JP2010177677A - Cooling device for superconducting member - Google Patents

Cooling device for superconducting member Download PDF

Info

Publication number
JP2010177677A
JP2010177677A JP2010052344A JP2010052344A JP2010177677A JP 2010177677 A JP2010177677 A JP 2010177677A JP 2010052344 A JP2010052344 A JP 2010052344A JP 2010052344 A JP2010052344 A JP 2010052344A JP 2010177677 A JP2010177677 A JP 2010177677A
Authority
JP
Japan
Prior art keywords
liquid nitrogen
cooling
superconducting member
liquid
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010052344A
Other languages
Japanese (ja)
Inventor
Shigeru Yoshida
茂 吉田
Koichi Ohashi
孝一 大橋
Yasuharu Kamioka
泰晴 上岡
Isamu Sagara
勇 相良
Katsuya Tsutsumi
克哉 堤
Hironobu Kimura
博伸 木村
Takaaki Bono
敬昭 坊野
Masayuki Konno
雅行 今野
Kazuo Funaki
和夫 船木
Masataka Iwakuma
成卓 岩熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Fuji Electric Co Ltd
Taiyo Nippon Sanso Corp
Kyushu TLO Co Ltd
Original Assignee
Kyushu Electric Power Co Inc
Taiyo Nippon Sanso Corp
Kyushu TLO Co Ltd
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Taiyo Nippon Sanso Corp, Kyushu TLO Co Ltd, Fuji Electric Holdings Ltd filed Critical Kyushu Electric Power Co Inc
Priority to JP2010052344A priority Critical patent/JP2010177677A/en
Publication of JP2010177677A publication Critical patent/JP2010177677A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent reduction in cooling efficiency of a cooling apparatus by preventing heat conduction from the cylinder of a refrigerator to liquid nitrogen and prevent fluctuations in the liquid level of the liquid nitrogen, when the cooling head of the refrigerator is immersed directly in liquid nitrogen, to obtain supercooling liquid nitrogen in the apparatus for cooling a high-temperature superconducting member with the liquid nitrogen at a supercooling temperature. <P>SOLUTION: A heat insulating part is provided around the outer surface of the cylinder of the refrigerator. The heat-insulating part has a vacuum heat-insulated structure or the cylinder is surrounded by a heat-insulating material. Furthermore, the heat-insulating part around the outer surface of the cylinder of the refrigerator is extended to the middle position in the vertical direction of the outer surface of the cooling head. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、超電導トランスや超電導マグネット、そのほか各種の超電導コイル、あるいは超電導ケーブルなどの超電導部材、特に高温超電導部材を、液体窒素によって低温に冷却・保持するための超電導部材冷却装置に関するものである。   The present invention relates to a superconducting member cooling apparatus for cooling and holding a superconducting member such as a superconducting transformer, a superconducting magnet, various other superconducting coils, or a superconducting cable, particularly a high-temperature superconducting member at a low temperature with liquid nitrogen.

超電導コイルなどの超電導部材、特に高温超電導を利用した超電導部材を冷却するにあたっては、冷却媒体として比較的安価な液体窒素(LN)を使用することが多い。この場合一般には大気圧の飽和液体窒素、すなわち約77Kの液体窒素が用いられている。すなわち、真空断熱されたクライオスタットと称される大気に実質的に開放された冷却容器に超電導部材を収容しておき、その冷却容器内に約77Kの大気圧飽和液体窒素を注入してその液体窒素中に超電導部材を浸漬させ、冷却・保持するのが通常である。 In cooling a superconducting member such as a superconducting coil, particularly a superconducting member using high-temperature superconductivity, a relatively inexpensive liquid nitrogen (LN 2 ) is often used as a cooling medium. In this case, saturated liquid nitrogen at atmospheric pressure, that is, liquid nitrogen of about 77K is generally used. That is, a superconducting member is accommodated in a cooling container substantially open to the atmosphere called a cryostat that is thermally insulated from a vacuum, and about 77 K of atmospheric pressure saturated liquid nitrogen is injected into the cooling container. Usually, the superconducting member is immersed therein, and cooled and held.

ところで高温超電導部材においては、若干でも温度が下がれば、超電導特性が大幅に向上することが知られている。例えば臨界電流は、77Kから70Kに下がっただけでも数倍に大きくなることが知られている。   By the way, in a high-temperature superconducting member, it is known that the superconducting characteristics will be greatly improved if the temperature is slightly lowered. For example, it is known that the critical current increases several times even if it falls from 77K to 70K.

そこで大気圧の液体窒素を減圧して例えば65K程度に温度降下させた液体窒素中に超電導部材を浸漬させて、超電導部材を77Kよりも低い温度まで冷却することが考えられる。その場合、液体窒素中に超電導部材を浸漬させるための容器では、液体窒素の減圧状態を維持させる必要がある。一方、一般に使用されているクライオスタットでは、実質的に大気に開放させた状態での使用を前提としているため、この種の汎用クライオスタットを減圧した液体窒素に適用しようとすれば、蓋部や電流導入端子等の箇所における封止の点で不充分となり、外部から水分を含む大気圧の空気が内部に吸い込まれて、電流導入端子のガス抜穴での水分凍結による閉塞や超電導部材表面への氷の付着が生じたりし、実用上運転が不可能となるおそれがある。そのため前述の目的のためには、新たに特殊な容器を設計、製作しなければならず、その場合コストの大幅な上昇を招く問題があり、そのため実用化はためらわれていたのが実情である。   Therefore, it is conceivable to cool the superconducting member to a temperature lower than 77K by immersing the superconducting member in liquid nitrogen whose pressure is reduced to about 65K by reducing the pressure of liquid nitrogen at atmospheric pressure. In that case, in a container for immersing the superconducting member in liquid nitrogen, it is necessary to maintain the reduced pressure state of liquid nitrogen. On the other hand, since a cryostat that is generally used is assumed to be used in a state where it is substantially open to the atmosphere, if this type of general-purpose cryostat is applied to liquid nitrogen that has been depressurized, a lid or a current introduction Sealing at locations such as terminals is inadequate, atmospheric air containing moisture from outside is sucked into the inside, clogging due to moisture freezing in the vent hole of the current introduction terminal, and ice on the surface of the superconducting member May occur, and operation may become impossible in practice. Therefore, for the above-mentioned purpose, a special container must be newly designed and manufactured. In this case, there is a problem that causes a significant increase in cost, so that practical use is hesitant. .

また一方、大気圧の飽和液体窒素中に超電導部材を浸漬させて超電導部材を作動させた場合、超電導部材の発熱によって飽和液体窒素が直ちに気化してガス気泡が発生するため、そのガス気泡によって電気絶縁性が低下したり、冷却効率が低下したりしてしまう問題があるが、前述のように減圧によって例えば65K程度に温度降下された液体窒素中に超電導部材を浸漬させた場合も、減圧下では超電導部材の発熱によって前記同様に直ちに液体窒素が気化して気泡が発生するから、気泡発生に対する根本的な解決策とはならない。したがってこのことも減圧された液体窒素の使用がためらわれていた一因である。   On the other hand, when the superconducting member is operated by immersing the superconducting member in saturated liquid nitrogen at atmospheric pressure, the saturated liquid nitrogen is immediately vaporized by the heat generated by the superconducting member and gas bubbles are generated. Although there is a problem that the insulating property is lowered or the cooling efficiency is lowered, as described above, even when the superconducting member is immersed in liquid nitrogen whose temperature has been lowered to about 65K by depressurization as described above, Then, since the liquid nitrogen is immediately vaporized and bubbles are generated by the heat generation of the superconducting member, it is not a fundamental solution for the bubble generation. Therefore, this is also one of the reasons why hesitated to use liquid nitrogen with reduced pressure.

そこで本発明者等は、既に特開平10−54637号において、液体窒素によって高温超電導部材を冷却するにあたって、特殊な真空封止などを行なわずに、大気開放の極く一般的な汎用クライオスタットを超電導部材冷却容器として用いながらも、より低温に高温超電導部材を冷却して超電導性能を向上させ得るようにするとともに、高温超電導部材作動時における高温超電導部材の発熱による液体窒素からのガス気泡の発生を抑制するようにした超電導部材冷却装置を提案している。   Therefore, the present inventors have already disclosed in Japanese Patent Application Laid-Open No. 10-54637 a superconducting general-purpose cryostat that is open to the atmosphere without performing special vacuum sealing or the like when cooling a high-temperature superconducting member with liquid nitrogen. While being used as a member cooling container, it is possible to improve the superconducting performance by cooling the high-temperature superconducting member at a lower temperature, and the generation of gas bubbles from liquid nitrogen due to the heat generation of the high-temperature superconducting member during operation of the high-temperature superconducting member A superconducting member cooling device is proposed which is suppressed.

上記提案の超電導部材冷却装置は、基本的には、超電導部材を収容してその超電導部材を冷却するための冷却容器を実質的に大気圧に開放した構成とし、かつ大気圧で過冷却状態とした例えば67K程度の液体窒素を前記冷却容器内に配置して、その大気圧で過冷却状態の液体窒素によって超電導部材を冷却するようにしている。そしてまた上記提案の超電導部材冷却装置において、超電導部材に対する冷却媒体として機能させる大気圧で過冷却状態の液体窒素は、次のようにして得ている。すなわち、前述の冷却容器とは別に減圧用容器を設けて、その減圧用容器内に熱交換器を配設しておき、減圧用容器内に熱交換用液体窒素(例えば約77Kの大気圧の飽和液体窒素)を供給するとともに、その減圧用容器内の圧力を真空ポンプによって減圧して、減圧用容器内の液体窒素を大気圧から減圧させることによりその温度を例えば65Kの低温に降下させる。一方、前記熱交換用液体窒素とは別に、大気圧の冷却用液体窒素(例えば約77Kの飽和液体窒素)を前記熱交換器に導き、その熱交換器において減圧用容器内の65Kの減圧された熱交換用液体窒素と熱交換させて、例えば67K程度まで大気圧のまま冷却させ、大気圧で過冷却状態とする。そしてこの大気圧で過冷却状態の例えば67Kの冷却用液体窒素を前述の冷却容器に導いて、超電導部材を67Kに近い温度(例えば70K)の低温に冷却することとしている。   The proposed superconducting member cooling device basically has a configuration in which a superconducting member is accommodated and a cooling container for cooling the superconducting member is substantially opened to atmospheric pressure, and the superconducting member is in a supercooled state at atmospheric pressure. For example, liquid nitrogen of about 67K is disposed in the cooling container, and the superconducting member is cooled by liquid nitrogen in a supercooled state at the atmospheric pressure. In the proposed superconducting member cooling apparatus, liquid nitrogen in an overcooled state at atmospheric pressure that functions as a cooling medium for the superconducting member is obtained as follows. In other words, a decompression vessel is provided separately from the above-described cooling vessel, and a heat exchanger is disposed in the decompression vessel, and the heat exchange liquid nitrogen (for example, an atmospheric pressure of about 77 K) is provided in the decompression vessel. Saturated liquid nitrogen) is supplied, and the pressure in the decompression vessel is reduced by a vacuum pump, and the liquid nitrogen in the decompression vessel is reduced from atmospheric pressure to lower the temperature to a low temperature of, for example, 65K. On the other hand, separately from the liquid nitrogen for heat exchange, liquid nitrogen for cooling at atmospheric pressure (for example, saturated liquid nitrogen of about 77K) is led to the heat exchanger, and 65K in the decompression vessel is depressurized in the heat exchanger. Heat exchange with the liquid nitrogen for heat exchange is performed, for example, cooling to about 67K with atmospheric pressure, and a supercooled state is obtained at atmospheric pressure. Then, for example, the cooling liquid nitrogen of 67K in a supercooled state at this atmospheric pressure is led to the above-mentioned cooling container, and the superconducting member is cooled to a low temperature close to 67K (for example, 70K).

このような特開平10−54637号の提案の超電導部材冷却装置においては、通常の77K程度の大気圧の飽和液体窒素を冷却媒体として用いた場合よりも超電導部材を確実に低温に冷却することができ、そのため超電導部材の性能を向上させることができ、しかもこの場合、冷却容器内の過冷却状態の冷却用液体窒素の液面上の空間が、冷却用液体窒素から蒸発した大気圧の窒素ガスで満たされているため、外部から水分を含む大気圧の空気が内部に吸い込まれるおそれは少なく、そのため冷却容器の蓋部や電流導入端子等の封止も特に厳密さが要求されず、さらには超電導部材を浸漬させた冷却用液体窒素が前述のように過冷却状態であるため、超電導部材の作動時において超電導部材が発熱しても、その発熱部位周辺で液体窒素が気化温度に達するには温度的余裕があり、そのため直ちにはガス気泡が発生せず、したがってガス気泡によって絶縁性が低下したり冷却効率が低下したりするおそれも少ないなどの利点がある。   In such a superconducting member cooling apparatus proposed in Japanese Patent Laid-Open No. 10-54637, the superconducting member can be reliably cooled to a lower temperature than when saturated liquid nitrogen at atmospheric pressure of about 77 K is used as a cooling medium. Therefore, the performance of the superconducting member can be improved, and in this case, the space above the liquid surface of the cooling liquid nitrogen in the supercooled state in the cooling vessel is an atmospheric nitrogen gas evaporated from the cooling liquid nitrogen. Therefore, there is little possibility of atmospheric air containing moisture from the outside being sucked into the inside, and therefore the sealing of the lid of the cooling container and the current introduction terminal is not particularly required, and further Since the cooling liquid nitrogen in which the superconducting member is immersed is in a supercooled state as described above, even if the superconducting member generates heat during operation of the superconducting member, the liquid nitrogen is vaporized around the heat generating portion. To reach the temperature is a temperature margin, therefore immediately have advantages such as fear less not generated gas bubbles, thus the cooling efficiency lowered insulating property by gas bubbles or drops.

しかしながら上記提案の超電導部材冷却装置については、未だ次のような問題があった。   However, the proposed superconducting member cooling device still has the following problems.

すなわち、上記提案の超電導部材冷却装置においては、冷却用の液体窒素とは別に熱交換用液体窒素を減圧用容器内に供給し、真空ポンプによりその減圧用容器内を減圧して熱交換用液体窒素を温度降下させ、その温度降下した熱交換用液体窒素と冷却用液体窒素とを熱交換させることにより大気圧で過冷却状態の冷却用液体窒素を得るようにしているが、この場合減圧用容器内の熱交換用液体窒素は減圧によって徐々に蒸発気化し、かつその気化ガスがポンプにより排気されて行くから、減圧用容器内の液体窒素液面は急激に低下して行き、遂には減圧用容器内の熱交換器が露出してしまうことになる。このように熱交換器が液面から露出してしまえば、充分な熱交換能率が得られなくなって、冷却用液体窒素を充分な過冷却状態となるように冷却することが困難となるから、実際上は熱交換器が液面から露出する以前に、改めて減圧用容器内に液体窒素を補給しなければならず、またこの液体窒素補給時には運転を一旦停止させなければならない。   That is, in the proposed superconducting member cooling device, heat exchange liquid nitrogen is supplied into the decompression container separately from the cooling liquid nitrogen, and the inside of the decompression container is decompressed by a vacuum pump, and the heat exchange liquid is supplied. The temperature of the nitrogen is lowered, and the liquid nitrogen for cooling and the liquid nitrogen for cooling are subjected to heat exchange to obtain liquid nitrogen for cooling in an overcooled state at atmospheric pressure. The liquid nitrogen for heat exchange in the container is gradually evaporated and evaporated by decompression, and the vaporized gas is exhausted by the pump, so the liquid nitrogen liquid level in the decompression container is rapidly lowered and finally decompressed. The heat exchanger in the container will be exposed. If the heat exchanger is exposed from the liquid surface in this way, sufficient heat exchange efficiency cannot be obtained, and it becomes difficult to cool the cooling liquid nitrogen so as to be in a sufficiently subcooled state. In practice, before the heat exchanger is exposed from the liquid level, liquid nitrogen must be replenished into the decompression vessel, and the operation must be temporarily stopped when the liquid nitrogen is replenished.

このように前記提案の超電導部材冷却装置では、減圧用容器内の液体窒素補給のために運転を停止する必要があるところから、長時間連続して運転することができないという問題があり、また液体窒素補給およびそのための運転停止−運転再開のための手間も煩雑となるという問題がある。もちろん短時間の運転の場合は特に問題とはならないが、超電導部材の実用化へ向けた実験・研究、測定等においては、長時間連続して運転することが求められることが多く、したがって減圧用容器への熱交換用液体窒素補給が前記提案の装置の普及に対する大きなネックとなっていたのが実情である。   As described above, the proposed superconducting member cooling device has a problem that it cannot be operated continuously for a long time since it needs to be stopped for replenishment of liquid nitrogen in the decompression vessel. There is a problem that the trouble of replenishing nitrogen and stopping the operation and resuming the operation becomes complicated. Of course, there is no particular problem in the case of short-time operation, but it is often required to operate continuously for a long period of time in experiments, research, measurements, etc. for practical application of superconducting members. The fact is that the supply of liquid nitrogen to the vessel for heat exchange has become a major bottleneck for the spread of the proposed apparatus.

そこで本発明者等は、前記提案に倣い、大気圧もしくは大気圧よりも高い圧力下で過冷却状態とした液体窒素を超電導部材に対する冷却用媒体として用いながらも、液体窒素を冷凍機によって大気圧下での過冷却となる温度まで冷却し、得られた過冷却状態の低温の液体窒素を、そのまま直接超電導部材を冷却するための冷却媒体として用いることとし、これにより前記提案の場合のような減圧用容器や熱交換器を用いないようにし、それに伴なって減圧用容器内への熱交換用液体窒素の補給のための運転停止を回避し得るようにして、長時間の連続運転を可能とした超電導部材冷却装置を、特許第2859250号において提案している。   Accordingly, the present inventors follow the above proposal and use liquid nitrogen that has been supercooled at atmospheric pressure or higher than atmospheric pressure as a cooling medium for the superconducting member, but liquid nitrogen is used by the refrigerator to achieve atmospheric pressure. Then, the liquid is cooled to a temperature at which it is supercooled below, and the obtained supercooled low-temperature liquid nitrogen is directly used as a cooling medium for cooling the superconducting member as it is. Long-term continuous operation is possible by avoiding the use of a decompression vessel or heat exchanger and avoiding the need to shut down the supply of liquid nitrogen for heat exchange in the decompression vessel. Japanese Patent No. 2859250 proposes a superconducting member cooling device.

上記特許による超電導部材冷却装置は、基本的には、超電導部材を収容してその超電導部材を冷却するための大気に実質的に開放された冷却容器と、前記冷却容器へ供給すべき液体窒素を収容するための大気圧に実質的に開放された供給側容器と、前記供給側容器へ液体窒素を供給するための液体窒素供給手段と、前記供給側容器内の液体窒素を、大気圧下での過冷却温度まで冷却するための冷凍機と、前記供給側容器内において大気圧下での過冷却温度まで冷却された液体窒素を前記冷却容器に移送するための移送手段とを有してなり、供給側容器および冷却容器の液面上の空間を大気圧とするかまたは大気圧よりも高い圧力とし、かつ前記移送手段によって前記冷却容器内に供給された過冷却状態の液体窒素中に前記超電導部材を浸漬させるようにしたことを特徴とするものであり、その具体例を図4に示す。   The superconducting member cooling apparatus according to the above-mentioned patent basically includes a cooling container that contains the superconducting member and is substantially open to the atmosphere for cooling the superconducting member, and liquid nitrogen to be supplied to the cooling container. A supply-side container that is substantially open to atmospheric pressure for containing; liquid nitrogen supply means for supplying liquid nitrogen to the supply-side container; and liquid nitrogen in the supply-side container under atmospheric pressure. A refrigerating machine for cooling to the supercooling temperature, and a transfer means for transferring the liquid nitrogen cooled to the supercooling temperature under atmospheric pressure in the supply side container to the cooling container. The space on the liquid level of the supply side container and the cooling container is set to atmospheric pressure or higher than atmospheric pressure, and the liquid nitrogen in the supercooled state supplied into the cooling container by the transfer means Soaked superconducting member And characterized in that it has a so that shows a specific example in FIG.

図4において、冷却対象となる超電導部材1は冷却容器3の底部に配置されている。この冷却容器3は、大気に実質的に開放された一般的な汎用のクライオスタットからなるものであって、その外周壁部および底壁部が真空断熱構造5とされ、また上端には開閉可能な蓋部7が設けられている。この蓋部7は、容器本体に対して真空封止されたものではなく、またこの蓋部7には汎用のクライオスタットと同様な電流導入端子等が設けられており、このような蓋部7と容器本体部分との間の隙間や電流導入端子等を通じて冷却容器3の内部は実質的に大気開放された状態となっている。なお蓋部7には安全弁19が設けられているが、この安全弁19は、内部圧力が外部の大気圧に対して例えば+0.1kgf/cm2を越えた場合に開放されて、内部圧力を大気圧〜大気圧+0.1kgf/cm2の範囲内、すなわち大気圧もしくは大気圧より若干高い圧力に保持するように機能する。そして超電導部材1は蓋部7から支持部材9A,9Bによって吊下げた状態となっている。冷却容器3内の底部には、後述するようにトランスファチューブ45を介して大気圧での過冷却状態の液体窒素(冷却用液体窒素)11が供給されて、超電導部材1がその液体窒素11に浸漬される。またその冷却容器3内における液体窒素11の液面11Aよりもわずかに下方の位置には、水平横断面の外形形状が冷却容器3の水平横断面内周形状と実質的に相似の形状をなしかつ上下方向に所定の厚みを有する断熱部材13が配設されている。この断熱部材13は、要は全体として上下方向への熱伝導が液体窒素よりも格段に少ないものとなっていれば良いが、通常はFRPなど熱伝導率の小さい材料によって形成するか、あるいは中空構造としてその中空部分を真空断熱構造としたりすれば良い。なおこの断熱部材13は、前述の支持部材9A,9Bによって蓋部7から吊下げられており、またその断熱部材13の周囲が冷却容器3の内周壁面に対して若干の隙間14を保つように作られている。一方冷却容器3における冷却用液体窒素11の液面11Aの上方に残された空間(蓋部7と液面11Aとの間の空間)15には、外部の第1の窒素ガス供給源16から窒素ガス供給管18を経て大気圧の窒素ガスが供給される。また冷却容器3内における断熱部材13の下面側の位置には、後述する還流管17の基端側開口端が開口している。 In FIG. 4, the superconducting member 1 to be cooled is disposed at the bottom of the cooling container 3. The cooling container 3 is composed of a general-purpose cryostat that is substantially open to the atmosphere. The outer peripheral wall and the bottom wall of the cooling container 3 have a vacuum heat insulating structure 5 and can be opened and closed at the upper end. A lid 7 is provided. The lid portion 7 is not vacuum-sealed with respect to the container body, and the lid portion 7 is provided with a current introduction terminal similar to a general-purpose cryostat. The interior of the cooling container 3 is substantially open to the atmosphere through a gap between the container main body part and a current introduction terminal. The lid portion 7 is provided with a safety valve 19, which is opened when the internal pressure exceeds, for example, +0.1 kgf / cm 2 with respect to the external atmospheric pressure to increase the internal pressure. It functions to maintain the pressure within the range of atmospheric pressure to atmospheric pressure + 0.1 kgf / cm 2 , that is, atmospheric pressure or slightly higher than atmospheric pressure. The superconducting member 1 is suspended from the lid portion 7 by support members 9A and 9B. As will be described later, supercooled liquid nitrogen (cooling liquid nitrogen) 11 at atmospheric pressure is supplied to the bottom of the cooling container 3 via a transfer tube 45 as described later, and the superconducting member 1 is supplied to the liquid nitrogen 11. Soaked. Further, the outer shape of the horizontal cross section is substantially similar to the inner peripheral shape of the horizontal cross section of the cooling container 3 at a position slightly below the liquid surface 11A of the liquid nitrogen 11 in the cooling container 3. And the heat insulation member 13 which has predetermined | prescribed thickness in the up-down direction is arrange | positioned. The heat insulating member 13 may be formed of a material having a low thermal conductivity, such as FRP, or hollow, as long as the heat conduction in the vertical direction as a whole is much less than that of liquid nitrogen. What is necessary is just to make the hollow part into a vacuum heat insulation structure as a structure. The heat insulating member 13 is suspended from the lid portion 7 by the support members 9A and 9B described above, and the space around the heat insulating member 13 keeps a slight gap 14 with respect to the inner peripheral wall surface of the cooling container 3. Is made. On the other hand, a space (space between the lid 7 and the liquid surface 11A) 15 left above the liquid surface 11A of the cooling liquid nitrogen 11 in the cooling container 3 is supplied from an external first nitrogen gas supply source 16. Atmospheric pressure nitrogen gas is supplied through the nitrogen gas supply pipe 18. Further, at the position on the lower surface side of the heat insulating member 13 in the cooling container 3, a proximal end side opening end of a reflux pipe 17 described later is opened.

さらに前述のように大気に実質的に開放された冷却容器3とは別に、供給側容器21が配設されている。   Further, a supply side container 21 is provided separately from the cooling container 3 that is substantially open to the atmosphere as described above.

供給側容器21は、前述の冷却容器3と同様に大気に実質的に開放されたものであって、その外周壁部および底壁部が真空断熱構造23とされ、また上端には開閉可能な蓋部25が設けられている。この蓋部25は容器本体に対して真空封止されたものではなく、このような蓋部25と容器本体部分との間の隙間などを通じて供給側容器21の内部は実質的に大気に開放された状態となっている。この供給側容器21には、外部の液体窒素供給源27から、制御弁29および供給管31を介して液体窒素33が供給されるようになっている。そして供給側容器21内における液体窒素33の液面33Aよりもわずかに下方の位置には、水平横断面の外形形状が供給側容器21の水平横断面形状と実質的に相似の形状をなしかつ上下方向に所定の厚みを有する断熱部材35が、蓋部25から支持部材37A,37Bによって吊下げられた状態で配設されている。この断熱部材35も、前記冷却容器3内の断熱部材13と同様に全体として上下方向への熱伝達が液体窒素よりも格段に少ないものとなっていれば良く、例えばFRPなどの熱伝導率の小さい材料によって作られるか、あるいは中空な真空断熱構造とすれば良い。またこの断熱部材35の周囲が供給側容器21の内周壁面に対して若干の隙間39を保持していることも、冷却容器3内の断熱部材13と同様である。   The supply side container 21 is substantially open to the atmosphere like the cooling container 3 described above, and the outer peripheral wall part and the bottom wall part thereof are the vacuum heat insulating structure 23, and the upper end can be opened and closed. A lid portion 25 is provided. The lid portion 25 is not vacuum-sealed with respect to the container body, and the inside of the supply-side container 21 is substantially opened to the atmosphere through such a gap between the lid portion 25 and the container body portion. It is in the state. The supply side container 21 is supplied with liquid nitrogen 33 from an external liquid nitrogen supply source 27 through a control valve 29 and a supply pipe 31. The outer shape of the horizontal cross section is substantially similar to the horizontal cross sectional shape of the supply side container 21 at a position slightly below the liquid level 33A of the liquid nitrogen 33 in the supply side container 21 and A heat insulating member 35 having a predetermined thickness in the vertical direction is disposed in a state of being suspended from the lid portion 25 by support members 37A and 37B. The heat insulating member 35 is also required to have a heat transfer in the vertical direction that is significantly less than that of liquid nitrogen as in the same manner as the heat insulating member 13 in the cooling vessel 3, and has a thermal conductivity such as FRP. It may be made of a small material or a hollow vacuum heat insulating structure. Further, as with the heat insulating member 13 in the cooling container 3, the periphery of the heat insulating member 35 holds a slight gap 39 with respect to the inner peripheral wall surface of the supply side container 21.

さらに供給側容器21には、その供給側容器21内の液体窒素33を、大気圧下での飽和液体窒素の温度よりも低い過冷却温度(約77Kよりも低い温度、例えば65〜70K)に冷却するための冷凍機41が配設されている。この冷凍機41は、冷凍媒体ガス(通常はヘリウムガス)を圧縮するための圧縮部(コンプレッサ)41Aと、圧縮された高圧の冷凍媒体ガスを膨張させて低温を得るとともにその低温を冷却対象(液体窒素)と熱交換するための冷却ヘッド41Bと、圧縮部41Aからの高圧の媒体ガスと冷却ヘッド41Bから戻る膨張された低圧の媒体ガスの流れを切替えるためのモーターバルブ等の切替部41Cと、その切替部41Cと冷却ヘッド41Bとの間で冷凍媒体ガスを往復させる通路を内部に形成したシリンダ部41Dとからなるものであり、その切替部41Cが供給側容器21の蓋部25上に配置され、シリンダ部41Dが切替部41Cから蓋部25を下方へ貫通して供給側容器21内の液体窒素の液面33A上の空間47を通り、その下端が液体窒素中に浸漬され、その部分すなわち液体窒素中に浸漬された部分に冷却ヘッド41Bが設けられている。ここで、シリンダ部41Dは一般にステンレス鋼により作られている。また冷却ヘッド41Bは、その外面に銅等の良伝熱材料からなる伝熱ブロックを設けた構成とされている。なお圧縮部41Aは通常は供給側容器21から離れた位置に配置され、その圧縮部41Aと切替部41Cとの間が、高圧ガス管路41E、低圧ガス管路41Fによって結ばれている。   Further, in the supply side container 21, the liquid nitrogen 33 in the supply side container 21 is brought to a supercooling temperature (a temperature lower than about 77K, for example, 65 to 70K) lower than the temperature of the saturated liquid nitrogen under atmospheric pressure. A refrigerator 41 for cooling is disposed. This refrigerator 41 has a compression unit (compressor) 41A for compressing a refrigeration medium gas (usually helium gas), expands the compressed high-pressure refrigeration medium gas to obtain a low temperature, and cools the low temperature ( A cooling head 41B for exchanging heat with liquid nitrogen), a switching unit 41C such as a motor valve for switching the flow of the high-pressure medium gas from the compression unit 41A and the expanded low-pressure medium gas returning from the cooling head 41B; The cylinder portion 41D is formed with a passage for reciprocating the refrigeration medium gas between the switching portion 41C and the cooling head 41B. The switching portion 41C is disposed on the lid portion 25 of the supply side container 21. The cylinder portion 41D passes through the lid portion 25 downward from the switching portion 41C, passes through the space 47 on the liquid nitrogen liquid surface 33A in the supply side container 21, and below it. There are immersed in liquid nitrogen, the cooling head 41B is provided in the immersion portion in its portion or in liquid nitrogen. Here, the cylinder portion 41D is generally made of stainless steel. The cooling head 41B has a configuration in which a heat transfer block made of a good heat transfer material such as copper is provided on the outer surface thereof. Note that the compression unit 41A is normally disposed at a position away from the supply side container 21, and the compression unit 41A and the switching unit 41C are connected by a high-pressure gas pipeline 41E and a low-pressure gas pipeline 41F.

また供給側容器21内には、蓋部25から吊下げられた状態で送液ポンプ43が配設されている。この送液ポンプ43は、その取入口(汲出口)が供給側容器21における断熱部材35よりも下方(通常は供給側容器21の底部近く)に位置するように配設されている。そしてこの送液ポンプ43の出口側はトランスファーチューブ45に接続されており、このトランスファーチューブ45は前述のように冷却容器3内に導かれている。さらに前記冷却容器3からの還流管17が供給側容器21内へ導かれており、その還流管17の先端側開口端が供給側容器の底部(前記冷凍機41の冷却ヘッド41Bよりも下方の位置)において開口している。   In addition, a liquid feed pump 43 is disposed in the supply side container 21 while being suspended from the lid portion 25. The liquid feed pump 43 is disposed such that its intake (pump outlet) is located below the heat insulating member 35 in the supply side container 21 (usually near the bottom of the supply side container 21). The outlet side of the liquid feed pump 43 is connected to a transfer tube 45, and the transfer tube 45 is guided into the cooling container 3 as described above. Further, the reflux pipe 17 from the cooling container 3 is led into the supply side container 21, and the opening end of the reflux pipe 17 is at the bottom of the supply side container (lower than the cooling head 41 </ b> B of the refrigerator 41). Position).

また供給側容器21における液体窒素33の液面33Aの上方に残された空間(蓋部25と液面33Aとの間の空間)47には、外部の第2の窒素ガス供給源49から窒素ガス供給管51を経て大気圧もしくは大気圧以上の圧力の窒素ガスが供給されるようになっている。   Further, in the space 47 (the space between the lid portion 25 and the liquid surface 33A) 47 left above the liquid surface 33A of the liquid nitrogen 33 in the supply side container 21, nitrogen is supplied from the external second nitrogen gas supply source 49. Nitrogen gas having a pressure equal to or higher than atmospheric pressure is supplied through the gas supply pipe 51.

ここで、液体窒素供給源27、制御弁29、および供給管31は、供給側容器21に液体窒素を供給するための液体窒素供給手段63を構成している。さらに送液ポンプ43およびトランスファチユーブ45は、供給側容器21内において大気圧で過冷却状態に冷却された液体窒素を冷却容器3に移送するための移送手段65を構成している。一方第1の窒素ガス供給源16、窒素ガス供給管18は、冷却容器3における液面上の空間15に大気圧もしくは大気圧以上の圧力の窒素ガスを供給するための第1の窒素ガス供給手段67を構成しており、また第2の窒素ガス供給源49、窒素ガス供給管51は、供給側容器21における液面上の空間47に大気圧もしくは大気圧以上の圧力の窒素ガスを供給するための第2の窒素ガス供給手段69を構成している。   Here, the liquid nitrogen supply source 27, the control valve 29, and the supply pipe 31 constitute liquid nitrogen supply means 63 for supplying liquid nitrogen to the supply side container 21. Further, the liquid feed pump 43 and the transfer tube 45 constitute transfer means 65 for transferring the liquid nitrogen cooled to the supercooled state at atmospheric pressure in the supply side vessel 21 to the cooling vessel 3. On the other hand, the first nitrogen gas supply source 16 and the nitrogen gas supply pipe 18 are a first nitrogen gas supply for supplying nitrogen gas having a pressure equal to or higher than atmospheric pressure to the space 15 above the liquid level in the cooling container 3. The second nitrogen gas supply source 49 and the nitrogen gas supply pipe 51 constitute means 67 and supply nitrogen gas having a pressure equal to or higher than atmospheric pressure to the space 47 on the liquid level in the supply side vessel 21. The second nitrogen gas supply means 69 for this purpose is configured.

以上のような図4に示される実施例の超電導部材冷却装置の全体的な機能について以下に説明する。   The overall function of the superconducting member cooling device of the embodiment shown in FIG. 4 as described above will be described below.

液体窒素供給手段63の液体窒素供給源27から供給側容器21に供給される液体窒素は、77K程度のものであるが、その液体窒素は供給側容器21内において、冷凍機41の冷却ヘッド41Bによって大気圧もしくは大気圧以上の圧力のもとで冷却されて、大気圧下での飽和液体窒素温度(77K程度)よりも低い温度、例えば65〜70K程度まで温度降下される。そしてその65〜70K程度に過冷却された大気圧もしくは大気圧より高い圧力の液体窒素33は、送液ポンプ43によって供給側容器21の底部付近から汲み上げられ、トランスファチューブ45を介して、大気に実質的に開放された冷却容器3内に導かれる。冷却容器3内に導かれた過冷却状態の液体窒素を図4では符号11で示しており、これが冷却用液体窒素に相当する。   The liquid nitrogen supplied from the liquid nitrogen supply source 27 of the liquid nitrogen supply means 63 to the supply side container 21 is about 77K, and the liquid nitrogen is supplied to the cooling head 41B of the refrigerator 41 in the supply side container 21. Is cooled under atmospheric pressure or a pressure higher than atmospheric pressure, and the temperature is lowered to a temperature lower than the saturated liquid nitrogen temperature (about 77 K) under atmospheric pressure, for example, about 65 to 70 K. Then, the liquid nitrogen 33 that is supercooled to about 65 to 70 K or at a pressure higher than atmospheric pressure is pumped from the vicinity of the bottom of the supply side container 21 by the liquid feed pump 43, and is returned to the atmosphere via the transfer tube 45. It is led into the cooling vessel 3 which is substantially open. The supercooled liquid nitrogen introduced into the cooling container 3 is indicated by reference numeral 11 in FIG. 4 and corresponds to the cooling liquid nitrogen.

冷却容器3内においては、前述のような例えば65〜70Kの過冷却状態の液体窒素11によって超電導部材1が例えば67〜72K程度に冷却・保持される。また冷却容器3内において超電導部材1からの熱などによって例えば70K程度以上に温度上昇した液体窒素は、還流管17を介して供給側容器21へ戻る。このようにして供給側容器21へ還流された流体窒素は、冷凍機41の冷却ヘッド41Bにより再び65〜70K程度まで大気圧もしくは大気圧以上の圧力のもとで冷却され、前述のように送液ポンプ43によって冷却容器3に再び送られることになる。   In the cooling container 3, the superconducting member 1 is cooled and held at about 67 to 72K, for example, by the supercooled liquid nitrogen 11 of 65 to 70K as described above. Also, the liquid nitrogen whose temperature has risen to, for example, about 70 K or more due to heat from the superconducting member 1 in the cooling container 3 returns to the supply side container 21 through the reflux pipe 17. The fluid nitrogen refluxed to the supply-side container 21 in this manner is cooled again to about 65 to 70K by the cooling head 41B of the refrigerator 41 under atmospheric pressure or a pressure higher than atmospheric pressure, and sent as described above. It is sent again to the cooling container 3 by the liquid pump 43.

ここで、冷却容器3内における冷却用液体窒素11の液面11Aの上方の空間15には窒素ガス供給管18を介して大気圧もしくは大気圧以上の圧力の窒素ガスが導入される。したがって冷却容器3の液面上の空間15は大気圧もしくは大気圧以上の圧力の窒素ガスで満たされることになる。そのため冷却容器3内の圧力が確実に大気圧もしくは大気圧以上の圧力に維持され、蓋部7の封止部分や電流導入端子部分などを介して外部から空気が引き込まれて侵入することが確実に防止される。   Here, nitrogen gas having a pressure equal to or higher than atmospheric pressure is introduced into the space 15 above the liquid surface 11 </ b> A of the cooling liquid nitrogen 11 in the cooling vessel 3 through the nitrogen gas supply pipe 18. Therefore, the space 15 on the liquid surface of the cooling container 3 is filled with nitrogen gas having a pressure equal to or higher than the atmospheric pressure. Therefore, the pressure in the cooling container 3 is reliably maintained at atmospheric pressure or a pressure higher than atmospheric pressure, and it is ensured that air is drawn from the outside through the sealing portion of the lid portion 7 or the current introduction terminal portion. To be prevented.

また冷却容器3内における冷却用液体窒素11の液面下には断熱部材13が配設されているから、冷却用液体窒素11の液面(気液界面であるため約77K)とその断熱部材13よりも下側、特に超電導部材1が位置している冷却容器底部との間で確実に熱勾配を与えることができる。またその断熱部材13の存在によって液面11A付近に底部側との間での対流撹拌が阻止される。そしてこれらの結果、超電導部材1が位置する底部の冷却用液体窒素11を、確実に65K程度の低温の過冷却状態に維持することができる。そしてこのように超電導部材1が例えば65〜70Kの過冷却状態の低温の液体窒素11によって取囲まれるため、超電導部材1の作動時において超電導部材1が発熱しても、その周囲の液体窒素が大気圧下での気化温度(約77K)以上となるまでには10K程度の余裕があり、そのため超電導部材1の発熱によってその周囲の液体窒素が直ちに気化してガス気泡が発生してしまうことを有効に防止できる。   Further, since the heat insulating member 13 is disposed under the liquid level of the cooling liquid nitrogen 11 in the cooling vessel 3, the liquid level of the cooling liquid nitrogen 11 (about 77K because it is a gas-liquid interface) and its heat insulating member. A thermal gradient can be reliably applied to the lower side than 13, particularly to the cooling vessel bottom where the superconducting member 1 is located. Further, the presence of the heat insulating member 13 prevents convective stirring between the bottom surface near the liquid surface 11A. As a result, the cooling liquid nitrogen 11 at the bottom where the superconducting member 1 is located can be reliably maintained in a low-temperature supercooled state of about 65K. Thus, since the superconducting member 1 is surrounded by the low-temperature liquid nitrogen 11 in a supercooled state of, for example, 65 to 70K, even if the superconducting member 1 generates heat during operation of the superconducting member 1, the surrounding liquid nitrogen remains. There is a margin of about 10K before the vaporization temperature under atmospheric pressure (about 77K) or higher, so that the heat generation of the superconducting member 1 immediately vaporizes the surrounding liquid nitrogen and generates gas bubbles. It can be effectively prevented.

なお供給側容器21内における液体窒素33の液面33Aの上方の空間47にも、窒素ガス供給管51を介して大気圧もしくは大気圧以上の圧力の窒素ガスが導入されて、その大気圧もしくは大気圧以上の圧力の窒素ガスで満たされることになる。そのため供給側容器21内の圧力が確実に大気圧もしくは大気圧以上の圧力に維持され、蓋部25の封止部分などを介して外部から空気が引き込まれて侵入することが確実に防止される。   Note that nitrogen gas having a pressure equal to or higher than the atmospheric pressure is introduced into the space 47 above the liquid surface 33A of the liquid nitrogen 33 in the supply side container 21 via the nitrogen gas supply pipe 51, and the atmospheric pressure or It will be filled with nitrogen gas at a pressure higher than atmospheric pressure. Therefore, the pressure in the supply-side container 21 is reliably maintained at atmospheric pressure or a pressure higher than atmospheric pressure, and air can be reliably prevented from entering through the sealing portion of the lid portion 25 and the like. .

また冷却容器3と同様に、供給側容器21内における液体窒素33の液面下にも断熱部材35が配設されており、そのため液体窒素33の液面(気液界面であるため約77K)とその断熱部材35よりも下側、特に送液ポンプ43の取入口付近との間で確実に熱勾配を与えることができる。またその断熱部材35の存在によって液面33A付近と断熱部材35よりも下側の部分との間での対流撹拌が阻止される。そしてこれらの結果、送液ポンプ43の取入口付近の液体窒素33を、確実に65〜70K程度の低温の過冷却状態に維持して、その65〜70K程度の低温の過冷却状態の液体窒素を冷却容器3へ送り込むことができる。   Further, similarly to the cooling container 3, a heat insulating member 35 is also disposed below the liquid nitrogen 33 level in the supply side container 21, so that the liquid level of the liquid nitrogen 33 (about 77K because it is a gas-liquid interface). A thermal gradient can be surely provided below the heat insulating member 35 and particularly near the intake port of the liquid feed pump 43. Further, the presence of the heat insulating member 35 prevents convective stirring between the vicinity of the liquid surface 33 </ b> A and a portion below the heat insulating member 35. As a result, the liquid nitrogen 33 in the vicinity of the inlet of the liquid feed pump 43 is reliably maintained in a low-temperature supercooled state of about 65 to 70K, and the low-temperature supercooled liquid nitrogen of about 65 to 70K. Can be fed into the cooling container 3.

図4に示される装置において、冷凍機41の圧縮部41Aでは室温(約300K)の媒体ガス(通常はヘリウムガス)を圧縮し、その圧縮された約300Kの高圧ガスが高圧ガス管路41E、切替部41Cおよびシリンダ部41Dを通って冷却ヘッド41Bに至り、冷却ヘッド41Bにおいて膨張させられて所要の低温が得られる。なお膨張後の低圧の媒体ガスは、冷却ヘッド41Bからシリンダ部41D、切替部41C、低圧ガス管路41Fを通って圧縮部41Aに戻る。ここで、供給側容器21における液面33A、すなわち液相と気相との界面は、前述のように大気圧もしくは大気圧より若干高い圧力下での飽和温度(約77K以上)となっているから、過冷却温度(例えば65〜70K)の液体窒素を得るためには、冷凍機41の冷却ヘッド41Bの温度が飽和温度よりも低い例えば65K程度の温度となるようにし、かつその冷却ヘッド41Bを液面33Aよりもある程度低い位置(例えば液面より15〜20mm程度低い位置)の液中に浸漬させておかなければならない。そしてこのように冷凍機41の冷却ヘッド41Bを配置すれば、必然的にシリンダ部41Dは液面位置を通り、その下部は液体窒素中に浸漬されることになる。   In the apparatus shown in FIG. 4, the compression unit 41A of the refrigerator 41 compresses a medium gas (usually helium gas) at room temperature (about 300K), and the compressed high-pressure gas of about 300K is supplied to the high-pressure gas line 41E, It reaches the cooling head 41B through the switching part 41C and the cylinder part 41D, and is expanded in the cooling head 41B to obtain a required low temperature. The low-pressure medium gas after expansion returns from the cooling head 41B to the compression unit 41A through the cylinder part 41D, the switching part 41C, and the low-pressure gas pipe 41F. Here, the liquid surface 33A in the supply-side container 21, that is, the interface between the liquid phase and the gas phase is at atmospheric pressure or a saturation temperature (approximately 77K or higher) under a pressure slightly higher than atmospheric pressure as described above. In order to obtain liquid nitrogen having a supercooling temperature (for example, 65 to 70K), the temperature of the cooling head 41B of the refrigerator 41 is set to a temperature of, for example, about 65K, which is lower than the saturation temperature, and the cooling head 41B. Must be immersed in the liquid at a position somewhat lower than the liquid level 33A (for example, a position 15 to 20 mm lower than the liquid level). If the cooling head 41B of the refrigerator 41 is arranged in this way, the cylinder part 41D necessarily passes through the liquid surface position, and the lower part thereof is immersed in liquid nitrogen.

ところが既に述べたようにシリンダ部41Dの内部には、切替部41Cから冷却ヘッド41Bに向って高圧の媒体ガスが通るが、その温度は常温付近であって、液体窒素の温度よりも格段に高いため、シリンダ部41Dにおける液体窒素中に浸漬された部分においては媒体ガスから液体窒素中に多量の熱が流れ込み、液体窒素への大きな熱侵入が生じてしまう。その結果、超電導部材冷却装置における冷却効率が低下する問題があり、また上述のようなシリンダ部41Dからの熱侵入は、液体窒素の液面からの蒸発を招くが、その熱侵入量は一定していないのが通常であるため、熱侵入量の変動によって供給側容器21の液面33Aのレベルが不安定となり、その結果システム全体としても作動状態の不安定化を招いてしまう問題がある。   However, as described above, high-pressure medium gas passes from the switching unit 41C to the cooling head 41B in the cylinder unit 41D, but the temperature is around room temperature, which is much higher than the temperature of liquid nitrogen. Therefore, a large amount of heat flows from the medium gas into the liquid nitrogen at the portion immersed in the liquid nitrogen in the cylinder portion 41D, and a large heat intrusion into the liquid nitrogen occurs. As a result, there is a problem that the cooling efficiency in the superconducting member cooling device is lowered, and the heat intrusion from the cylinder part 41D as described above causes the evaporation of liquid nitrogen from the liquid surface, but the amount of heat intrusion is constant. In general, the level of the liquid surface 33A of the supply-side container 21 becomes unstable due to fluctuations in the amount of heat penetration, and as a result, there is a problem that the operating state of the system as a whole becomes unstable.

また一方、システム全体の冷却効率を向上させるためには、供給側容器21内の過冷却液体窒素の液面33A、すなわち気液界面(例えば77K)から冷却ヘッド41B(例えば65K)への侵入熱を少なくすることが望まれる。このような気液界面33Aから冷却ヘッド41Bへの侵入熱は、気液界面33Aと冷却ヘッド41Bとの間の距離で決定されるから、その侵入熱を少なくするためには、冷却ヘッド41Bの位置をできるだけ下げるようにすれば良いが、一般に市販の冷凍機においては、シリンダ部41Dの長さが予め固有の長さに定まってしまっているため、冷却ヘッド41Bの位置を任意に下げることはできず、したがって気液界面からの冷却ヘッド部への侵入熱を少なくするにも限界があった。   On the other hand, in order to improve the cooling efficiency of the entire system, the infiltration heat from the liquid surface 33A of the supercooled liquid nitrogen in the supply side vessel 21, that is, the gas-liquid interface (for example, 77K) to the cooling head 41B (for example, 65K). It is desirable to reduce Since the intrusion heat from the gas-liquid interface 33A to the cooling head 41B is determined by the distance between the gas-liquid interface 33A and the cooling head 41B, in order to reduce the intrusion heat, the cooling head 41B Although the position should be lowered as much as possible, in general, in commercially available refrigerators, the length of the cylinder portion 41D is set to a specific length in advance, so that the position of the cooling head 41B can be arbitrarily lowered. Therefore, there is a limit to reducing the heat of penetration from the gas-liquid interface to the cooling head.

この発明は以上のような事情を背景としてなされたもので、大気圧もしくは大気圧以上の圧力に加圧された供給側容器内の液体窒素中に冷凍機の冷却ヘッドを浸漬させて、大気圧下での過冷却温度に液体窒素を冷却して、その過冷却温度の液体窒素を超電導部材へ導いて超電導部材を冷却するにあたり、冷凍機のシリンダ部からの液体窒素への熱侵入を可及的に防止し、これによって冷凍機の冷却効率の低下を防止するとともに、液体窒素液面の変動を可及的に防止することを基本的な目的とするものである。   This invention has been made against the background as described above. The cooling head of the refrigerator is immersed in liquid nitrogen in a supply-side container pressurized to atmospheric pressure or a pressure higher than atmospheric pressure, and the atmospheric pressure When liquid nitrogen is cooled to the supercooling temperature below, and the liquid nitrogen at the supercooling temperature is led to the superconducting member to cool the superconducting member, heat intrusion into the liquid nitrogen from the cylinder part of the refrigerator is possible. Therefore, the basic purpose is to prevent the cooling efficiency of the refrigerator from being lowered, and to prevent the liquid nitrogen liquid level from changing as much as possible.

さらにこの発明は、供給側容器内の気液界面から冷却ヘッドへの熱侵入を可及的に少なくし、これによってシステム全体の冷却効率を向上させることをも目的としている。   Another object of the present invention is to reduce the heat intrusion from the gas-liquid interface in the supply side container to the cooling head as much as possible, thereby improving the cooling efficiency of the entire system.

前述のような課題を解決するため、この発明の超電導部材冷却装置においては、基本的には、冷凍機のシリンダ部に断熱を施すこととし、さらにはその断熱を冷凍機の冷却ヘッドの上下方向中間位置まで延長することとした。   In order to solve the problems as described above, in the superconducting member cooling device of the present invention, basically, heat insulation is applied to the cylinder portion of the refrigerator, and further, the heat insulation is provided in the vertical direction of the cooling head of the refrigerator. It was decided to extend to an intermediate position.

具体的には、請求項1の発明の超電導部材冷却装置は、液面上に空間を残して液体窒素を収容しかつその液面上の空間を大気圧もしくは大気圧以上の圧力とされる供給側容器と、その供給側容器内の液体窒素を大気圧下での過冷却温度まで冷却するための冷凍機とを備え、供給側容器内の過冷却温度の液体窒素を冷却対象の超電導部材へ導いてその超電導部材を冷却するように構成された超電導部材冷却装置において、前記冷凍機は、媒体ガスを圧縮するための圧縮部と、圧縮された高圧の媒体ガスを膨張させて低温を得るとともにその低温を供給側容器内の液体窒素と熱交換させるための冷却ヘッドと、前記圧縮部からの高圧の媒体ガスと前記冷却ヘッドからの低圧の媒体ガスの流れを切替えるための切替部と、その切替部と冷却ヘッドとの間で媒体ガスを往復させるシリンダ部とを有してなり、前記切替部が前記供給側容器の外側上方に配置されるとともに、冷却ヘッドの上端が供給側容器内の液体窒素の前記液面よりも15mm以上低い位置となるように配置され、シリンダ部が供給側容器内の液体窒素の液面上方の空間を横切って液体窒素の液面下まで延出されている構成とされ、そのシリンダ部の外周面に断熱部が設けられていることを特徴とするものである。   Specifically, the superconducting member cooling device according to the first aspect of the present invention supplies liquid nitrogen while leaving a space on the liquid surface, and supplies the space on the liquid surface to atmospheric pressure or a pressure higher than atmospheric pressure. And a refrigerator for cooling the liquid nitrogen in the supply side container to the supercooling temperature under atmospheric pressure, and the liquid nitrogen at the supercooling temperature in the supply side container is supplied to the superconducting member to be cooled In the superconducting member cooling apparatus configured to guide and cool the superconducting member, the refrigerator includes a compression unit for compressing the medium gas, and expands the compressed high-pressure medium gas to obtain a low temperature. A cooling head for exchanging heat of the low temperature with liquid nitrogen in the supply side container, a switching unit for switching the flow of the high-pressure medium gas from the compression unit and the low-pressure medium gas from the cooling head, and Switching section and cooling head And a cylinder portion for reciprocating the medium gas between them, and the switching portion is disposed above the outside of the supply side container, and the upper end of the cooling head is above the liquid surface of the liquid nitrogen in the supply side container Is arranged so as to be lower by 15 mm or more, and the cylinder part extends across the space above the liquid level of liquid nitrogen in the supply side container and extends below the liquid level of liquid nitrogen. The heat insulation part is provided in the outer peripheral surface of this.

このような請求項1の発明の超電導部材冷却装置においては、冷凍機のシリンダ部の外周面に断熱部が設けられているため、そのシリンダ部における液体窒素中に浸漬された部分でも、シリンダ部から液体窒素への熱侵入量が少なく、そのため冷凍機の冷却効率が低下することが防止され、またシリンダ部からの熱侵入による液体窒素の蒸発自体も少なくなるため、液体窒素の液面レベルの変動も少なくなる。   In the superconducting member cooling device according to the first aspect of the present invention, since the heat insulating portion is provided on the outer peripheral surface of the cylinder portion of the refrigerator, the cylinder portion is also immersed in the liquid nitrogen in the cylinder portion. The amount of heat intrusion into the liquid nitrogen is small, so that the cooling efficiency of the refrigerator is prevented from being lowered, and the evaporation of liquid nitrogen due to heat intrusion from the cylinder part is also reduced. Fluctuation is also reduced.

また請求項2の発明の超電導部材冷却装置は、請求項1に記載の超電導部材冷却装置において、前記断熱部が、前記冷却ヘッドの外周面の上下方向中間位置まで延長されていることを特徴とするものである。   The superconducting member cooling device according to claim 2 is the superconducting member cooling device according to claim 1, characterized in that the heat insulating portion is extended to an intermediate position in the vertical direction of the outer peripheral surface of the cooling head. To do.

このような請求項2の発明の超電導部材冷却装置においては、冷凍機の冷却ヘッドの外周面の上下方向中間位置まで断熱部が延長されていて、冷却ヘッドの外周面の上部が断熱されているため、供給側容器における気液界面から冷却ヘッドへの熱侵入が少なくなり、そのためシステム全体として冷却効率を向上させることができる。   In the superconducting member cooling device according to the second aspect of the present invention, the heat insulating portion is extended to the middle position in the vertical direction of the outer peripheral surface of the cooling head of the refrigerator, and the upper portion of the outer peripheral surface of the cooling head is thermally insulated. Therefore, the heat intrusion from the gas-liquid interface in the supply side container to the cooling head is reduced, so that the cooling efficiency of the entire system can be improved.

そしてこのような請求項2の発明の効果は、請求項3で規定しているように冷却ヘッドの下端が供給側容器の底面近くまで延伸されている場合に特に有効に発揮される。   The effect of the invention of claim 2 is particularly effective when the lower end of the cooling head is extended to the vicinity of the bottom surface of the supply side container as defined in claim 3.

ここで、シリンダ部の外周面の断熱部あるいは冷却ヘッド外周面の上下方向中間位置まで延長される断熱部としては、請求項4において規定しているように真空断熱構造としても、あるいは請求項5において規定しているように断熱材によって形成しても良い。   Here, as the heat insulating portion extending to the intermediate position in the vertical direction of the outer peripheral surface of the cylinder portion or the cooling head outer peripheral surface, a vacuum heat insulating structure as defined in claim 4 or claim 5 is provided. It may be formed by a heat insulating material as defined in.

この発明の超電導部材冷却装置においては、冷凍機の冷却ヘッドを供給側容器内の液体窒素中に浸漬させて液体窒素を冷却ヘッドで直接冷却するように構成していることから、冷凍機のシリンダ部もその下部が液体窒素中に浸漬されることになるが、シリンダ部の外周面に断熱部が設けられているため、シリンダ部から液体窒素中への熱侵入を少なくすることができ、そのため超電導部材冷却装置の冷却効率の低下を防止することができるとともに、シリンダ部からの液体窒素中への熱侵入に伴なう液体窒素液面からの蒸発も少なくなるため、液面のレベル変動も少なくなって、システムの作動状態の安定化を図ることができる。また特に請求項2の発明の超電導部材冷却装置においては、上述の効果に加え、冷凍機のシリンダ部外周面の断熱部が、冷却ヘッドの上下方向中間位置まで延長されているため、供給側容器における気液界面から冷却ヘッドへの熱侵入が少なくなり、そのためシステム全体の冷却効果を安定して向上させることができる。   In the superconducting member cooling device according to the present invention, the cooling head of the refrigerator is immersed in the liquid nitrogen in the supply-side container so that the liquid nitrogen is directly cooled by the cooling head. The lower part of the part is also immersed in liquid nitrogen, but since a heat insulating part is provided on the outer peripheral surface of the cylinder part, heat penetration from the cylinder part into liquid nitrogen can be reduced, and therefore It is possible to prevent the cooling efficiency of the superconducting member cooling device from being lowered, and since the evaporation from the liquid nitrogen liquid surface due to the heat intrusion into the liquid nitrogen from the cylinder portion is reduced, the liquid surface level also varies. As a result, the operating state of the system can be stabilized. In addition, in the superconducting member cooling device of the invention of claim 2, in addition to the above-mentioned effect, the heat insulating portion of the outer peripheral surface of the cylinder portion of the refrigerator is extended to the middle position in the vertical direction of the cooling head. The heat penetration from the gas-liquid interface to the cooling head is reduced, so that the cooling effect of the entire system can be stably improved.

この発明の一例の超電導部材冷却装置の全体構成を示す略解図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 図1における超電導部材冷却装置における要部、特に供給側容器における冷凍機付近の部分の拡大正面断面図である。It is an expanded front sectional view of the principal part in the superconducting member cooling device in FIG. この発明の超電導部材冷却装置における供給側容器の部分の他の例を示す拡大正面断面図である。It is an expanded front sectional view which shows the other example of the part of the supply side container in the superconducting member cooling device of this invention. 従来の超電導部材冷却装置の全体構成を示す略解図である。It is an approximate solution figure showing the whole superconducting member cooling device composition.

図1にこの発明の一実施例の超電導部材冷却装置の一例を示し、図2にその要部、すなわち供給側容器における冷凍機付近の部分を拡大して示す。なお図1、図2において、図4に示した従来技術と同一の要素については図4と同一の符号を付し、その説明は省略する。   FIG. 1 shows an example of a superconducting member cooling device according to an embodiment of the present invention, and FIG. 2 shows an enlarged view of the main part thereof, that is, a part near a refrigerator in a supply side container. In FIG. 1 and FIG. 2, the same elements as those in the prior art shown in FIG. 4 are denoted by the same reference numerals as those in FIG.

図1、図2において、冷凍機41は、既に述べたように冷凍媒体ガス(通常はヘリウムガス)を圧縮するための圧縮部41Aと、圧縮された高圧の冷凍媒体ガスを膨張させて低温を得るとともにその低温を冷却対象と熱交換するための冷却ヘッド41Bと、圧縮部41Aからの高圧の媒体ガスおよび冷却ヘッド41Bからの低圧の媒体ガスの流れを切替える切替部41Cと、その切替部41Cと冷却ヘッド41Bとの間で冷凍媒体ガスを往復させる通路を内部に形成したシリンダ部41Dとからなるものであり、その切替部41Cが供給側容器21の蓋部25上に配置され、シリンダ部41Dが切替部41Cから蓋部25を下方へ貫通して供給側容器21内の液体窒素の液面33A上の空間47を通り、その下端が液体窒素中に浸漬され、その部分すなわち液体窒素中に浸漬された部分に冷却ヘッド41Bが設けられている。ここで、シリンダ部41Dは一般にステンレス鋼により作られている。また冷却ヘッド41Bは、その外面に銅等の良伝熱材料からなる伝熱ブロックを設けた構成とされている。さらに圧縮部41Aは供給側容器21から離隔して配置され、圧縮部41Aと切替部41Cとの間が高圧ガス管路41E、低圧ガス管路41Fによって結ばれている。   In FIG. 1 and FIG. 2, the refrigerator 41, as already described, compresses the refrigeration medium gas (usually helium gas) 41A and expands the compressed high-pressure refrigeration medium gas to lower the temperature. A cooling head 41B for exchanging the low temperature with the object to be cooled, a switching unit 41C for switching the flow of the high-pressure medium gas from the compression unit 41A and the low-pressure medium gas from the cooling head 41B, and the switching unit 41C And a cylinder portion 41D formed therein with a passage for reciprocating the refrigeration medium gas between the cooling head 41B and the switching portion 41C is disposed on the lid portion 25 of the supply side container 21, and the cylinder portion 41D passes through the lid portion 25 downward from the switching portion 41C, passes through the space 47 on the liquid nitrogen liquid level 33A in the supply side container 21, and its lower end is immersed in liquid nitrogen. Cooling head 41B is provided to the portion or dipped portions in liquid nitrogen. Here, the cylinder portion 41D is generally made of stainless steel. The cooling head 41B has a configuration in which a heat transfer block made of a good heat transfer material such as copper is provided on the outer surface thereof. Furthermore, the compression part 41A is arranged separately from the supply side container 21, and the compression part 41A and the switching part 41C are connected by a high-pressure gas pipe 41E and a low-pressure gas pipe 41F.

そして冷凍機41のシリンダ部41Dの外周面には、断熱部71が設けられている。この断熱部71は、図2に詳細に示すように、真空断熱構造からなるものであって、内壁71Aと外周壁71Bとからなる2重壁構造とされ、内壁71Aと外壁71Bとの間が真空断熱用空間71Cとされており、さらにその真空断熱用空間の一端側に真空排気管71Dが接続されていて、図示しない真空ポンプによって真空排気するように構成されている。   And the heat insulation part 71 is provided in the outer peripheral surface of cylinder part 41D of the refrigerator 41. FIG. As shown in detail in FIG. 2, the heat insulating portion 71 has a vacuum heat insulating structure, and has a double wall structure including an inner wall 71A and an outer peripheral wall 71B, and a space between the inner wall 71A and the outer wall 71B is formed. It is a vacuum heat insulating space 71C, and further, a vacuum exhaust pipe 71D is connected to one end side of the vacuum heat insulating space, and is configured to be evacuated by a vacuum pump (not shown).

このような図1、図2に示される実施例において、冷凍機41のシリンダ部41Dはその下部が供給側容器21における液体窒素33の液面33A下に浸漬されているが、そのシリンダ部41Dの外周面は真空断熱構造によって断熱されているため、シリンダ部41D内を常温付近の高圧の媒体ガスが流れても、その媒体ガスの熱が液体窒素中に侵入するおそれが極めて少ない。そのため超電導部材冷却装置における冷却効率が低下するおそれが少なく、またシリンダ部41Dからの熱侵入量自体が少ないため、たとえその熱侵入量が変動しても、液体窒素の液面レベルが変動するおそれも少ない。   In the embodiment shown in FIGS. 1 and 2, the lower part of the cylinder part 41D of the refrigerator 41 is immersed under the liquid surface 33A of the liquid nitrogen 33 in the supply side container 21, but the cylinder part 41D Since the outer peripheral surface is insulated by a vacuum heat insulating structure, even when a high-pressure medium gas near normal temperature flows in the cylinder portion 41D, there is very little possibility that the heat of the medium gas enters liquid nitrogen. Therefore, there is little possibility that the cooling efficiency in the superconducting member cooling device is lowered, and since the amount of heat penetration from the cylinder portion 41D is small, the liquid level of liquid nitrogen may fluctuate even if the amount of heat penetration varies. There are few.

なお上述の例では、断熱部71は冷凍機41のシリンダ部41Dの外周面のみを覆った構成としているが、図3に示すように冷却ヘッド41Bの外周面のうち、特に上下方向の中間位置まで断熱部71を延長させても良い。ここで、断熱部71の下端位置(延長先端位置)は、送液ポンプ43の上端位置のレベルまたはその近くとすることが望ましい。このようにすれば、供給側容器21内における液体窒素33の液面33A、すなわち気液界面33Aから冷却ヘッド41Bへの熱侵入が少なくなり、システム全体の冷却効率を向上させることができる。なお図3の例では、冷凍機41の冷却ヘッド41Bを、その下端が供給側容器21の底面近くまで延伸させた構成としており、このような場合に特に前述の作用効果を有効に発揮させることができる。   In the above-described example, the heat insulating portion 71 is configured to cover only the outer peripheral surface of the cylinder portion 41D of the refrigerator 41. However, as shown in FIG. You may extend the heat insulation part 71 to. Here, it is desirable that the lower end position (extension tip position) of the heat insulating portion 71 is at or near the level of the upper end position of the liquid feed pump 43. In this way, heat penetration from the liquid surface 33A of the liquid nitrogen 33 in the supply side container 21, that is, the gas-liquid interface 33A, into the cooling head 41B is reduced, and the cooling efficiency of the entire system can be improved. In the example of FIG. 3, the cooling head 41 </ b> B of the refrigerator 41 is configured such that its lower end extends to the vicinity of the bottom surface of the supply-side container 21. In such a case, the above-described effects can be particularly effectively exhibited. Can do.

なお断熱部71は、前述の例では真空断熱構造としたが、必ずしも真空断熱構造とする必要はなく、場合によってはFRPなどの熱伝導率の低い樹脂系断熱材、その他無機系断熱材などの断熱材によってシリンダ部41Dあるいはさらに冷却ヘッド41Bの中間位置までの外周面を覆った構成としても良い。   In addition, although the heat insulation part 71 was made into the vacuum heat insulation structure in the above-mentioned example, it does not necessarily need to be made into a vacuum heat insulation structure. Depending on the case, resin-type heat insulation materials with low heat conductivity, such as FRP, other inorganic heat insulation materials, etc. It is good also as a structure which covered the outer peripheral surface to the intermediate position of cylinder part 41D or cooling head 41B with the heat insulating material.

なお、本発明の超電導部材冷却装置は、図1、図2に示すように、供給側容器21における液体窒素33の液面下に、上下方向に熱勾配を与えかつ対流撹拌を防止するための断熱部材35が設けられている。   As shown in FIGS. 1 and 2, the superconducting member cooling device of the present invention applies a thermal gradient in the vertical direction below the liquid surface of the liquid nitrogen 33 in the supply side container 21 and prevents convective stirring. A heat insulating member 35 is provided.

さらに、前述の例では最終的な冷却対象となる超電導部材1を冷却容器3内に配置し、この冷却容器3内に供給側容器21から過冷却液体窒素を移送して超電導部材1を冷却するように構成しているが、超電導部材1を過冷却液体窒素によって冷却するための具体的構成は前述の例に限られるものではなく、要は供給側容器21から過冷却液体窒素を超電導部材へ導いてその超電導部材を冷却する構成であれば、任意の構成を適用することができる。   Further, in the above-described example, the superconducting member 1 to be finally cooled is placed in the cooling container 3, and the superconducting member 1 is cooled by transferring supercooled liquid nitrogen from the supply side container 21 into the cooling container 3. However, the specific configuration for cooling the superconducting member 1 with the supercooled liquid nitrogen is not limited to the above-described example. In short, the supercooled liquid nitrogen is supplied from the supply-side container 21 to the superconducting member. Any configuration can be applied as long as it is a configuration that guides and cools the superconducting member.

1 超電導部材
21 供給側容器
33 液体窒素
33A 液面
41 冷凍機
41A 圧縮部
41B 冷却ヘッド
41C 切替部
41D シリンダ部
71 断熱部
DESCRIPTION OF SYMBOLS 1 Superconducting member 21 Supply side container 33 Liquid nitrogen 33A Liquid level 41 Refrigerator 41A Compression part 41B Cooling head 41C Switching part 41D Cylinder part 71 Heat insulation part

Claims (5)

液面上に空間を残して液体窒素を収容しかつその液面上の空間を大気圧もしくは大気圧以上の圧力とされる供給側容器と、
その供給側容器内の液体窒素を大気圧下での過冷却温度まで冷却するための冷凍機とを備え、
供給側容器内の過冷却温度の液体窒素を冷却対象の超電導部材へ導いてその超電導部材を冷却するように構成された超電導部材冷却装置において、
前記冷凍機は、媒体ガスを圧縮するための圧縮部と、圧縮された高圧の媒体ガスを膨張させて低温を得るとともにその低温を供給側容器内の液体窒素と熱交換させるための冷却ヘッドと、
前記圧縮部からの高圧の媒体ガスと前記冷却ヘッドからの低圧の媒体ガスの流れを切替えるための切替部と、
その切替部と冷却ヘッドとの間で媒体ガスを往復させるシリンダ部とを有してなり、
前記切替部が前記供給側容器の外側上方に配置されるとともに、冷却ヘッドの上端が供給側容器内の液体窒素の前記液面よりも15mm以上低い位置となるように配置され、
シリンダ部が供給側容器内の液体窒素の液面上方の空間を横切って液体窒素の液面下まで延出されている構成とされ、そのシリンダ部の外周面に断熱部が設けられていることを特徴とする、超電導部材冷却装置。
A supply-side container that contains liquid nitrogen leaving a space on the liquid level and the space on the liquid level is set to a pressure equal to or higher than atmospheric pressure;
A refrigerator for cooling the liquid nitrogen in the supply side container to a supercooling temperature under atmospheric pressure,
In the superconducting member cooling device configured to guide the liquid nitrogen at the supercooling temperature in the supply side container to the superconducting member to be cooled and cool the superconducting member,
The refrigerator includes a compression unit for compressing the medium gas, a cooling head for expanding the compressed high-pressure medium gas to obtain a low temperature and exchanging the low temperature with liquid nitrogen in the supply side container. ,
A switching unit for switching the flow of the high-pressure medium gas from the compression unit and the low-pressure medium gas from the cooling head;
A cylinder part for reciprocating the medium gas between the switching part and the cooling head,
The switching unit is disposed on the outside upper side of the supply side container, and the upper end of the cooling head is disposed at a position 15 mm or more lower than the liquid level of the liquid nitrogen in the supply side container,
The cylinder portion extends across the space above the liquid level of liquid nitrogen in the supply side container to below the liquid level of liquid nitrogen, and a heat insulating portion is provided on the outer peripheral surface of the cylinder portion. A superconducting member cooling device.
請求項1に記載の超電導部材冷却装置において、前記断熱部が、前記冷却ヘッドの外周面の上下方向中間位置まで延長されていることを特徴とする、超電導部材冷却装置。   The superconducting member cooling device according to claim 1, wherein the heat insulating portion is extended to an intermediate position in the vertical direction of the outer peripheral surface of the cooling head. 請求項1に記載の超電導部材冷却装置において、前記冷却ヘッドは、その下端が供給側容器の底面近くに位置するように延伸されており、前記断熱部が、前記冷却ヘッドの外周面の上下方向中間位置まで延長されていることを特徴とする、超電導部材冷却装置。   2. The superconducting member cooling device according to claim 1, wherein the cooling head is extended so that a lower end thereof is positioned near a bottom surface of a supply-side container, and the heat insulating portion is formed in a vertical direction of an outer peripheral surface of the cooling head. A superconducting member cooling device, characterized by being extended to an intermediate position. 前記断熱部が真空断熱構造とされている、請求項1〜請求項3のいずれかに記載の超電導部材冷却装置。   The superconducting member cooling device according to any one of claims 1 to 3, wherein the heat insulating portion has a vacuum heat insulating structure. 前記断熱部が断熱材により形成されている、請求項1〜請求項3のいずれかに記載の超電導部材冷却装置。
The superconducting member cooling device according to any one of claims 1 to 3, wherein the heat insulating portion is formed of a heat insulating material.
JP2010052344A 2000-02-28 2010-03-09 Cooling device for superconducting member Pending JP2010177677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010052344A JP2010177677A (en) 2000-02-28 2010-03-09 Cooling device for superconducting member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000051000 2000-02-28
JP2010052344A JP2010177677A (en) 2000-02-28 2010-03-09 Cooling device for superconducting member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001039721A Division JP4514346B2 (en) 2000-02-28 2001-02-16 Superconducting material cooling device

Publications (1)

Publication Number Publication Date
JP2010177677A true JP2010177677A (en) 2010-08-12

Family

ID=42708260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010052344A Pending JP2010177677A (en) 2000-02-28 2010-03-09 Cooling device for superconducting member

Country Status (1)

Country Link
JP (1) JP2010177677A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471398A (en) * 2013-09-10 2013-12-25 太仓市微贯机电有限公司 High-efficiency trap
EP2980805A4 (en) * 2013-03-29 2016-12-28 Maekawa Seisakusho Kk Cooling device for superconductive cable

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288378A (en) * 1985-10-15 1987-04-22 Toshiba Corp Cryogenic container
JPH02159077A (en) * 1988-12-13 1990-06-19 Sumitomo Heavy Ind Ltd Cryogenic liquid storing method and device
JPH07151408A (en) * 1993-11-30 1995-06-16 Sanyo Electric Co Ltd Freezer
JPH08303897A (en) * 1995-04-28 1996-11-22 Sanyo Electric Co Ltd Stirling refrigerating unit
JPH0936442A (en) * 1995-05-16 1997-02-07 Toshiba Corp Superconducting magnet
JPH09283323A (en) * 1995-12-29 1997-10-31 General Electric Co <Ge> Method for forming thermal boundary gasket and thermal joint
JPH10275719A (en) * 1997-03-31 1998-10-13 Sumitomo Electric Ind Ltd Method for cooling superconductor
JPH10325661A (en) * 1997-05-28 1998-12-08 Taiyo Toyo Sanso Co Ltd Superconductive member cooling device
JPH10335137A (en) * 1996-07-19 1998-12-18 Sumitomo Electric Ind Ltd Cooling method and conducting method for superconductor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288378A (en) * 1985-10-15 1987-04-22 Toshiba Corp Cryogenic container
JPH02159077A (en) * 1988-12-13 1990-06-19 Sumitomo Heavy Ind Ltd Cryogenic liquid storing method and device
JPH07151408A (en) * 1993-11-30 1995-06-16 Sanyo Electric Co Ltd Freezer
JPH08303897A (en) * 1995-04-28 1996-11-22 Sanyo Electric Co Ltd Stirling refrigerating unit
JPH0936442A (en) * 1995-05-16 1997-02-07 Toshiba Corp Superconducting magnet
JPH09283323A (en) * 1995-12-29 1997-10-31 General Electric Co <Ge> Method for forming thermal boundary gasket and thermal joint
JPH10335137A (en) * 1996-07-19 1998-12-18 Sumitomo Electric Ind Ltd Cooling method and conducting method for superconductor
JPH10275719A (en) * 1997-03-31 1998-10-13 Sumitomo Electric Ind Ltd Method for cooling superconductor
JPH10325661A (en) * 1997-05-28 1998-12-08 Taiyo Toyo Sanso Co Ltd Superconductive member cooling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980805A4 (en) * 2013-03-29 2016-12-28 Maekawa Seisakusho Kk Cooling device for superconductive cable
CN103471398A (en) * 2013-09-10 2013-12-25 太仓市微贯机电有限公司 High-efficiency trap

Similar Documents

Publication Publication Date Title
JP5196781B2 (en) Closed loop precooling method and apparatus for equipment cooled to cryogenic temperature
US5584184A (en) Superconducting magnet and regenerative refrigerator for the magnet
JP4728601B2 (en) Cooling system for superconducting power equipment
JP2008027780A (en) Liquid-coolant circulation cooling system
US7528510B2 (en) Superconducting machine device with a superconducting winding and thermosiphon cooling
US8948828B2 (en) Apparatus and method for cooling a super conducting machine
JP4514346B2 (en) Superconducting material cooling device
EP3343574B1 (en) Superconducting coil pre-cooling method and superconducting magnet apparatus
JP2010177677A (en) Cooling device for superconducting member
JP2005344991A (en) Cryogenic cryostat
JP2859250B2 (en) Superconducting member cooling device
JP4733842B2 (en) Superconducting material cooling device
US5979176A (en) Refrigerator
JP4864015B2 (en) Cryostat
US7263841B1 (en) Superconducting magnet system with supplementary heat pipe refrigeration
JP3208069B2 (en) Superconducting member cooling device
JP2001284665A (en) Superconducting material cooling device
JP3511288B2 (en) Superconducting material cooling device
JP2008091802A (en) Cryogenic container
JP2005183440A (en) Superconducting member cooling apparatus
JP2005156051A (en) Superconductive member cooling device, and its control method
JP3908975B2 (en) Cooling device and cooling method
JPH07243712A (en) Liquid helium supplementing apparatus for cryostat
JP2005156052A (en) Superconductive member cooling device
JP5175595B2 (en) Cooling device and superconducting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129