JPH10325661A - Superconductive member cooling device - Google Patents

Superconductive member cooling device

Info

Publication number
JPH10325661A
JPH10325661A JP15453497A JP15453497A JPH10325661A JP H10325661 A JPH10325661 A JP H10325661A JP 15453497 A JP15453497 A JP 15453497A JP 15453497 A JP15453497 A JP 15453497A JP H10325661 A JPH10325661 A JP H10325661A
Authority
JP
Japan
Prior art keywords
liquid nitrogen
cooling
atmospheric pressure
superconducting member
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15453497A
Other languages
Japanese (ja)
Other versions
JP2859250B2 (en
Inventor
Yasuharu Kamioka
泰晴 上岡
Shigeru Yoshida
茂 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Toyo Sanso Co Ltd
Original Assignee
Taiyo Toyo Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Toyo Sanso Co Ltd filed Critical Taiyo Toyo Sanso Co Ltd
Priority to JP15453497A priority Critical patent/JP2859250B2/en
Publication of JPH10325661A publication Critical patent/JPH10325661A/en
Application granted granted Critical
Publication of JP2859250B2 publication Critical patent/JP2859250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To permit continuous operation for a long period of time by a method wherein liquid nitrogen is cooled by a refrigerating machine to a temperature, whereat the nitrogen is supercooled under an atmospheric pressure, and obtained liquid nitrogen of supercooled condition is employed to cool a superconductive member directly as it is. SOLUTION: In a cooling vessel 3, a superconductive member 1 is cooled and retained at about 67 K by the liquid nitrogen 11 of an atmospheric pressure under the supercooled condition of about 65 K. On the other hand, the liquid nitrogen, whose temperature is raised to about 70 K due to heat from the superconductive member 1 in the cooling vessel 3, is returned into a supplying side vessel 21 through a circulating tube 17. Then, the circulated liquid nitrogen is cooled by the cooling head 41A of a refrigerating machine 41 and is sent again into the cooling vessel 3 by a liquid feed pump 43. In this case, convection mixing is precluded between the vicinity of a liquid level 11A and liquid bottom part side by a heat insulating member 11. As a result, the liquid nitrogen 11 for cooling, which is in a bottom part whereat the superconductive member 1 is positioned, can be maintained surely under the supercooled condition of about 65 K.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、超電導トランス
や超電導マグネット、そのほか各種の超電導コイル、あ
るいは超電導ケーブルなどの超電導部材、特に高温超電
導部材を、液体窒素によって低温に冷却・保持するため
の超電導部材冷却装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting member for cooling and holding a superconducting member such as a superconducting transformer, a superconducting magnet, various superconducting coils or a superconducting cable, particularly a high-temperature superconducting member, with liquid nitrogen at a low temperature. The present invention relates to a cooling device.

【0002】[0002]

【従来の技術】超電導コイルなどの超電導部材、特に高
温超電導を利用した超電導部材を冷却するにあたって
は、冷却媒体として比較的安価な液体窒素(LN2 )を
使用することが多い。この場合一般には大気圧の飽和液
体窒素、すなわち約77Kの液体窒素が用いられてい
る。すなわち、真空断熱されたクライオスタットと称さ
れる大気に実質的に開放された冷却容器に超電導部材を
収容しておき、その冷却容器内に約77Kの大気圧飽和
液体窒素を注入してその液体窒素中に超電導部材を浸漬
させ、冷却・保持するのが通常である。
2. Description of the Related Art In cooling a superconducting member such as a superconducting coil, particularly a superconducting member utilizing high-temperature superconductivity, relatively inexpensive liquid nitrogen (LN 2 ) is often used as a cooling medium. In this case, saturated liquid nitrogen at atmospheric pressure, that is, liquid nitrogen of about 77K is generally used. That is, the superconducting member is housed in a cooling vessel substantially open to the atmosphere called a cryostat insulated by vacuum, and about 77 K of atmospheric pressure saturated liquid nitrogen is injected into the cooling vessel to form the liquid nitrogen. Normally, the superconducting member is immersed therein, and cooled and held.

【0003】[0003]

【発明が解決しようとする課題】ところで高温超電導部
材においては、若干でも温度が下がれば、超電導特性が
大幅に向上することが知られている。例えば臨界電流
は、77Kから70Kに下がっただけでも数倍に大きく
なることが知られている。
It is known that in a high-temperature superconducting member, the superconducting characteristics are significantly improved if the temperature is lowered even a little. For example, it is known that the critical current increases several times even if it is reduced from 77K to 70K.

【0004】そこで大気圧の液体窒素を減圧して例えば
65K程度に温度降下させた液体窒素中に超電導部材を
浸漬させて、超電導部材を77Kよりも低い温度まで冷
却することが考えられる。その場合、液体窒素中に超電
導部材を浸漬させるための容器では、液体窒素の減圧状
態を維持させる必要がある。ところで一般に使用されて
いるクライオスタットでは、実質的に大気に開放させた
状態での使用を前提としているため、この種の汎用クラ
イオスタットを減圧した液体窒素に適用しようとすれ
ば、蓋部や電流導入端子等の箇所における封止の点で不
充分となり、外部から水分を含む大気圧の空気が内部に
吸い込まれて、電流導入端子のガス抜穴での水分凍結に
よる閉塞や超電導部材表面への氷の付着が生じたりし、
実用上運転が不可能となるおそれがある。そのため前述
の目的のためには、新たに特殊な容器を設計、製作しな
ければならず、その場合コストの大幅な上昇を招く問題
があり、そのため実用化はためらわれていたのが実情で
ある。
[0004] Therefore, it is conceivable that the superconducting member is immersed in liquid nitrogen whose temperature has been reduced to, for example, about 65K by reducing the pressure of liquid nitrogen at atmospheric pressure to cool the superconducting member to a temperature lower than 77K. In that case, in a container for immersing the superconducting member in liquid nitrogen, it is necessary to maintain the decompressed state of liquid nitrogen. By the way, since a generally used cryostat is assumed to be used in a state of being substantially opened to the atmosphere, if this kind of general-purpose cryostat is applied to decompressed liquid nitrogen, a lid or a current introduction terminal is required. Insufficient sealing at such places as above, atmospheric pressure air containing moisture is sucked in from the outside, clogging due to moisture freezing in the gas vent hole of the current introduction terminal and ice on the superconducting member surface Sticking,
Practical operation may not be possible. Therefore, for the above-mentioned purpose, it is necessary to design and manufacture a new special container, and in that case, there is a problem that causes a significant rise in cost, and for that reason, practical use has been hesitated. .

【0005】また一方、大気圧の飽和液体窒素中に超電
導部材を浸漬させて超電導部材を作動させた場合、超電
導部材の発熱によって飽和液体窒素が直ちに気化してガ
ス気泡が発生するため、そのガス気泡によって電気絶縁
性が低下したり、冷却効率が低下したりしてしまう問題
があるが、前述のように減圧によって例えば65K程度
に温度降下された液体窒素中に超電導部材を浸漬させた
場合も、減圧下では超電導部材の発熱によって前記同様
に直ちに液体窒素が気化して気泡が発生するから、気泡
発生に対する根本的な解決策とはならない。したがって
このことも減圧された液体窒素の使用がためらわれてい
た一因である。
On the other hand, when the superconducting member is operated by immersing the superconducting member in saturated liquid nitrogen at atmospheric pressure, the saturated liquid nitrogen is immediately vaporized by the heat generated by the superconducting member and gas bubbles are generated. There is a problem that the electrical insulation is reduced by the bubbles or the cooling efficiency is reduced. However, as described above, even when the superconducting member is immersed in liquid nitrogen whose temperature is reduced to about 65 K by decompression, for example. However, under reduced pressure, the heat generated by the superconducting member immediately vaporizes the liquid nitrogen to generate air bubbles, which is not a fundamental solution to the generation of air bubbles. Therefore, this is also one of the reasons that the use of decompressed liquid nitrogen has been hesitated.

【0006】そこで本発明者等は、既に特願平8−23
2566号において、液体窒素によって高温超電導部材
を冷却するにあたって、特殊な真空封止などを行なわず
に、大気開放の極く一般的な汎用クライオスタットを超
電導部材冷却容器として用いながらも、より低温に高温
超電導部材を冷却して超電導性能を向上させ得るように
するとともに、高温超電導部材作動時における高温超電
導部材の発熱による液体窒素からのガス気泡の発生を抑
制するようにした超電導部材冷却装置を提案している。
Accordingly, the present inventors have already filed Japanese Patent Application No. Hei 8-23.
In No. 2566, when cooling a high-temperature superconducting member with liquid nitrogen, a special general-purpose cryostat that is open to the atmosphere is used as a superconducting member cooling vessel without performing special vacuum sealing, etc. We have proposed a superconducting member cooling device that can improve the superconducting performance by cooling the superconducting member and suppress the generation of gas bubbles from liquid nitrogen due to heat generated by the high-temperature superconducting member when the high-temperature superconducting member operates. ing.

【0007】上記提案の超電導部材冷却装置は、基本的
には、超電導部材を収容してその超電導部材を冷却する
ための冷却容器を実質的に大気圧に開放した構成とし、
かつ大気圧で過冷却状態とした例えば67K程度の液体
窒素を前記冷却容器内に配置して、その大気圧で過冷却
状態の液体窒素によって超電導部材を冷却するようにし
ている。そしてまた上記提案の超電導部材冷却装置にお
いて、超電導部材に対する冷却媒体として機能させる大
気圧で過冷却状態の液体窒素は、次のようにして得てい
る。すなわち、前述の冷却容器とは別に減圧用容器を設
けて、その減圧用容器内に熱交換器を配設しておき、減
圧用容器内に熱交換用液体窒素(例えば約77Kの大気
圧の飽和液体窒素)を供給するとともに、その減圧用容
器内の圧力を真空ポンプによって減圧して、減圧用容器
内の液体窒素を大気圧から減圧させることによりその温
度を例えば65Kの低温に降下させる。一方、前記熱交
換用液体窒素とは別に、大気圧の冷却用液体窒素(例え
ば約77Kの飽和液体窒素)を前記熱交換器に導き、そ
の熱交換器において減圧用容器内の65Kの減圧された
熱交換用液体窒素と熱交換させて、例えば67K程度ま
で大気圧のまま冷却させ、大気圧で過冷却状態とする。
そしてこの大気圧で過冷却状態の例えば67Kの冷却用
液体窒素を前述の冷却容器に導いて、超電導部材を67
Kに近い温度(例えば70K)の低温に冷却することと
している。
[0007] The superconducting member cooling device proposed above basically has a configuration in which a cooling container for accommodating the superconducting member and cooling the superconducting member is substantially opened to the atmospheric pressure.
Liquid nitrogen in a supercooled state at atmospheric pressure, for example, about 67K is disposed in the cooling container, and the superconducting member is cooled by the liquid nitrogen in a supercooled state at the atmospheric pressure. Further, in the superconducting member cooling device proposed above, liquid nitrogen in a supercooled state at atmospheric pressure, which functions as a cooling medium for the superconducting member, is obtained as follows. That is, a decompression container is provided separately from the cooling container described above, and a heat exchanger is provided in the decompression container, and a liquid nitrogen for heat exchange (for example, an atmospheric pressure of about 77K) is provided in the decompression container. Saturated liquid nitrogen) is supplied, and the pressure in the pressure reducing container is reduced by a vacuum pump, and the temperature of the liquid nitrogen in the pressure reducing container is reduced from atmospheric pressure to a low temperature of, for example, 65K. On the other hand, apart from the liquid nitrogen for heat exchange, liquid nitrogen for cooling at atmospheric pressure (for example, saturated liquid nitrogen of about 77K) is led to the heat exchanger, where the pressure is reduced by 65K in the depressurizing vessel in the heat exchanger. The liquid nitrogen for heat exchange is heat-exchanged, and is cooled, for example, to about 67 K while maintaining the atmospheric pressure, and is brought into a supercooled state at the atmospheric pressure.
Then, supercooled liquid nitrogen of, for example, 67 K under superatmospheric pressure at this atmospheric pressure is introduced into the above-described cooling container, and the superconducting member is cooled to 67 K.
Cooling to a low temperature close to K (for example, 70K) is performed.

【0008】このような特願平8−232566号の提
案の超電導部材冷却装置においては、通常の77K程度
の大気圧の飽和液体窒素を冷却媒体として用いた場合よ
りも超電導部材を確実に低温に冷却することができ、そ
のため超電導部材の性能を向上させることができ、しか
もこの場合、冷却容器内の過冷却状態の冷却用液体窒素
の液面上の空間が、冷却用液体窒素から蒸発した大気圧
の窒素ガスで満たされているため、外部から水分を含む
大気圧の空気が内部に吸い込まれるおそれは少なく、そ
のため冷却容器の蓋部や電流導入端子等の封止も特に厳
密さが要求されず、さらには超電導部材を浸漬させた冷
却用液体窒素が前述のように過冷却状態であるため、超
電導部材の作動時において超電導部材が発熱しても、そ
の発熱部位周辺で液体窒素が気化温度に達するには温度
的余裕があり、そのため直ちにはガス気泡が発生せず、
したがってガス気泡によって絶縁性が低下したり冷却効
率が低下したりするおそれも少ないなどの利点がある。
In the superconducting member cooling device proposed in Japanese Patent Application No. 8-232566, the temperature of the superconducting member can be reduced to a lower temperature than in a case where saturated liquid nitrogen at atmospheric pressure of about 77 K is used as a cooling medium. The superconducting member can be cooled, so that the performance of the superconducting member can be improved. In this case, the space above the surface of the supercooled cooling liquid nitrogen in the cooling vessel is largely evaporated from the cooling liquid nitrogen. Since it is filled with nitrogen gas at atmospheric pressure, it is unlikely that atmospheric pressure air containing moisture will be sucked in from the outside.Therefore, sealing of the lid of the cooling vessel, the current introduction terminal, etc. must be particularly strict. Further, since the cooling liquid nitrogen in which the superconducting member is immersed is in a supercooled state as described above, even if the superconducting member generates heat during the operation of the superconducting member, the superconducting member is heated around the heat generation site. There is a temperature margin to the body nitrogen reaches the vaporization temperature, therefore is not immediately generated gas bubbles,
Therefore, there is an advantage that there is little possibility that the insulating property or the cooling efficiency is reduced by the gas bubbles.

【0009】ところで上記提案の超電導部材冷却装置に
ついてさらにその実用化のための実験・検討を進めたと
ころ、次のような問題があることが判明した。
[0009] By conducting experiments and studies for practical use of the superconducting member cooling device proposed above, the following problems were found.

【0010】すなわち、上記提案の超電導部材冷却装置
においては、冷却用の液体窒素とは別に熱交換用液体窒
素を減圧用容器内に供給し、真空ポンプによりその減圧
用容器内を減圧して熱交換用液体窒素を温度降下させ、
その温度降下した熱交換用液体窒素と冷却用液体窒素と
を熱交換させることにより大気圧で過冷却状態の冷却用
液体窒素を得るようにしているが、この場合減圧用容器
内の熱交換用液体窒素は減圧によって徐々に蒸発気化
し、かつその気化ガスがポンプにより排気されて行くか
ら、減圧用容器内の液体窒素液面は急激に低下して行
き、遂には減圧用容器内の熱交換器が露出してしまうこ
とになる。このように熱交換器が液面から露出してしま
えば、充分な熱交換能率が得られなくなって、冷却用液
体窒素を充分な過冷却状態となるように冷却することが
困難となるから、実際上は熱交換器が液面から露出する
以前に、改めて減圧用容器内に液体窒素を補給しなけれ
ばならず、またこの液体窒素補給時には運転を一旦停止
させなければならない。
That is, in the superconducting member cooling apparatus proposed above, liquid nitrogen for heat exchange is supplied into the depressurizing vessel separately from liquid nitrogen for cooling, and the inside of the depressurizing vessel is depressurized by a vacuum pump to generate heat. Reduce the temperature of the replacement liquid nitrogen,
The liquid nitrogen for heat exchange and the liquid nitrogen for cooling whose temperature has dropped are exchanged with each other to obtain liquid nitrogen for cooling in a supercooled state at atmospheric pressure. The liquid nitrogen is gradually evaporated and vaporized by the decompression, and the vaporized gas is exhausted by the pump, so that the liquid nitrogen liquid level in the decompression container drops rapidly, and finally heat exchange in the decompression container The vessel will be exposed. If the heat exchanger is exposed from the liquid surface in this manner, sufficient heat exchange efficiency cannot be obtained, and it becomes difficult to cool the cooling liquid nitrogen to a sufficiently supercooled state. In practice, before the heat exchanger is exposed from the liquid surface, liquid nitrogen must be replenished into the depressurizing vessel, and the operation must be stopped once during the liquid nitrogen replenishment.

【0011】このように前記提案の超電導部材冷却装置
では、減圧用容器内の液体窒素補給のために運転を停止
する必要があるところから、長時間連続して運転するこ
とができないという問題があり、また液体窒素補給およ
びそのための運転停止−運転再開のための手間も煩雑と
なるという問題がある。もちろん短時間の運転の場合は
特に問題とはならないが、超電導部材の実用化へ向けた
実験・研究、測定等においては、長時間連続して運転す
ることが求められることが多く、したがって減圧用容器
への熱交換用液体窒素補給が前記提案の装置の普及に対
する大きなネックとなっていたのが実情である。
As described above, the proposed superconducting member cooling device has a problem that the operation cannot be continuously performed for a long time because the operation must be stopped to supply the liquid nitrogen in the depressurizing container. In addition, there is a problem that the labor for replenishing liquid nitrogen and for stopping and restarting the operation for the liquid nitrogen is also complicated. Of course, there is no particular problem in the case of short-time operation, but in experiments, research, measurement, etc. for the practical use of superconducting members, continuous operation for a long time is often required, and The fact is that replenishment of the container with liquid nitrogen for heat exchange has been a major bottleneck to the spread of the proposed device.

【0012】この発明は以上の事情を背景としてなされ
たもので、基本的には前記提案と同様に大気圧で過冷却
状態とした液体窒素を超電導部材に対する冷却用媒体と
して用いながらも、前記提案の場合のような減圧用容器
や熱交換器を用いないようにし、これに伴ない減圧用容
器内への熱交換用液体窒素の補給のための運転停止を回
避し得るようにして、長時間の連続運転を可能とした超
電導部材冷却装置を提供することを目的とするものであ
る。
The present invention has been made in view of the above circumstances. Basically, similar to the above-mentioned proposal, while using liquid nitrogen supercooled at atmospheric pressure as a cooling medium for a superconducting member, the present invention The use of a decompression vessel or heat exchanger as in the case of, and the accompanying shutdown of replenishment of liquid nitrogen for heat exchange into the decompression vessel can be avoided for a long time It is an object of the present invention to provide a superconducting member cooling device which enables continuous operation of the superconducting member.

【0013】[0013]

【課題を解決するための手段】前述のような課題を解決
するため、この発明の超電導部材冷却装置においては、
液体窒素を冷凍機によって大気圧下で過冷却となる温度
まで冷却し、得られた大気圧で過冷却状態の低温の液体
窒素を、そのまま直接超電導部材を冷却するための冷却
媒体として用いることとしている。
In order to solve the above-mentioned problems, a superconducting member cooling apparatus according to the present invention comprises:
Liquid nitrogen is cooled by a refrigerator to a temperature at which it is supercooled under atmospheric pressure, and the obtained low-temperature liquid nitrogen in a supercooled state at atmospheric pressure is directly used as a cooling medium for directly cooling the superconducting member. I have.

【0014】具体的には、請求項1の超電導部材冷却装
置は、超電導部材を収容してその超電導部材を冷却する
ための大気に実質的に開放された冷却容器と、前記冷却
容器へ供給すべき液体窒素を収容するための大気圧に実
質的に開放された供給側容器と、前記供給側容器へ液体
窒素を供給するための液体窒素供給手段と、前記供給側
容器内の液体窒素を、大気圧下で過冷却温度まで冷却す
るための冷凍機と、前記供給側容器内において大気圧下
で過冷却温度まで冷却された液体窒素を前記冷却容器に
移送するための移送手段とを有してなり、液面上に空間
を残すように前記移送手段によって前記冷却容器内に供
給された大気圧で過冷却状態の液体窒素中に前記超電導
部材を浸漬させるようにしたことを特徴とするものであ
る。
More specifically, a superconducting member cooling apparatus according to a first aspect of the present invention includes a superconducting member for accommodating the superconducting member and cooling the superconducting member, the cooling container being substantially open to the atmosphere, and supplying the cooling container. A supply-side container substantially open to atmospheric pressure for containing liquid nitrogen to be supplied, liquid nitrogen supply means for supplying liquid nitrogen to the supply-side container, and liquid nitrogen in the supply-side container. A refrigerator for cooling under superatmospheric pressure to a supercooling temperature, and transfer means for transferring liquid nitrogen cooled to supercooling temperature under atmospheric pressure in the supply-side container to the cooling container. Wherein the superconducting member is immersed in supercooled liquid nitrogen at atmospheric pressure supplied by the transfer means into the cooling vessel so as to leave a space above the liquid surface. It is.

【0015】このような請求項1の発明の超電導部材冷
却装置において、大気圧に実質的に開放された供給側容
器内に供給された液体窒素(例えば大気圧下で約77K
の飽和液体窒素)は、その容器内で大気圧下において冷
凍機によりさらに冷却されて温度降下し、例えば65K
の低温に温度降下する。すなわち大気圧下で過冷却され
る。そしてその大気圧下で例えば65K程度に過冷却さ
れた液体窒素が、大気に実質的に開放された冷却容器に
導かれ、その液体窒素中に浸漬された超電導部材を例え
ば67〜70K程度の低温に冷却することができる。す
なわち、通常の77K程度の大気圧の飽和液体窒素を用
いた場合よりも確実に低温に冷却することができる。
In the superconducting member cooling apparatus according to the first aspect of the present invention, the liquid nitrogen supplied to the supply side container which is substantially open to the atmospheric pressure (for example, about 77K under the atmospheric pressure)
Liquid nitrogen) is further cooled by a refrigerator under atmospheric pressure in the container and the temperature thereof drops, for example, to 65K.
The temperature drops to a low temperature. That is, it is supercooled under the atmospheric pressure. Then, under the atmospheric pressure, the liquid nitrogen supercooled to, for example, about 65K is led to a cooling vessel substantially opened to the atmosphere, and the superconducting member immersed in the liquid nitrogen is cooled to a low temperature of, for example, about 67 to 70K. Can be cooled. In other words, the cooling can be performed to a lower temperature than in the case where the normal saturated liquid nitrogen of about 77K is used.

【0016】ここで、供給側容器内においては、液体窒
素を大気圧下で冷凍機によって過冷却温度まで冷却する
から、減圧によって温度降下させる場合のように急激に
容器内の液体窒素が気化して排出されることがなく、そ
のため冷却容器および供給側容器内の液体窒素は減少せ
ずに一定液面を保つ。したがって初期に一定量の液体窒
素を注入した後には、改めて液体窒素をそれぞれの容器
内へ補給することなく、長時間連続運転することができ
る。
Here, in the supply-side container, the liquid nitrogen is cooled to a supercooling temperature by a refrigerator under atmospheric pressure, so that the liquid nitrogen in the container is rapidly vaporized as in the case where the temperature is lowered by reducing the pressure. And the liquid nitrogen in the cooling container and the supply side container is maintained at a constant level without decreasing. Therefore, after a predetermined amount of liquid nitrogen is initially injected, continuous operation can be performed for a long time without replenishing the respective containers with liquid nitrogen.

【0017】なお冷却容器は大気に実質的に開放されて
おりかつ冷却容器内の液体窒素の液面上の空間は冷却容
器内の液体窒素から蒸発した大気圧の液体窒素で満たさ
れているため、外部から水分を含む大気圧の空気が内部
に吸い込まれるおそれは少なく、そのため冷却容器の蓋
部や電流導入端子等の封止も特に厳密さが要求されな
い。また超電導部材を浸漬させた液体窒素が前述のよう
に過冷却状態であるため、超電導部材の作動時において
超電導部材が発熱しても、その発熱部位周辺で液体窒素
が気化温度に達するには温度的余裕があり、そのため直
ちにはガス気泡が発生せず、したがってガス気泡によっ
て絶縁性が低下したり冷却効率が低下したりするおそれ
がない。
The cooling vessel is substantially open to the atmosphere, and the space above the liquid nitrogen level in the cooling vessel is filled with atmospheric nitrogen vaporized from the liquid nitrogen in the cooling vessel. In addition, there is little possibility that atmospheric pressure air containing moisture is sucked into the inside from outside, and therefore, the sealing of the lid portion of the cooling vessel, the current introduction terminal, and the like does not need to be particularly strict. Further, since the liquid nitrogen in which the superconducting member is immersed is in a supercooled state as described above, even if the superconducting member generates heat during the operation of the superconducting member, it takes a temperature for the liquid nitrogen to reach the vaporization temperature around the heat generating portion. Since there is a margin, gas bubbles are not immediately generated, and therefore, there is no possibility that the gas bubbles may lower insulation properties or lower cooling efficiency.

【0018】また供給側容器についても、冷却容器と同
様に大気に実質的に開放されたものであるから、冷却容
器と同様に蓋部等の封止に厳密さが要求されない。
Also, the supply side container is substantially open to the atmosphere as in the case of the cooling container, so that strictness is not required for sealing the lid and the like as in the case of the cooling container.

【0019】さらに請求項2の発明の超電導部材冷却装
置は、請求項1の超電導部材冷却装置において、大気に
実質的に開放された前記冷却容器内における過冷却状態
の液体窒素の液面下であってかつ超電導部材よりも上方
の位置に断熱部材が浸漬されてなるものである。
The superconducting member cooling device according to a second aspect of the present invention is the superconducting member cooling device according to the first aspect, wherein the supercooled liquid nitrogen is substantially below the liquid level in the supercooled state in the cooling container that is substantially open to the atmosphere. Further, the heat insulating member is immersed in a position above the superconducting member.

【0020】このような請求項2の発明の超電導部材冷
却装置においては、冷却容器内の過冷却状態の液体窒素
の液面下の断熱部材によって、その断熱部材の上面側の
液体窒素と断熱部材の下側の液体窒素との間において液
体窒素の温度に積極的に温度勾配が形成されるととも
に、対流撹拌によって断熱部材の上面側の液体窒素の温
度と断熱部材の下側の液体窒素の温度とが等温化されて
しまうことを防止できる。その結果、超電導部材が配設
されている部分の温度を低温に維持し、超電導部材を充
分な低温に冷却保持することができる。
In the superconducting member cooling device according to the second aspect of the present invention, the liquid nitrogen on the upper surface side of the heat insulating member and the heat insulating member are provided by the heat insulating member below the liquid nitrogen in a supercooled state in the cooling vessel. A temperature gradient is actively formed between the temperature of the liquid nitrogen and the liquid nitrogen on the lower side, and the temperature of the liquid nitrogen on the upper surface side of the heat insulating member and the temperature of the liquid nitrogen on the lower side of the heat insulating member by convection stirring Can be prevented from being made isothermal. As a result, the temperature of the portion where the superconducting member is provided can be maintained at a low temperature, and the superconducting member can be cooled and maintained at a sufficiently low temperature.

【0021】さらに請求項3の発明の超電導部材冷却装
置は、請求項1の超電導部材冷却装置において、大気に
実質的に開放された冷却容器内における過冷却状態の液
体窒素の液面上の空間に大気圧の窒素ガスを供給するた
めの窒素ガス供給手段を備えているものである。
The superconducting member cooling apparatus according to a third aspect of the present invention is the superconducting member cooling apparatus according to the first aspect, wherein the space above the liquid surface of the supercooled liquid nitrogen in the cooling vessel substantially open to the atmosphere. Is provided with nitrogen gas supply means for supplying nitrogen gas at atmospheric pressure.

【0022】このような請求項3の発明の超電導部材冷
却装置においては、冷却容器内の過冷却状態の液体窒素
の液面上の空間が、外部から供給される大気圧の窒素ガ
スによって満たされるため、液体窒素の液面上の空間が
減圧されてしまうことを確実に防止して、水分を含む大
気が冷却容器の蓋部や電流導入端子等から侵入してしま
うことを確実かつ有効に防止することができる。
In the superconducting member cooling apparatus according to the third aspect of the present invention, the space above the liquid nitrogen in a supercooled state in the cooling vessel is filled with nitrogen gas at atmospheric pressure supplied from the outside. Therefore, the space above the liquid nitrogen level is reliably prevented from being decompressed, and the atmosphere containing moisture is reliably and effectively prevented from invading from the lid of the cooling vessel, the current introduction terminal, and the like. can do.

【0023】そしてまた請求項4の発明の超電導部材冷
却装置は、請求項1の超電導部材冷却装置において、大
気に実質的に開放された前記供給側容器内における液体
窒素の液面下であってかつ前記移送手段により液体窒素
を冷却容器へ向けて汲み出す位置よりも上方の位置に断
熱部材が浸漬されてなるものである。
According to a fourth aspect of the present invention, there is provided a superconducting member cooling apparatus according to the first aspect, wherein the superconducting member cooling apparatus is provided below the liquid nitrogen level in the supply side container which is substantially open to the atmosphere. In addition, the heat insulating member is immersed in a position above a position where the liquid nitrogen is pumped toward the cooling container by the transfer means.

【0024】このような請求項4の発明の超電導部材冷
却装置においては、供給側容器内の液体窒素の液面下の
断熱部材によって、その断熱部材の上面側の液体窒素と
断熱部材の下側の液体窒素との間において液体窒素の温
度に積極的に温度勾配が形成されるとともに、対流撹拌
によって断熱部材の上面側の液体窒素の温度と断熱部材
の下側の液体窒素の温度とが等温化されてしまうことを
防止できる。その結果、冷却容器へ向けて液体窒素を汲
み出す部分の温度を低温に維持し、冷却容器へ向けて充
分に低温な液体窒素を供給することができる。
In the cooling device for a superconducting member according to the fourth aspect of the present invention, the heat insulating member below the liquid nitrogen level in the supply-side container allows the liquid nitrogen on the upper surface side of the heat insulating member and the lower side of the heat insulating member. A temperature gradient is actively formed between the liquid nitrogen and the temperature of the liquid nitrogen, and the temperature of the liquid nitrogen on the upper surface side of the heat insulating member and the temperature of the liquid nitrogen below the heat insulating member are isothermal due to convection agitation. Can be prevented. As a result, the temperature of the portion where liquid nitrogen is pumped out to the cooling container is maintained at a low temperature, and sufficiently low-temperature liquid nitrogen can be supplied to the cooling container.

【0025】さらに請求項5の発明の超電導部材冷却装
置は、請求項1の超電導部材冷却装置において、大気に
実質的に開放された供給側容器内における液体窒素の液
面上の空間に大気圧の窒素ガスを供給するための窒素ガ
ス供給手段を備えているものである。
The superconducting member cooling device according to a fifth aspect of the present invention is the superconducting member cooling device according to the first aspect, wherein the space above the liquid surface of the liquid nitrogen in the supply side container which is substantially open to the atmosphere has an atmospheric pressure. Nitrogen gas supply means for supplying the nitrogen gas.

【0026】このような請求項5の発明の超電導部材冷
却装置においては、供給側容器内の液体窒素の液面上の
空間が、外部から供給される大気圧の窒素ガスによって
満たされるため、液体窒素の液面上の空間が減圧されて
しまうことを確実に防止して、水分を含む大気が供給側
容器の蓋部等から侵入してしまうことを確実かつ有効に
防止することができる。
In the superconducting member cooling apparatus according to the fifth aspect of the present invention, the space above the liquid nitrogen level in the supply-side container is filled with nitrogen gas at atmospheric pressure supplied from the outside. It is possible to reliably prevent the space above the liquid level of nitrogen from being decompressed, and to reliably and effectively prevent the atmosphere containing moisture from entering from the lid of the supply-side container.

【0027】[0027]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0028】[0028]

【実施例】図1にこの発明の一実施例の超電導部材冷却
装置を示す。
FIG. 1 shows a superconducting member cooling apparatus according to an embodiment of the present invention.

【0029】図1において、冷却対象となる超電導部材
1は冷却容器3の底部に配置されている。この冷却容器
3は、大気に実質的に開放された一般的な汎用のクライ
オスタットからなるものであって、その外周壁部および
底壁部が真空断熱構造5とされ、また上端には開閉可能
な蓋部7が設けられている。この蓋部7は、容器本体に
対して真空封止されたものではなく、またこの蓋部7に
は汎用のクライオスタットと同様な電流導入端子等が設
けられており、このような蓋部7と容器本体部分との間
の隙間や電流導入端子等を通じて冷却容器3の内部は実
質的に大気開放された状態となっている。なお蓋部7に
は安全弁19が設けられているが、この安全弁19は、
内部圧力が外部の大気圧に対して例えば+0.1kgf
/cm2を越えた場合に開放されて、内部圧力を大気圧
〜大気圧+0.1kgf/cm2の実質的な大気圧力範
囲内に保持するように機能する。そして超電導部材1は
蓋部7から支持部材9A,9Bによって吊下げた状態と
なっている。冷却容器3内の底部には、後述するように
トランスファチューブ45を介して大気圧で過冷却状態
の液体窒素(冷却用液体窒素)11が供給されて、超電
導部材1がその液体窒素11に浸漬される。またその冷
却容器3内における液体窒素11の液面11Aよりもわ
ずかに下方の位置には、水平横断面の外形形状が冷却容
器3の水平横断面内周形状と実質的に相似の形状をなし
かつ上下方向に所定の厚みを有する断熱部材13が配設
されている。この断熱部材13は、要は全体として上下
方向への熱伝導が液体窒素よりも格段に少ないものとな
っていれば良いが、通常はFRPなど熱伝導率の小さい
材料によって形成するか、あるいは中空構造としてその
中空部分を真空断熱構造としたりすれば良い。なおこの
断熱部材13は、前述の支持部材9A,9Bによって蓋
部7から吊下げられており、またその断熱部材13の周
囲が冷却容器3の内周壁面に対して若干の隙間14を保
つように作られている。一方冷却容器3における冷却用
液体窒素11の液面11Aの上方に残された空間(蓋部
7と液面11Aとの間の空間)15には、外部の第1の
窒素ガス供給源16から窒素ガス供給管18を経て大気
圧の窒素ガスが供給される。また冷却容器3内における
断熱部材13の下面側の位置には、後述する還流管17
の基端側開口端が開口している。
In FIG. 1, a superconducting member 1 to be cooled is arranged at the bottom of a cooling vessel 3. The cooling vessel 3 is composed of a general-purpose cryostat substantially open to the atmosphere, the outer peripheral wall and the bottom wall of which are a vacuum heat insulating structure 5, and the upper end is openable and closable. A lid 7 is provided. The lid 7 is not vacuum-sealed with respect to the container body, and the lid 7 is provided with a current introduction terminal similar to that of a general-purpose cryostat. The inside of the cooling container 3 is substantially open to the atmosphere through a gap between the container main body and a current introduction terminal. Note that a safety valve 19 is provided on the lid 7, and the safety valve 19 is
Internal pressure is, for example, +0.1 kgf with respect to external atmospheric pressure
/ Cm 2 and functions to maintain the internal pressure within a substantial atmospheric pressure range from atmospheric pressure to atmospheric pressure + 0.1 kgf / cm 2 . The superconducting member 1 is suspended from the lid 7 by supporting members 9A and 9B. Liquid nitrogen (cooling liquid nitrogen) 11 which is supercooled at atmospheric pressure is supplied to the bottom of the cooling vessel 3 via a transfer tube 45 as described later, and the superconducting member 1 is immersed in the liquid nitrogen 11. Is done. At a position slightly below the liquid level 11A of the liquid nitrogen 11 in the cooling vessel 3, the outer shape of the horizontal cross section is substantially similar to the inner circumferential shape of the horizontal cross section of the cooling vessel 3. In addition, a heat insulating member 13 having a predetermined thickness in the vertical direction is provided. In short, the heat insulating member 13 may be made of a material having a small thermal conductivity such as FRP, or a hollow material, as long as the heat conduction in the vertical direction as a whole is much smaller than that of liquid nitrogen. The hollow portion may have a vacuum insulation structure. The heat insulating member 13 is suspended from the lid 7 by the support members 9A and 9B described above, and the periphery of the heat insulating member 13 keeps a slight gap 14 with respect to the inner peripheral wall surface of the cooling container 3. Made in. On the other hand, a space (space between the lid 7 and the liquid surface 11A) 15 left above the liquid surface 11A of the cooling liquid nitrogen 11 in the cooling container 3 is supplied from an external first nitrogen gas supply source 16 to the space 15. Atmospheric pressure nitrogen gas is supplied through a nitrogen gas supply pipe 18. A reflux pipe 17 to be described later is provided at a position on the lower surface side of the heat insulating member 13 in the cooling vessel 3.
Is open at the base end side.

【0030】さらに前述のように大気に実質的に開放さ
れた冷却容器3とは別に、供給側容器21が配設されて
いる。
Further, a supply side container 21 is provided separately from the cooling container 3 which is substantially open to the atmosphere as described above.

【0031】供給側容器21は、前述の冷却容器3と同
様に大気に実質的に開放されたものであって、その外周
壁部および底壁部が真空断熱構造23とされ、また上端
には開閉可能な蓋部25が設けられている。この蓋部2
5は容器本体に対して真空封止されたものではなく、こ
のような蓋部25と容器本体部分との間の隙間などを通
じて供給側容器21の内部は実質的に大気に開放された
状態となっている。この供給側容器21には、外部の液
体窒素供給源27から、制御弁29および供給管31を
介して液体窒素33が供給されるようになっている。そ
して供給側容器21内における液体窒素33の液面33
Aよりもわずかに下方の位置には、水平横断面の外形形
状が供給側容器21の水平横断面形状と実質的に相似の
形状をなしかつ上下方向に所定の厚みを有する断熱部材
35が、蓋部25から支持部材37A,37Bによって
吊下げられた状態で配設されている。この断熱部材35
も、前記冷却容器3内の断熱部材13と同様に全体とし
て上下方向への熱伝達が液体窒素よりも格段に少ないも
のとなっていれば良く、例えばFRPなどの熱伝導率の
小さい材料によって作られるか、あるいは中空な真空断
熱構造とすれば良い。またこの断熱部材35の周囲が供
給側容器21の内周壁面に対して若干の隙間39を保持
していることも、冷却容器3内の断熱部材13と同様で
ある。
The supply-side container 21 is substantially open to the atmosphere similarly to the cooling container 3 described above. The outer peripheral wall and the bottom wall of the supply-side container 21 are formed of a vacuum heat insulating structure 23. A lid 25 that can be opened and closed is provided. This lid 2
5 is not vacuum-sealed with respect to the container body, and the inside of the supply-side container 21 is substantially open to the atmosphere through such a gap between the lid 25 and the container body. Has become. The supply side container 21 is supplied with liquid nitrogen 33 from an external liquid nitrogen supply source 27 via a control valve 29 and a supply pipe 31. The liquid level 33 of the liquid nitrogen 33 in the supply side container 21
At a position slightly lower than A, a heat insulating member 35 having an outer shape of a horizontal cross section substantially similar to the horizontal cross sectional shape of the supply-side container 21 and having a predetermined thickness in the vertical direction, It is disposed in a state of being suspended from the lid 25 by the support members 37A and 37B. This heat insulating member 35
Also, as with the heat insulating member 13 in the cooling vessel 3, the heat transfer in the vertical direction as a whole may be much less than that of liquid nitrogen, and is made of a material having a low thermal conductivity such as FRP. Or a hollow vacuum insulation structure. Further, the periphery of the heat insulating member 35 has a slight gap 39 with respect to the inner peripheral wall surface of the supply-side container 21, similarly to the heat insulating member 13 in the cooling container 3.

【0032】さらに供給側容器21の蓋部25上には冷
凍機41が配設されており、この冷凍機41から延びる
冷却ヘッド41Aが供給側容器21内の液体窒素の液面
下であってかつ前記断熱部材35よりも下方の位置に浸
漬されており、この冷凍機41の冷却ヘッド41Aによ
って供給側容器21内の液体窒素33が、大気圧下での
飽和液体窒素の温度よりも低い過冷却温度(約77Kよ
りも低い温度)に冷却されるようになっている。また供
給側容器21内には、蓋部25から吊下げられた状態で
送液ポンプ43が配設されている。この送液ポンプ43
は、その取入口(汲出口)が供給側容器21における断
熱部材35よりも下方(通常は供給側容器21の底部近
く)に位置するように配設されている。そしてこの送液
ポンプ43の出口側はトランスファーチューブ45に接
続されており、このトランスファーチューブ45は前述
のように冷却容器3内に導かれている。さらに前記冷却
容器3からの還流管17が供給側容器21内へ導かれて
おり、その還流管17の先端側開口端が供給側容器の底
部(前記冷凍機41の冷却ヘッド41Aよりも下方の位
置)において開口している。
Further, a refrigerator 41 is disposed on the lid 25 of the supply container 21, and a cooling head 41 A extending from the refrigerator 41 is below the liquid nitrogen level in the supply container 21. In addition, the cooling head 41A of the refrigerator 41 immerses the liquid nitrogen 33 in the supply-side container 21 below the temperature of the saturated liquid nitrogen under the atmospheric pressure. The cooling is performed to a cooling temperature (a temperature lower than about 77K). Further, a liquid feed pump 43 is provided in the supply side container 21 in a state of being suspended from the lid 25. This liquid sending pump 43
Is disposed such that its inlet (pump outlet) is located below the heat insulating member 35 in the supply-side container 21 (normally near the bottom of the supply-side container 21). The outlet side of the liquid supply pump 43 is connected to a transfer tube 45, and the transfer tube 45 is guided into the cooling container 3 as described above. Further, the reflux pipe 17 from the cooling vessel 3 is guided into the supply-side vessel 21, and the open end of the reflux pipe 17 has the bottom end of the supply-side vessel (below the cooling head 41 A of the refrigerator 41. Position).

【0033】また供給側容器21における液体窒素33
の液面33Aの上方に残された空間(蓋部25と液面3
3Aとの間の空間)47には、外部の第2の窒素ガス供
給源49から窒素ガス供給管51を経て大気圧の窒素ガ
スが供給されるようになっている。
The liquid nitrogen 33 in the supply side container 21
Space above the liquid level 33A (the lid 25 and the liquid level 3).
Atmospheric pressure nitrogen gas is supplied from an external second nitrogen gas supply source 49 via a nitrogen gas supply pipe 51 to the space 47 between the space 3A and the space 47.

【0034】ここで、液体窒素供給源27、制御弁2
9、および供給管31は、供給側容器21に液体窒素を
供給するための液体窒素供給手段63を構成している。
さらに送液ポンプ43およびトランスファチユーブ45
は、供給側容器21内において大気圧で過冷却状態に冷
却された液体窒素を冷却容器3に移送するための移送手
段65を構成している。一方第1の窒素ガス供給源1
6、窒素ガス供給管18は、冷却容器3における液面上
の空間15に大気圧の窒素ガスを供給するための第1の
窒素ガス供給手段67を構成しており、また第2の窒素
ガス供給源49、窒素ガス供給管51は、供給側容器2
1における液面上の空間47に大気圧の窒素ガスを供給
するための第2の窒素ガス供給手段69を構成してい
る。
Here, the liquid nitrogen supply source 27 and the control valve 2
The supply pipe 9 and the supply pipe 31 constitute liquid nitrogen supply means 63 for supplying liquid nitrogen to the supply side container 21.
Further, the liquid sending pump 43 and the transfer tube 45
Constitutes a transfer means 65 for transferring liquid nitrogen, which has been cooled to a supercooled state at atmospheric pressure in the supply-side container 21, to the cooling container 3. On the other hand, the first nitrogen gas supply source 1
6. The nitrogen gas supply pipe 18 constitutes a first nitrogen gas supply means 67 for supplying nitrogen gas at atmospheric pressure to the space 15 above the liquid level in the cooling vessel 3, and a second nitrogen gas supply means 67. The supply source 49 and the nitrogen gas supply pipe 51 are connected to the supply side container 2.
A second nitrogen gas supply means 69 for supplying nitrogen gas at atmospheric pressure to the space 47 above the liquid surface in FIG.

【0035】以上のような図1に示される実施例の超電
導部材冷却装置の全体的な機能について以下に説明す
る。
The overall function of the superconducting member cooling apparatus of the embodiment shown in FIG. 1 will be described below.

【0036】液体窒素供給手段63の液体窒素供給源2
7から供給側容器21に供給される液体窒素は、77K
程度のものであるが、その液体窒素は供給側容器21内
において、冷凍機41の冷却ヘッド41Aによって大気
圧下で冷却されて、大気圧下の飽和液体窒素温度(77
K程度)よりも低い温度、例えば65K程度まで温度降
下される。そしてその65K程度に過冷却された大気圧
の液体窒素33は、送液ポンプ43によって供給側容器
21の底部付近から汲み上げられ、トランスファチュー
ブ45を介して、大気に実質的に開放された冷却容器3
内に導かれる。冷却容器3内に導かれた過冷却状態の大
気圧の液体窒素を図1では符号11で示しており、これ
が冷却用液体窒素に相当する。
The liquid nitrogen supply source 2 of the liquid nitrogen supply means 63
7 supplied to the supply side container 21 from the
However, the liquid nitrogen is cooled under the atmospheric pressure in the supply side container 21 by the cooling head 41A of the refrigerator 41, and the saturated liquid nitrogen temperature (77
(About K), for example, about 65K. Then, the liquid nitrogen 33 at atmospheric pressure supercooled to about 65K is pumped up from the vicinity of the bottom of the supply side container 21 by the liquid sending pump 43, and is substantially opened to the atmosphere via the transfer tube 45. 3
Guided inside. The supercooled state liquid nitrogen in the supercooled state introduced into the cooling container 3 is indicated by reference numeral 11 in FIG. 1 and corresponds to the cooling liquid nitrogen.

【0037】冷却容器3内においては、前述のような例
えば65Kの過冷却状態の大気圧の液体窒素11によっ
て超電導部材1が例えば67K程度に冷却・保持され
る。また冷却容器3内において超電導部材1からの熱な
どによって例えば70K程度に温度上昇した液体窒素
は、還流管17を介して供給側容器21へ戻る。このよ
うにして供給側容器21へ還流された流体窒素は、冷凍
機41の冷却ヘッド41Aにより再び65K程度まで大
気圧下で冷却され、前述のように送液ポンプ43によっ
て冷却容器3に再び送られることになる。
In the cooling vessel 3, the superconducting member 1 is cooled and held at, for example, about 67K by the liquid nitrogen 11 at the atmospheric pressure in a supercooled state of, for example, 65K as described above. In the cooling vessel 3, the liquid nitrogen whose temperature has risen to, for example, about 70 K by heat from the superconducting member 1 returns to the supply side vessel 21 via the reflux pipe 17. The fluid nitrogen refluxed to the supply-side container 21 in this manner is again cooled to about 65K under atmospheric pressure by the cooling head 41A of the refrigerator 41, and is again sent to the cooling container 3 by the liquid sending pump 43 as described above. Will be done.

【0038】ここで、冷却容器3内における冷却用液体
窒素11の液面11Aの上方の空間15には窒素ガス供
給管18を介して大気圧の窒素ガスが導入される。した
がって冷却容器3の液面上の空間15は大気圧の窒素ガ
スで満たされることになる。そのため冷却容器3内の圧
力が確実に大気圧に維持され、蓋部7の封止部分や電流
導入端子部分などを介して外部から空気が引き込まれて
侵入することが確実に防止される。
Here, nitrogen gas at atmospheric pressure is introduced into the space 15 above the liquid surface 11A of the cooling liquid nitrogen 11 in the cooling vessel 3 through a nitrogen gas supply pipe 18. Therefore, the space 15 above the liquid surface of the cooling container 3 is filled with nitrogen gas at atmospheric pressure. Therefore, the pressure in the cooling container 3 is reliably maintained at the atmospheric pressure, and the air is reliably prevented from being drawn in from the outside via the sealing portion of the lid 7 and the current introduction terminal portion.

【0039】また冷却容器3内における冷却用液体窒素
11の液面下には断熱部材13が配設されているから、
冷却用液体窒素11の液面(気液界面であるため約77
K)とその断熱部材13よりも下側、特に超電導部材1
が位置している冷却容器底部との間で確実に熱勾配を与
えることができる。またその断熱部材13の存在によっ
て液面11A付近に底部側との間での対流撹拌が阻止さ
れる。そしてこれらの結果、超電導部材1が位置する底
部の冷却用液体窒素11を、確実に65K程度の低温の
過冷却状態に維持することができる。そしてこのように
超電導部材1が例えば65Kの過冷却状態の低温の液体
窒素11によって取囲まれるため、超電導部材1の作動
時において超電導部材1が発熱しても、その周囲の液体
窒素が大気圧下での気化温度(約77K)に至るまでに
は約10K以上の余裕があり、そのため超電導部材1の
発熱によってその周囲の液体窒素が直ちに気化してガス
気泡が発生してしまうことを有効に防止できる。
Further, since the heat insulating member 13 is provided below the liquid level of the cooling liquid nitrogen 11 in the cooling container 3,
Liquid surface of cooling liquid nitrogen 11 (approximately 77
K) and its lower side than the heat insulating member 13, especially the superconducting member 1
It is possible to reliably provide a thermal gradient with the bottom of the cooling vessel where is located. Also, the presence of the heat insulating member 13 prevents convection agitation between the liquid surface 11A and the bottom side. As a result, the cooling liquid nitrogen 11 at the bottom where the superconducting member 1 is located can be reliably maintained in a supercooled state at a low temperature of about 65K. Since the superconducting member 1 is thus surrounded by the low-temperature liquid nitrogen 11 in a supercooled state of, for example, 65K, even if the superconducting member 1 generates heat during the operation of the superconducting member 1, the surrounding liquid nitrogen is kept at atmospheric pressure. There is a margin of about 10K or more before reaching the lower vaporization temperature (about 77K), so that the heat generated by the superconducting member 1 effectively vaporizes the surrounding liquid nitrogen and immediately generates gas bubbles. Can be prevented.

【0040】なお供給側容器21内における液体窒素3
3の液面33Aの上方の空間47にも、窒素ガス供給管
51を介して大気圧の窒素ガスが導入される。したがっ
て供給側容器21の液面上の空間47も大気圧の窒素ガ
スで満たされることになる。そのため供給側容器21内
の圧力が確実に大気圧に維持され、蓋部25の封止部分
などを介して外部から空気が引き込まれて侵入すること
が確実に防止される。
The liquid nitrogen 3 in the supply side container 21
Atmospheric pressure nitrogen gas is also introduced into the space 47 above the third liquid level 33A via the nitrogen gas supply pipe 51. Therefore, the space 47 above the liquid surface of the supply side container 21 is also filled with the nitrogen gas at the atmospheric pressure. Therefore, the pressure in the supply-side container 21 is reliably maintained at the atmospheric pressure, and air is reliably prevented from being drawn in from the outside and entering through the sealed portion of the lid 25 or the like.

【0041】また冷却容器3と同様に、供給側容器21
内における液体窒素33の液面下にも断熱部材35が配
設されており、そのため液体窒素33の液面(気液界面
であるため約77K)とその断熱部材35よりも下側、
特に送液ポンプ43の取入口付近との間で確実に熱勾配
を与えることができる。またその断熱部材35の存在に
よって液面33A付近と断熱部材35よりも下側の部分
との間での対流撹拌が阻止される。そしてこれらの結
果、送液ポンプ43の取入口付近の液体窒素33を、確
実に65K程度の低温の過冷却状態に維持して、その6
5K程度の低温の過冷却状態の液体窒素を冷却容器3へ
送り込むことができる。
Further, similarly to the cooling container 3, the supply-side container 21
The heat insulating member 35 is also provided below the liquid surface of the liquid nitrogen 33 in the inside, so that the liquid surface of the liquid nitrogen 33 (about 77 K because of the gas-liquid interface) and the lower side than the heat insulating member 35,
Particularly, a thermal gradient can be reliably provided between the liquid feeding pump 43 and the vicinity of the inlet. In addition, the presence of the heat insulating member 35 prevents convection agitation between the vicinity of the liquid surface 33A and a portion below the heat insulating member 35. As a result, the liquid nitrogen 33 in the vicinity of the inlet of the liquid sending pump 43 is surely maintained in a low-temperature supercooled state of about 65K.
Liquid nitrogen in a supercooled state at a low temperature of about 5K can be sent to the cooling container 3.

【0042】なお以上の実施例では、冷却容器3におけ
る冷却用液体窒素11の液面11Aの上方の空間15に
窒素ガス供給管18を介して大気圧の窒素ガスを導入す
る構成としているが、場合によっては上記の空間15に
大気圧の窒素ガスを積極的には導入しない構成とするこ
ともできる。すなわち、冷却容器3における冷却用液体
窒素11の液面11Aが高い場合(液面11Aが蓋部7
に近接している場合)には、蓋部7からの侵入熱によっ
て液面11Aにおける大気圧下での窒素の液相−気相平
衡状態を保つことが可能となり、そのため液面11A上
の空間15の圧力を実質的に大気圧に維持して、外部か
らの空気の吸い込みを防止し、液面11Aからの気化に
よる大気圧の窒素ガスで空間15を充満させておくこと
ができる。但し、確実に空間15を大気圧の窒素ガスで
満たしておくためには、前述のように積極的に外部から
大気圧の窒素ガスを導入することが望ましいことはもち
ろんである。
In the above embodiment, nitrogen gas at atmospheric pressure is introduced into the space 15 above the liquid surface 11A of the cooling liquid nitrogen 11 in the cooling container 3 through the nitrogen gas supply pipe 18. In some cases, a configuration in which nitrogen gas at atmospheric pressure is not positively introduced into the space 15 may be adopted. That is, when the liquid surface 11A of the cooling liquid nitrogen 11 in the cooling container 3 is high (the liquid surface 11A is
), It is possible to maintain the liquid-gas equilibrium state of nitrogen under the atmospheric pressure at the liquid surface 11A due to the heat penetrating from the lid 7, and therefore, the space above the liquid surface 11A By maintaining the pressure at 15 substantially at atmospheric pressure, it is possible to prevent the suction of air from the outside and to fill the space 15 with nitrogen gas at atmospheric pressure by vaporization from the liquid surface 11A. However, in order to surely fill the space 15 with nitrogen gas at atmospheric pressure, it is of course desirable to positively introduce nitrogen gas at atmospheric pressure from the outside as described above.

【0043】また供給側容器21における液体窒素33
の液面33Aの上方の空間47についても全く同様であ
り、これについても場合によってはその空間47に大気
圧の窒素ガスを外部から積極的には導入しない構成とす
ることができる。
The liquid nitrogen 33 in the supply side container 21
The same applies to the space 47 above the liquid surface 33A. In this case, a configuration in which nitrogen gas at atmospheric pressure is not actively introduced into the space 47 from the outside may be adopted in some cases.

【0044】[0044]

【発明の効果】請求項1の発明の超電導部材冷却装置に
よれば、超電導部材を浸漬冷却させるための冷却媒体と
して、大気圧で過冷却状態の液体窒素、すなわち大気圧
で飽和状態の液体窒素よりも低温の液体窒素を用いてい
るため、超電導部材をより低温に冷却・保持して、その
性能をより向上させることができ、しかもその液体窒素
の液面上方の空間は大気圧の窒素ガスによって満たされ
ているから、超電導部材および液体窒素を収容する冷却
容器としては、実質的に大気に開放される汎用の安価な
クライオスタットを用いることができ、そのためコスト
低減を図ることができる。また、前述のように超電導部
材が過冷却状態の液体窒素中に浸漬されて、超電導部材
が過冷却状態の液体窒素によって取囲まれるところか
ら、超電導部材作動時において超電導部材の発熱によっ
てガス気泡が発生することを有効に防止でき、そのため
ガス気泡の発生により電気絶縁性の低下を招いたり、冷
却効率の低下を招いたりするおそれも少ない。
According to the superconducting member cooling device of the first aspect of the present invention, as a cooling medium for immersing and cooling the superconducting member, liquid nitrogen in a supercooled state at atmospheric pressure, that is, liquid nitrogen in a saturated state at atmospheric pressure. Since liquid nitrogen at a lower temperature is used, the superconducting member can be cooled and held at a lower temperature to further improve its performance, and the space above the liquid surface of the liquid nitrogen is nitrogen gas at atmospheric pressure. Therefore, a general-purpose inexpensive cryostat that is substantially open to the atmosphere can be used as the cooling container that contains the superconducting member and the liquid nitrogen, and thus the cost can be reduced. Further, as described above, since the superconducting member is immersed in the supercooled liquid nitrogen and the superconducting member is surrounded by the supercooled liquid nitrogen, gas bubbles are generated due to heat generation of the superconducting member during operation of the superconducting member. The generation of gas bubbles can be effectively prevented, so that the generation of gas bubbles is less likely to cause a decrease in electrical insulation and a decrease in cooling efficiency.

【0045】さらに請求項1の発明の超電導部材冷却装
置においては、超電導部材冷却のための冷却用液体窒素
を大気圧で過冷却状態とするために、大気圧に開放され
た供給側容器内において冷凍機によって液体窒素を直接
大気圧過冷却温度まで冷却しているため、減圧により熱
交換用液体窒素を大気圧過冷却温度まで冷却してその熱
交換用液体窒素と冷却用液体窒素とを熱交換する場合と
異なり、減圧用容器、熱交換器および熱交換用液体窒素
が不要となって装置全体のコストダウンを図ることがで
き、しかも液体窒素の補給のために運転を停止する必要
もないため、長期間連続運転することができ、また液体
窒素の補給のための運転停止−運転再開の作業手間も不
要となる。
Further, in the superconducting member cooling apparatus according to the first aspect of the present invention, the cooling liquid nitrogen for cooling the superconducting member is supercooled at atmospheric pressure in the supply side container opened to atmospheric pressure. Since the liquid nitrogen is directly cooled to the atmospheric supercooling temperature by the refrigerator, the liquid nitrogen for heat exchange is cooled to the atmospheric supercooling temperature by decompression and the liquid nitrogen for heat exchange and the liquid nitrogen for cooling are heated. Unlike the case of replacement, the decompression container, the heat exchanger and the liquid nitrogen for heat exchange are not required, so that the cost of the entire apparatus can be reduced, and it is not necessary to stop the operation for replenishing the liquid nitrogen. Therefore, continuous operation can be performed for a long period of time, and labor for stopping and restarting operation for replenishing liquid nitrogen is not required.

【0046】また請求項2の発明の超電導部材冷却装置
においては、冷却容器内の大気圧過冷却液体窒素の液面
下に断熱部材を配設しておくことによって、冷却容器内
の底部の超電導部材が配置される部位の液体窒素を確実
に過冷却の低温状態に維持することができ、そのため前
述の請求項1の発明の効果をより一層確実に発揮させる
ことができる。
In the superconducting member cooling device according to the second aspect of the present invention, a heat insulating member is disposed below the liquid level of the supercooled liquid nitrogen in the cooling container so that the superconducting member at the bottom in the cooling container is provided. The liquid nitrogen at the portion where the member is disposed can be reliably maintained in a supercooled low temperature state, so that the effect of the first aspect of the present invention can be more reliably exerted.

【0047】さらに請求項3の発明の超電導部材冷却装
置によれば、冷却容器の液面上の空間に大気圧の窒素ガ
スを積極的に導入するため、上記空間の圧力を確実に大
気圧に維持して、蓋部等からの外気の侵入をより確実に
防止することができる。
Further, according to the superconducting member cooling device of the third aspect of the present invention, nitrogen gas at atmospheric pressure is positively introduced into the space above the liquid surface of the cooling vessel, so that the pressure in the space is reliably increased to atmospheric pressure. By maintaining, it is possible to more reliably prevent the invasion of the outside air from the lid or the like.

【0048】一方請求項4の発明の超電導部材冷却装置
においては、供給側容器内の液体窒素の液面下に断熱部
材を配設しておくことによって、供給側容器内における
底部、すなわち冷却容器へ向けて液体窒素を汲み出す部
位の液体窒素を確実に過冷却の低温状態に維持して、そ
の低温の液体窒素を冷却容器へ供給することができ、そ
のため前述の請求項1の発明の効果をより一層確実に発
揮させることができる。
On the other hand, in the superconducting member cooling apparatus according to the fourth aspect of the present invention, by providing a heat insulating member below the liquid nitrogen level in the supply side container, a bottom portion in the supply side container, that is, the cooling container The liquid nitrogen at a portion where liquid nitrogen is pumped toward the liquid nitrogen can be reliably maintained in a supercooled low temperature state, and the low temperature liquid nitrogen can be supplied to the cooling container. Can be exhibited more reliably.

【0049】さらに請求項5の発明の超電導部材冷却装
置によれば、供給側容器の液面上の空間に大気圧の窒素
ガスを積極的に導入するため、上記空間の圧力を確実に
大気圧に維持して、蓋部等からの外気の侵入をより確実
に防止することができる。
Further, according to the superconducting member cooling apparatus of the fifth aspect of the present invention, nitrogen gas at atmospheric pressure is positively introduced into the space above the liquid surface of the supply side container, so that the pressure in the space is reliably reduced to atmospheric pressure. , It is possible to more reliably prevent outside air from entering from the lid and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例の超電導部材冷却装置を示
す略解図である。
FIG. 1 is a schematic diagram showing a superconducting member cooling device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 超電導部材 3 冷却容器 11 冷却用液体窒素 13 断熱部材 21 供給側容器 35 断熱部材 41 冷凍機 63 液体窒素供給手段 65 移送手段 67 第1の窒素ガス供給手段 69 第2の窒素ガス供給手段 REFERENCE SIGNS LIST 1 superconducting member 3 cooling container 11 cooling liquid nitrogen 13 heat insulating member 21 supply side container 35 heat insulating member 41 refrigerator 63 liquid nitrogen supply means 65 transfer means 67 first nitrogen gas supply means 69 second nitrogen gas supply means

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 超電導部材を収容してその超電導部材を
冷却するための大気に実質的に開放された冷却容器と;
前記冷却容器へ供給すべき液体窒素を収容するための大
気圧に実質的に開放された供給側容器と;前記供給側容
器へ液体窒素を供給するための液体窒素供給手段と;前
記供給側容器内の液体窒素を、大気圧下で過冷却温度ま
で冷却するための冷凍機と;前記供給側容器内において
大気圧下で過冷却温度まで冷却された液体窒素を前記冷
却容器に移送するための移送手段;とを有してなり、液
面上に空間を残すように前記移送手段によって前記冷却
容器内に供給された大気圧で過冷却状態の液体窒素中に
前記超電導部材を浸漬させるようにしたことを特徴とす
る超電導部材冷却装置。
A cooling vessel, substantially open to the atmosphere, for containing and cooling the superconducting member;
A supply-side container substantially open to atmospheric pressure for containing liquid nitrogen to be supplied to the cooling container; liquid nitrogen supply means for supplying liquid nitrogen to the supply-side container; A refrigerator for cooling liquid nitrogen in the container to a supercooling temperature under atmospheric pressure; and for transferring liquid nitrogen cooled to a supercooling temperature under atmospheric pressure in the supply-side container to the cooling container. Transfer means; and so that the superconducting member is immersed in supercooled liquid nitrogen at atmospheric pressure supplied into the cooling vessel by the transfer means so as to leave a space above the liquid surface. A superconducting member cooling device, characterized in that:
【請求項2】 請求項1の超電導部材冷却装置におい
て、大気に実質的に開放された前記冷却容器内における
大気圧過冷却状態の液体窒素の液面下であってかつ超電
導部材よりも上方の位置に断熱部材が浸漬されている超
電導部材冷却装置。
2. The superconducting member cooling device according to claim 1, wherein the superconducting member is below a liquid nitrogen level in a supercooled state under atmospheric pressure in the cooling vessel substantially open to the atmosphere and above the superconducting member. A superconducting member cooling device in which a heat insulating member is immersed in a position.
【請求項3】 請求項1の超電導部材冷却装置におい
て、大気に実質的に開放された前記冷却容器内における
大気圧過冷却状態の液体窒素の液面上の空間に大気圧の
窒素ガスを供給するための窒素ガス供給手段を備えてい
る超電導部材冷却装置。
3. A superconducting member cooling apparatus according to claim 1, wherein nitrogen gas at atmospheric pressure is supplied to a space above the liquid surface of liquid nitrogen in an atmospheric pressure supercooled state in said cooling vessel substantially open to the atmosphere. Superconducting member cooling device provided with a nitrogen gas supply means for performing the operation.
【請求項4】 請求項1の超電導部材冷却装置におい
て、大気に実質的に開放された前記供給側容器内におけ
る液体窒素の液面下であってかつ前記移送手段により液
体窒素を冷却容器へ向けて汲み出す位置よりも上方の位
置に断熱部材が浸漬されている超電導部材冷却装置。
4. The superconducting member cooling device according to claim 1, wherein the liquid nitrogen is directed to the cooling container by the transfer means under the liquid nitrogen level in the supply-side container substantially open to the atmosphere. A superconducting member cooling device in which a heat insulating member is immersed in a position above a position where the heat is drawn out.
【請求項5】 請求項1の超電導部材冷却装置におい
て、大気に実質的に開放された前記供給側容器内におけ
る液体窒素の液面上の空間に大気圧の窒素ガスを供給す
るための窒素ガス供給手段を備えている超電導部材冷却
装置。
5. The superconducting member cooling apparatus according to claim 1, wherein nitrogen gas at atmospheric pressure is supplied to a space above the liquid nitrogen level in the supply-side container substantially open to the atmosphere. A superconducting member cooling device comprising a supply means.
JP15453497A 1997-05-28 1997-05-28 Superconducting member cooling device Expired - Fee Related JP2859250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15453497A JP2859250B2 (en) 1997-05-28 1997-05-28 Superconducting member cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15453497A JP2859250B2 (en) 1997-05-28 1997-05-28 Superconducting member cooling device

Publications (2)

Publication Number Publication Date
JPH10325661A true JPH10325661A (en) 1998-12-08
JP2859250B2 JP2859250B2 (en) 1999-02-17

Family

ID=15586368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15453497A Expired - Fee Related JP2859250B2 (en) 1997-05-28 1997-05-28 Superconducting member cooling device

Country Status (1)

Country Link
JP (1) JP2859250B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317846A (en) * 2000-02-28 2001-11-16 Taiyo Toyo Sanso Co Ltd Cooling device for superconductive member
JP2001345208A (en) * 2000-03-31 2001-12-14 Taiyo Toyo Sanso Co Ltd Superconducting-member cooling device
JP2007273740A (en) * 2006-03-31 2007-10-18 Toshiba Corp Superconducting apparatus
JP2010177677A (en) * 2000-02-28 2010-08-12 Taiyo Nippon Sanso Corp Cooling device for superconducting member
JP2011082343A (en) * 2009-10-07 2011-04-21 Fuji Electric Systems Co Ltd Cooling apparatus for superconduction equipment
JP2013140185A (en) * 2013-04-19 2013-07-18 National Institute For Materials Science Cryogenic temperature ultrasonic fatigue nondestructive test evaluation apparatus
JP2021025591A (en) * 2019-08-06 2021-02-22 大陽日酸株式会社 Low-temperature liquefied gas ooze-out device
CN113865262A (en) * 2021-09-24 2021-12-31 西安航天动力试验技术研究所 Supercooled liquid methane self-circulation online preparation system and method based on pressurization and temperature control
WO2023191742A1 (en) * 2022-03-31 2023-10-05 T.C. Ankara Universitesi Rektorlugu A heat exchange unit

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317846A (en) * 2000-02-28 2001-11-16 Taiyo Toyo Sanso Co Ltd Cooling device for superconductive member
JP4514346B2 (en) * 2000-02-28 2010-07-28 大陽日酸株式会社 Superconducting material cooling device
JP2010177677A (en) * 2000-02-28 2010-08-12 Taiyo Nippon Sanso Corp Cooling device for superconducting member
JP2001345208A (en) * 2000-03-31 2001-12-14 Taiyo Toyo Sanso Co Ltd Superconducting-member cooling device
JP4733842B2 (en) * 2000-03-31 2011-07-27 大陽日酸株式会社 Superconducting material cooling device
JP2007273740A (en) * 2006-03-31 2007-10-18 Toshiba Corp Superconducting apparatus
JP2011082343A (en) * 2009-10-07 2011-04-21 Fuji Electric Systems Co Ltd Cooling apparatus for superconduction equipment
JP2013140185A (en) * 2013-04-19 2013-07-18 National Institute For Materials Science Cryogenic temperature ultrasonic fatigue nondestructive test evaluation apparatus
JP2021025591A (en) * 2019-08-06 2021-02-22 大陽日酸株式会社 Low-temperature liquefied gas ooze-out device
CN113865262A (en) * 2021-09-24 2021-12-31 西安航天动力试验技术研究所 Supercooled liquid methane self-circulation online preparation system and method based on pressurization and temperature control
WO2023191742A1 (en) * 2022-03-31 2023-10-05 T.C. Ankara Universitesi Rektorlugu A heat exchange unit

Also Published As

Publication number Publication date
JP2859250B2 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
KR101142901B1 (en) Cooling system for superconducting power apparatus
US4369636A (en) Methods and apparatus for reducing heat introduced into superconducting systems by electrical leads
US20090121561A1 (en) Machine System with Thermosyphon Cooled Superconductor Rotor Winding
JP2859250B2 (en) Superconducting member cooling device
US20060218942A1 (en) Cryogen tank for cooling equipment
JP5228177B2 (en) Cryogenic cooling method and apparatus for high temperature superconductor devices
JP2008025858A (en) Subcooled low-temperature device
JPH04350906A (en) Method and apparatus for cooling oxide superconducting coil
JP3208069B2 (en) Superconducting member cooling device
JP2012049413A (en) Cooling device for superconducting member, and method for maintaining temperature of subcool liquid nitrogen in heat insulation vessel
JP2005344991A (en) Cryogenic cryostat
JP4514346B2 (en) Superconducting material cooling device
JP2002005552A (en) Cold-generating equipment and cooling apparatus in which superconductivity is applied for cooling through use of the equipment
JP4733842B2 (en) Superconducting material cooling device
JP5916517B2 (en) Cooling container
JP2001284665A (en) Superconducting material cooling device
CN209804586U (en) Scanning electron microscope refrigerating system based on low-temperature solid cooling
JP2010177677A (en) Cooling device for superconducting member
JP5217308B2 (en) Superconducting part cooling device and its operation method
JP2001289546A (en) Superconducting member cooling device
JP2005156051A (en) Superconductive member cooling device, and its control method
JPH11233840A (en) Cryostat and method of rising temperature thereof
JP4488695B2 (en) Cryogenic cooling device
JP2008091802A (en) Cryogenic container
JP2009243820A (en) Cryogenic cooling device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091204

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091204

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091204

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101204

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101204

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111204

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111204

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees