JP4728601B2 - Cooling system for superconducting power equipment - Google Patents

Cooling system for superconducting power equipment Download PDF

Info

Publication number
JP4728601B2
JP4728601B2 JP2004189117A JP2004189117A JP4728601B2 JP 4728601 B2 JP4728601 B2 JP 4728601B2 JP 2004189117 A JP2004189117 A JP 2004189117A JP 2004189117 A JP2004189117 A JP 2004189117A JP 4728601 B2 JP4728601 B2 JP 4728601B2
Authority
JP
Japan
Prior art keywords
gas
reservoir tank
liquefied gas
pressure
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004189117A
Other languages
Japanese (ja)
Other versions
JP2006012654A (en
Inventor
晋一 向山
登 石井
正史 八木
悟 丸山
達希 岡本
鈴木  寛
路晴 市川
俊裕 高橋
調 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Central Research Institute of Electric Power Industry
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Central Research Institute of Electric Power Industry filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2004189117A priority Critical patent/JP4728601B2/en
Priority to EP05751512A priority patent/EP1780482A4/en
Priority to PCT/JP2005/010936 priority patent/WO2006001203A1/en
Priority to KR1020067019841A priority patent/KR101142901B1/en
Priority to US11/630,889 priority patent/US20080202127A1/en
Priority to CN2005800196798A priority patent/CN1969158B/en
Publication of JP2006012654A publication Critical patent/JP2006012654A/en
Application granted granted Critical
Publication of JP4728601B2 publication Critical patent/JP4728601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/16Superconductive or hyperconductive conductors, cables, or transmission lines characterised by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0527Superconductors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Description

本発明は、液体窒素等の液化ガスによって冷却して超電導状態として産業利用することができる、超電導ケーブル、超電導バスライン、SMES、超電導変圧器等を冷却するための冷却システムに関するものであり、特に機器が高電圧状態で運転される超電導電力機器を冷却するための冷却システムに関する。   The present invention relates to a cooling system for cooling a superconducting cable, a superconducting bus line, a SMES, a superconducting transformer, etc., which can be industrially utilized as a superconducting state by being cooled by a liquefied gas such as liquid nitrogen. The present invention relates to a cooling system for cooling a superconducting power device in which the device is operated in a high voltage state.

超電導電力機器の一つとして、液体窒素等の液化ガスを冷却に用いる超電導ケーブルを例として、図6を参照して従来技術を説明する。超電導ケーブルの冷却システムとしては、特開平08−148044号公報に記載されたものが知られている。図6に示すように、従来の冷却システムは、リザーバータンク101からサブクール状態(液化ガスが液化ガスの飽和温度よりも低く冷却されている状態)の液化ガスをポンプ105によって加圧し、冷凍機108の熱交換器107で冷却した後にケーブル111に供給して、再度リザーバータンク101に戻す、という循環サイクルを繰り返すものである。   As one of superconducting power devices, the prior art will be described with reference to FIG. 6 by taking a superconducting cable using a liquefied gas such as liquid nitrogen for cooling. As a cooling system for a superconducting cable, one described in Japanese Patent Application Laid-Open No. 08-148044 is known. As shown in FIG. 6, the conventional cooling system pressurizes the liquefied gas in the subcooled state (the liquefied gas is cooled below the saturation temperature of the liquefied gas) from the reservoir tank 101 by the pump 105, and the refrigerator 108 The circulation cycle of supplying the cable 111 after cooling by the heat exchanger 107 and returning it to the reservoir tank 101 again is repeated.

超電導ケーブルの冷却の場合には、循環する液化ガスが気液混合状態になれば、圧力損失が増大して必要量の液化ガスを安定的に循環することができず、容量の大きな大型の循環ポンプを用意する必要がある。さらに、超電導ケーブルは、液化ガスを絶縁体中に含浸させて高い電気絶縁性能を維持する極低温電気絶縁方式を採用しているので、液化ガスの中にガスや気泡が混入していると、電気絶縁性能を著しく低下させるという問題があった。   In the case of cooling a superconducting cable, if the liquefied gas to be circulated is in a gas-liquid mixed state, the pressure loss increases and the required amount of liquefied gas cannot be circulated stably, and the large-capacity large-scale circulation It is necessary to prepare a pump. Furthermore, the superconducting cable uses a cryogenic electrical insulation system that maintains high electrical insulation performance by impregnating the liquefied gas into the insulator, so if gas or bubbles are mixed in the liquefied gas, There was a problem that the electrical insulation performance was significantly reduced.

そのために、従来の冷却システムでは、常に液化ガスをサブクール状態に維持して、気化しない状態で循環を行うために、例えば、液化ガスとして液体窒素を使用する場合には、リザーバータンク101内を、液化ガスよりも三重点が十分に低いガスである水素(H2)やヘリウム(He)をボンベ123などから供給して加圧状態にして、液化ガスの沸点を高くし、循環中において液化ガスが沸騰しない(即ち、気液混合状態にならない)ようにしている。
特開平08−148044号公報
Therefore, in the conventional cooling system, in order to always maintain the liquefied gas in the subcooled state and circulate without being vaporized, for example, when using liquid nitrogen as the liquefied gas, the inside of the reservoir tank 101 is Hydrogen (H 2 ) or helium (He), which is a gas having a sufficiently lower triple point than the liquefied gas, is supplied from a cylinder 123 or the like to increase the boiling point of the liquefied gas, and the liquefied gas is circulated. Does not boil (that is, it does not become a gas-liquid mixed state).
Japanese Patent Laid-Open No. 08-148044

従来技術のように、リザーバータンク内を、液化ガスよりも三重点が十分に低いガス、例えば、液化ガスとしての液体窒素をヘリウム(He)ガスで加圧した場合において、液体窒素の中に微量にHeガスが溶け込む現象が起きることが分かった。即ち、ヘリウム(He)は不活性ガスとして広く知られ、液体窒素中に溶け込まないと認識されていたが、現実には、液体窒素の中に微量にHeガスが溶け込むことが判明した。     When the pressure in the reservoir tank is sufficiently lower than the liquefied gas, for example, liquid nitrogen as the liquefied gas is pressurized with helium (He) gas as in the prior art, a very small amount is contained in the liquid nitrogen. It was found that the phenomenon that He gas melts into the gas. That is, helium (He) is widely known as an inert gas, and it was recognized that it does not dissolve in liquid nitrogen. However, in reality, it has been found that a very small amount of He gas dissolves in liquid nitrogen.

液体窒素の中に溶け込む量は非常に微量であるが、Heガスが溶け込んだ液化ガスを循環すると、例えば、配管が広がる比較的液化ガスの流速の遅くなる部分、または例えば、リザーバータンクよりバルブなどで絞られた後など液化ガスの圧力が急激に低くなる部分において、溶け込んだHeガスが液化ガス中に溶け込んだ状態を維持することができなくなって気泡となり、液体窒素中に混入して気液混合状態となる。   The amount dissolved in the liquid nitrogen is very small, but when the liquefied gas in which the He gas is dissolved is circulated, for example, the part where the flow rate of the liquefied gas that the pipe expands becomes relatively slow, or, for example, a valve from the reservoir tank, etc. In the part where the pressure of the liquefied gas suddenly decreases, such as after being squeezed in, the dissolved He gas can no longer maintain the state of being dissolved in the liquefied gas, resulting in bubbles, which are mixed into the liquid nitrogen and gas-liquid It becomes a mixed state.

また、超電導ケーブルや超電導電力機器が、その設置レイアウトの状態によって、冷却システムより高く位置する部分がある場合には、その部分において、発生した気泡が機器内の上部に溜り滞留して、最終的には液体窒素の冷却配管の中に充満して、液体窒素の循環ができなくなることが分かった。   Also, if there is a part where the superconducting cable or superconducting power equipment is located higher than the cooling system depending on the state of the installation layout, the generated air bubbles will collect and stay in the upper part of the equipment in that part. It was found that liquid nitrogen could not be circulated by filling the liquid nitrogen cooling pipe.

上述した現象は、数ヶ月という非常に長い時間により起こる現象であることが、発明者の実験により明らかになった。Heガスが液体窒素に含有され、さらに配管中で気液混合状態または冷却配管にガス相として充満すると、液体窒素の循環がスムーズにできない。更に、Heガスが他の液化ガスに比べて耐電圧特性が非常に小さいので、本来、液体窒素が高絶縁特性を有しているにもかかわらず、含有されたHeガスにより絶縁特性が低くなり、超電導電力機器の絶縁不良または絶縁破壊を起こす原因となる。   It has been clarified by the inventors' experiment that the phenomenon described above is a phenomenon that occurs in a very long time of several months. If He gas is contained in liquid nitrogen and the gas-liquid mixed state or cooling pipe is filled as a gas phase in the pipe, the liquid nitrogen cannot be circulated smoothly. Furthermore, since the withstand voltage characteristic of He gas is very small compared to other liquefied gases, the insulation characteristic is lowered by the contained He gas even though liquid nitrogen originally has high insulation characteristics. This may cause poor insulation or dielectric breakdown of superconducting power equipment.

この対策として、液化ガスと同じ種類のガスで、リザーバータンクを加圧することが考えられたが、リザーバータンクに貯溜される液体窒素は、沸点以下の温度の液体窒素であるために、加圧に用いられた窒素ガスがリザーバータンク内で沸点以下の液体窒素に触れると、加圧に用いた窒素ガスが冷却され液化する。そのために、加圧した圧力が減少し、常にボンベから窒素ガスを供給し続けなければ圧力を一定に保てないという問題点があり、その結果、大量の窒素ガスを消費し、その際に大量の液化熱を冷却システムに持ち込み熱負荷が増大するという問題があった。   As a countermeasure, it was considered to pressurize the reservoir tank with the same type of gas as the liquefied gas, but the liquid nitrogen stored in the reservoir tank is liquid nitrogen at a temperature below the boiling point, so the pressure is increased. When the used nitrogen gas comes into contact with liquid nitrogen having a boiling point or less in the reservoir tank, the nitrogen gas used for pressurization is cooled and liquefied. Therefore, the pressurized pressure decreases, and there is a problem that the pressure cannot be kept constant unless nitrogen gas is constantly supplied from the cylinder. As a result, a large amount of nitrogen gas is consumed, and a large amount of nitrogen gas is consumed. There was a problem that the heat load increased by bringing the liquefaction heat into the cooling system.

従って、この発明の目的は、加圧に用いた液化ガスより沸点の低いガスが液化ガス中に溶解して、液化ガスの循環の不安定性要因や、電気機器の絶縁に関するトラブルを起こさず、液化ガスをサブクール状態で長期間円滑に循環を行うことができる、超電導電力機器の冷却システムを提供することにある。   Therefore, the object of the present invention is to dissolve a gas having a lower boiling point than the liquefied gas used for pressurization in the liquefied gas, and to cause liquefaction without causing instability factors of the liquefied gas circulation and troubles regarding insulation of the electrical equipment. An object is to provide a cooling system for superconducting power equipment capable of smoothly circulating gas in a subcooled state for a long period of time.

本発明者は、上述した従来技術の問題点を解決すべく鋭意研究を重ねた。その結果、従来、加圧ガスとして使用していたヘリウム(He)ガスではなく、リザーバータンクを液化ガスと同種のガスで加圧することによって、液体窒素の中に微量のHeガスが溶け込むことを排除することができる。これによって、液化ガスの圧力が急激に低くなる部分において、Heガスが気泡となり、液体窒素中に混入して気液混合状態になり、液体窒素の循環がスムーズにできない、絶縁特性が劣化するという問題点を解決することができることが判明した。同様に、超電導電力機器の配置による高低差が所定値を超えると、発生した気泡が機器の上部に滞留し、更には冷却ループの中に充満して液体窒素が循環できなくなるという問題点も解決できることが判明した。   The present inventor has intensively studied to solve the above-mentioned problems of the prior art. As a result, rather than using helium (He) gas, which was conventionally used as a pressurized gas, pressurizing the reservoir tank with the same type of gas as liquefied gas eliminates the dissolution of a small amount of He gas into liquid nitrogen. can do. As a result, in the part where the pressure of the liquefied gas suddenly decreases, the He gas becomes bubbles, mixed in the liquid nitrogen and becomes a gas-liquid mixed state, the circulation of the liquid nitrogen cannot be performed smoothly, and the insulation characteristics deteriorate. It turns out that the problem can be solved. Similarly, if the height difference due to the arrangement of superconducting power equipment exceeds a predetermined value, the generated bubbles will stay in the upper part of the equipment and fill the cooling loop, making it impossible to circulate liquid nitrogen. It turns out that you can.

更に、液化ガスを加圧状態で貯溜するリザーバータンクの液面が、循環する液化ガスの戻りラインの出口よりも、少なくとも加圧ガスの溶け込み深さ+液面移動補正量だけ上部に位置していることによって、加圧に用いられた窒素ガスが液化されて、加圧した圧力が減少し常にボンベから窒素ガスを供給し続けなければ圧力を一定に保てないという問題点を解決することができることが判明した。従って、大量の窒素ガスを消費し、その際に大量の液化熱を冷却システムに持ち込み熱負荷が増大するという問題点が解決される。   Furthermore, the liquid level of the reservoir tank that stores the liquefied gas in a pressurized state is positioned at least above the outlet of the return line of the circulating liquefied gas by at least the depth of the pressurized gas plus the liquid level movement correction amount. This solves the problem that the nitrogen gas used for pressurization is liquefied, the pressurized pressure decreases, and the pressure cannot be kept constant unless nitrogen gas is continuously supplied from the cylinder. It turns out that you can. Therefore, the problem that a large amount of nitrogen gas is consumed and a large amount of liquefied heat is brought into the cooling system at that time is increased.

この発明は、上記研究結果に基づいてなされたものであって、この発明の超電導電力機器用冷却システムの第1の態様は、液体ガスを貯溜するリザーバータンク、循環ポンプ、液体ガスを冷却する熱交換器、および、液化ガスが循環する循環ループを備え、前記液化ガスを、循環ポンプを用いてサブクール状態で循環して超電導電力機器を冷却する超電導電力機器の冷却システムであって、リザーバータンクを前記液化ガスと同種のガスで加圧する加圧手段をさらに備え、前記液化ガスを加圧状態で貯溜するリザーバータンクの液面が、循環する液化ガスの戻りラインの出口よりも、少なくとも加圧ガスの溶け込み深さ+液面移動補正量だけ上部に位置していることを特徴とする超電導電力機器の冷却システムである。   The present invention has been made on the basis of the above research results. The first aspect of the cooling system for a superconducting power apparatus according to the present invention is a reservoir tank for storing liquid gas, a circulation pump, and heat for cooling the liquid gas. A cooling system for a superconducting power device, comprising a exchanger and a circulation loop through which the liquefied gas circulates, wherein the liquefied gas is circulated in a subcooled state using a circulation pump to cool the superconducting power device. The apparatus further comprises pressurizing means for pressurizing with the same kind of gas as the liquefied gas, and the liquid level of the reservoir tank for storing the liquefied gas in a pressurized state is at least pressurized gas from the outlet of the return line of the circulating liquefied gas This is a cooling system for a superconducting power device characterized in that it is located at the upper portion by the depth of penetration of + the liquid level movement correction amount.

この発明の超電導電力機器用冷却システムの第2の態様は、リザーバータンクを液化ガスと同種のガスで加圧する前記加圧手段は、前記液化ガスと同種のガスを高圧で貯めたガスボンベから、圧力調整弁を介して所定圧力で加圧することからなっていることを特徴とする、超電導電力機器の冷却システムである。   In a second aspect of the cooling system for superconducting power equipment according to the present invention, the pressurizing means for pressurizing the reservoir tank with the same kind of gas as the liquefied gas is supplied from a gas cylinder storing the same kind of gas as the liquefied gas at a high pressure. A cooling system for a superconducting power device, characterized by comprising pressurizing at a predetermined pressure via a regulating valve.

この発明の超電導電力機器用冷却システムの第3の態様は、リザーバータンクを液化ガスと同種のガスで加圧する前記加圧手段は、リザーバータンクからサブクール状態の液化ガスを送出する循環ポンプの出口から、前記超電導電力機器に送る液化ガスの一部と分岐してリザーバータンクに戻る配管によって、循環ポンプの吐出圧力を用いてリザーバータンクを加圧することからなっていることを特徴とする、超電導電力機器の冷却システムである。   According to a third aspect of the cooling system for superconducting power equipment according to the present invention, the pressurizing means for pressurizing the reservoir tank with the same kind of gas as the liquefied gas is provided from an outlet of a circulation pump for sending the liquefied gas in the subcooled state from the reservoir tank. The superconducting power device is characterized in that the reservoir tank is pressurized using the discharge pressure of the circulation pump by a pipe that branches off from a part of the liquefied gas to be sent to the superconducting power device and returns to the reservoir tank. The cooling system.

この発明の超電導電力機器用冷却システムの第4の態様は、リザーバータンクを液化ガスと同種のガスで加圧する前記加圧手段は、リザーバータンクからサブクール状態の液化ガスを送出する前記循環ポンプの出口から、超電導電力機器に送る液化ガスの一部と分岐してリザーバータンクに戻る配管に設けられた、液化ガスを気化させる気化器と圧力調整用の圧力調整弁からなっていることを特徴とする、超電導電力機器の冷却システムである。   According to a fourth aspect of the cooling system for a superconducting power apparatus of the present invention, the pressurizing means for pressurizing the reservoir tank with the same kind of gas as the liquefied gas has an outlet of the circulation pump for sending the liquefied gas in the subcooled state from the reservoir tank. From a vaporizer for vaporizing the liquefied gas and a pressure regulating valve for adjusting the pressure provided in a pipe branched from a part of the liquefied gas to be sent to the superconducting power device and returning to the reservoir tank This is a cooling system for superconducting power equipment.

この発明の超電導電力機器用冷却システムの第5の態様は、前記加圧手段の補助手段を更に備え、前記補助手段が、液化ガスと同種のガスをガスボンベから供給して加圧することからなっていることを特徴とする、超電導電力機器の冷却システムである。   A fifth aspect of the cooling system for superconducting power equipment according to the present invention further comprises auxiliary means for the pressurizing means, and the auxiliary means supplies and pressurizes a gas of the same type as the liquefied gas from a gas cylinder. A cooling system for a superconducting power device.

この発明の超電導電力機器用冷却システムの第6の態様は、前記加圧手段の補助手段を更に備え、前記補助手段が、リザーバータンクの気相部分に加温装置を配置して、リザーバータンク気相部のガスを過熱体積膨張させることからなっていることを特徴とする、超電導電力機器の冷却システムである。   The sixth aspect of the cooling system for superconducting power equipment according to the present invention further comprises auxiliary means for the pressurizing means, and the auxiliary means arranges a heating device in a gas phase portion of the reservoir tank, and A cooling system for superconducting power equipment, characterized in that the gas in the phase part is superheated and volume-expanded.

この発明によると、リザーバータンクを液化ガスと同種のガスで加圧するので、液体窒素中に気泡が混入することなく、液体窒素を円滑に循環し、絶縁特性にすぐれた超電導電力機器の冷却システムを提供することができる。更に、この発明によると、液化ガスを加圧状態で貯溜するリザーバータンクの液面が、循環する液化ガスの戻りラインの出口よりも、少なくとも加圧ガスの溶け込み深さ+液面移動補正量だけ上部に位置しているので、リザーバータンクの加圧に使用したガスが液化されることなく、加圧した圧力が減少することのない超電導電力機器の冷却システムを提供することができる。   According to the present invention, since the reservoir tank is pressurized with the same kind of gas as the liquefied gas, the liquid nitrogen can be smoothly circulated without introducing bubbles into the liquid nitrogen, and a cooling system for superconducting power equipment having excellent insulation characteristics can be provided. Can be provided. Further, according to the present invention, the liquid level of the reservoir tank that stores the liquefied gas in a pressurized state is at least the depth of the pressurized gas plus the liquid level movement correction amount from the outlet of the return line of the circulating liquefied gas. Since the gas used for pressurizing the reservoir tank is not liquefied, the superconducting power equipment cooling system in which the pressurized pressure does not decrease can be provided.

この発明の超電導電力機器用冷却システムを、図面を参照しながら詳細に説明する。
この発明の超電導電力機器用冷却システムは、液体ガスを貯溜するリザーバータンク、循環ポンプ、液体ガスを冷却する熱交換器、および、液化ガスが循環する循環ループを備え、液化ガスを、循環ポンプを用いてサブクール状態で循環して超電導電力機器を冷却する超電導電力機器の冷却システムであって、リザーバータンクを液化ガスと同種のガスで加圧する加圧手段をさらに備え、液化ガスを加圧状態で貯溜するリザーバータンクの液面が、循環する液化ガスの戻りラインの出口よりも、少なくとも加圧ガスの溶け込み深さ+液面移動補正量だけ上部に位置していることを特徴とする超電導電力機器の冷却システムである。
The cooling system for superconducting power equipment according to the present invention will be described in detail with reference to the drawings.
The cooling system for superconducting power equipment according to the present invention includes a reservoir tank for storing liquid gas, a circulation pump, a heat exchanger for cooling the liquid gas, and a circulation loop for circulating the liquefied gas. A cooling system for a superconducting power device that circulates in a subcooled state and cools the superconducting power device, further comprising pressurizing means for pressurizing the reservoir tank with the same kind of gas as the liquefied gas, and the liquefied gas in the pressurized state Superconducting power equipment characterized in that the liquid level of the reservoir tank to be stored is located at least above the outlet of the return line of the circulating liquefied gas by at least the depth of the pressurized gas plus the liquid level movement correction amount The cooling system.

液化ガスを加圧状態で貯溜するリザーバータンクの液面が、循環する液化ガスの戻りラインの出口よりも、少なくとも加圧ガスの溶け込み深さ+液面移動補正量だけ上部に位置していることが必要であることを以下に説明する。
加圧ガスの溶け込み深さと、圧力減少率との間の関係を実験によって調べた。図5は、加圧ガス溶け込み深さ[m]と圧力減少率[%]との関係を示す図である。
The liquid level of the reservoir tank that stores the liquefied gas in a pressurized state is positioned at least above the outlet of the return line of the liquefied liquefied gas at least by the penetration depth of the pressurized gas + the liquid level movement correction amount. It is explained below that is necessary.
The relationship between the penetration depth of the pressurized gas and the pressure reduction rate was investigated by experiment. FIG. 5 is a diagram showing the relationship between the pressurized gas penetration depth [m] and the pressure reduction rate [%].

図5において、加圧ガスがリザーバータンクの液面から溶け込む深さ(即ち、加圧ガス溶け込み深さ)を横軸に、液化によるリザーバータンク内の圧力の1時間当たりの減少率を縦軸にそれぞれ示す。実験条件として、リザーバータンクの内容積として、直径1m、高さ1mの容器を用いて、圧力を0.3MPaとした。その結果、図5から明らかなように、溶け込み深さが10cmまでは、圧力の減少率が顕著に大きく、溶け込み深さが概ね20cmまでは、加圧に使用した気相の窒素ガスが液に凝縮して、加圧した圧力の減少が依然として早い。一方、溶け込み深さを20cm以上に保てば、圧力の減少量を1%以下の小さい値に維持することができることが分かった。実際には、加圧ガスの溶け込み深さの他に、液体窒素の温度、圧力などの影響で液面が変わるために液面移動補正量を考慮する必要がある。   In FIG. 5, the horizontal axis indicates the depth at which the pressurized gas dissolves from the liquid level of the reservoir tank (that is, the depth of penetration of the pressurized gas), and the vertical axis indicates the rate of decrease in the pressure in the reservoir tank due to liquefaction per hour. Each is shown. As experimental conditions, a container having a diameter of 1 m and a height of 1 m was used as the internal volume of the reservoir tank, and the pressure was set to 0.3 MPa. As a result, as is apparent from FIG. 5, when the penetration depth is up to 10 cm, the rate of pressure decrease is remarkably large, and when the penetration depth is up to about 20 cm, the gaseous nitrogen gas used for pressurization becomes liquid. Condensation and pressurization pressure decrease is still fast. On the other hand, it was found that if the penetration depth was kept at 20 cm or more, the pressure decrease could be kept at a small value of 1% or less. Actually, in addition to the penetration depth of the pressurized gas, the liquid level changes due to the influence of temperature, pressure, etc. of liquid nitrogen, so it is necessary to consider the liquid level movement correction amount.

従って、液化ガスを加圧状態で貯溜するリザーバータンクの液面が、循環する液化ガスの戻りラインの出口よりも、少なくとも加圧ガスの溶け込み深さ+液面移動補正量だけ上部に位置していることが必要である。具体的には、加圧ガスの溶け込み深さ(20cm)+液面移動補正量(30cm)として50cm以上が好適である。上述したことは、リザーバータンクの容器形状への依存性は小さく、サイズが変わっても、必要深さは概ねこの通りとなる。従って、本願のシステムにおいては、リザーバータンクの容器高さとして、必要深さ(50cm以上が好ましい)が確保できる高さが必要となる。   Therefore, the liquid level of the reservoir tank that stores the liquefied gas in a pressurized state is positioned at least above the outlet of the return line of the circulated liquefied gas by at least the depth of the pressurized gas plus the liquid level movement correction amount. It is necessary to be. Specifically, the penetration depth of pressurized gas (20 cm) + the liquid level movement correction amount (30 cm) is preferably 50 cm or more. As described above, the dependency of the reservoir tank on the container shape is small, and the required depth is almost the same even if the size changes. Therefore, in the system of the present application, a height that can ensure the required depth (preferably 50 cm or more) is required as the container height of the reservoir tank.

上述したように、本発明は、超電導電力機器を液化ガスで冷却するシステムにおいて、加圧に用いた液化ガスより沸点の低いガスが液化ガス中に溶解して、液化ガスの循環の不安定性要因や、電気機器の絶縁に関するトラブルをおこさずに、液化ガスをサブクール状態で長期間循環を行うことのできる冷却システムを提供するものである。   As described above, the present invention is a system that cools a superconducting power device with a liquefied gas. A gas having a lower boiling point than the liquefied gas used for pressurization is dissolved in the liquefied gas, and the instability factor of the liquefied gas circulation In addition, the present invention provides a cooling system that can circulate liquefied gas in a subcooled state for a long period of time without causing problems related to insulation of electrical equipment.

上述した状態で加圧する加圧手段は、リザーバータンクに貯溜する液化ガスと同種のガスで、リザーバータンクを所定の圧力に加圧することからなっている。加圧するガスが液化ガスで冷却されて液化することを防ぐために、リザーバータンク内にある循環ポンプの戻り配管の出口に対して、リザーバータンクの液面が少なくとも20cm以上、好ましくは50cm以上高い位置にある。   The pressurizing means for pressurizing in the above-described state consists of pressurizing the reservoir tank to a predetermined pressure with the same kind of gas as the liquefied gas stored in the reservoir tank. In order to prevent the pressurized gas from being cooled and liquefied by the liquefied gas, the liquid level of the reservoir tank is at least 20 cm or higher, preferably 50 cm or higher, relative to the outlet of the return pipe of the circulation pump in the reservoir tank. is there.

さらに、加圧の手段として、高圧ガスボンベで加圧する手段に加えて、リザーバータンクの圧力より高い循環ポンプ出口圧力をリザーバータンクに戻すことで加圧する手段がある。循環ポンプ出口の圧力を用いる具体的な手段としては、リザーバータンクから液をくみ出し加圧して超電導電力機器に液送する循環ポンプの出口配管を分岐して、リザーバータンクの圧力より液化ガスの一部を取り出し、分岐した液化ガスを気化器を用いてガス化して、さらにリザーバータンクの圧力を所定の圧力に維持するための圧力に応じて開閉動作する圧力調整弁を介してリザーバータンクに戻す手段がある。   Further, as means for pressurization, in addition to means for pressurization with a high-pressure gas cylinder, there is means for pressurization by returning a circulation pump outlet pressure higher than the pressure of the reservoir tank to the reservoir tank. As a specific means of using the pressure at the circulation pump outlet, a part of the liquefied gas is divided from the pressure of the reservoir tank by branching the outlet pipe of the circulation pump that pumps the liquid from the reservoir tank and pressurizes it to send it to the superconducting power equipment. Means for gasifying the branched liquefied gas using a vaporizer and returning it to the reservoir tank via a pressure regulating valve that opens and closes according to the pressure for maintaining the pressure of the reservoir tank at a predetermined pressure. is there.

本発明の作用を説明するために、液化ガスとして液体窒素を用いた場合を説明する。液体窒素の、大気圧(1.013MPa)における沸点は77Kである。この液体窒素を0.3MPaに加圧すると、液体窒素の沸点は90K以上となる。したがって、77Kの液体窒素を0.3MPaまで加圧すると、液体窒素は気泡の発生がないサブクール状態となる。循環ポンプの取液部は、リザーバータンクの底にあり、配管で循環ポンプに結ばれている。   In order to explain the operation of the present invention, a case where liquid nitrogen is used as the liquefied gas will be described. The boiling point of liquid nitrogen at atmospheric pressure (1.013 MPa) is 77K. When this liquid nitrogen is pressurized to 0.3 MPa, the boiling point of liquid nitrogen becomes 90K or higher. Therefore, when 77K liquid nitrogen is pressurized to 0.3 MPa, the liquid nitrogen enters a subcooled state in which no bubbles are generated. The liquid collecting part of the circulation pump is located at the bottom of the reservoir tank and is connected to the circulation pump by piping.

一方、循環の戻りの配管はリザーバータンクに接続されるが、その配管出口の位置は液面より低い位置にある。循環ポンプより送出された液化ガスは、超電導電力機器を冷却してリザーバータンクに戻る。その際、配管出口は、液面より低い位置にあるので、戻りの液化ガスは、リザーバータンクの加圧ガス相に触れないで、循環ポンプの液体窒素取液口に移動して、再度、循環する。   On the other hand, the return pipe of the circulation is connected to the reservoir tank, but the position of the outlet of the pipe is lower than the liquid level. The liquefied gas delivered from the circulation pump cools the superconducting power device and returns to the reservoir tank. At that time, since the piping outlet is at a position lower than the liquid level, the returned liquefied gas does not touch the pressurized gas phase of the reservoir tank, moves to the liquid nitrogen inlet of the circulation pump, and circulates again. To do.

本発明では、液面の位置を、配管出口や循環ポンプの取液口から所定高さ(20cm)以上に高くしている(即ち、所定の液化ガス層を設けている)ので、それぞれの配管口にあるサブクールの冷たい液体窒素に対して、その上にある液体窒素の温度が液面に向かって順に高くなり、液面部の液体窒素温度は0.3MPaの液化ガスの沸点温度とほぼ同一となっている。そのために、過去、同種のガスでリザーバータンク内を加圧した場合、ガスは液化して、ガス供給が間に合わずに圧力が低下する問題があったが、今回の液化ガス層を置くことで、ほとんどガスが液化されないことが分かった。   In the present invention, the position of the liquid level is set higher than a predetermined height (20 cm) from the outlet of the pipe and the intake port of the circulation pump (that is, a predetermined liquefied gas layer is provided). The temperature of the liquid nitrogen above the subcooled cold liquid nitrogen in the mouth increases in order toward the liquid level, and the liquid nitrogen temperature at the liquid level is almost the same as the boiling point temperature of the liquefied gas of 0.3 MPa. It has become. Therefore, in the past, when the inside of the reservoir tank was pressurized with the same kind of gas, there was a problem that the gas was liquefied and the pressure decreased because the gas supply was not in time, but by placing this liquefied gas layer, It was found that almost no gas was liquefied.

本発明では、加圧の方法として新たに、ボンベで加圧する方法以外の方法についても考察した。本発明における自己の圧力で加圧する方法について図1を参照して説明する。最初、大気圧状態(a点)にあるリザーバー内部から液体窒素を汲み出して循環ポンプで液送する。循環ポンプの出口では、液体窒素が50L/minで流れ、入口に対して、液体窒素は0.2MPa加圧される(b点)。出口部の圧力を利用するにあたり、出口配管より分岐して加圧された液体窒素を、途中気化器でガスに気化してリザーバータンクに戻す事で、リザーバータンクの圧力を上昇させる。(矢印c)。   In the present invention, a method other than the method of pressurizing with a cylinder was also considered as a pressurizing method. The method of pressurizing with self pressure in the present invention will be described with reference to FIG. First, liquid nitrogen is pumped out from the inside of the reservoir in the atmospheric pressure state (point a) and is sent by a circulation pump. At the outlet of the circulation pump, liquid nitrogen flows at 50 L / min, and the liquid nitrogen is pressurized to 0.2 MPa against the inlet (point b). In utilizing the pressure at the outlet, the pressure of the reservoir tank is increased by vaporizing liquid nitrogen branched and pressurized from the outlet pipe into a gas by a vaporizer and returning it to the reservoir tank. (Arrow c).

それに応じて、循環ポンプの出口圧力も上昇(矢印d)し、リザーバータンクを常に加圧することができる。リザーバータンクの圧力が、上限設定圧力(P2)を越えると(e点)、配管につけたバルブが閉となり、リザーバータンクへのガスの供給が停止する。その後、リザーバー内部では、ガス相の窒素ガスが窒素ガスの三重点以下の液体窒素で冷やされて、ガス相の窒素ガスは液化して液体窒素になる。液化してガス体積が減少した分、リザーバータンクの圧力が減少する(矢印f)。下限設定圧力(P1)となると(g点)、バルブが開となり、再び循環ポンプ出口の圧力でリザーバータンク内部に窒素ガスが供給されリザーバータンクの圧力が加圧される。   Accordingly, the outlet pressure of the circulation pump is also increased (arrow d), and the reservoir tank can be constantly pressurized. When the pressure in the reservoir tank exceeds the upper limit set pressure (P2) (point e), the valve attached to the piping is closed and the gas supply to the reservoir tank is stopped. Thereafter, inside the reservoir, the nitrogen gas in the gas phase is cooled with liquid nitrogen below the triple point of the nitrogen gas, and the nitrogen gas in the gas phase is liquefied to become liquid nitrogen. The pressure in the reservoir tank decreases by the amount of gas volume decreased due to liquefaction (arrow f). When the lower limit set pressure (P1) is reached (point g), the valve is opened, and nitrogen gas is again supplied into the reservoir tank by the pressure at the circulation pump outlet, and the pressure in the reservoir tank is increased.

配管の中を低温の窒素ガスが流れるために配管やバルブを凍らせる恐れがあり、気化器の役割として、それを防ぐために液体窒素をガス化して室温まで昇温する。気化器として、配管にヒータを巻いたり、配管を水などの中を通したり、また配管にフィンを取り付けて外気との熱交換で昇温する方法がある。また、バルブの役割としては、単にポンプから分岐した配管でガスを送り続けると、リザーバータンクの圧力は上昇し続け、リザーバータンクの設計圧力以上になる可能性があるために、リザーバータンクの圧力が所定の圧力以上になると閉の状態になりガスによる加圧を停止し、所定の圧力以下になると開の状態になり加圧して自動的に一定の圧力を保持する機能を持つ。   Since low-temperature nitrogen gas flows through the piping, the piping and valves may freeze, and as a vaporizer, liquid nitrogen is gasified to raise the temperature to room temperature in order to prevent it. As a vaporizer, there are a method in which a heater is wound around a pipe, a pipe is passed through water or the like, and fins are attached to the pipe to increase the temperature by heat exchange with outside air. In addition, as the valve functions, if gas continues to be sent through a pipe branched from the pump, the pressure in the reservoir tank will continue to rise and may exceed the design pressure of the reservoir tank. When the pressure exceeds a predetermined pressure, the gas is closed and pressurization by the gas is stopped. When the pressure is lower than the predetermined pressure, the gas is opened and the pressure is automatically maintained to maintain a constant pressure.

なお、リザーバータンクの容量が大きい場合には、所定の圧力まで加圧するのに大量の窒素ガスを必要とするので、別に窒素ボンベを用意して、リザーバータンクの圧力を所定の圧力まで加圧することもできる。また、リザーバータンクの内部の気相部分にヒータなどの加温装置を配置して、リザーバータンク内のガスを加圧膨張させて加圧する方法も併用することが可能である。
以下に、実施例によって、この発明を更に詳細に説明する。
If the capacity of the reservoir tank is large, a large amount of nitrogen gas is required to pressurize to a predetermined pressure, so prepare a separate nitrogen cylinder and pressurize the reservoir tank to the predetermined pressure. You can also. It is also possible to use a method in which a heating device such as a heater is disposed in the gas phase portion inside the reservoir tank, and the gas in the reservoir tank is pressurized and expanded to pressurize it.
Hereinafter, the present invention will be described in more detail by way of examples.

実施例1
図2は、この発明の超電導電力機器の冷却システムの1つの実施例を示す図である。液化ガスとしては、液体窒素を用いている。液体窒素は、リザーバータンク1に貯溜されている。リザーバータンク1は、2重の容器構造となっていて、2重容器の間は、断熱材が内側容器1bを取り囲むように施工され、さらに熱浸入を低減するために真空状態に維持されている。さらに、リザーバータンクは密封容器であり、内部を加圧することでできるようになっている。
Example 1
FIG. 2 is a diagram showing one embodiment of a cooling system for a superconducting power device according to the present invention. Liquid nitrogen is used as the liquefied gas. Liquid nitrogen is stored in the reservoir tank 1. The reservoir tank 1 has a double container structure, and between the double containers, a heat insulating material is constructed so as to surround the inner container 1b, and is maintained in a vacuum state in order to further reduce heat penetration. . Further, the reservoir tank is a sealed container, and can be formed by pressurizing the inside.

リザーバータンクの底には、循環ポンプへつながる液取口3があり、そこから直径3cmの口径の配管4で循環ポンプ5の入口までつながっている。循環ポンプ5は、渦流式の回転式のポンプである。フィン5cを回転させるためのモータ5aとフィンの間は、伝導による熱の流入を抑制するために、約50cmの長軸の軸5bでつながれている。   At the bottom of the reservoir tank, there is a liquid inlet 3 connected to the circulation pump, from which it is connected to the inlet of the circulation pump 5 by a pipe 4 having a diameter of 3 cm. The circulation pump 5 is a vortex type rotary pump. Between the motor 5a for rotating the fin 5c and the fin, a long shaft 5b of about 50 cm is connected in order to suppress heat inflow due to conduction.

また、フィン自身は、真空容器内部5eに配置して、外界からの熱侵入を抑制するようになっている。本発明の回転式のポンプは、50Hzの回転数で、液体窒素流量として、30L/minの流量を流すことができ、また入口と出口の圧力差として0.2MPaの吐出圧を得ることができる。ポンプ出口からは直径3cmの配管6で、その先冷凍機の熱交換器7につながっている。   Moreover, the fin itself is arrange | positioned in the vacuum vessel inside 5e, and suppresses the heat | fever penetration | invasion from the outside. The rotary pump of the present invention can flow a flow rate of 30 L / min as a flow rate of liquid nitrogen at a rotation speed of 50 Hz, and can obtain a discharge pressure of 0.2 MPa as a pressure difference between the inlet and the outlet. . From the pump outlet, a pipe 6 having a diameter of 3 cm is connected to a heat exchanger 7 of the freezer.

冷凍機8は、GM冷凍機またはスターリング冷凍機などからなり、寒冷を作る低温ヘッドに熱交換器がつながり、循環する液体窒素を低温に冷却している。本発明では、1kWの冷凍能力をもつスターリング冷凍機を用いており、30L/minの液体窒素が、冷凍機で冷却された熱交換器を通過することで、入口で77Kであったものを74Kまで冷却することができる。   The refrigerator 8 is composed of a GM refrigerator, a Stirling refrigerator, or the like, and a heat exchanger is connected to a low-temperature head for generating cold, and the circulating liquid nitrogen is cooled to a low temperature. In the present invention, a Stirling refrigerator having a refrigeration capacity of 1 kW is used, and 30 L / min of liquid nitrogen passes through a heat exchanger cooled by the refrigerator, so that what was 77 K at the inlet is 74 K. Can be cooled down to.

冷凍機で冷却された液体窒素は、直径3cmの配管9で超電導電力機器の入口10に水密につながれている。本実施例の超電導ケーブル11を冷却するための冷却システムにおいては、超電導ケーブル内を冷凍機で冷やされた液体窒素が流通することによって、超電導ケーブルを冷却する。超電導ケーブルを冷却した液体窒素は、温度が上昇するが、上昇した温度は沸点以下であるために液体窒素中に気泡の発生のないサブクール状態を維持している。そのため、500mの超電導ケーブルでも圧力損失は0.1MPa以下であり、十分小さく、安定して液体窒素を流すことができる。   The liquid nitrogen cooled by the refrigerator is water-tightly connected to the inlet 10 of the superconducting power equipment by a pipe 9 having a diameter of 3 cm. In the cooling system for cooling the superconducting cable 11 of this embodiment, the superconducting cable is cooled by circulating liquid nitrogen cooled by a refrigerator in the superconducting cable. The temperature of the liquid nitrogen that has cooled the superconducting cable is increased, but since the increased temperature is lower than the boiling point, a subcooled state in which no bubbles are generated is maintained in the liquid nitrogen. Therefore, even with a 500 m superconducting cable, the pressure loss is 0.1 MPa or less, which is sufficiently small and allows liquid nitrogen to flow stably.

また、気泡の発生しない液体窒素が超電導ケーブルの電気絶縁層に滲みこんでいるために、良好な電気絶縁を保持することができる。超電導ケーブルの出口12を出た液体窒素は、配管13により、リザーバータンク1に戻ることによって、循環ループが形成される。リザーバータンク1、循環ポンプ2、冷凍機の熱交換器3、超電導ケーブル4、およびこれら機器を結ぶ窒素配管は全て外界からの侵入熱を低減するために、真空断熱を用いた2重容器構造となっている。   In addition, since liquid nitrogen that does not generate bubbles penetrates into the electrical insulation layer of the superconducting cable, good electrical insulation can be maintained. The liquid nitrogen that has exited the outlet 12 of the superconducting cable returns to the reservoir tank 1 through the pipe 13 to form a circulation loop. The reservoir tank 1, the circulation pump 2, the heat exchanger 3 of the refrigerator, the superconducting cable 4, and the nitrogen piping connecting these devices all have a double container structure using vacuum insulation in order to reduce intrusion heat from the outside. It has become.

リザーバータンクへ戻った配管13は、リザーバータンクの上部から底部まで届く配管14であって、リザーバータンクの底部に出口15から、液をリザーバータンクに戻す。また、循環ポンプに結ばれる液取口3も、リザーバータンクの底部に位置する。循環中において、リザーバータンクの液体窒素は、出口15の位置に対して少なくとも20cm以上高い位置に液面2があるように窒素が溜められている。   The pipe 13 returned to the reservoir tank is a pipe 14 that reaches from the top to the bottom of the reservoir tank, and returns the liquid from the outlet 15 to the bottom of the reservoir tank to the reservoir tank. A liquid inlet 3 connected to the circulation pump is also located at the bottom of the reservoir tank. During the circulation, the nitrogen in the reservoir tank is stored so that the liquid level 2 is at least 20 cm higher than the position of the outlet 15.

本発明の循環ポンプの出口圧力によってリザーバータンクを加圧する方法は、ポンプ出口の配管6から、直径6mmのステンレス製の配管16が分岐されて取り出されている。配管16の内部を通る液体窒素は、循環ポンプの真空容器から出た後に、気化器17を通り、全てが液体窒素から常温の窒素ガスに変わる。   In the method of pressurizing the reservoir tank by the outlet pressure of the circulation pump of the present invention, a stainless steel pipe 16 having a diameter of 6 mm is branched and taken out from the pipe 6 at the pump outlet. The liquid nitrogen passing through the inside of the pipe 16 passes through the vaporizer 17 after leaving the vacuum container of the circulation pump, and all changes from liquid nitrogen to nitrogen gas at room temperature.

気化器としては、本実施例では、温水容器の内部に銅製の6mm配管が、6mコイル形状に巻かれたものを使用しており、温水に浸されて内部の液体窒素を昇温している。気化器としては、本実施例以外でも、たとえばコイルの外側にヒータが巻きつけられて、通電によるヒータ発熱で昇温する方法や、配管にフィンが取り付けられて、大気との熱交換で暖める方式など、内部の液体窒素を室温のガスにできるものであれば良い。気化器17を出た配管18には、出口圧力が所定の圧力以下になるとガスを流し、所定の圧力以上になるとガスを止める圧力制御機能を持つバルブ19が取り付けられている。バルブ19を出た配管20は、リザーバータンクの上部に取り付けられて、リザーバータンクを加圧できるようになっている。   As the vaporizer, in this embodiment, a 6 mm pipe made of copper wound in a 6 m coil shape is used inside the hot water container, and the liquid nitrogen inside is heated by being immersed in the hot water. . As a vaporizer, in addition to the present embodiment, for example, a method in which a heater is wound around the outside of the coil and the temperature is increased by heating the heater by energization, or a method in which fins are attached to the piping and heat is exchanged with the atmosphere. Any material that can convert the liquid nitrogen inside into a gas at room temperature may be used. The pipe 18 exiting the vaporizer 17 is provided with a valve 19 having a pressure control function for flowing a gas when the outlet pressure becomes a predetermined pressure or lower and stopping the gas when the outlet pressure becomes a predetermined pressure or higher. The pipe 20 exiting the valve 19 is attached to the upper part of the reservoir tank so that the reservoir tank can be pressurized.

なお、気化器17を通過した以降の配管18、20は室温であるので特に断熱構造にする必要はないが、循環ポンプ出口から気化器までの配管16は、発泡ウレタンなどの断熱材で囲われているほうが、配管16に霜がつくことが無く、美観上好適である。なお、バルブ19は、低温で動作するバルブを用いれば、バルブ19と気化器17の位置を逆にすることもできるが、低温用のバルブは常温用に比べて高価であり、経済的には適当な配置とはならない。なお、本実施例としては、圧力取り出しの配管16をポンプ出口の配管6より取り出したが、冷凍機の熱交換器の出口の配管9でも、超電導機器の入口部10からでもリザーバータンクの圧力より高い部分であれば、どこから取り出しても本発明の目的を達成できるもので、その意味でポンプ出口を単にポンプの出口直近を示すのではなく、ポンプの出口より下流のすべてを総称している。   Since the pipes 18 and 20 after passing through the vaporizer 17 are at room temperature, there is no need for a heat insulation structure, but the pipe 16 from the circulation pump outlet to the vaporizer is surrounded by a heat insulating material such as urethane foam. However, the piping 16 does not form frost and is more suitable for aesthetic reasons. If the valve 19 is a valve that operates at a low temperature, the positions of the valve 19 and the vaporizer 17 can be reversed. However, the low temperature valve is more expensive than the normal temperature, and economically. It is not an appropriate arrangement. In this embodiment, the pressure extraction pipe 16 is taken out from the pump outlet pipe 6. However, the pressure of the reservoir tank can be determined from the pipe 9 at the outlet of the heat exchanger of the refrigerator or the inlet 10 of the superconducting device. If it is a high part, the object of the present invention can be achieved regardless of where it is taken out. In this sense, the pump outlet does not simply indicate the immediate vicinity of the pump outlet, but generically refers to everything downstream from the pump outlet.

実施例2
実施例1では、循環ポンプがリザーバータンクの外にある場合について説明したが、循環ポンプがリザーバータンクの内部にある場合においても本発明を実施することができる。図3は、この発明の超電導電力機器の冷却システムの他の1つの態様の1つの部分を示す図である。即ち、図3に、冷却システムのうち、本実施例を説明するために、リザーバータンク部の抽出図を示す。循環ポンプ5のうち、液を送るフィン部5cがリザーバータンクの液中にあり、モータ5aの回転を長軸5bで伝えている。液体窒素は、リザーバータンクから汲み出され、配管6を通り、リザーバータンクを出て、液体窒素を冷却する冷凍機につながっている。
加圧用の配管は、この場合、リザーバータンクから出た配管6の部分に付けられ、その後は実施例1と同じく、気化器17、バルブ19を通して、リザーバータンクに戻る。
Example 2
In the first embodiment, the case where the circulation pump is outside the reservoir tank has been described. However, the present invention can be implemented even when the circulation pump is inside the reservoir tank. FIG. 3 is a diagram showing a part of another aspect of the cooling system for a superconducting power device according to the present invention. That is, FIG. 3 shows an extraction diagram of the reservoir tank portion for explaining the present embodiment in the cooling system. Of the circulation pump 5, a fin portion 5c for sending the liquid is in the liquid in the reservoir tank, and the rotation of the motor 5a is transmitted by the long shaft 5b. Liquid nitrogen is pumped out of the reservoir tank, passes through the pipe 6, exits the reservoir tank, and is connected to a refrigerator that cools the liquid nitrogen.
In this case, the pressurizing piping is attached to the portion of the piping 6 coming out of the reservoir tank, and thereafter returns to the reservoir tank through the vaporizer 17 and the valve 19 as in the first embodiment.

実施例3
実施例1では、リザーバータンクの加圧手段としては、ポンプ出口からのガスによるものだけである。この場合、配管が6mmと細いうえに、圧力もポンプの吐出圧力分しかないために、ガス供給も少なく、所定の圧力になるのに非常に長い時間がかかる。特にリザーバータンクが大型になると、数十時間かかる。そこで、図4に示すように、補助手段として、リザーバータンクに外部配管21をつけて高圧の窒素ボンベ22や窒素カードルからガスを供給する。また、リザーバータンク内部の気相部分が低温に冷えると、液化が促進してしまうので、気相部分にヒータ23を配置して液化を抑制してもよい。
Example 3
In the first embodiment, the pressurizing means for the reservoir tank is only by gas from the pump outlet. In this case, since the pipe is as thin as 6 mm and the pressure is only the discharge pressure of the pump, the gas supply is small and it takes a very long time to reach a predetermined pressure. Especially when the reservoir tank is large, it takes tens of hours. Therefore, as shown in FIG. 4, as auxiliary means, an external pipe 21 is attached to the reservoir tank, and gas is supplied from a high-pressure nitrogen cylinder 22 or nitrogen curdle. Further, since the liquefaction is accelerated when the gas phase portion inside the reservoir tank is cooled to a low temperature, the heater 23 may be arranged in the gas phase portion to suppress the liquefaction.

この発明によると、加圧に用いた液化ガスより沸点の低いガスが液化ガス中に溶解して、液化ガスの循環の不安定性要因や、電気機器の絶縁に関するトラブルを起こさず、液化ガスをサブクール状態で長期間循環を行うことのできる、超電導電力機器の冷却システムを提供することができ、産業上利用価値が高い。   According to the present invention, a gas having a boiling point lower than that of the liquefied gas used for pressurization is dissolved in the liquefied gas, and the liquefied gas is subcooled without causing instability of circulation of the liquefied gas and troubles relating to insulation of the electrical equipment. It is possible to provide a cooling system for superconducting power equipment that can circulate for a long time in a state, and has high industrial utility value.

図1は、本発明の、循環ポンプ出口圧力でリザーバータンクを加圧する方法を説明する図である。FIG. 1 is a diagram illustrating a method of pressurizing a reservoir tank with a circulation pump outlet pressure according to the present invention. 図2は、本発明の実施例1を説明するための冷却システム構成図である。FIG. 2 is a configuration diagram of a cooling system for explaining the first embodiment of the present invention. 図3は、本発明の実施例2を説明するためのリザーバータンク近傍の構成図である。FIG. 3 is a configuration diagram in the vicinity of the reservoir tank for explaining the second embodiment of the present invention. 図4は、本発明の実施例3を説明するためのリザーバータンク近傍の構成図である。FIG. 4 is a configuration diagram in the vicinity of the reservoir tank for explaining the third embodiment of the present invention. 図5は、加圧ガス溶け込み深さ[m]と圧力減少率[%]との関係を示す図である。FIG. 5 is a diagram showing the relationship between the pressurized gas penetration depth [m] and the pressure reduction rate [%]. 図6は、従来の超電導ケーブルの冷却システムを説明する図である。FIG. 6 is a diagram for explaining a conventional superconducting cable cooling system.

符号の説明Explanation of symbols

1 リザーバータンク
1b リザーバータンク内側容器
2 リザーバータンク内 液体窒素液面
3 液取口
4、6、9 送り側液体窒素循環配管
5 循環ポンプ
5a 循環ポンプモーター
5b 循環ポンプ長軸
5c フィン
5e 真空容器
7 冷凍機熱交換器
8 冷凍機
10 超電導電力機器の入口
11 超電導ケーブル
12 超電導ケーブルの出口
13 戻り側液体窒素循環配管
14 リザーバータンク内の窒素戻り配管
15 窒素戻り配管出口
16、18、20 加圧用分岐配管
17 気化器
19 バルブ
21 加圧用外部配管
22 高圧の窒素ボンベ
23 リザーバータンク内部のヒータ
DESCRIPTION OF SYMBOLS 1 Reservoir tank 1b Reservoir tank inner container 2 Reservoir tank inside Liquid nitrogen liquid level 3 Liquid inlet 4, 6, 9 Feed side liquid nitrogen circulation piping 5 Circulation pump 5a Circulation pump motor 5b Circulation pump long axis 5c Fin 5e Vacuum container 7 Freezing Machine heat exchanger 8 Refrigerator 10 Inlet of superconducting power equipment 11 Superconducting cable 12 Outlet of superconducting cable 13 Return-side liquid nitrogen circulation pipe 14 Nitrogen return pipe in reservoir tank 15 Nitrogen return pipe outlet 16, 18, 20 Pressurizing branch pipe 17 Vaporizer 19 Valve 21 External piping for pressurization 22 High-pressure nitrogen cylinder 23 Heater inside reservoir tank

Claims (4)

循環する液化ガスの戻りラインの出口を有するとともに液化ガスを貯溜するリザーバータンク、循環ポンプ、液化ガスを冷却する熱交換器、および、液化ガスが循環する循環ループを備え、前記循環ループを循環するサブクール状態の液化ガスにより超電導電力機器を冷却する超電導電力機器の冷却システムであって、
(A)前記リザーバータンクを前記液化ガスと同種のガスで加圧する加圧手段備え、
(B)前記加圧手段により加圧下に置かれる前記リザーバータンクは密封容器であり、
(C)前記加圧ガスが前記リザーバータンクにおいて液化するのを抑制する液化抑制機構を備え、
(D)前記液化抑制機構は、前記リザーバータンクの液面よりも、少なくとも加圧ガスの溶け込み深さ+液面移動補正量だけ下部に位置する前記出口を有し、前記溶け込み深さは少なくとも20cmである、超電導電力機器の冷却システム。
Reservoir tank for reserving a with liquefied gas having an outlet return line of the circulating liquefied gas, a circulating pump, a heat exchanger for cooling the liquefied gas, and comprises a circulation loop liquefied gas is circulated, circulated through the circulation loop A superconducting power equipment cooling system that cools a superconducting power equipment with a liquefied gas in a subcooled state ,
(A) pressurizing means for pressurizing the reservoir tank with the same kind of gas as the liquefied gas;
(B) the reservoir tank placed under pressure by the pressurizing means is a sealed container;
(C) a liquefaction suppression mechanism that suppresses liquefaction of the pressurized gas in the reservoir tank;
(D) The liquefaction suppression mechanism has the outlet located at least below the liquid level of the reservoir tank by the depth of the pressurized gas plus the liquid level movement correction amount, and the penetration depth is at least 20 cm. in a cooling system of the superconducting power apparatus.
リザーバータンクを液化ガスと同種のガスで加圧する前記加圧手段は、前記液化ガスと同種のガスを高圧で貯めたガスボンベから、圧力調整弁を介して所定圧力で加圧する手段を備える、請求項1に記載の超電導電力機器の冷却システム。 The pressurizing means for pressurizing the reservoir tank with the same kind of gas as the liquefied gas comprises means for pressurizing at a predetermined pressure via a pressure regulating valve from a gas cylinder storing the same kind of gas as the liquefied gas at a high pressure. The cooling system for superconducting power equipment according to 1. リザーバータンクを液化ガスと同種のガスで加圧する前記加圧手段は、リザーバータンクからサブクール状態の液化ガスを送出する循環ポンプの出口から、前記超電導電力機器に送る液化ガスの一部分岐してリザーバータンクに戻る配管と、この配管に設けられた、液化ガスを気化させる気化器および圧力調整用の圧力調整弁を備える、請求項1に記載の超電導電力機器の冷却システム。 The pressurizing means for pressurizing the reservoir tank with the same kind of gas as the liquefied gas branches a part of the liquefied gas to be sent to the superconducting power device from the outlet of the circulation pump that sends the subcooled liquefied gas from the reservoir tank. The cooling system for a superconducting power device according to claim 1, comprising a pipe returning to the reservoir tank, a vaporizer for vaporizing the liquefied gas, and a pressure regulating valve for regulating pressure, provided in the pipe . 前記液化抑制機構は、さらに、前記リザーバータンクの気相部分に配置した加温装置を有し、前記加温装置により、前記リザーバータンク気相部分のガスを加熱体積膨張させることを特徴とする請求項に記載の超電導電力機器の冷却システム。 The liquefaction suppression mechanism further includes a heating device disposed in a gas phase portion of the reservoir tank , and the heating device causes the gas in the gas phase portion of the reservoir tank to be heated and expanded by the heating device. Item 2. The cooling system for superconducting power equipment according to Item 1 .
JP2004189117A 2004-06-28 2004-06-28 Cooling system for superconducting power equipment Active JP4728601B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004189117A JP4728601B2 (en) 2004-06-28 2004-06-28 Cooling system for superconducting power equipment
EP05751512A EP1780482A4 (en) 2004-06-28 2005-06-15 Cooling system for superconducting power apparatus
PCT/JP2005/010936 WO2006001203A1 (en) 2004-06-28 2005-06-15 Cooling system for superconducting power apparatus
KR1020067019841A KR101142901B1 (en) 2004-06-28 2005-06-15 Cooling system for superconducting power apparatus
US11/630,889 US20080202127A1 (en) 2004-06-28 2005-06-15 Cooling System for Superconducting Power Apparatus
CN2005800196798A CN1969158B (en) 2004-06-28 2005-06-15 Cooling system for superconducting power apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004189117A JP4728601B2 (en) 2004-06-28 2004-06-28 Cooling system for superconducting power equipment

Publications (2)

Publication Number Publication Date
JP2006012654A JP2006012654A (en) 2006-01-12
JP4728601B2 true JP4728601B2 (en) 2011-07-20

Family

ID=35779645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004189117A Active JP4728601B2 (en) 2004-06-28 2004-06-28 Cooling system for superconducting power equipment

Country Status (6)

Country Link
US (1) US20080202127A1 (en)
EP (1) EP1780482A4 (en)
JP (1) JP4728601B2 (en)
KR (1) KR101142901B1 (en)
CN (1) CN1969158B (en)
WO (1) WO2006001203A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013043A1 (en) * 2006-07-24 2008-01-31 The Furukawa Electric Co., Ltd. Superconducting wire, superconducting conductor and superconducting cable
WO2008015941A1 (en) * 2006-08-02 2008-02-07 The Furukawa Electric Co., Ltd. Composite superconducting wire rod, method for manufacturing composite superconducting wire rod, and superconducting cable
KR100920883B1 (en) 2008-01-25 2009-10-09 엘에스전선 주식회사 Superconducting Cable to Improve Cooling Ability
US8280467B2 (en) * 2008-10-03 2012-10-02 American Superconductor Corporation Electricity transmission cooling system
KR101640607B1 (en) * 2010-01-21 2016-07-19 엘에스전선 주식회사 Cooling apparatus of superconduction cable line
DE102010028750B4 (en) * 2010-05-07 2014-07-03 Bruker Biospin Gmbh Low-loss cryostat arrangement
DE102011002622A1 (en) * 2011-01-13 2012-07-19 Siemens Aktiengesellschaft Cooling device for a superconductor and superconducting synchronous machine
CH706385B1 (en) * 2011-02-25 2015-05-15 Maekawa Seisakusho Kk cooling system for a superconducting cable.
US20130090242A1 (en) * 2011-10-05 2013-04-11 Varian Semiconductor Equipment Associates, Inc. Techniques for Sub-Cooling in a Superconducting System
JP6046341B2 (en) * 2011-12-14 2016-12-14 株式会社前川製作所 Cooling device for superconducting power supply system
JP5916517B2 (en) * 2012-05-29 2016-05-11 古河電気工業株式会社 Cooling container
JP5991096B2 (en) * 2012-09-07 2016-09-14 富士電機株式会社 Method and apparatus for heating superconducting equipment
CN102881381A (en) * 2012-09-27 2013-01-16 张家港韩中深冷科技有限公司 Superconducting cable cooling system
JP6048647B2 (en) * 2012-09-27 2016-12-21 住友電気工業株式会社 Cooling system
JP6180735B2 (en) * 2012-12-26 2017-08-16 株式会社前川製作所 Cooling system and cooling method for superconducting device
KR101368379B1 (en) * 2012-12-26 2014-02-28 전승채 Cryogenic storage tank system and auto flow path selector valve therefor
KR101388510B1 (en) * 2013-05-23 2014-04-23 전승채 Auto flow path selector valve for cryogenic storage tank
WO2014104643A1 (en) * 2012-12-26 2014-07-03 Jeon Seung Chae System for liquefied gas storage tank having ultra-low temperature and automatic flow path conversion valve for liquefied gas storage tank having ultra-low temperature
JP6084547B2 (en) * 2013-10-18 2017-02-22 ジャパンスーパーコンダクタテクノロジー株式会社 Cryostat
KR101569650B1 (en) 2015-03-25 2015-11-17 한국기계연구원 Pressurization system using floating heater for cryogenic pressure vessel
JP2016217616A (en) * 2015-05-20 2016-12-22 株式会社 フジヒラ Cryogenic temperature cooling device
KR102337181B1 (en) * 2015-05-22 2021-12-09 한국전력공사 Cooling system for superconducting machine
CN105402971B (en) * 2016-01-07 2018-06-08 上海应用技术学院 A kind of directional freezing device using liquid nitrogen
US10670189B2 (en) * 2017-07-19 2020-06-02 General Electric Company Systems and methods for storing and distributing gases
CN114111082A (en) * 2021-11-02 2022-03-01 深圳供电局有限公司 Supercooled liquid nitrogen circulating system based on GM refrigerator
US20230295771A1 (en) * 2022-03-16 2023-09-21 Chengdu University Of Technology Waste mercury recovery device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605868B2 (en) * 1981-06-24 1985-02-14 日本真空技術株式会社 Solenoid valve type automatic boosting low temperature refrigerant container
JPS62200099A (en) * 1986-02-27 1987-09-03 Mitsubishi Electric Corp Very low temperature liquid supply system
DE3741145A1 (en) * 1987-12-04 1989-06-15 Deutsche Forsch Luft Raumfahrt TREATMENT SYSTEM FOR LIQUID HYDROGEN
JP2712096B2 (en) * 1991-03-30 1998-02-10 株式会社東芝 Cryogenic liquid pumping method and apparatus
US5243821A (en) * 1991-06-24 1993-09-14 Air Products And Chemicals, Inc. Method and apparatus for delivering a continuous quantity of gas over a wide range of flow rates
US5228295A (en) * 1991-12-05 1993-07-20 Minnesota Valley Engineering No loss fueling station for liquid natural gas vehicles
US5954101A (en) * 1996-06-14 1999-09-21 Mve, Inc. Mobile delivery and storage system for cryogenic fluids
JP3511288B2 (en) * 2000-03-31 2004-03-29 大陽東洋酸素株式会社 Superconducting material cooling device
JP2003336923A (en) * 2002-05-20 2003-11-28 Central Japan Railway Co Very low temperature refrigerating device
US6865897B2 (en) * 2003-07-10 2005-03-15 Praxair Technology, Inc. Method for providing refrigeration using capillary pumped liquid

Also Published As

Publication number Publication date
CN1969158B (en) 2010-12-22
WO2006001203A1 (en) 2006-01-05
EP1780482A4 (en) 2010-04-21
JP2006012654A (en) 2006-01-12
KR101142901B1 (en) 2012-05-10
KR20070036027A (en) 2007-04-02
US20080202127A1 (en) 2008-08-28
EP1780482A1 (en) 2007-05-02
CN1969158A (en) 2007-05-23

Similar Documents

Publication Publication Date Title
JP4728601B2 (en) Cooling system for superconducting power equipment
JP4796491B2 (en) Controlled storage of liquefied gas
US11174991B2 (en) Cryogenic fluid dispensing system having a chilling reservoir
US5243821A (en) Method and apparatus for delivering a continuous quantity of gas over a wide range of flow rates
KR102053387B1 (en) Device for cooling a consumer with a super-cooled liquid in a cooling circuit
US8511100B2 (en) Cooling of superconducting devices by liquid storage and refrigeration unit
US8948828B2 (en) Apparatus and method for cooling a super conducting machine
Herzog et al. Cooling unit for the AmpaCity project–One year successful operation
US20110070103A1 (en) Device and Method for Pumping a Cryogenic Fluid
JP7346453B2 (en) Methods and equipment for storing and distributing liquefied hydrogen
CA2616725C (en) Refrigeration system for superconducting devices
US7935450B2 (en) Method for operation of an energy system, as well as an energy system
KR101574940B1 (en) A closed cryogen cooling system and method for cooling a superconducting magnet
JP5014206B2 (en) Superconducting member cooling method
JP3908975B2 (en) Cooling device and cooling method
JP5217308B2 (en) Superconducting part cooling device and its operation method
JP4733842B2 (en) Superconducting material cooling device
JP2010177677A (en) Cooling device for superconducting member
KR102512996B1 (en) System and Method for Controlling Boil-Off Gas of Liquefied Hydrogen
JP2024045087A (en) Liquid helium transfer device with reduced transfer loss
JPS5839394B2 (en) Cryogenic refrigerant generator
Caillaud et al. Two Refrigeration Systems Installed for the Tokamak at the Institute for Plasma Research, Ahmedabad, India
JPS61144081A (en) Superconducting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100827

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R151 Written notification of patent or utility model registration

Ref document number: 4728601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350