. 2, but the second aspect is not limited to the following example of FIG. 2.
FIG. 2 is a schematic diagram for explaining the superconducting member cooling device according to the second embodiment. As described above, the superconducting member cooling device includes a liquid nitrogen supply-side heat insulating container for cooling the superconducting member. , A heat insulating container (V2) 31, a subcooled liquid nitrogen 14 accommodated in the container, a refrigerator 21, a glass fiber paper packed layer (L2) 16, and a liquid feed pump 32, and liquid nitrogen as ancillary equipment. Supply means 51 and nitrogen gas supply means 55 can be provided. In addition, as a cooling side heat insulating container that cools the superconducting member with liquid nitrogen transferred from the supply side heat insulating container, the heat insulating container (V3) 41, a glass fiber paper packed layer (L3) 46 in the container, and a cooling target The superconducting member 27 is included.
In the first mode, the cooling of the superconducting member is natural convection heat transfer, whereas in the second mode, liquid nitrogen that is forcibly cooled by the pump is sent to the cooling-side heat insulating container, so that it is close to forced convection heat transfer. Since it is a state, the 2nd aspect can cool a superconducting member more. Further, since the supply-side heat insulation container and the cooling-side heat insulation container are separated, maintenance is facilitated. The superconducting member cooling device according to the second aspect will be specifically described below by dividing it into a supply side heat insulating container and a cooling side heat insulating container.

(1)供給側断熱容器
(イ)断熱容器(V2)
断熱容器(V2)は、前記断熱容器(V1)と同様に、一般的な汎用のクライオスタットからなるものであり、その外周壁部および底壁部が内槽19Aと外槽19Bからなる真空断熱構造13とされ、また上端には開閉可能な蓋部12を設けることができる。この蓋部は断熱容器(V1)と同様に容器本体に対して真空封止可能な状態で装着されることが好ましい。なお、蓋部には負圧にも耐用可能な安全弁26や液体窒素供給手段51と窒素ガス供給手段55を設けることができるがこれらは前記断熱容器(V1)に記載した内容と同様であり、更に送液管33と還流管34を設けることができる。
(1) Supply side insulated container (b) Insulated container (V2)
The heat insulating container (V2) is composed of a general general-purpose cryostat, like the heat insulating container (V1), and a vacuum heat insulating structure whose outer peripheral wall portion and bottom wall portion are composed of an inner tank 19A and an outer tank 19B. 13 and a lid 12 that can be opened and closed can be provided at the upper end. It is preferable that the lid is mounted in a vacuum sealable state with respect to the container main body in the same manner as the heat insulating container (V1). The lid can be provided with a safety valve 26 that can withstand negative pressure, liquid nitrogen supply means 51 and nitrogen gas supply means 55, but these are the same as described in the heat insulating container (V1), Further, a liquid feeding pipe 33 and a reflux pipe 34 can be provided.

(ロ)冷凍機、サブクール液体窒素
断熱容器(V2)内の液体窒素は、前記断熱容器(V1)に記載したと同様に冷凍機21の冷却ヘッド25と熱交換器23により冷却されて、大気圧下での飽和液体窒素温度(例えば、77K程度)よりも低い温度(例えば65〜70K)にまで温度降下され、サブクールされた液体窒素14は送液ポンプ32によって断熱容器(V2)の底部付近から汲み上げられ、送液管33を介して、断熱容器(V3)内に導かれ、超電導部材27をサブクール温度(例えば67〜72K程度)に冷却・保持する。また断熱容器(V3)内において超電導部材27からの熱などによって温度上昇した液体窒素(例えば、70K程度以上)は、還流管34を介して断熱容器(V2)へ還流される。このようにして断熱容器(V2)へ還流された液体窒素は、冷凍機の冷却ヘッドにより再び負圧から大気圧以上の間の圧力のもとでサブクール温度(例えば65〜70K程度)に冷却され、前述のように送液ポンプによって断熱容器(V3)に送られる。冷凍機は、断熱容器(V1)内に設けられる冷凍機と同様である。
(B) Refrigerator, liquid nitrogen in the subcooled liquid nitrogen insulated container (V2) is cooled by the cooling head 25 and the heat exchanger 23 of the refrigerator 21 in the same manner as described in the insulated container (V1). The temperature of the liquid nitrogen 14 that has been subcooled is lowered to a temperature (for example, 65 to 70 K) lower than a saturated liquid nitrogen temperature (for example, about 77 K) under atmospheric pressure, and is near the bottom of the heat insulating container (V2) by the liquid feed pump 32. The superconducting member 27 is cooled and held at a subcooling temperature (for example, about 67 to 72K) through the liquid feeding pipe 33 and led into the heat insulating container (V3). Further, the liquid nitrogen (for example, about 70 K or more) whose temperature has been increased by heat from the superconducting member 27 in the heat insulating container (V3) is returned to the heat insulating container (V2) through the reflux pipe. The liquid nitrogen refluxed to the heat insulating container (V2) in this way is cooled again to a subcooling temperature (for example, about 65 to 70K) under a pressure between negative pressure and atmospheric pressure by the cooling head of the refrigerator. As mentioned above, it is sent to the heat insulating container (V3) by the liquid feed pump. The refrigerator is the same as the refrigerator provided in the heat insulating container (V1).

(ハ)ガラス繊維紙充填層(L2)
断熱容器(V2)内に設けられるガラス繊維紙充填層(L2)は、前記第1の態様で記載した断熱容器(V1)内のガラス繊維紙充填層(L1)と同様である。
(ニ)送液ポンプ
断熱容器(V2)内に配設する送液ポンプ32は、例えば蓋部12から吊下げられた状態で固定することができる。この送液ポンプは、その取入口(汲出口)が断熱容器(V2)におけるガラス繊維紙充填層(L2)16よりも下方に位置するように配設されている。そしてこの送液ポンプの出口側は送液管33に接続されており、この送液管33は前述のように断熱容器(V3)内に導かれている。さらに前記断熱容器(V3)からの還流管34が断熱容器(V2)内へ導かれており、その還流管34の先端側開口端が断熱容器(V2)の上部(前記冷凍機の熱交換器23と同じほぼ高さ)において開口していて、還流管34から導かれた液体窒素は熱交換器23によって冷却される。なお、断熱容器(V3)内の圧力を断熱容器(V2)内の圧力より僅かに高く設定することにより、液体窒素は還流管34を経由して還流される。
(C) Glass fiber paper packed layer (L2)
The glass fiber paper filling layer (L2) provided in the heat insulation container (V2) is the same as the glass fiber paper filling layer (L1) in the heat insulation container (V1) described in the first aspect.
(D) The liquid feed pump 32 disposed in the liquid feed pump heat insulating container (V2) can be fixed in a state of being suspended from the lid portion 12, for example. This liquid feed pump is disposed so that its inlet (pump outlet) is located below the glass fiber paper packed layer (L2) 16 in the heat insulating container (V2). The outlet side of the liquid feeding pump is connected to the liquid feeding pipe 33, and the liquid feeding pipe 33 is led into the heat insulating container (V3) as described above. Further, a reflux pipe 34 from the heat insulating container (V3) is led into the heat insulating container (V2), and the opening end of the reflux pipe 34 is an upper part of the heat insulating container (V2) (the heat exchanger of the refrigerator). The liquid nitrogen introduced from the reflux pipe 34 is cooled by the heat exchanger 23. In addition, liquid nitrogen is recirculated through the reflux pipe 34 by setting the pressure in the heat insulation container (V3) slightly higher than the pressure in the heat insulation container (V2).

(2)冷却側断熱容器
(イ)断熱容器(V3)
冷却側断熱容器に超電導部材を液体窒素中に浸漬してその超電導部材を冷却するための断熱容器(V3)41が設けられている。
該断熱容器(V3)は、断熱容器(V1)及び断熱容器(V2)と同様にその外周壁部および底壁部が内槽49Aと外槽49Bからなる真空断熱構造43とされ、また上端には開閉可能な蓋部42が設けられている。この蓋部は、断熱容器(V1)及び断熱容器(V2)と同様に容器本体に対して真空封止可能な状態で接続されていることが好ましい。この断熱容器(V3)の蓋部には安全弁66や窒素ガス供給手段61、送液管33及び還流管34を設けることができるが、この安全弁66は、内部圧力が外部の大気圧に対して例えば+30kPaを越えた場合に開放されて、内部圧力を大気圧〜大気圧+30kPaの範囲内、すなわち断熱容器(V2)より若干高い圧力に保持するように機能させることができる。超電導部材は、断熱容器(V3)内で断熱容器(V2)から送られてくるサブクール液体窒素中に浸漬させ、冷却される。
(2) Cooling side insulated container (b) Insulated container (V3)
A heat insulating container (V3) 41 for immersing the superconducting member in liquid nitrogen and cooling the superconducting member in the cooling side heat insulating container is provided.
The heat insulating container (V3) has a vacuum heat insulating structure 43 whose outer peripheral wall portion and bottom wall portion are composed of an inner tank 49A and an outer tank 49B in the same manner as the heat insulating container (V1) and the heat insulating container (V2). Is provided with a lid 42 that can be opened and closed. It is preferable that the lid is connected to the container body in a vacuum sealable state, similarly to the heat insulating container (V1) and the heat insulating container (V2). A safety valve 66, a nitrogen gas supply means 61, a liquid feeding pipe 33, and a reflux pipe 34 can be provided on the lid of the heat insulating container (V3). The safety valve 66 has an internal pressure with respect to an external atmospheric pressure. For example, it is opened when it exceeds +30 kPa, and can function so that the internal pressure is maintained within the range of atmospheric pressure to atmospheric pressure +30 kPa, that is, slightly higher than the heat insulating container (V2). The superconducting member is immersed in subcooled liquid nitrogen sent from the heat insulating container (V2) in the heat insulating container (V3) and cooled.

(ロ)ガラス繊維紙充填層(L3)
断熱容器(V3)内のガラス繊維紙充填層(L3)については、前述の通り、窒素ガス空間部と、前記非特許文献1に記載されている、温度勾配層が液体窒素の液面と、液面から15〜30mmの深さまでの間で温度勾配層が形成されるという事実を考慮すると、その厚みは20mm以上であることが好ましく、20〜50mmがより好ましい。その他の点については、前記第1に態様で記載した断熱容器(V1)内のガラス繊維紙充填層(L1)と同様である。
(ハ)超電導部材
断熱容器(V3)内に配設される、冷却対象である超電導部材は、前記第1に態様で記載した超電導部材と同様である。尚、図2に示すように、超電導部材27はガラス繊維紙充填層(L3)よりも下部方向に配設されることが好ましい。超電導部材27は図2に示すように蓋部から支持部材20A,20Bによって吊下げた状態とすることができる。
(B) Glass fiber paper packed layer (L3)
For the glass fiber paper filled layer (L3) in the heat insulating container (V3), as described above, the nitrogen gas space part, the temperature gradient layer described in Non-Patent Document 1, the liquid level of liquid nitrogen, Considering the fact that the temperature gradient layer is formed from the liquid surface to a depth of 15 to 30 mm, the thickness is preferably 20 mm or more, more preferably 20 to 50 mm. About another point, it is the same as that of the glass fiber paper filling layer (L1) in the heat insulation container (V1) described in the said 1st aspect.
(C) The superconducting member to be cooled and disposed in the superconducting member heat insulating container (V3) is the same as the superconducting member described in the first aspect. In addition, as shown in FIG. 2, it is preferable that the superconducting member 27 is disposed in a lower direction than the glass fiber paper filling layer (L3). As shown in FIG. 2, the superconducting member 27 can be suspended from the lid by the supporting members 20A and 20B.

〔3〕第3の態様の「超電導部材冷却装置」
本発明の第3の態様の「超電導部材冷却装置」は、少なくとも、窒素ガス空間を残してサブクール液体窒素が収容されると共に、断熱容器(V4)に該サブクール液体窒素を供給するための送液ポンプが該サブクール液体窒素中に挿入されていて、冷却用の冷却ヘッドを液体窒素の液面よりも下方の位置まで浸漬させる冷凍機を備えた、断熱容器(V2)と、
サブクール液体窒素が断熱容器(V2)から循環されて、液面上に空間が形成されないように充填されていると共に、冷却対象の超電導部材が該サブクール液体窒素中に浸漬されている断熱容器(V4)とからなる、超電導部材冷却装置であって、
断熱容器(V2)内の液体窒素の液面よりも上部の位置から、冷却ヘッドの上面部又は冷却ヘッドの上面部より上の位置までの範囲に渡って、液体窒素に対し吸収性を有するガラス繊維紙を該繊維紙間及び該繊維紙と断熱容器(V2)の壁面間に空隙が形成されないように充填した、サブクール液体窒素の温度勾配層を保持するためのガラス繊維紙充填層(L2)を設けており、
該ガラス繊維紙充填層内には、少なくとも1枚の仕切板が含まれている
[3] "Superconducting member cooling device" of the third aspect
In the “superconducting member cooling device” according to the third aspect of the present invention, at least the subcooled liquid nitrogen is accommodated leaving the nitrogen gas space, and the liquid feed for supplying the subcooled liquid nitrogen to the heat insulating container (V4). A heat insulating container (V2) provided with a refrigerator in which a pump is inserted into the subcooled liquid nitrogen and the cooling head for cooling is immersed to a position below the liquid surface of the liquid nitrogen;
The subcooled liquid nitrogen is circulated from the heat insulating container (V2) and filled so that no space is formed on the liquid surface, and the superconducting member to be cooled is immersed in the subcooled liquid nitrogen (V4). A superconducting member cooling device comprising:
Glass having absorptivity to liquid nitrogen over a range from a position above the liquid nitrogen level in the heat insulating container (V2) to a position above the upper surface of the cooling head or the upper surface of the cooling head. Glass fiber paper packed layer (L2) for holding a temperature gradient layer of subcooled liquid nitrogen, in which fiber paper is filled between the fiber paper and between the fiber paper and the wall surface of the heat insulating container (V2) so as not to form a void. Has been established ,
The glass fiber paper packed layer includes at least one partition plate .

以下に図3を用いて本発明の第3の態様を説明するが、該第3の態様は以下の図3の例示に限定されるものではない。
図3は、第3の態様の超電導部材冷却装置を説明するための略解図であり、該超電導部材冷却装置には上記したように、超電導部材を冷却するための液体窒素の供給側断熱容器として、断熱容器(V2)31、並びに該容器内に収納されたサブクール液体窒素14、冷凍機21、ガラス繊維紙充填層(L2)16、及び送液ポンプ32が含まれ、更に付帯設備として液体窒素供給手段51と窒素ガス供給手段55を設けることができ、
供給側断熱容器から移送されてきた液体窒素で超電導部材を冷却する冷却側断熱容器として、断熱容器(V4)71及び冷却対象の超電導部材27が設けられている。
第3の態様の超電導部材冷却装置は、第2の態様の超電導部材冷却装置と対比して断熱容器(V4)の内部に窒素気相部が形成されないように液体窒素が充填されているので、温度勾配層が存在しないという特徴を有している。以下に第3の態様の超電導部材冷却装置を、供給側断熱容器と冷却側断熱容器に分けて説明する。
Hereinafter, the third aspect of the present invention will be described with reference to FIG. 3, but the third aspect is not limited to the following example of FIG. 3.
FIG. 3 is a schematic diagram for explaining the superconducting member cooling device according to the third embodiment. As described above, the superconducting member cooling device includes a liquid nitrogen supply-side heat insulating container for cooling the superconducting member. , A heat insulating container (V2) 31, a subcooled liquid nitrogen 14 accommodated in the container, a refrigerator 21, a glass fiber paper packed layer (L2) 16, and a liquid feed pump 32, and liquid nitrogen as ancillary equipment. Supply means 51 and nitrogen gas supply means 55 can be provided,
As a cooling side heat insulating container that cools the superconducting member with liquid nitrogen transferred from the supply side heat insulating container, a heat insulating container (V4) 71 and a superconducting member 27 to be cooled are provided.
Since the superconducting member cooling device of the third aspect is filled with liquid nitrogen so that a nitrogen gas phase portion is not formed inside the heat insulating container (V4) as compared with the superconducting member cooling device of the second aspect, It has a feature that there is no temperature gradient layer. The superconducting member cooling device according to the third aspect will be described below by dividing it into a supply side heat insulating container and a cooling side heat insulating container.

(1)供給側断熱容器
超電導部材を冷却するための液体窒素の供給側断熱容器としての、(イ)断熱容器(V2)、(ロ)ガラス繊維紙充填層(L2)、(ハ)冷凍機、及び(ニ)送液ポンプは、第2の態様の供給側断熱容器に記載した内容とほぼ同じである。尚、断熱容器(V2)には第1の態様に記載したと同様に、蓋部12に負圧にも耐用可能な安全弁26、送液管33及び還流管34が設けられ、更に付帯設備として第1の態様に記載したと同様の液体窒素供給手段51と窒素ガス供給手段55を設けることができる。
(2)冷却側断熱容器
供給側断熱容器から移送されてきたサブクール液体窒素で超電導部材を冷却する冷却側断熱容器として、断熱容器(V4)71は、図3に示す通り、その外周壁部および底壁部が内槽79Aと外槽79Bからなる真空断熱構造73とされ、送液管33と還流管34部を除いて密封構造を形成している。
送液ポンプにより送液管33を通して断熱容器(V2)から断熱容器(V4)に送液されたサブクール液体窒素は断熱容器(V4)内で超電導部材によって加熱されて、温度上昇したサブクール液体窒素は断熱容器(V4)が上記密封構造となっているために還流管を経由して断熱容器(V2)に還流される。断熱容器(V4)内に配設された冷却対象である超電導部材27は、前記第1の態様及び第2の態様で記載した超電導部材と同様である。超電導部材27は図3に示すように内槽79Aから支持部材20A,20Bによって吊下げた状態とすることができる。
(1) Supply side heat insulating container As a liquid nitrogen supply side heat insulating container for cooling the superconducting member, (a) heat insulating container (V2), (b) glass fiber paper packed layer (L2), (c) refrigerator , And (d) The liquid feed pump is substantially the same as the contents described in the supply side heat insulating container of the second aspect. As described in the first aspect, the heat insulating container (V2) is provided with a safety valve 26 that can withstand negative pressure, a liquid feeding pipe 33, and a reflux pipe 34 in the lid portion 12, and as ancillary equipment. Liquid nitrogen supply means 51 and nitrogen gas supply means 55 similar to those described in the first embodiment can be provided.
(2) Cooling side heat insulating container As a cooling side heat insulating container that cools the superconducting member with subcooled liquid nitrogen transferred from the supply side heat insulating container, the heat insulating container (V4) 71 has an outer peripheral wall portion and The bottom wall portion is a vacuum heat insulating structure 73 including an inner tank 79A and an outer tank 79B, and a sealed structure is formed except for the liquid feeding pipe 33 and the reflux pipe 34.
The subcooled liquid nitrogen fed from the heat insulating container (V2) to the heat insulating container (V4) through the liquid feeding pipe 33 by the liquid feeding pump is heated by the superconducting member in the heat insulating container (V4), and the temperature of the subcooled liquid nitrogen is increased. Since the heat insulation container (V4) has the above-mentioned sealed structure, it is refluxed to the heat insulation container (V2) via the reflux pipe. The superconducting member 27 to be cooled and disposed in the heat insulating container (V4) is the same as the superconducting member described in the first aspect and the second aspect. As shown in FIG. 3, the superconducting member 27 can be suspended from the inner tank 79A by the supporting members 20A and 20B.

〔4〕サブクール液体窒素の温度維持方法
本発明の第4の態様の「断熱容器内のサブクール液体窒素の温度維持方法」は、
少なくとも、窒素ガス空間を残して収容されている断熱容器(V0)内のサブクール液体窒素の温度維持方法において、
該サブクール液体窒素を冷却するための冷凍機の冷却ヘッドを液体窒素の液面よりも下方の位置まで浸漬し、
断熱容器(V0)内の液体窒素の液面よりも上部の位置から、冷却ヘッドの上面部又は冷却ヘッドの上面部より上の位置までの範囲に渡って、液体窒素に対し吸収性を有するガラス繊維紙を該繊維紙間及び該繊維紙と断熱容器(V0)の壁面間に空隙が形成されないように充填したガラス繊維紙充填層(L0)を設けるとともに該ガラス繊維紙充填層内に少なくとも1枚の仕切板を含ませて、該ガラス繊維紙充填層(L0)内にサブクール液体窒素の温度勾配層を保持する。
[4] Method for maintaining temperature of subcooled liquid nitrogen “Method for maintaining temperature of subcooled liquid nitrogen in a heat insulating container” according to the fourth aspect of the present invention includes:
At least in the temperature maintaining method of the subcooled liquid nitrogen in the heat insulating container (V0) accommodated leaving the nitrogen gas space,
Immerse the cooling head of the refrigerator for cooling the subcooled liquid nitrogen to a position below the liquid surface of the liquid nitrogen,
Glass having absorptivity to liquid nitrogen over a range from a position above the liquid nitrogen level in the heat insulating container (V0) to a position above the upper surface of the cooling head or the upper surface of the cooling head. at least fiber paper to said fiber sheet and between said fiber paper and the heat insulating container glass fiber paper packed bed filled so voids are not formed between the wall surface of (V0) (L0) and provided Rutotomoni the glass fiber paper packed bed One partition plate is included and a temperature gradient layer of subcooled liquid nitrogen is held in the glass fiber paper packed layer (L0) .

サブクール液体窒素の温度維持方法は、第1ないし3の態様のいずれにも適用することができ、例えば図1に示すように、断熱容器(V0(図1ではV1、以下、同じ))内に収納された液体窒素内に冷凍機の冷却ヘッドを挿入し、液体窒素の液面よりも上部の位置から、冷却ヘッドの上面部又は冷却ヘッドの上面部より上の位置までの範囲に渡ってガラス繊維紙充填層(L0(図1ではL1、以下、同じ))を設けて、断熱容器(V0)に付帯設備として、例ば液体窒素供給手段と、窒素ガス供給手段を設けることが可能な装置において、
ガラス繊維紙充填層(L0)に液体窒素の液面を配置し、かつ該充填層の液面から下方へ向かって温度勾配層を保持して、液面の液体窒素を負圧〜大気圧下の飽和液体窒素とし、ガラス繊維紙充填層(L0)より下層部にある液体窒素をサブクールの液体窒素まで冷却する温度維持(温度の制御も伴う)方法である。
断熱容器(V0)、冷凍機、ガラス繊維紙充填層(L0)は、それぞれ第1の態様、第2の態様、又は第3の態様に記載した、断熱容器(V1、V2、またはV3)、冷凍機、ガラス繊維紙充填層(L1、L2、またはL3)と同様である。この超電導部材冷却装置に使用可能な断熱容器(V0)には、図1に示すような窒素ガス供給手段55により、窒素ガス(GN)が貯蔵されている窒素ガスタンク56から、制御弁57および供給管58を介して窒素ガスが供給できる構造とすることができる。
The temperature maintaining method of subcooled liquid nitrogen can be applied to any of the first to third embodiments. For example, as shown in FIG. 1, in a heat insulating container (V0 (V1 in FIG. 1, the same shall apply hereinafter)) Insert the cooling head of the refrigerator into the stored liquid nitrogen, and the glass covers the range from the position above the liquid nitrogen liquid level to the upper surface of the cooling head or the position above the upper surface of the cooling head. An apparatus capable of providing, for example, liquid nitrogen supply means and nitrogen gas supply means as ancillary equipment in a heat insulating container (V0) by providing a fiber paper packed layer (L0 (L1 in FIG. 1; the same applies hereinafter)). In
The liquid nitrogen liquid surface is disposed on the glass fiber paper packed layer (L0), and the temperature gradient layer is held downward from the liquid surface of the packed layer. This is a method of maintaining the temperature (including temperature control) by cooling the liquid nitrogen in the lower layer from the glass fiber paper filled layer (L0) to the subcooled liquid nitrogen.
The heat insulating container (V0), the refrigerator, and the glass fiber paper packed layer (L0) are respectively the heat insulating containers (V1, V2, or V3) described in the first aspect, the second aspect, or the third aspect, It is the same as that of a refrigerator and a glass fiber paper filling layer (L1, L2, or L3). In the heat insulating container (V0) usable for the superconducting member cooling device, a nitrogen gas supply means 55 as shown in FIG. 1 is used to supply a control valve 57 and a control valve 57 from a nitrogen gas tank 56 in which nitrogen gas (GN 2 ) is stored. A structure in which nitrogen gas can be supplied through the supply pipe 58 can be adopted.

尚、蓋部には図1に示すように負圧にも耐用可能な安全弁26を設けることができるが、この安全弁は、内部圧力が外部の大気圧に対して例えば+10kPaを越えた場合に開放されて、内部圧力を大負圧〜大気圧+10kPaの範囲内、すなわち負圧から大気圧より若干高い圧力の間に保持するように機能させることができる。
(イ)ガラス繊維紙充填層(L0)に液体窒素の液面を配置する方法
図示していないが、断熱容器(V0)には液面計を設けることが好ましく、液体窒素供給手段51から液体窒素を断熱容器(V0)に充填するときには、液面位置がガラス繊維紙充填層(L0)の中で温度勾配層を形成して保持できる位置とすることができる。
(ロ)ガラス繊維紙充填層(L0)内の温度勾配層の保持
例えば、ガラス繊維紙充填層(L0)の垂直方向の厚みが20mmの場合には、ガラス繊維紙充填層(L0)の上面から5mm程度の位置が液体窒素液面となるように液体窒素を充填して、液体窒素がサブクールされたときにガラス繊維紙充填層(L0)に温度勾配層を形成して保持する。
以下に図1を参考にして、断熱容器内のサブクール液体窒素の温度制御方法におけるスタート方法、及び継続運転方法について説明する。尚、下記説明は例示であり、本発明の第4の態様のサブクール液体窒素の温度維持方法は以下に記載する方法に限定されるものではない。
As shown in FIG. 1, the lid can be provided with a safety valve 26 that can withstand negative pressure, but this safety valve is opened when the internal pressure exceeds +10 kPa, for example, with respect to the external atmospheric pressure. Thus, the internal pressure can be made to function so as to be maintained within the range of the large negative pressure to the atmospheric pressure + 10 kPa, that is, between the negative pressure and a pressure slightly higher than the atmospheric pressure.
(A) Method of disposing the liquid nitrogen liquid level on the glass fiber paper packed layer (L0) Although not shown, it is preferable to provide a liquid level gauge in the heat insulating container (V0). When filling the heat insulating container (V0) with nitrogen, the liquid level can be set to a position where a temperature gradient layer can be formed and held in the glass fiber paper packed layer (L0).
(B) Retention of the temperature gradient layer in the glass fiber paper filling layer (L0) For example, when the thickness of the glass fiber paper filling layer (L0) in the vertical direction is 20 mm, the upper surface of the glass fiber paper filling layer (L0) Is filled with liquid nitrogen so that the position of about 5 mm becomes the liquid nitrogen liquid surface, and when the liquid nitrogen is subcooled, a temperature gradient layer is formed and held in the glass fiber paper filled layer (L0).
Hereinafter, a start method and a continuous operation method in the temperature control method of the subcooled liquid nitrogen in the heat insulating container will be described with reference to FIG. In addition, the following description is an illustration and the temperature maintenance method of the subcooled liquid nitrogen of the 4th aspect of this invention is not limited to the method described below.

(1)スタート方法
図1に示す超電導部材冷却装置を使用した場合のスタート方法を以下に記載する。
〈1〉液体窒素供給手段51の液体窒素タンク52から制御弁53、供給管54を介して断熱容器(V0)内のガラス繊維紙充填層(L0)より下方の位置に、液体窒素(LN)を、ガラス繊維紙充填層(L0)部に液面位置が形成されるまで供給する。
この時、断熱容器(V0)内の圧力が10kPaより上昇した場合には安全弁から窒素ガスが放出されて容器内の圧力は負圧〜大気圧+10kPaの範囲内に制御される。
一方、断熱容器(V0)内が所定の圧力より低圧になる場合には窒素ガス供給手段55により、窒素ガス(GN)が貯蔵されている窒素ガスタンク56から、制御弁57と供給管58を介して窒素ガスが供給されるように準備する。
(1) Start method The start method when the superconducting member cooling device shown in FIG. 1 is used is described below.
<1> Liquid nitrogen (LN 2 ) at a position below the glass fiber paper filling layer (L 0) in the heat insulating container (V 0) from the liquid nitrogen tank 52 of the liquid nitrogen supply means 51 through the control valve 53 and the supply pipe 54. ) Until the liquid surface position is formed in the glass fiber paper filled layer (L0).
At this time, when the pressure in the heat insulating container (V0) rises above 10 kPa, nitrogen gas is released from the safety valve, and the pressure in the container is controlled within a range of negative pressure to atmospheric pressure + 10 kPa.
On the other hand, when the inside of the heat insulating container (V0) is lower than a predetermined pressure, the nitrogen gas supply means 55 connects the control valve 57 and the supply pipe 58 from the nitrogen gas tank 56 in which the nitrogen gas (GN 2 ) is stored. Through which nitrogen gas is supplied.

〈2〉ガラス繊維紙充填層(L0)部に液面位置が安定に形成されたら、冷凍機をスタートして液体窒素の冷却を開始する。液体窒素がサブクールされて体積が減少して液面がガラス繊維紙充填層(L0)における下方部、又は該充填層より下方に形成された場合には液体窒素タンク52から液体窒素を補充する。断熱容器(V0)内の気相部が所定の圧力より低圧になると、窒素ガス供給手段55窒素ガスが供給される。このようにして液体窒素の液面はガラス繊維紙充填層(L0)内に形成され、圧力はほぼ大気圧でバランスする。なお、液面が上昇しすぎた場合には、蓋部から液面までの距離が縮まるため侵入熱が増えるので液体窒素が蒸発し易くなり、断熱容器(V0)内の圧力が10kPaより上昇した場合には安全弁から窒素ガスが放出される。
〈3〉液面の液体窒素は大気圧での飽和温度になり、ガラス繊維紙層中にある液面のすぐ下方に温度勾配層が保持され、更にその下方にサブクール液体窒素が収容された状態になる。
尚、通常、冷凍機の冷却ヘッドは一定の能力で冷却を続けるので、サブクール液体窒素の温度調整は冷却ヘッド上部にヒータが設けられていて、ヒータのオン/オフにより所定の温度に制御される。
冷凍機の稼動を継続すれば、ガラス繊維紙層中の温度勾配層は安定してサブクール液体窒素に維持され、超電導部材を液体窒素のサブクール温度で冷却を継続することが可能になる。
<2> When the liquid surface position is stably formed in the glass fiber paper packed layer (L0), the refrigerator is started and cooling of liquid nitrogen is started. When the liquid nitrogen is subcooled to reduce the volume and the liquid level is formed in the lower part of the glass fiber paper filling layer (L0) or below the filling layer, liquid nitrogen is replenished from the liquid nitrogen tank 52. When the gas phase part in the heat insulating container (V0) becomes lower than a predetermined pressure, nitrogen gas supply means 55 is supplied with nitrogen gas. In this way, the liquid nitrogen liquid level is formed in the glass fiber paper packed layer (L0), and the pressure is balanced at almost atmospheric pressure. If the liquid level rises too much, the distance from the lid part to the liquid level is shortened, so that intrusion heat increases, so that liquid nitrogen is likely to evaporate, and the pressure in the heat insulating container (V0) rises above 10 kPa. In some cases, nitrogen gas is released from the safety valve.
<3> Liquid nitrogen on the liquid surface reaches a saturation temperature at atmospheric pressure, a temperature gradient layer is held immediately below the liquid surface in the glass fiber paper layer, and subcooled liquid nitrogen is contained below the temperature gradient layer become.
Normally, since the cooling head of the refrigerator continues to be cooled with a constant capacity, the temperature adjustment of the subcooled liquid nitrogen is provided with a heater above the cooling head, and is controlled to a predetermined temperature by turning on / off the heater. .
If the operation of the refrigerator is continued, the temperature gradient layer in the glass fiber paper layer is stably maintained in the subcooled liquid nitrogen, and it becomes possible to continue cooling the superconducting member at the subcooled temperature of the liquid nitrogen.

(2)継続運転
本発明のサブクール液体窒素の温度維持方法で使用するガラス繊維紙層は、液体窒素の吸収性が高いので、運転を継続中に断熱容器(V0)の振動、揺動等に対して該繊維紙層内の液体窒素の流動性は微細ガラス繊維構造に起因して極めて低いので、振動、揺動等が生じてもガラス繊維紙充填層内の温度勾配層は従来の連続孔を有する多孔質断熱部材と比較して安定的に保持される。従って運転状況の安定化、超電導部材の冷却効率の向上、信頼性の向上を図ることができる。
(2) Continuous operation Since the glass fiber paper layer used in the subcooled liquid nitrogen temperature maintaining method of the present invention has high liquid nitrogen absorbability, the insulation container (V0) can be vibrated and swung while the operation is continued. On the other hand, the fluidity of liquid nitrogen in the fiber paper layer is extremely low due to the fine glass fiber structure. As compared with a porous heat insulating member having Therefore, it is possible to stabilize the operating condition, improve the cooling efficiency of the superconducting member, and improve the reliability.

以下、実施例、比較例により本発明を具体的に説明する。尚、本発明は以下の実施例に何ら限定されるものではない。
上記第4の態様に記載したスタート方法に基づき、液体窒素中に冷凍機の冷却ヘッドが浸漬され、かつガラス繊維紙充填層が設けられた断熱容器内で、該ガラス繊維紙充填層内に液面が設けられると共に、液面から下方へ向かって温度勾配層が保持されている状態で、該断熱容器を振動させて、該温度勾配層の安定性を評価した。
(1)装置
〈1〉断熱容器
断熱容器(クライオスタット)は、図1に示す外周壁部および底壁部が内槽(高さ:400mm、内径:352mm)と外槽からなる真空断熱構造であり、上端には開閉可能な蓋部が設けられている。
この断熱容器には、液体窒素供給手段により、液体窒素(LN)が貯蔵されている液体窒素タンクから、液体窒素供給でき、また、窒素ガス供給手段により、窒素ガス(GN)が貯蔵されている窒素ガスタンクから、制御弁および供給管を介して窒素ガスを供給できる付帯設備が設けられている。なお蓋部には安全弁が設けられており、この安全弁は、内部圧力が外部の大気圧に対して+10kPaを越えた場合に開放されて、内部圧力を大気圧〜大気圧+10kPaの範囲内、すなわち大気圧または大気圧より若干高い圧力に保持するように設定されている。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.
Based on the start method described in the fourth aspect above, the cooling head of the refrigerator is immersed in liquid nitrogen and the glass fiber paper packed layer is provided with a liquid in the glass fiber paper packed layer. While the surface was provided and the temperature gradient layer was held downward from the liquid surface, the heat insulating container was vibrated to evaluate the stability of the temperature gradient layer.
(1) Apparatus <1> Heat insulation container A heat insulation container (cryostat) is a vacuum heat insulation structure in which the outer peripheral wall part and the bottom wall part shown in FIG. 1 consist of an inner tank (height: 400 mm, inner diameter: 352 mm) and an outer tank. A lid that can be opened and closed is provided at the upper end.
In this heat insulating container, liquid nitrogen can be supplied from a liquid nitrogen tank in which liquid nitrogen (LN 2 ) is stored by liquid nitrogen supply means, and nitrogen gas (GN 2 ) is stored by nitrogen gas supply means. Ancillary equipment that can supply nitrogen gas from a nitrogen gas tank through a control valve and a supply pipe is provided. The lid is provided with a safety valve, which is opened when the internal pressure exceeds +10 kPa with respect to the external atmospheric pressure, and the internal pressure is within the range of atmospheric pressure to atmospheric pressure +10 kPa, that is, The pressure is set to be maintained at atmospheric pressure or slightly higher than atmospheric pressure.

〈2〉冷凍機
冷凍機は、鈴木商館製のGM型冷凍機(180W@80K)を使用した。冷凍機の冷却ヘッドはその上部が容器上部から160mmの位置に固定されている。
〈3〉ガラス繊維紙充填層
ガラス繊維紙充填層を構成するガラス繊維紙は、ライダルサーマル社(Lydallthermal com.)製の商品名:CryoTherm 233(登録商標)でロール状のもの(外径:12インチ(304.8mm)、内径:3インチ(76.2mm)、厚み:35インチ(889mm))をガラス繊維紙充填層の形状を形成できるように、切り取って充填した。
(2)振動、揺動方法
振幅3mm(全幅で6mm)、周波数:4Hzで振動を与えた(このときの加速度は0.193Gである)。尚、振幅:0.5〜10mm、周波数:1〜10Hzのときに、振動、揺動の影響が大きくなることが知られている。
尚、振動数と振幅と加速度の関係式は以下の通りである。
A=[(2πf)/1000×g]×d
A:加速度(G)
f:振動数(Hz)
d:振幅(mm)(*片振幅である。実際の揺れ幅は2dになる。)
g:重力加速度 9.8(m/sec
*鉄道部品の振動試験(JIS)
JIS E 4031(1989)「鉄道車両部品の振動試験方法」の(第1種試験)
断熱容器内の液体窒素の温度は白金測温抵抗体(100オーム)を用いて測定した。
<2> A refrigerator GM type refrigerator (180W @ 80K) manufactured by Suzuki Shokan was used. The upper part of the cooling head of the refrigerator is fixed at a position of 160 mm from the upper part of the container.
<3> Glass fiber paper-filled layer The glass fiber paper constituting the glass fiber paper-filled layer is a product name (CryoTherm 233 (registered trademark)) manufactured by Rydal Thermal Co. (outer diameter: 12). Inch (304.8 mm), inner diameter: 3 inches (76.2 mm), thickness: 35 inches (889 mm)) were cut and filled so that the shape of the glass fiber paper packed layer could be formed.
(2) Vibration and rocking method Vibration was applied at an amplitude of 3 mm (6 mm in total width) and a frequency of 4 Hz (the acceleration at this time is 0.193 G). Incidentally, it is known that the influence of vibration and swinging becomes large when the amplitude is 0.5 to 10 mm and the frequency is 1 to 10 Hz.
The relational expression of vibration frequency, amplitude and acceleration is as follows.
A = [(2πf) 2/ 1000 × g] × d
A: Acceleration (G)
f: Frequency (Hz)
d: Amplitude (mm) (* It is a single amplitude. The actual fluctuation width is 2d.)
g: Gravity acceleration 9.8 (m / sec 2 )
* Vibration test of railway parts (JIS)
JIS E 4031 (1989) "Railway vehicle parts vibration test method" (Type 1 test)
The temperature of liquid nitrogen in the heat insulation container was measured using a platinum resistance temperature detector (100 ohm).

[実施例1]
(1)実験方法
(1−1)装置
断熱容器(クライオスタット)の空間部の上部に垂直方向に50mmの空間部を設けて厚み40mmのガラス繊維紙充填層(仕切板なし)を充填した。該繊維紙充填層の上面と下面をステンレス板により挟み込む構造とし、該ステンレス板はスタットボルトで蓋部から吊り下げナットで固定する構造とした。尚、断熱容器内の冷却ヘッドより下部に、超電導部材の代わりにヒータ(熱量:最大200W)を設けた。
(1−2)実験方法
断熱容器内に大気圧での飽和温度(77K程度)の液体窒素をガラス繊維紙充填層の上面部から10mm下側に液面が形成されるまで供給して液面を安定させた。尚、該液面は液面計により確認した。
冷凍機の運転を開始するとガラス繊維紙充填層に速やかに、温度勾配層が形成・保持された。液面の液体窒素は大気圧での飽和温度(77K程度)が維持され、ガラス繊維紙充填層より下部の液体窒素はサブクール(64K程度)に冷却され、温度勾配層は安定化された。
温度勾配層が安定化されてから、60分後に、該断熱容器に振動を加えた、気相部の減圧状態を計測することで液体窒素の撹拌状態を観察した。
(2)実験結果
振動を開始後45分間経過まで断熱容器内に減圧が発生しなかった。このことから該45分間は温度勾配層が安定に保持されたことが確認された。
[Example 1]
(1) Experimental method (1-1) A space part of 50 mm was provided in the vertical direction above the space part of the apparatus heat insulating container (cryostat) and filled with a 40 mm thick glass fiber paper filling layer (no partition plate). The fiber paper filling layer has a structure in which the upper surface and the lower surface are sandwiched between stainless plates, and the stainless plate is structured to be fixed with a suspending nut from a lid portion with a stat bolt. A heater (amount of heat: 200 W at the maximum) was provided below the cooling head in the heat insulating container instead of the superconducting member.
(1-2) Experimental method Liquid nitrogen at a saturation temperature (about 77 K) at atmospheric pressure is supplied into the heat insulation container until a liquid surface is formed 10 mm below the upper surface of the glass fiber paper packed layer. Stabilized. The liquid level was confirmed by a liquid level gauge.
When the operation of the refrigerator was started, a temperature gradient layer was quickly formed and held in the glass fiber paper packed layer. The liquid nitrogen at the liquid level was maintained at a saturation temperature (about 77 K) at atmospheric pressure, the liquid nitrogen below the glass fiber paper packed layer was cooled to a subcool (about 64 K), and the temperature gradient layer was stabilized.
Sixty minutes after the temperature gradient layer was stabilized, the stirring state of liquid nitrogen was observed by measuring the reduced pressure state of the gas phase portion where the heat insulating container was vibrated.
(2) Experimental results No decompression occurred in the heat insulating container until 45 minutes after starting vibration. From this, it was confirmed that the temperature gradient layer was stably maintained for 45 minutes.

[実施例2]
実施例1で使用したと同様の断熱容器と冷凍機を使用して、4つの厚さ10mmガラス繊維紙充填層間に1mm厚みのステンレス仕切板(容器壁部とのクリアランス:1mm)を配設した。
実施例1と同様にして、断熱容器内に大気圧での飽和温度(77K程度)の液体窒素をガラス繊維紙充填層の上面部から10mm下側に液面が形成されるまで供給して液面を安定させた。次に、冷凍機を稼動して、液体窒素をサブクールし、液面の液体窒素は大気圧での飽和温度(77K程度)が維持され、ガラス繊維紙充填層より下部の液体窒素はサブクール(64K程度)に冷却され、温度勾配層は安定化された。
温度勾配層が安定化してから、60分後に、該断熱容器に振動を加えた、気相部の減圧状態を計測することで液体窒素の撹拌状態を観察した。
振動を開始後60分間経過まで断熱容器内に減圧が発生しなかった。このことから該60分間は温度勾配層が安定に保持されたことが確認された。
[Example 2]
Using the same insulated container and refrigerator as used in Example 1, 1 mm thick stainless steel partition plates (clearance with container wall: 1 mm) were disposed between four 10 mm thick glass fiber paper filled layers. .
In the same manner as in Example 1, liquid nitrogen at a saturation temperature (about 77 K) at atmospheric pressure was supplied into the heat insulating container until a liquid level was formed 10 mm below the upper surface of the glass fiber paper packed layer. Stabilized the surface. Next, the refrigerator is operated to subcool the liquid nitrogen, the liquid nitrogen at the liquid level is maintained at the saturation temperature (about 77K) at atmospheric pressure, and the liquid nitrogen below the glass fiber paper packed layer is subcooled (64K). The temperature gradient layer was stabilized.
60 minutes after the temperature gradient layer was stabilized, the stirring state of liquid nitrogen was observed by measuring the reduced pressure state of the gas phase portion where the heat insulating container was vibrated.
No decompression occurred in the heat insulating container until 60 minutes had elapsed after the start of vibration. From this, it was confirmed that the temperature gradient layer was stably maintained for 60 minutes.

[比較例1]
実施例1で使用したと同様の断熱容器と冷凍機を使用して、前記ガラス繊維紙充填層の代わりに厚みが20mmのポリウレタンフォーム層(イノアック社製、商品名:モルトフィルター(型番:MF−20)を仕切板を挟んで2枚積層した。該ポリウレタンフォーム層上に仕切板を挟んで、更に厚み30mmの発泡ポリエチレン層(旭化成(株)製、商品名:サンテックフォーム(型番:Q−25))を配設した。
断熱容器内に大気圧での飽和温度(77K程度)の液体窒素をポリウレタンフォーム層の下面部から30mm上側に液面が形成されるまで供給して液面を安定させた。尚、該液面は液面計により確認した。
上記以外は実施例1に記載したと同様にして冷凍機を稼動して、液体窒素をサブクールし、液面の液体窒素は大気圧での飽和温度(77K程度)が維持され、ガラス繊維紙充填層より下部の液体窒素はサブクール(64K程度)に冷却され、温度勾配層は安定化された。
温度勾配層が安定化されてから、60分後に、該断熱容器に振動を加えた、気相部の減圧状態を計測することで液体窒素の撹拌状態を観察した。
振動を開始後後直ちに断熱容器内に瞬時に−80kPaまでの減圧が発生した。このことから振動開始直後にポリウレタンフォーム層中の温度勾配層は保持されなくなったことが確認された。
[Comparative Example 1]
Using the same insulated container and refrigerator as used in Example 1, a polyurethane foam layer having a thickness of 20 mm (made by INOAC, trade name: malt filter (model number: MF-) instead of the glass fiber paper packed layer was used. 20) was laminated on both sides of a partition plate, and a foamed polyethylene layer (made by Asahi Kasei Co., Ltd., trade name: Suntec foam (model number: Q-25) having a thickness of 30 mm was sandwiched on the polyurethane foam layer. )).
Liquid nitrogen at a saturation temperature (about 77 K) at atmospheric pressure was supplied into the heat insulating container until the liquid level was formed 30 mm above the bottom surface of the polyurethane foam layer, thereby stabilizing the liquid level. The liquid level was confirmed by a liquid level gauge.
Except for the above, the refrigerator was operated in the same manner as described in Example 1 to subcool the liquid nitrogen, and the liquid nitrogen on the liquid surface was maintained at the saturation temperature (about 77 K) at atmospheric pressure, and filled with glass fiber paper The liquid nitrogen below the layer was cooled to a subcool (about 64K), and the temperature gradient layer was stabilized.
Sixty minutes after the temperature gradient layer was stabilized, the stirring state of liquid nitrogen was observed by measuring the reduced pressure state of the gas phase portion where the heat insulating container was vibrated.
Immediately after the start of vibration, a pressure reduction of -80 kPa was instantaneously generated in the heat insulating container. From this, it was confirmed that the temperature gradient layer in the polyurethane foam layer was not retained immediately after the start of vibration.

11 断熱容器(V1)
12 蓋部
13 真空断熱構造
14 液体窒素
15 空間部
16 ガラス繊維紙充填層(L1、L2)
17 仕切板
18 液体窒素液面
19A 内槽
19B 外槽
20A 支持部材
20B 支持部材
21 冷凍機
22 シリンダ部
23 熱交換器
24 ヒータ
25 冷却ヘッド
26 安全弁
27 超電導部材
31 断熱容器(V2)
32 送液ポンプ
33 送液管
34 還流管
41 断熱容器(V3)
42 蓋部
43 真空断熱構造
44 液体窒素
45 空間部
46 ガラス繊維紙充填層(L3)
47 仕切板
48 液体窒素液面
49A 内槽
49B 外槽
51 液体窒素供給手段
52 液体窒素タンク
53 制御弁
54 供給管
55 窒素ガス供給手段
56 窒素ガスボンベ
57 制御弁
58 供給管
61 窒素ガス供給手段
62 窒素ガスボンベ
63 制御弁
64 供給管
66 安全弁
71 断熱容器(V4)
73 真空断熱構造
74 液体窒素
79A 内槽
79B 外槽
11 Insulated container (V1)
12 Lid 13 Vacuum insulation structure 14 Liquid nitrogen 15 Space 16 Glass fiber paper packed layer (L1, L2)
17 Partition plate 18 Liquid nitrogen liquid surface 19A Inner tank 19B Outer tank 20A Support member 20B Support member 21 Refrigerator 22 Cylinder part 23 Heat exchanger 24 Heater 25 Cooling head 26 Safety valve 27 Superconducting member 31 Heat insulation container (V2)
32 Liquid feed pump 33 Liquid feed pipe 34 Reflux pipe 41 Thermal insulation container (V3)
42 Lid 43 Vacuum insulation structure 44 Liquid nitrogen 45 Space 46 Glass fiber paper packed layer (L3)
47 Partition plate 48 Liquid nitrogen liquid surface 49A Inner tank 49B Outer tank 51 Liquid nitrogen supply means 52 Liquid nitrogen tank 53 Control valve 54 Supply pipe 55 Nitrogen gas supply means 56 Nitrogen gas cylinder 57 Control valve 58 Supply pipe 61 Nitrogen gas supply means 62 Nitrogen Gas cylinder 63 Control valve 64 Supply pipe 66 Safety valve 71 Thermal insulation container (V4)
73 Vacuum insulation structure 74 Liquid nitrogen 79A Inner tank 79B Outer tank

Claims (5)

少なくとも、窒素ガス空間を残してサブクール液体窒素を収容する断熱容器(V1)と、冷却用の冷却ヘッドを液体窒素の液面よりも下方の位置まで浸漬させる冷凍機と、該サブクール液体窒素中に浸漬される、冷却対象の超電導部材とからなる超電導部材冷却装置において、
断熱容器(V1)内の液体窒素の液面よりも上部の位置から、冷却ヘッドの上面部又は冷却ヘッドの上面部より上の位置までの範囲に渡って、液体窒素に対し吸収性を有するガラス繊維紙を該ガラス繊維紙間及び該ガラス繊維紙と断熱容器(V1)の壁面間に空隙が形成されないように充填した、サブクール液体窒素の温度勾配層を保持するためのガラス繊維紙充填層(L1)を設けており、
該ガラス繊維紙充填層には、少なくとも1枚の仕切板が含まれていることを特徴とする、超電導部材冷却装置。
At least a heat insulating container (V1) that stores subcooled liquid nitrogen leaving a nitrogen gas space, a refrigerator that immerses a cooling head for cooling to a position below the liquid level of liquid nitrogen, and the subcooled liquid nitrogen In the superconducting member cooling device composed of the superconducting member to be cooled that is immersed,
Glass having absorptivity to liquid nitrogen over a range from a position above the liquid nitrogen level in the heat insulating container (V1) to a position above the upper surface of the cooling head or the upper surface of the cooling head. Glass fiber paper-filled layer for holding a temperature gradient layer of subcooled liquid nitrogen, in which fiber paper is filled between the glass fiber paper and between the glass fiber paper and the wall surface of the heat insulating container (V1). has established the L1),
The superconducting member cooling device according to claim 1, wherein the glass fiber paper packed layer includes at least one partition plate .
少なくとも、窒素ガス空間を残してサブクール液体窒素が収容されると共に、断熱容器(V3)に該サブクール液体窒素を供給するための送液ポンプが該サブクール液体窒素中に挿入されていて、冷却用の冷却ヘッドを液体窒素の液面よりも下方の位置まで浸漬させる冷凍機を備えた、断熱容器(V2)と、
液面上に窒素ガス空間を残してサブクール液体窒素が断熱容器(V2)から循環されて収容されると共に、冷却対象の超電導部材を該サブクール液体窒素中に浸漬するための断熱容器(V3)とからなる超電導部材冷却装置において、
前記断熱容器(V2)内の液体窒素の液面よりも上部の位置から、冷却ヘッドの上面部又は冷却ヘッドの上面部より上の位置までの範囲に渡って、液体窒素に対し吸収性を有するガラス繊維紙を該繊維紙間及び該繊維紙と断熱容器(V2)の壁面間に空隙が形成されないように充填した、サブクール液体窒素の温度勾配層を保持するためのガラス繊維紙充填層(L2)、
及び前記断熱容器(V3)内の液体窒素の液面よりも上部の位置から、前記超電導部材の上面部又は上面部より上の位置までの範囲に渡って、液体窒素に対し吸収性を有するガラス繊維紙を該繊維紙間及び該繊維紙と断熱容器(V3)の壁面間に空隙が形成されないように充填した、サブクール液体窒素の温度勾配層を保持するためのガラス繊維紙充填層(L3)、を設けており、
前記ガラス繊維紙充填層(L2)と前記ガラス繊維紙充填層(L3)には、それぞれ少なくとも1枚の仕切板が含まれていることを特徴とする、超電導部材冷却装置。
At least a subcooled liquid nitrogen is accommodated leaving a nitrogen gas space, and a liquid feed pump for supplying the subcooled liquid nitrogen to the heat insulating container (V3) is inserted into the subcooled liquid nitrogen, and is used for cooling. A heat insulating container (V2) provided with a refrigerator that immerses the cooling head to a position below the liquid nitrogen liquid level;
A subcooled liquid nitrogen is circulated and accommodated from the heat insulating container (V2) leaving a nitrogen gas space on the liquid surface, and a heat insulating container (V3) for immersing the superconducting member to be cooled in the subcooled liquid nitrogen; In a superconducting member cooling device comprising:
Absorptive to liquid nitrogen over a range from the position above the liquid nitrogen liquid level in the heat insulating container (V2) to the upper surface of the cooling head or the position above the upper surface of the cooling head. Glass fiber paper filled layer (L2) for holding a temperature gradient layer of subcooled liquid nitrogen filled with glass fiber paper so that no gap is formed between the fiber paper and between the fiber paper and the wall surface of the heat insulating container (V2). ),
And the glass which has an absorptivity with respect to liquid nitrogen over the range from the position above the liquid level of the liquid nitrogen in the said heat insulation container (V3) to the upper surface part of the said superconducting member, or a position above an upper surface part. Glass fiber paper filled layer (L3) for holding a temperature gradient layer of subcooled liquid nitrogen, in which fiber paper is filled between the fiber paper and between the fiber paper and the wall surface of the heat insulating container (V3) so as not to form voids. , it has established a,
The superconducting member cooling device, wherein each of the glass fiber paper filling layer (L2) and the glass fiber paper filling layer (L3) includes at least one partition plate .
少なくとも、窒素ガス空間を残してサブクール液体窒素が収容されると共に、断熱容器(V4)に該サブクール液体窒素を供給するための送液ポンプが該サブクール液体窒素中に挿入されていて、冷却用の冷却ヘッドを液体窒素の液面よりも下方の位置まで浸漬させる冷凍機を備えた、断熱容器(V2)と、
サブクール液体窒素が断熱容器(V2)から循環されて、液面上に空間が形成されないように充填されていると共に、冷却対象の超電導部材が該サブクール液体窒素中に浸漬されている断熱容器(V4)とからなる、超電導部材冷却装置であって、
断熱容器(V2)内の液体窒素の液面よりも上部の位置から、冷却ヘッドの上面部又は冷却ヘッドの上面部より上の位置までの範囲に渡って、液体窒素に対し吸収性を有するガラス繊維紙を該繊維紙間及び該繊維紙と断熱容器(V2)の壁面間に空隙が形成されないように充填した、サブクール液体窒素の温度勾配層を保持するためのガラス繊維紙充填層(L2)を設けており、
該ガラス繊維紙充填層内には、少なくとも1枚の仕切板が含まれていることを特徴とする、超電導部材冷却装置。
At least the subcooled liquid nitrogen is accommodated leaving a nitrogen gas space, and a liquid feed pump for supplying the subcooled liquid nitrogen to the heat insulating container (V4) is inserted into the subcooled liquid nitrogen, and is used for cooling. A heat insulating container (V2) provided with a refrigerator that immerses the cooling head to a position below the liquid nitrogen liquid level;
The subcooled liquid nitrogen is circulated from the heat insulating container (V2) and filled so that no space is formed on the liquid surface, and the superconducting member to be cooled is immersed in the subcooled liquid nitrogen (V4). A superconducting member cooling device comprising:
Glass having absorptivity to liquid nitrogen over a range from a position above the liquid nitrogen level in the heat insulating container (V2) to a position above the upper surface of the cooling head or the upper surface of the cooling head. Glass fiber paper packed layer (L2) for holding a temperature gradient layer of subcooled liquid nitrogen, in which fiber paper is filled between the fiber paper and between the fiber paper and the wall surface of the heat insulating container (V2) so as not to form a void. Has been established ,
The superconducting member cooling device, wherein the glass fiber paper packed layer includes at least one partition plate .
前記ガラス繊維紙充填層(L1、L2とL3、又はL2)の垂直方向の厚みが、仕切板の厚みを除いた厚みで20mm以上50mm以下であることを特徴とする、請求項1から3のいずれかに記載の超電導部材冷却装置。 The vertical thickness of the glass fiber paper filling layer (L1, L2 and L3, or L2) is 20 mm to 50 mm in thickness excluding the thickness of the partition plate , according to claim 1, The superconducting member cooling device according to any one of the above. 少なくとも、窒素ガス空間を残して収容されている断熱容器(V0)内のサブクール液体窒素の温度維持方法において、
該サブクール液体窒素を冷却するための冷凍機の冷却ヘッドを液体窒素の液面よりも下方の位置まで浸漬し、
断熱容器(V0)内の液体窒素の液面よりも上部の位置から、冷却ヘッドの上面部又は冷却ヘッドの上面部より上の位置までの範囲に渡って、液体窒素に対し吸収性を有するガラス繊維紙を該繊維紙間及び該繊維紙と断熱容器(V0)の壁面間に空隙が形成されないように充填したガラス繊維紙充填層(L0)を設けるとともに該ガラス繊維紙充填層内に少なくとも1枚の仕切板を含ませて、該ガラス繊維紙充填層(L0)内にサブクール液体窒素の温度勾配層を保持することを特徴とする、断熱容器内のサブクール液体窒素の温度維持方法。
At least in the temperature maintaining method of the subcooled liquid nitrogen in the heat insulating container (V0) accommodated leaving the nitrogen gas space,
Immerse the cooling head of the refrigerator for cooling the subcooled liquid nitrogen to a position below the liquid surface of the liquid nitrogen,
Glass having absorptivity to liquid nitrogen over a range from a position above the liquid nitrogen level in the heat insulating container (V0) to a position above the upper surface of the cooling head or the upper surface of the cooling head. A glass fiber paper filling layer (L0) in which fiber paper is filled between the fiber paper and between the fiber paper and the wall surface of the heat insulating container (V0) so as not to form voids is provided , and at least 1 is provided in the glass fiber paper filling layer. A temperature maintaining method for subcooled liquid nitrogen in a heat insulating container, characterized in that a temperature gradient layer of subcooled liquid nitrogen is retained in the glass fiber paper packed layer (L0) by including a number of partition plates .
JP2010191698A 2010-08-30 2010-08-30 Superconducting member cooling apparatus and temperature maintaining method for subcooled liquid nitrogen in a heat insulating container Active JP5649373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010191698A JP5649373B2 (en) 2010-08-30 2010-08-30 Superconducting member cooling apparatus and temperature maintaining method for subcooled liquid nitrogen in a heat insulating container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010191698A JP5649373B2 (en) 2010-08-30 2010-08-30 Superconducting member cooling apparatus and temperature maintaining method for subcooled liquid nitrogen in a heat insulating container

Publications (2)

Publication Number Publication Date
JP2012049413A JP2012049413A (en) 2012-03-08
JP5649373B2 true JP5649373B2 (en) 2015-01-07

Family

ID=45903930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010191698A Active JP5649373B2 (en) 2010-08-30 2010-08-30 Superconducting member cooling apparatus and temperature maintaining method for subcooled liquid nitrogen in a heat insulating container

Country Status (1)

Country Link
JP (1) JP5649373B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019239650A1 (en) * 2018-06-15 2019-12-19 株式会社日立製作所 Superconducting electromagnet device
KR102302059B1 (en) * 2021-06-09 2021-09-15 주식회사 헥사 Apparatus and method for measuring the amount of liquid hydrogen filled in liquid hydrogen storage container in real time

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5916517B2 (en) * 2012-05-29 2016-05-11 古河電気工業株式会社 Cooling container
US20220336123A1 (en) * 2019-09-24 2022-10-20 Ls Electric Co., Ltd. Cooling apparatus for superconductor cooling container
KR102635696B1 (en) * 2019-09-24 2024-02-13 한국전력공사 Superconductor cooling vessel chiller
KR102664993B1 (en) * 2023-03-13 2024-05-13 크라이오에이치앤아이(주) Apparatus for storing liquefied gas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4733842B2 (en) * 2000-03-31 2011-07-27 大陽日酸株式会社 Superconducting material cooling device
JP2002005552A (en) * 2000-06-21 2002-01-09 Tokyo Electric Power Co Inc:The Cold-generating equipment and cooling apparatus in which superconductivity is applied for cooling through use of the equipment
JP5091419B2 (en) * 2006-03-31 2012-12-05 株式会社東芝 Superconducting device
JP4886552B2 (en) * 2007-02-28 2012-02-29 株式会社Ihi Superconducting coil cooling device and vent plate used therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019239650A1 (en) * 2018-06-15 2019-12-19 株式会社日立製作所 Superconducting electromagnet device
KR102302059B1 (en) * 2021-06-09 2021-09-15 주식회사 헥사 Apparatus and method for measuring the amount of liquid hydrogen filled in liquid hydrogen storage container in real time

Also Published As

Publication number Publication date
JP2012049413A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP5649373B2 (en) Superconducting member cooling apparatus and temperature maintaining method for subcooled liquid nitrogen in a heat insulating container
US20190212049A1 (en) Apparatus and method for super-cooled operation of a cryostat with low quantities of coolant
US7310954B2 (en) Cryogenic system
JP2008027780A (en) Liquid-coolant circulation cooling system
JP2008025858A (en) Subcooled low-temperature device
TW200839162A (en) Refrigerator
JP2008144929A (en) Heat insulating material for very low temperature and its manufacturing method
JPH04350906A (en) Method and apparatus for cooling oxide superconducting coil
US10378695B2 (en) Cryogenic storage container
JP2008249201A (en) Recondenser, its mounting method and superconducting magnet using the same
US20190137163A1 (en) Cryogenic Freezer
JP2859250B2 (en) Superconducting member cooling device
JP5540642B2 (en) Cooling device for superconducting equipment
JP5916517B2 (en) Cooling container
JP6082531B2 (en) Cooling container
CN209804586U (en) Scanning electron microscope refrigerating system based on low-temperature solid cooling
JP4733842B2 (en) Superconducting material cooling device
JP4514346B2 (en) Superconducting material cooling device
CN209804584U (en) Scanning electron microscope refrigerating system based on low-temperature liquid cooling
JP2001284665A (en) Superconducting material cooling device
JP2005156051A (en) Superconductive member cooling device, and its control method
JP2008091802A (en) Cryogenic container
JP2007225229A (en) Method and device for cooling liquid
JP2010177677A (en) Cooling device for superconducting member
US20220068530A1 (en) Apparatus and System to Maximize Heat Capacity in Cryogenic Devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141111

R150 Certificate of patent or registration of utility model

Ref document number: 5649373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250