WO2006001203A1 - Cooling system for superconducting power apparatus - Google Patents

Cooling system for superconducting power apparatus Download PDF

Info

Publication number
WO2006001203A1
WO2006001203A1 PCT/JP2005/010936 JP2005010936W WO2006001203A1 WO 2006001203 A1 WO2006001203 A1 WO 2006001203A1 JP 2005010936 W JP2005010936 W JP 2005010936W WO 2006001203 A1 WO2006001203 A1 WO 2006001203A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reservoir tank
liquid
cooling system
pressure
Prior art date
Application number
PCT/JP2005/010936
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Mukoyama
Noboru Ishii
Masashi Yagi
Satoru Maruyama
Tatsuki Okamoto
Hiroshi Suzuki
Michiharu Ichikawa
Toshihiro Takahashi
Shirabe Akita
Original Assignee
The Furukawa Electric Co., Ltd.
Central Research Institute Of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Furukawa Electric Co., Ltd., Central Research Institute Of Electric Power Industry filed Critical The Furukawa Electric Co., Ltd.
Priority to EP05751512A priority Critical patent/EP1780482A4/en
Priority to CN2005800196798A priority patent/CN1969158B/en
Priority to KR1020067019841A priority patent/KR101142901B1/en
Priority to US11/630,889 priority patent/US20080202127A1/en
Publication of WO2006001203A1 publication Critical patent/WO2006001203A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/16Superconductive or hyperconductive conductors, cables, or transmission lines characterised by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0527Superconductors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Definitions

  • the present invention relates to a cooling system for cooling superconducting cables, superconducting bus lines, SMES, superconducting transformers, etc., which can be industrially used in a superconducting state after being cooled by a liquefied gas such as liquid nitrogen.
  • the present invention relates to a cooling system for cooling superconducting power equipment in which equipment is operated in a high voltage state.
  • the superconducting cable In the case of cooling a superconducting cable, if the liquefied gas to be circulated is in a gas-liquid mixed state, the pressure loss increases and the required amount of liquefied gas cannot be circulated stably, resulting in a large capacity. It is necessary to prepare a large circulation pump.
  • the superconducting cable employs a cryogenic electrical insulation system that maintains high electrical insulation performance by impregnating the liquefied gas into the insulator, so that gases and bubbles are mixed in the liquid gas. If so, there is a problem that the electrical insulation performance is significantly lowered.
  • the liquid gas is always maintained in the subcooled state and circulated without being vaporized.
  • the reservoir The tank 101 is pressurized by supplying hydrogen (H) or helium (He), which is a gas whose triple point is sufficiently lower than the liquid gas, with a cylinder 123, etc.
  • Patent Document 1 Japanese Patent Laid-Open No. 08-148044
  • the amount dissolved in the liquid nitrogen is very small.
  • the liquid gas in which the He gas is dissolved is circulated, for example, the portion where the flow rate of the liquefied gas that the pipe expands becomes relatively slow, or for example, In a part where the pressure of the liquid gas suddenly decreases, such as after being throttled by a valve from the reservoir tank, the dissolved He gas cannot be maintained in the liquid gas. As a result, bubbles are formed and mixed in liquid nitrogen to be in a gas-liquid mixed state.
  • an object of the present invention is to provide an instability factor of the circulation of the liquid gas, because the gas having a lower boiling point than the liquid gas used for pressurization is dissolved in the liquid gas. It is an object to provide a cooling system for superconducting power equipment that can circulate liquid gas smoothly in a subcooled state for a long period of time without causing problems related to insulation.
  • the present inventor has intensively studied to solve the above-described problems of the prior art.
  • a small amount of He gas dissolves in liquid nitrogen by pressurizing the reservoir tank, which is conventionally not used as pressurized gas, with the same type of gas as liquid gas.
  • the He gas becomes bubbles, mixed into the liquid nitrogen and becomes a gas-liquid mixed state, and the circulation of the liquid nitrogen cannot be smoothly performed, and the insulation characteristics are improved. It has been found that the problem of deterioration can be solved.
  • the height difference due to the arrangement of superconducting power equipment exceeds the specified value, the generated bubbles will stay in the upper part of the equipment and fill the cooling loop, making it impossible to circulate liquid nitrogen. It turns out that it can be solved.
  • the liquid level of the reservoir tank that stores the liquid gas in a pressurized state is at least the depth of the pressurized gas dissolved + the liquid level movement correction amount from the outlet of the return line of the circulating liquefied gas
  • the nitrogen gas used for pressurization is liquefied, and the pressurized pressure is reduced. If the cylinder gas is not continuously supplied, the pressure is kept constant. It has been found that the problem of not being able to be solved can be solved. Therefore, the problem that a large amount of nitrogen gas is consumed and a large amount of liquid heat is brought into the cooling system and the heat load increases is solved.
  • the present invention has been made based on the above research results, and the first aspect of the cooling system for a superconducting power device according to the present invention is a reservoir tank for storing liquid gas, a circulation pump, and liquid gas. And a circulation loop through which the liquefied gas circulates, and the liquid gas is circulated in a subcooled state using a circulation pump to superconducting power.
  • a superconducting power equipment cooling system for cooling equipment further comprising pressurizing means for pressurizing the reservoir tank with the same kind of gas as the liquid gas, and storing the liquefied gas in a pressurized state.
  • the cooling system for a superconducting power device characterized in that the surface is positioned at least above the outlet of the return line of the circulating liquid gas and gas by at least the penetration depth of the pressurized gas + the liquid level movement correction amount It is.
  • the pressurizing means for pressurizing the reservoir tank with the same kind of gas as the liquefied gas stores the same kind of gas as the liquefied gas at a high pressure. It is a cooling system for superconducting power equipment characterized by comprising pressurizing at a predetermined pressure from a gas cylinder through a pressure regulating valve.
  • the pressurizing means for pressurizing the reservoir tank with the same kind of gas as the liquefied gas delivers the liquefied gas in a reservoir tank force subcooled state. It consists of pressurizing the reservoir tank using the discharge pressure of the circulation pump by piping returning from the outlet of the circulation pump to a part of the liquid gas sent to the superconducting power device and returning to the reservoir tank. This is a cooling system for superconducting power equipment.
  • the pressurizing means for pressurizing the reservoir tank with the same kind of gas as the liquefied gas sends out the liquefied gas in the subcooled state of the reservoir tank.
  • Vaporizer that vaporizes liquid gas and pressure adjustment for pressure adjustment provided in piping that branches from a part of the liquid gas sent to the superconducting power equipment from the outlet of the circulation pump and returns to the reservoir tank It is a cooling system for superconducting power equipment, characterized by comprising a valve.
  • a fifth aspect of the cooling system for a superconducting power apparatus further includes auxiliary means for the pressurizing means, and the auxiliary means supplies the same kind of gas as the liquid gas from the gas cylinder. It is a cooling system for superconducting power equipment characterized by comprising pressurizing
  • a sixth aspect of the cooling system for a superconducting power device further comprises auxiliary means for the pressurizing means, and the auxiliary means has a heating device disposed in a gas phase portion of the reservoir tank, Consisting of superheated volume expansion of the gas in the gas phase of the reservoir tank.
  • the reservoir tank is pressurized with the same kind of gas as the liquid gas, so that the liquid nitrogen is smoothly circulated without bubbles being mixed in the liquid nitrogen, and the superconducting power device having excellent insulation characteristics Cooling system can be provided.
  • the liquid level of the reservoir tank that stores the liquefied gas in a pressurized state is at least the depth of penetration of the pressurized gas plus the liquid level from the outlet of the return line of the circulating liquid gas. Since it is located at the top by the amount of movement correction, it is possible to provide a cooling system for superconducting power equipment in which the pressure used without pressurizing the gas used to pressurize the reservoir tank does not decrease. it can.
  • FIG. 1 is a diagram illustrating a method of pressurizing a reservoir tank with a circulation pump outlet pressure according to the present invention.
  • FIG. 2 is a configuration diagram of a cooling system for explaining Example 1 of the present invention.
  • FIG. 3 is a configuration diagram in the vicinity of a reservoir tank for explaining Example 2 of the present invention.
  • FIG. 4 is a configuration diagram in the vicinity of a reservoir tank for explaining Example 3 of the present invention.
  • FIG. 5 is a diagram showing the relationship between the pressure gas penetration depth [m] and the pressure reduction rate [%].
  • FIG. 6 is a diagram for explaining a conventional superconducting cable cooling system.
  • the cooling system for superconducting power equipment includes a reservoir tank for storing liquid gas, a circulation pump, a heat exchanger for cooling the liquid gas, and a circulation loop for circulating the liquid gas, ,
  • a superconducting power equipment cooling system that circulates in a subcooled state using a circulation pump to cool superconducting power equipment, further comprising pressurizing means for pressurizing the reservoir tank with the same kind of gas as the liquid gas.
  • Liquid level force of reservoir tank that stores pressurized gas under pressure At least the depth of the pressurized gas dissolved + the level shift correction amount above the outlet of the return line of the circulating liquid gas Specially located This is a cooling system for superconducting power equipment.
  • the liquid level of the reservoir tank that stores the liquid gas in a pressurized state is at least higher than the outlet of the return line of the circulating liquefied gas by at least the penetration depth of the pressurized gas + the liquid level movement correction amount. The need to be located is explained below.
  • Figure 5 shows the relationship between the pressure gas penetration depth [m] and the pressure reduction rate [%].
  • FIG. 5 the depth at which the pressurized gas melts into the liquid level of the reservoir tank (that is, the depth at which the pressurized gas penetrates) is plotted on the horizontal axis. The reduction rate is shown on the vertical axis.
  • a reservoir tank having an inner diameter of lm and a height of lm was used, and the pressure was set to 0.3 MPa.
  • the penetration depth is up to 10 cm
  • the rate of decrease in pressure is remarkably large
  • the penetration depth is up to about 20 cm
  • the gaseous nitrogen gas used for pressurization becomes liquid. Condensed and pressurized pressure is still decreasing rapidly.
  • the penetration depth was kept at 20 cm or more, it was found that the pressure decrease could be kept at a small value of 1% or less.
  • the liquid level changes due to the influence of the temperature and pressure of liquid nitrogen, so it is necessary to consider the liquid level movement correction amount.
  • the liquid level force of the reservoir tank that stores the liquid gas in a pressurized state is at least the depth of penetration of the pressurized gas from the outlet of the return line of the circulating liquid gas + the liquid level movement correction amount It is only necessary to be located at the top.
  • the depth of penetration of the pressurized gas (20 cm) + the liquid level movement correction amount (30 cm) is preferably 50 cm or more.
  • the required depth is almost the same even if the size of the reservoir tank depends on the container shape is small. Therefore, in the system of the present application, the container height of the reservoir tank needs to be high enough to ensure the required depth (preferably 50 cm or more).
  • the present invention is a system that cools a superconducting power device with liquid gas.
  • a gas having a lower boiling point than the liquid gas used for pressurization is a liquid gas. It provides a cooling system that can circulate liquefied gas in a subcooled state for a long time without causing instability in the circulation of liquefied gas and troubles related to insulation of electrical equipment. .
  • the pressurizing means for pressurizing in the above-described state consists of pressurizing the reservoir tank to a predetermined pressure with the same kind of gas as the liquid gas stored in the reservoir tank.
  • the reservoir tank liquid level is at least 20 cm above the outlet of the circulation pump return pipe in the reservoir tank. Preferably it is 50 cm or higher.
  • means for pressurization in addition to means for pressurization with a high-pressure gas cylinder, there is a means for pressurization by returning the circulation pump outlet pressure higher than the pressure of the reservoir tank to the reservoir tank.
  • the outlet pipe of the circulation pump that pumps and pressurizes the reservoir tank fluid and feeds it to the superconducting power equipment is branched, and the liquid gas is discharged from the pressure of the reservoir tank.
  • a part is taken out, the branched liquefied gas is gasified using a gasifier, and further the reservoir is connected via a pressure regulating valve that opens and closes according to the pressure for maintaining the pressure of the reservoir tank at a predetermined pressure.
  • liquid nitrogen is used as the liquid gas.
  • the boiling point of liquid nitrogen at atmospheric pressure (1.013 MPa) is 77K.
  • the boiling point of liquid nitrogen becomes 90K or higher. Therefore, when 77K liquid nitrogen is pressurized to 0.3MPa, the liquid nitrogen enters a subcooled state where no bubbles are generated.
  • the circulation pump's liquid withdrawal section is located at the bottom of the reservoir tank and is connected to the circulation pump by piping.
  • the return pipe of the circulation is a force connected to the reservoir tank.
  • the position of the outlet of the pipe is lower than the liquid level.
  • the liquid gas delivered from the circulation pump cools the superconducting power equipment and returns to the reservoir tank.
  • the piping outlet is located below the liquid level, the returned liquid gas does not touch the pressurized gas phase of the reservoir tank, moves to the liquid nitrogen inlet of the circulation pump, and circulates again. To do.
  • the position of the liquid level is set higher than a predetermined height (20 cm 2) of the liquid outlet of the piping outlet and the circulation pump (that is, a predetermined liquid gas layer is provided).
  • the temperature of the liquid nitrogen above the subcooled cold liquid nitrogen at each piping port increases in order toward the liquid surface, and the liquid nitrogen temperature at the liquid surface is 0.3MPa liquid gas. Boiling temperature of It is almost the same as the degree. Therefore, in the past, when the pressure in the reservoir tank was pressurized with the same kind of gas, there was a problem that the gas was liquidated and the pressure dropped due to insufficient gas supply. As a result, it was found that almost no gas was liquefied.
  • the outlet pressure of the circulation pump also increases (arrow d), and the reservoir tank can be constantly pressurized.
  • P2 point e
  • the valve attached to the pipe is closed and the gas supply to the reservoir tank is stopped.
  • the nitrogen gas in the gas phase is cooled with liquid nitrogen below the triple point of the nitrogen gas, and the nitrogen gas in the gas phase becomes liquid and becomes liquid nitrogen.
  • the pressure in the reservoir tank decreases as the gas volume decreases due to liquefaction (arrow f).
  • the lower limit set pressure (P1) is reached (point g)
  • the valve is opened, and nitrogen gas is again supplied to the interior of the reservoir tank by the pressure at the circulation pump outlet, increasing the pressure in the reservoir tank.
  • the piping and valves may be frozen.
  • liquid nitrogen is gasified to raise the temperature to room temperature in order to prevent it.
  • the role of the nozzle is simply to keep pumping the gas through the branched pipe, and the reservoir tank pressure will continue to rise, possibly exceeding the design pressure of the reservoir tank. When the pressure exceeds the specified pressure, it closes and pressurization with gas stops, and when the pressure falls below the specified pressure, it opens.
  • FIG. 2 is a diagram showing one embodiment of a cooling system for a superconducting power device according to the present invention.
  • Liquid nitrogen is used as the liquid gas.
  • Liquid nitrogen is stored in reservoir tank 1.
  • Reservoir tank 1 has a double container structure. Between the double containers, insulation is installed so as to surround the inner container lb, and it is maintained in a vacuum state to reduce heat intrusion. Yes.
  • the reservoir tank is a sealed container, which can be made by pressurizing the inside.
  • the circulation pump 5 is a vortex-type rotary pump.
  • the motor 5a for rotating the fin 5c and the fin are connected by a long shaft 5b of about 50 cm in order to suppress heat inflow due to conduction!
  • the fin itself is arranged in the inside 5e of the vacuum vessel so as to suppress heat intrusion from the outside.
  • the rotary pump of the present invention can flow a flow rate of 30 L / min as the flow rate of liquid nitrogen at a rotation speed of 50 Hz, and obtain a discharge pressure of 0.2 MPa as a pressure difference between the inlet and the outlet. Can do. From the pump outlet, a pipe 6 with a diameter of 3 cm leads to the heat exchange 7 of the freezer.
  • the refrigerator 8 is powered by a GM refrigerator, a Stirling refrigerator, etc., and a heat exchanger is connected to a low-temperature head for generating cold, and the circulating liquid nitrogen is cooled to a low temperature.
  • a Stirling refrigerator having an refrigeration capacity of 1 kW is used.
  • a heat exchanger ⁇ cooled by a 30 L / min liquid nitrogen power refrigerator, the one that was 77 K at the inlet is used.
  • the liquid nitrogen cooled by the refrigerator is connected to the superconducting power equipment inlet 10 through a pipe 9 having a diameter of 3 cm. It is connected to water tightly.
  • the superconducting cable is cooled by circulating the liquid nitrogen cooled by the refrigerator in the superconducting cable.
  • the temperature of liquid nitrogen that has cooled the superconducting cable rises, but since the increased temperature is below the boiling point, a subcooled state in which no bubbles are generated in the liquid nitrogen is maintained. For this reason, even with a 500 m superconducting cable, the pressure loss is less than O.lMPa, and it is sufficiently small and allows liquid nitrogen to flow stably.
  • liquid nitrogen permeates into the electric insulation layer of the superconducting cable without causing bubbles, the electric insulation can be maintained.
  • Liquid nitrogen that has exited the outlet 12 of the superconducting cable returns to the reservoir tank 1 through the pipe 13 to form a circulation loop.
  • the reservoir tank 1, the circulation pump 2, the heat exchange 3 of the refrigerator, the superconducting cable 4, and the nitrogen piping connecting these devices are all double containers that use vacuum insulation to reduce the intrusion heat from external forces. It has a structure.
  • the pipe 13 returned to the reservoir tank is a pipe 14 that reaches from the top to the bottom of the reservoir tank, and returns the liquid to the reservoir tank from the outlet 15 to the bottom of the reservoir tank.
  • the liquid connected to the circulation pump Inlet 3 is also located at the bottom of the reservoir tank. During the circulation, the liquid nitrogen in the reservoir tank is stored so that it is at least 20 cm higher than the outlet 15 position and the liquid level 2 is at the position.
  • a stainless steel pipe 16 having a diameter of 6 mm is branched and taken out from the pipe 6 at the pump outlet.
  • the liquid nitrogen passing through the inside of the pipe 16 exits from the vacuum vessel of the circulation pump, and then passes through the vaporizer 17 where everything is changed from liquid nitrogen to room temperature nitrogen gas.
  • a copper hot water container with a copper 6mm piping force wound in a 6m coil shape is used, and the liquid nitrogen inside is heated by being immersed in the hot water. ing.
  • a heater is wound around the outside of the coil and the temperature is increased by heating the heater by energization, or fins are attached to the piping to exchange heat with the atmosphere. It is sufficient if the liquid nitrogen inside can be turned into room temperature gas, such as a heating method.
  • the pipe 18 exiting the vaporizer 17 is filled with gas when the outlet pressure falls below a predetermined pressure.
  • a nozzle 19 is installed that has a pressure control function that stops the gas when the pressure exceeds the specified pressure.
  • the pipe 20 exiting the valve 19 is attached to the upper part of the reservoir tank so that the reservoir tank can be pressurized.
  • the pipes 18 and 20 after passing through the vaporizer 17 are at room temperature, so there is no need for a heat insulation structure.
  • the circulation pump outlet force and the pipe 16 up to the vaporizer are made of a heat insulating material such as urethane foam. It is more aesthetically preferable that the pipe 16 is not frosted.
  • the valve 19 is operated at a low temperature, the position of the valve 19 and the vaporizer 17 can be reversed. The low temperature valve is more expensive than the normal temperature, and economically. It is not an appropriate arrangement.
  • the pressure extraction pipe 16 was taken out from the pump outlet pipe 6.
  • the pressure in the reservoir tank could be from the refrigerant heat exchanger outlet pipe 9 or the superconducting equipment inlet 10. As long as it is higher, the object of the present invention can be achieved no matter where it is taken out. In this sense, the pump outlet is not simply indicated as the immediate vicinity of the pump outlet, but all downstream from the pump outlet is collectively referred to. Yes.
  • FIG. 3 is a diagram showing one part of another embodiment of the cooling system for a superconducting power device according to the present invention. That is, FIG. 3 shows an extraction diagram of the reservoir tank portion in order to explain the present embodiment in the cooling system.
  • the circulation pump 5 the fin portion 5c for sending the liquid is in the liquid in the reservoir tank, and the rotation of the motor 5a is transmitted by the long shaft 5b.
  • Liquid nitrogen is pumped out of the reservoir tank, passes through pipe 6, exits the reservoir tank, and cools the liquid nitrogen.
  • the piping for pressurization is attached to the portion of the piping 6 coming out from the reservoir tank, and then returns to the reservoir tank through the same vaporizer 17 and valve 19 as in the first embodiment.
  • Example 1 the pressurizing means of the reservoir tank is only by gas from the pump outlet.
  • the pipe is as thin as 6 mm and the pressure is divided by the pump discharge pressure. For this reason, it takes a very long time to reach a predetermined pressure with less gas supply. Especially when the reservoir tank is large, it takes tens of hours. Therefore, as shown in FIG. 4, as a supplementary means, an external pipe 21 is attached to the reservoir tank to supply gas to the high-pressure nitrogen cylinder 22 or nitrogen curdka. Further, when the gas phase portion inside the reservoir tank is cooled to a low temperature, the liquid is promoted. Therefore, the heater 23 may be disposed in the gas phase to suppress the liquid.
  • the boiling point is lower than that of the liquid gas used for pressurization, and the gas dissolves in the liquid gas, causing instability in the circulation of the liquefied gas and troubles related to insulation of the electrical equipment.

Abstract

A cooling system for a superconducting power apparatus, having a reservoir for storing liquid gas, a circulation pump, a heat exchanger for cooling the liquid gas, and a circulation loop in which a liquefied gas circulates, the liquefied gas being circulated in a subcooled state by using the circulation pump to cool the superconducting power apparatus, wherein the cooling system further has pressurizing means for pressurizing the reservoir by the same kind of gas as the liquefied gas, and the liquid level of the reservoir for storing the liquefied gas in a pressurized state is positioned above the exit of a return line of the circulating liquefied gas by at least an amount equal to the sum of the depth of dissolution of the pressurizing gas and of the amount of correction of liquid level movement.

Description

明 細 書  Specification
超電導電力機器用冷却システム  Cooling system for superconducting power equipment
技術分野  Technical field
[0001] 本発明は、液体窒素等の液化ガスによって冷却して超電導状態として産業利用す ることができる、超電導ケーブル、超電導バスライン、 SMES、超電導変圧器等を冷却 するための冷却システムに関するものであり、特に機器が高電圧状態で運転される 超電導電力機器を冷却するための冷却システムに関する。  [0001] The present invention relates to a cooling system for cooling superconducting cables, superconducting bus lines, SMES, superconducting transformers, etc., which can be industrially used in a superconducting state after being cooled by a liquefied gas such as liquid nitrogen. In particular, the present invention relates to a cooling system for cooling superconducting power equipment in which equipment is operated in a high voltage state.
背景技術  Background art
[0002] 超電導電力機器の一つとして、液体窒素等の液化ガスを冷却に用いる超電導ケー ブルを例として、図 6を参照して従来技術を説明する。超電導ケーブルの冷却システ ムとしては、特開平 08— 148044号公報に記載されたものが知られている。図 6に示 すように、従来の冷却システムは、リザーバータンク 101からサブクール状態 (液ィ匕ガ スが液ィ匕ガスの飽和温度よりも低く冷却されて 、る状態)の液ィ匕ガスをポンプ 105に よって加圧し、冷凍機 108の熱交^^ 107で冷却した後にケーブル 111に供給して 、再度リザーバータンク 101に戻す、という循環サイクルを繰り返すものである。  [0002] As one of superconducting power devices, a conventional technique will be described with reference to FIG. 6 by taking a superconducting cable using a liquefied gas such as liquid nitrogen for cooling as an example. As a cooling system for a superconducting cable, one described in Japanese Patent Laid-Open No. 08-148044 is known. As shown in FIG. 6, in the conventional cooling system, the liquid gas in the subcooled state (the liquid gas is cooled below the saturation temperature of the liquid gas) from the reservoir tank 101. The circulation cycle is repeated, in which the pressure is increased by the pump 105, cooled by the heat exchanger 107 of the refrigerator 108, supplied to the cable 111, and returned to the reservoir tank 101 again.
[0003] 超電導ケーブルの冷却の場合には、循環する液化ガスが気液混合状態になれば、 圧力損失が増大して必要量の液化ガスを安定的に循環することができず、容量の大 きな大型の循環ポンプを用意する必要がある。さらに、超電導ケーブルは、液化ガス を絶縁体中に含浸させて高!ヽ電気絶縁性能を維持する極低温電気絶縁方式を採用 しているので、液ィ匕ガスの中にガスや気泡が混入していると、電気絶縁性能を著しく 低下させるという問題があった。  [0003] In the case of cooling a superconducting cable, if the liquefied gas to be circulated is in a gas-liquid mixed state, the pressure loss increases and the required amount of liquefied gas cannot be circulated stably, resulting in a large capacity. It is necessary to prepare a large circulation pump. In addition, the superconducting cable employs a cryogenic electrical insulation system that maintains high electrical insulation performance by impregnating the liquefied gas into the insulator, so that gases and bubbles are mixed in the liquid gas. If so, there is a problem that the electrical insulation performance is significantly lowered.
[0004] そのために、従来の冷却システムでは、常に液ィ匕ガスをサブクール状態に維持して 、気化しない状態で循環を行うために、例えば、液化ガスとして液体窒素を使用する 場合には、リザーバータンク 101内を、液ィ匕ガスよりも三重点が十分に低いガスであ る水素 (H )やヘリウム (He)をボンべ 123など力も供給して加圧状態にして、液ィ匕ガ  [0004] Therefore, in the conventional cooling system, the liquid gas is always maintained in the subcooled state and circulated without being vaporized. For example, when liquid nitrogen is used as the liquefied gas, the reservoir The tank 101 is pressurized by supplying hydrogen (H) or helium (He), which is a gas whose triple point is sufficiently lower than the liquid gas, with a cylinder 123, etc.
2  2
スの沸点を高くし、循環中において液ィ匕ガスが沸騰しない (即ち、気液混合状態にな らない)ようにしている。 特許文献 1:特開平 08 - 148044号公報 The boiling point of the gas is increased so that the liquid gas does not boil during circulation (ie, it does not become a gas-liquid mixed state). Patent Document 1: Japanese Patent Laid-Open No. 08-148044
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 従来技術のように、リザーバータンク内を、液ィ匕ガスよりも三重点が十分に低いガ ス、例えば、液ィ匕ガスとしての液体窒素をヘリウム(He)ガスで加圧した場合において 、液体窒素の中に微量に Heガスが溶け込む現象が起きることが分力つた。即ち、ヘリ ゥム(He)は不活性ガスとして広く知られ、液体窒素中に溶け込まないと認識されてい た力 現実には、液体窒素の中に微量に Heガスが溶け込むことが判明した。  [0005] As in the prior art, in a reservoir tank, a gas whose triple point is sufficiently lower than liquid gas, for example, liquid nitrogen as liquid gas is pressurized with helium (He) gas. However, the phenomenon that a small amount of He gas dissolves in liquid nitrogen occurs. In other words, helium (He) is widely known as an inert gas, and it was recognized that it does not dissolve in liquid nitrogen. In reality, it was found that a very small amount of He gas dissolves in liquid nitrogen.
[0006] 液体窒素の中に溶け込む量は非常に微量である力 Heガスが溶け込んだ液ィ匕ガ スを循環すると、例えば、配管が広がる比較的液化ガスの流速の遅くなる部分、また は例えば、リザーバータンクよりバルブなどで絞られた後など液ィ匕ガスの圧力が急激 に低くなる部分にぉ 、て、溶け込んだ Heガスが液ィ匕ガス中に溶け込んだ状態を維持 することができなくなって気泡となり、液体窒素中に混入して気液混合状態となる。  [0006] The amount dissolved in the liquid nitrogen is very small. When the liquid gas in which the He gas is dissolved is circulated, for example, the portion where the flow rate of the liquefied gas that the pipe expands becomes relatively slow, or for example, In a part where the pressure of the liquid gas suddenly decreases, such as after being throttled by a valve from the reservoir tank, the dissolved He gas cannot be maintained in the liquid gas. As a result, bubbles are formed and mixed in liquid nitrogen to be in a gas-liquid mixed state.
[0007] また、超電導ケーブルや超電導電力機器が、その設置レイアウトの状態によって、 冷却システムより高く位置する部分がある場合には、その部分において、発生した気 泡が機器内の上部に溜り滞留して、最終的には液体窒素の冷却配管の中に充満し て、液体窒素の循環ができなくなることが分力つた。  [0007] Also, if there is a part of the superconducting cable or superconducting power equipment that is positioned higher than the cooling system depending on the state of the installation layout, the generated bubbles accumulate and stay in the upper part of the equipment. As a result, the liquid nitrogen cooling pipe was eventually filled and it was impossible to circulate the liquid nitrogen.
[0008] 上述した現象は、数ケ月という非常に長い時間により起こる現象であることが、発明 者の実験により明らかになった。 Heガスが液体窒素に含有され、さらに配管中で気液 混合状態または冷却配管にガス相として充満すると、液体窒素の循環力 Sスムーズに できない。更に、 Heガスが他の液ィ匕ガスに比べて耐電圧特性が非常に小さいので、 本来、液体窒素が高絶縁特性を有しているにもかかわらず、含有された Heガスにより 絶縁特性が低くなり、超電導電力機器の絶縁不良または絶縁破壊を起こす原因とな る。  [0008] It has been clarified by experiments of the inventor that the phenomenon described above is a phenomenon that occurs in a very long time of several months. If the He gas is contained in liquid nitrogen and the gas-liquid mixed state in the piping or the cooling piping is filled as the gas phase, the circulation force of liquid nitrogen cannot be smooth. Furthermore, since the withstand voltage characteristic of He gas is very small compared to other liquid gases, the insulation characteristic is improved by the contained He gas even though liquid nitrogen originally has high insulation characteristics. Lowering may cause poor insulation or breakdown of superconducting power equipment.
[0009] この対策として、液化ガスと同じ種類のガスで、リザーバータンクを加圧することが考 えられたが、リザーバータンクに貯溜される液体窒素は、沸点以下の温度の液体窒 素であるために、加圧に用いられた窒素ガスがリザーバータンク内で沸点以下の液 体窒素に触れると、加圧に用いた窒素ガスが冷却され液ィ匕する。そのために、加圧し た圧力が減少し、常にボンべ力も窒素ガスを供給し続けなければ圧力を一定に保て ないという問題点があり、その結果、大量の窒素ガスを消費し、その際に大量の液ィ匕 熱を冷却システムに持ち込み熱負荷が増大するという問題があった。 [0009] As a countermeasure, it was considered to pressurize the reservoir tank with the same type of gas as the liquefied gas. However, liquid nitrogen stored in the reservoir tank is liquid nitrogen at a temperature below the boiling point. In addition, when the nitrogen gas used for pressurization touches liquid nitrogen having a boiling point or less in the reservoir tank, the nitrogen gas used for pressurization is cooled and becomes liquid. For that purpose, pressurize The pressure is reduced and the cylinder pressure cannot be kept constant unless nitrogen gas is constantly supplied. As a result, a large amount of nitrogen gas is consumed, and a large amount of liquid gas is consumed. There was a problem that heat was brought into the cooling system and the heat load increased.
[0010] 従って、この発明の目的は、加圧に用いた液ィ匕ガスより沸点の低いガスが液ィ匕ガス 中に溶解して、液ィ匕ガスの循環の不安定性要因や、電気機器の絶縁に関するトラブ ルを起こさず、液ィ匕ガスをサブクール状態で長期間円滑に循環を行うことができる、 超電導電力機器の冷却システムを提供することにある。  [0010] Therefore, an object of the present invention is to provide an instability factor of the circulation of the liquid gas, because the gas having a lower boiling point than the liquid gas used for pressurization is dissolved in the liquid gas. It is an object to provide a cooling system for superconducting power equipment that can circulate liquid gas smoothly in a subcooled state for a long period of time without causing problems related to insulation.
課題を解決するための手段  Means for solving the problem
[0011] 本発明者は、上述した従来技術の問題点を解決すべく鋭意研究を重ねた。その結 果、従来、加圧ガスとして使用していたヘリウム (He)ガスではなぐリザーバータンク を液ィ匕ガスと同種のガスで加圧することによって、液体窒素の中に微量の Heガスが 溶け込むことを排除することができる。これによつて、液化ガスの圧力が急激に低くな る部分において、 Heガスが気泡となり、液体窒素中に混入して気液混合状態になり 、液体窒素の循環がスムーズにできない、絶縁特性が劣化するという問題点を解決 することができることが判明した。同様に、超電導電力機器の配置による高低差が所 定値を超えると、発生した気泡が機器の上部に滞留し、更には冷却ループの中に充 満して液体窒素が循環できなくなるという問題点も解決できることが判明した。  [0011] The present inventor has intensively studied to solve the above-described problems of the prior art. As a result, a small amount of He gas dissolves in liquid nitrogen by pressurizing the reservoir tank, which is conventionally not used as pressurized gas, with the same type of gas as liquid gas. Can be eliminated. As a result, in the part where the pressure of the liquefied gas suddenly decreases, the He gas becomes bubbles, mixed into the liquid nitrogen and becomes a gas-liquid mixed state, and the circulation of the liquid nitrogen cannot be smoothly performed, and the insulation characteristics are improved. It has been found that the problem of deterioration can be solved. Similarly, if the height difference due to the arrangement of superconducting power equipment exceeds the specified value, the generated bubbles will stay in the upper part of the equipment and fill the cooling loop, making it impossible to circulate liquid nitrogen. It turns out that it can be solved.
[0012] 更に、液ィ匕ガスを加圧状態で貯溜するリザーバータンクの液面が、循環する液化ガ スの戻りラインの出口よりも、少なくとも加圧ガスの溶け込み深さ +液面移動補正量だ け上部に位置していることによって、加圧に用いられた窒素ガスが液ィ匕されて、加圧 した圧力が減少し常にボンべ力 窒素ガスを供給し続けなければ圧力を一定に保て ないという問題点を解決することができることが判明した。従って、大量の窒素ガスを 消費し、その際に大量の液ィ匕熱を冷却システムに持ち込み熱負荷が増大するという 問題点が解決される。  [0012] Further, the liquid level of the reservoir tank that stores the liquid gas in a pressurized state is at least the depth of the pressurized gas dissolved + the liquid level movement correction amount from the outlet of the return line of the circulating liquefied gas By being positioned only at the top, the nitrogen gas used for pressurization is liquefied, and the pressurized pressure is reduced. If the cylinder gas is not continuously supplied, the pressure is kept constant. It has been found that the problem of not being able to be solved can be solved. Therefore, the problem that a large amount of nitrogen gas is consumed and a large amount of liquid heat is brought into the cooling system and the heat load increases is solved.
[0013] この発明は、上記研究結果に基づいてなされたものであって、この発明の超電導電 力機器用冷却システムの第 1の態様は、液体ガスを貯溜するリザーバータンク、循環 ポンプ、液体ガスを冷却する熱交換器、および、液化ガスが循環する循環ループを 備え、前記液ィ匕ガスを、循環ポンプを用いてサブクール状態で循環して超電導電力 機器を冷却する超電導電力機器の冷却システムであって、リザーバータンクを前記 液ィ匕ガスと同種のガスで加圧する加圧手段をさらに備え、前記液化ガスを加圧状態 で貯溜するリザーバータンクの液面が、循環する液ィ匕ガスの戻りラインの出口よりも、 少なくとも加圧ガスの溶け込み深さ +液面移動補正量だけ上部に位置して 、ることを 特徴とする超電導電力機器の冷却システムである。 [0013] The present invention has been made based on the above research results, and the first aspect of the cooling system for a superconducting power device according to the present invention is a reservoir tank for storing liquid gas, a circulation pump, and liquid gas. And a circulation loop through which the liquefied gas circulates, and the liquid gas is circulated in a subcooled state using a circulation pump to superconducting power. A superconducting power equipment cooling system for cooling equipment, further comprising pressurizing means for pressurizing the reservoir tank with the same kind of gas as the liquid gas, and storing the liquefied gas in a pressurized state. The cooling system for a superconducting power device, characterized in that the surface is positioned at least above the outlet of the return line of the circulating liquid gas and gas by at least the penetration depth of the pressurized gas + the liquid level movement correction amount It is.
[0014] この発明の超電導電力機器用冷却システムの第 2の態様は、リザーバータンクを液 化ガスと同種のガスで加圧する前記加圧手段は、前記液ィヒガスと同種のガスを高圧 で貯めたガスボンベから、圧力調整弁を介して所定圧力で加圧することからなって 、 ることを特徴とする、超電導電力機器の冷却システムである。  [0014] In the second aspect of the cooling system for superconducting power equipment according to the present invention, the pressurizing means for pressurizing the reservoir tank with the same kind of gas as the liquefied gas stores the same kind of gas as the liquefied gas at a high pressure. It is a cooling system for superconducting power equipment characterized by comprising pressurizing at a predetermined pressure from a gas cylinder through a pressure regulating valve.
[0015] この発明の超電導電力機器用冷却システムの第 3の態様は、リザーバータンクを液 化ガスと同種のガスで加圧する前記加圧手段は、リザーバータンク力 サブクール状 態の液ィヒガスを送出する循環ポンプの出口から、前記超電導電力機器に送る液ィ匕 ガスの一部と分岐してリザーバータンクに戻る配管によって、循環ポンプの吐出圧力 を用いてリザーバータンクを加圧することからなって 、ることを特徴とする、超電導電 力機器の冷却システムである。  [0015] In a third aspect of the cooling system for a superconducting power device according to the present invention, the pressurizing means for pressurizing the reservoir tank with the same kind of gas as the liquefied gas delivers the liquefied gas in a reservoir tank force subcooled state. It consists of pressurizing the reservoir tank using the discharge pressure of the circulation pump by piping returning from the outlet of the circulation pump to a part of the liquid gas sent to the superconducting power device and returning to the reservoir tank. This is a cooling system for superconducting power equipment.
[0016] この発明の超電導電力機器用冷却システムの第 4の態様は、リザーバータンクを液 化ガスと同種のガスで加圧する前記加圧手段は、リザーバータンク力 サブクール状 態の液ィヒガスを送出する前記循環ポンプの出口から、超電導電力機器に送る液ィ匕 ガスの一部と分岐してリザーバータンクに戻る配管に設けられた、液ィ匕ガスを気化さ せる気化器と圧力調整用の圧力調整弁からなっていることを特徴とする、超電導電 力機器の冷却システムである。  [0016] In a fourth aspect of the cooling system for superconducting power equipment according to the present invention, the pressurizing means for pressurizing the reservoir tank with the same kind of gas as the liquefied gas sends out the liquefied gas in the subcooled state of the reservoir tank. Vaporizer that vaporizes liquid gas and pressure adjustment for pressure adjustment provided in piping that branches from a part of the liquid gas sent to the superconducting power equipment from the outlet of the circulation pump and returns to the reservoir tank It is a cooling system for superconducting power equipment, characterized by comprising a valve.
[0017] この発明の超電導電力機器用冷却システムの第 5の態様は、前記加圧手段の補助 手段を更に備え、前記補助手段が、液ィ匕ガスと同種のガスをガスボンベカゝら供給して 加圧することからなって 、ることを特徴とする、超電導電力機器の冷却システムである  [0017] A fifth aspect of the cooling system for a superconducting power apparatus according to the present invention further includes auxiliary means for the pressurizing means, and the auxiliary means supplies the same kind of gas as the liquid gas from the gas cylinder. It is a cooling system for superconducting power equipment characterized by comprising pressurizing
[0018] この発明の超電導電力機器用冷却システムの第 6の態様は、前記加圧手段の補助 手段を更に備え、前記補助手段が、リザーバータンクの気相部分に加温装置を配置 して、リザーバータンク気相部のガスを過熱体積膨張させることからなって 、ることを 特徴とする、超電導電力機器の冷却システムである。 [0018] A sixth aspect of the cooling system for a superconducting power device according to the present invention further comprises auxiliary means for the pressurizing means, and the auxiliary means has a heating device disposed in a gas phase portion of the reservoir tank, Consisting of superheated volume expansion of the gas in the gas phase of the reservoir tank This is a cooling system for superconducting power equipment.
発明の効果  The invention's effect
[0019] この発明によると、リザーバータンクを液ィ匕ガスと同種のガスで加圧するので、液体 窒素中に気泡が混入することなぐ液体窒素を円滑に循環し、絶縁特性にすぐれた 超電導電力機器の冷却システムを提供することができる。更に、この発明によると、液 化ガスを加圧状態で貯溜するリザーバータンクの液面が、循環する液ィ匕ガスの戻りラ インの出口よりも、少なくとも加圧ガスの溶け込み深さ +液面移動補正量だけ上部に 位置しているので、リザーバータンクの加圧に使用したガスが液ィ匕されることなぐ加 圧した圧力が減少することのない超電導電力機器の冷却システムを提供することが できる。  [0019] According to the present invention, the reservoir tank is pressurized with the same kind of gas as the liquid gas, so that the liquid nitrogen is smoothly circulated without bubbles being mixed in the liquid nitrogen, and the superconducting power device having excellent insulation characteristics Cooling system can be provided. Further, according to the present invention, the liquid level of the reservoir tank that stores the liquefied gas in a pressurized state is at least the depth of penetration of the pressurized gas plus the liquid level from the outlet of the return line of the circulating liquid gas. Since it is located at the top by the amount of movement correction, it is possible to provide a cooling system for superconducting power equipment in which the pressure used without pressurizing the gas used to pressurize the reservoir tank does not decrease. it can.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]図 1は、本発明の、循環ポンプ出口圧力でリザーバータンクを加圧する方法を 説明する図である。  FIG. 1 is a diagram illustrating a method of pressurizing a reservoir tank with a circulation pump outlet pressure according to the present invention.
[図 2]図 2は、本発明の実施例 1を説明するための冷却システム構成図である。  FIG. 2 is a configuration diagram of a cooling system for explaining Example 1 of the present invention.
[図 3]図 3は、本発明の実施例 2を説明するためのリザーバータンク近傍の構成図で ある。  FIG. 3 is a configuration diagram in the vicinity of a reservoir tank for explaining Example 2 of the present invention.
[図 4]図 4は、本発明の実施例 3を説明するためのリザーバータンク近傍の構成図で ある。  FIG. 4 is a configuration diagram in the vicinity of a reservoir tank for explaining Example 3 of the present invention.
[図 5]図 5は、加圧ガス溶け込み深さ [m]と圧力減少率[%]との関係を示す図である  [FIG. 5] FIG. 5 is a diagram showing the relationship between the pressure gas penetration depth [m] and the pressure reduction rate [%].
[図 6]図 6は、従来の超電導ケーブルの冷却システムを説明する図である。 FIG. 6 is a diagram for explaining a conventional superconducting cable cooling system.
符号の説明  Explanation of symbols
[0021] 1 リザーバータンク [0021] 1 Reservoir tank
lb リザーバータンク内側容器  lb inner reservoir tank
2 リザーバータンク内 液体窒素液面  2 Liquid nitrogen liquid level in reservoir tank
3 液取口  3 Liquid inlet
4、 6、 9 送り側液体窒素循環配管  4, 6, 9 Feed side liquid nitrogen circulation piping
5 循環ポンプ 5a 循環ポンプモーター 5 Circulation pump 5a Circulation pump motor
5b循環ポンプ長軸  5b circulation pump long shaft
5c フィン  5c fin
5e真空容器  5e vacuum container
7 冷凍機熱交換器  7 Refrigerator heat exchanger
8 冷凍機  8 Refrigerator
10 超電導電力機器の入口  10 Entrance of superconducting power equipment
11 超電導ケーブル  11 Superconducting cable
12超電導ケーブルの出口  12 Superconducting cable outlet
13 戻り側液体窒素循環配管  13 Return side liquid nitrogen circulation piping
14 リザーバータンク内の窒素戻り配管  14 Nitrogen return piping in reservoir tank
15 窒素戻り配管出口  15 Nitrogen return piping outlet
16、 18、 20 加圧用分岐配管  16, 18, 20 Branch piping for pressurization
17 気化器  17 Vaporizer
19 バルブ  19 Valve
21 加圧用外部配管  21 Pressurized external piping
22 高圧の窒素ボンべ  22 High pressure nitrogen cylinder
23 リザーバータンク内部のヒータ  23 Heater inside reservoir tank
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
この発明の超電導電力機器用冷却システムを、図面を参照しながら詳細に説明す る。  The cooling system for superconducting power equipment according to the present invention will be described in detail with reference to the drawings.
この発明の超電導電力機器用冷却システムは、液体ガスを貯溜するリザーバータ ンク、循環ポンプ、液体ガスを冷却する熱交^^、および、液ィヒガスが循環する循環 ループを備え、液ィ匕ガスを、循環ポンプを用いてサブクール状態で循環して超電導 電力機器を冷却する超電導電力機器の冷却システムであって、リザーバータンクを 液ィ匕ガスと同種のガスで加圧する加圧手段をさらに備え、液ィ匕ガスを加圧状態で貯 溜するリザーバータンクの液面力 循環する液ィ匕ガスの戻りラインの出口よりも、少な くとも加圧ガスの溶け込み深さ +液面移動補正量だけ上部に位置していることを特 徴とする超電導電力機器の冷却システムである。 The cooling system for superconducting power equipment according to the present invention includes a reservoir tank for storing liquid gas, a circulation pump, a heat exchanger for cooling the liquid gas, and a circulation loop for circulating the liquid gas, , A superconducting power equipment cooling system that circulates in a subcooled state using a circulation pump to cool superconducting power equipment, further comprising pressurizing means for pressurizing the reservoir tank with the same kind of gas as the liquid gas. Liquid level force of reservoir tank that stores pressurized gas under pressure At least the depth of the pressurized gas dissolved + the level shift correction amount above the outlet of the return line of the circulating liquid gas Specially located This is a cooling system for superconducting power equipment.
[0023] 液ィ匕ガスを加圧状態で貯溜するリザーバータンクの液面が、循環する液化ガスの 戻りラインの出口よりも、少なくとも加圧ガスの溶け込み深さ +液面移動補正量だけ 上部に位置していることが必要であることを以下に説明する。  [0023] The liquid level of the reservoir tank that stores the liquid gas in a pressurized state is at least higher than the outlet of the return line of the circulating liquefied gas by at least the penetration depth of the pressurized gas + the liquid level movement correction amount. The need to be located is explained below.
加圧ガスの溶け込み深さと、圧力減少率との間の関係を実験によって調べた。図 5 は、加圧ガス溶け込み深さ [m]と圧力減少率[%]との関係を示す図である。  The relationship between the penetration depth of the pressurized gas and the pressure reduction rate was investigated by experiment. Figure 5 shows the relationship between the pressure gas penetration depth [m] and the pressure reduction rate [%].
[0024] 図 5において、加圧ガスがリザーバータンクの液面力 溶け込む深さ(即ち、加圧ガ ス溶け込み深さ)を横軸に、液ィ匕によるリザーバータンク内の圧力の 1時間当たりの減 少率を縦軸にそれぞれ示す。実験条件として、リザーバータンクの内容積として、直 径 lm、高さ lmの容器を用いて、圧力を 0. 3MPaとした。その結果、図 5から明らか なように、溶け込み深さが 10cmまでは、圧力の減少率が顕著に大きぐ溶け込み深 さが概ね 20cmまでは、加圧に使用した気相の窒素ガスが液に凝縮して、加圧した圧 力の減少が依然として早い。一方、溶け込み深さを 20cm以上に保てば、圧力の減少 量を 1%以下の小さい値に維持することができることが分力つた。実際には、加圧ガス の溶け込み深さの他に、液体窒素の温度、圧力などの影響で液面が変わるために液 面移動補正量を考慮する必要がある。  [0024] In FIG. 5, the depth at which the pressurized gas melts into the liquid level of the reservoir tank (that is, the depth at which the pressurized gas penetrates) is plotted on the horizontal axis. The reduction rate is shown on the vertical axis. As experimental conditions, a reservoir tank having an inner diameter of lm and a height of lm was used, and the pressure was set to 0.3 MPa. As a result, as is clear from FIG. 5, when the penetration depth is up to 10 cm, the rate of decrease in pressure is remarkably large, and when the penetration depth is up to about 20 cm, the gaseous nitrogen gas used for pressurization becomes liquid. Condensed and pressurized pressure is still decreasing rapidly. On the other hand, if the penetration depth was kept at 20 cm or more, it was found that the pressure decrease could be kept at a small value of 1% or less. Actually, in addition to the penetration depth of the pressurized gas, the liquid level changes due to the influence of the temperature and pressure of liquid nitrogen, so it is necessary to consider the liquid level movement correction amount.
[0025] 従って、液ィ匕ガスを加圧状態で貯溜するリザーバータンクの液面力 循環する液ィ匕 ガスの戻りラインの出口よりも、少なくとも加圧ガスの溶け込み深さ +液面移動補正量 だけ上部に位置していることが必要である。具体的には、加圧ガスの溶け込み深さ( 20cm) +液面移動補正量(30cm)として 50cm以上が好適である。上述したことは、 リザーバータンクの容器形状への依存性は小さぐサイズが変わっても、必要深さは 概ねこの通りとなる。従って、本願のシステムにおいては、リザーバータンクの容器高 さとして、必要深さ(50cm以上が好ましい)が確保できる高さが必要となる。  [0025] Accordingly, the liquid level force of the reservoir tank that stores the liquid gas in a pressurized state is at least the depth of penetration of the pressurized gas from the outlet of the return line of the circulating liquid gas + the liquid level movement correction amount It is only necessary to be located at the top. Specifically, the depth of penetration of the pressurized gas (20 cm) + the liquid level movement correction amount (30 cm) is preferably 50 cm or more. As described above, the required depth is almost the same even if the size of the reservoir tank depends on the container shape is small. Therefore, in the system of the present application, the container height of the reservoir tank needs to be high enough to ensure the required depth (preferably 50 cm or more).
[0026] 上述したように、本発明は、超電導電力機器を液ィ匕ガスで冷却するシステムにお!/ヽ て、加圧に用いた液ィ匕ガスより沸点の低いガスが液ィ匕ガス中に溶解して、液化ガスの 循環の不安定性要因や、電気機器の絶縁に関するトラブルをおこさずに、液化ガス をサブクール状態で長期間循環を行うことのできる冷却システムを提供するものであ る。 [0027] 上述した状態で加圧する加圧手段は、リザーバータンクに貯溜する液ィ匕ガスと同種 のガスで、リザーバータンクを所定の圧力に加圧することからなっている。加圧するガ スが液ィ匕ガスで冷却されて液ィ匕することを防ぐために、リザーバータンク内にある循 環ポンプの戻り配管の出口に対して、リザーバータンクの液面が少なくとも 20cm以 上、好ましくは 50cm以上高い位置にある。 [0026] As described above, the present invention is a system that cools a superconducting power device with liquid gas. A gas having a lower boiling point than the liquid gas used for pressurization is a liquid gas. It provides a cooling system that can circulate liquefied gas in a subcooled state for a long time without causing instability in the circulation of liquefied gas and troubles related to insulation of electrical equipment. . [0027] The pressurizing means for pressurizing in the above-described state consists of pressurizing the reservoir tank to a predetermined pressure with the same kind of gas as the liquid gas stored in the reservoir tank. In order to prevent the pressurized gas from being cooled by liquid gas, the reservoir tank liquid level is at least 20 cm above the outlet of the circulation pump return pipe in the reservoir tank. Preferably it is 50 cm or higher.
[0028] さらに、加圧の手段として、高圧ガスボンベで加圧する手段に加えて、リザーバータ ンクの圧力より高い循環ポンプ出口圧力をリザーバータンクに戻すことで加圧する手 段がある。循環ポンプ出口の圧力を用いる具体的な手段としては、リザーバータンク 力 液をくみ出し加圧して超電導電力機器に液送する循環ポンプの出口配管を分岐 して、リザーバータンクの圧力より液ィ匕ガスの一部を取り出し、分岐した液化ガスを気 ィ匕器を用いてガス化して、さらにリザーバータンクの圧力を所定の圧力に維持するた めの圧力に応じて開閉動作する圧力調整弁を介してリザーバータンクに戻す手段が ある。  [0028] Furthermore, as means for pressurization, in addition to means for pressurization with a high-pressure gas cylinder, there is a means for pressurization by returning the circulation pump outlet pressure higher than the pressure of the reservoir tank to the reservoir tank. As a specific means of using the pressure at the outlet of the circulation pump, the outlet pipe of the circulation pump that pumps and pressurizes the reservoir tank fluid and feeds it to the superconducting power equipment is branched, and the liquid gas is discharged from the pressure of the reservoir tank. A part is taken out, the branched liquefied gas is gasified using a gasifier, and further the reservoir is connected via a pressure regulating valve that opens and closes according to the pressure for maintaining the pressure of the reservoir tank at a predetermined pressure. There is a means to return it to the tank.
[0029] 本発明の作用を説明するために、液ィ匕ガスとして液体窒素を用いた場合を説明す る。液体窒素の、大気圧(1.013MPa)における沸点は 77Kである。この液体窒素を 0.3 MPaに加圧すると、液体窒素の沸点は 90K以上となる。したがって、 77Kの液体窒素 を 0.3MPaまで加圧すると、液体窒素は気泡の発生がないサブクール状態となる。循 環ポンプの取液部は、リザーバータンクの底にあり、配管で循環ポンプに結ばれてい る。  In order to explain the operation of the present invention, the case where liquid nitrogen is used as the liquid gas will be described. The boiling point of liquid nitrogen at atmospheric pressure (1.013 MPa) is 77K. When this liquid nitrogen is pressurized to 0.3 MPa, the boiling point of liquid nitrogen becomes 90K or higher. Therefore, when 77K liquid nitrogen is pressurized to 0.3MPa, the liquid nitrogen enters a subcooled state where no bubbles are generated. The circulation pump's liquid withdrawal section is located at the bottom of the reservoir tank and is connected to the circulation pump by piping.
[0030] 一方、循環の戻りの配管はリザーバータンクに接続される力 その配管出口の位置 は液面より低い位置にある。循環ポンプより送出された液ィ匕ガスは、超電導電力機器 を冷却してリザーバータンクに戻る。その際、配管出口は、液面より低い位置にある ので、戻りの液ィヒガスは、リザーバータンクの加圧ガス相に触れないで、循環ポンプ の液体窒素取液口に移動して、再度、循環する。  [0030] On the other hand, the return pipe of the circulation is a force connected to the reservoir tank. The position of the outlet of the pipe is lower than the liquid level. The liquid gas delivered from the circulation pump cools the superconducting power equipment and returns to the reservoir tank. At that time, since the piping outlet is located below the liquid level, the returned liquid gas does not touch the pressurized gas phase of the reservoir tank, moves to the liquid nitrogen inlet of the circulation pump, and circulates again. To do.
[0031] 本発明では、液面の位置を、配管出口や循環ポンプの取液ロカ 所定高さ(20cm )以上に高くしている (即ち、所定の液ィ匕ガス層を設けている)ので、それぞれの配管 口にあるサブクールの冷たい液体窒素に対して、その上にある液体窒素の温度が液 面に向力つて順に高くなり、液面部の液体窒素温度は 0.3MPaの液ィ匕ガスの沸点温 度とほぼ同一となっている。そのために、過去、同種のガスでリザーバータンク内をカロ 圧した場合、ガスは液ィ匕して、ガス供給が間に合わずに圧力が低下する問題があつ たが、今回の液ィ匕ガス層を置くことで、ほとんどガスが液ィ匕されないことが分力つた。 In the present invention, the position of the liquid level is set higher than a predetermined height (20 cm 2) of the liquid outlet of the piping outlet and the circulation pump (that is, a predetermined liquid gas layer is provided). The temperature of the liquid nitrogen above the subcooled cold liquid nitrogen at each piping port increases in order toward the liquid surface, and the liquid nitrogen temperature at the liquid surface is 0.3MPa liquid gas. Boiling temperature of It is almost the same as the degree. Therefore, in the past, when the pressure in the reservoir tank was pressurized with the same kind of gas, there was a problem that the gas was liquidated and the pressure dropped due to insufficient gas supply. As a result, it was found that almost no gas was liquefied.
[0032] 本発明では、加圧の方法として新たに、ボンベで加圧する方法以外の方法につ!、 ても考察した。本発明における自己の圧力で加圧する方法について図 1を参照して 説明する。最初、大気圧状態 (a点)にあるリザーバー内部力 液体窒素を汲み出し て循環ポンプで液送する。循環ポンプの出口では、液体窒素が 50L/minで流れ、入 口に対して、液体窒素は 0.2MPa加圧される(b点)。出口部の圧力を利用するにあた り、出口配管より分岐して加圧された液体窒素を、途中気化器でガスに気化してリザ 一バータンクに戻す事で、リザーバータンクの圧力を上昇させる。(矢印 。  [0032] In the present invention, a method other than the method of pressurizing with a cylinder was newly considered as a pressurizing method. The method of pressurizing with self pressure in the present invention will be described with reference to FIG. First, the reservoir internal force liquid nitrogen in the atmospheric pressure state (point a) is pumped out and pumped with a circulation pump. At the outlet of the circulation pump, liquid nitrogen flows at 50 L / min, and liquid nitrogen is pressurized to 0.2 MPa at the inlet (point b). When using the pressure at the outlet, the liquid nitrogen branched and pressurized from the outlet pipe is vaporized into gas by a vaporizer and returned to the reservoir tank to raise the pressure in the reservoir tank. . (Arrow.
[0033] それに応じて、循環ポンプの出口圧力も上昇 (矢印 d)し、リザーバータンクを常に カロ圧することができる。リザーバータンクの圧力が、上限設定圧力(P2)を越えると (e 点)、配管につけたバルブが閉となり、リザーバータンクへのガスの供給が停止する。 その後、リザーバー内部では、ガス相の窒素ガスが窒素ガスの三重点以下の液体窒 素で冷やされて、ガス相の窒素ガスは液ィ匕して液体窒素になる。液化してガス体積 が減少した分、リザーバータンクの圧力が減少する(矢印 f)。下限設定圧力(P1)とな ると (g点)、バルブが開となり、再び循環ポンプ出口の圧力でリザーバータンク内部に 窒素ガスが供給されリザーバータンクの圧力が加圧される。  [0033] In response to this, the outlet pressure of the circulation pump also increases (arrow d), and the reservoir tank can be constantly pressurized. When the pressure in the reservoir tank exceeds the upper limit set pressure (P2) (point e), the valve attached to the pipe is closed and the gas supply to the reservoir tank is stopped. Thereafter, in the reservoir, the nitrogen gas in the gas phase is cooled with liquid nitrogen below the triple point of the nitrogen gas, and the nitrogen gas in the gas phase becomes liquid and becomes liquid nitrogen. The pressure in the reservoir tank decreases as the gas volume decreases due to liquefaction (arrow f). When the lower limit set pressure (P1) is reached (point g), the valve is opened, and nitrogen gas is again supplied to the interior of the reservoir tank by the pressure at the circulation pump outlet, increasing the pressure in the reservoir tank.
[0034] 配管の中を低温の窒素ガスが流れるために配管やバルブを凍らせる恐れがあり、 気化器の役割として、それを防ぐために液体窒素をガス化して室温まで昇温する。気 ィ匕器として、配管にヒータを卷いたり、配管を水などの中を通したり、また配管にフィン を取り付けて外気との熱交換で昇温する方法がある。また、ノ レブの役割としては、 単にポンプ力 分岐した配管でガスを送り続けると、リザーバータンクの圧力は上昇し 続け、リザーバータンクの設計圧力以上になる可能性があるために、リザーバータン クの圧力が所定の圧力以上になると閉の状態になりガスによる加圧を停止し、所定の 圧力以下になると開の状態  [0034] Since the low-temperature nitrogen gas flows through the piping, the piping and valves may be frozen. As a vaporizer, liquid nitrogen is gasified to raise the temperature to room temperature in order to prevent it. There are several ways to increase the temperature by placing a heater in the piping, passing the piping through water, etc., or attaching fins to the piping to exchange heat with the outside air. In addition, the role of the nozzle is simply to keep pumping the gas through the branched pipe, and the reservoir tank pressure will continue to rise, possibly exceeding the design pressure of the reservoir tank. When the pressure exceeds the specified pressure, it closes and pressurization with gas stops, and when the pressure falls below the specified pressure, it opens.
になり加圧して自動的に一定の圧力を保持する機能を持つ。  It has a function to automatically maintain a constant pressure by pressurizing.
[0035] なお、リザーバータンクの容量が大きい場合には、所定の圧力まで加圧するのに大 量の窒素ガスを必要とするので、別に窒素ボンべを用意して、リザーバータンクの圧 力を所定の圧力まで加圧することもできる。また、リザーバータンクの内部の気相部 分にヒータなどの加温装置を配置して、リザーバータンク内のガスを加圧膨張させて 加圧する方法も併用することが可能である。 [0035] When the capacity of the reservoir tank is large, it is necessary to pressurize to a predetermined pressure. Since an amount of nitrogen gas is required, a separate nitrogen cylinder can be prepared and the pressure of the reservoir tank can be increased to a predetermined pressure. It is also possible to use a method in which a heating device such as a heater is disposed in the gas phase inside the reservoir tank, and the gas in the reservoir tank is pressurized and expanded to pressurize it.
以下に、実施例によって、この発明を更に詳細に説明する。  Hereinafter, the present invention will be described in more detail by way of examples.
実施例  Example
[0036] 実施例 1  [0036] Example 1
図 2は、この発明の超電導電力機器の冷却システムの 1つの実施例を示す図であ る。液ィ匕ガスとしては、液体窒素を用いている。液体窒素は、リザーバータンク 1に貯 溜されている。リザーバータンク 1は、 2重の容器構造となっていて、 2重容器の間は、 断熱材が内側容器 lbを取り囲むように施工され、さらに熱浸入を低減するために真 空状態に維持されている。さらに、リザーバータンクは密封容器であり、内部を加圧 することでできるようになつている。  FIG. 2 is a diagram showing one embodiment of a cooling system for a superconducting power device according to the present invention. Liquid nitrogen is used as the liquid gas. Liquid nitrogen is stored in reservoir tank 1. Reservoir tank 1 has a double container structure. Between the double containers, insulation is installed so as to surround the inner container lb, and it is maintained in a vacuum state to reduce heat intrusion. Yes. In addition, the reservoir tank is a sealed container, which can be made by pressurizing the inside.
[0037] リザーバータンクの底には、循環ポンプへつながる液取口 3があり、そこから直径 3c mの口径の配管 4で循環ポンプ 5の入口までつながつている。循環ポンプ 5は、渦流 式の回転式のポンプである。フィン 5cを回転させるためのモータ 5aとフィンの間は、 伝導による熱の流入を抑制するために、約 50cmの長軸の軸 5bでつながれて!/、る。  [0037] At the bottom of the reservoir tank, there is a liquid inlet 3 connected to the circulation pump, which is connected to the inlet of the circulation pump 5 by a pipe 4 having a diameter of 3 cm. The circulation pump 5 is a vortex-type rotary pump. The motor 5a for rotating the fin 5c and the fin are connected by a long shaft 5b of about 50 cm in order to suppress heat inflow due to conduction!
[0038] また、フィン自身は、真空容器内部 5eに配置して、外界からの熱侵入を抑制するよ うになつている。本発明の回転式のポンプは、 50Hzの回転数で、液体窒素流量とし て、 30L/minの流量を流すことができ、また入口と出口の圧力差として 0. 2MPaの吐 出圧を得ることができる。ポンプ出口からは直径 3cmの配管 6で、その先冷凍機の熱 交 7につながっている。  [0038] Further, the fin itself is arranged in the inside 5e of the vacuum vessel so as to suppress heat intrusion from the outside. The rotary pump of the present invention can flow a flow rate of 30 L / min as the flow rate of liquid nitrogen at a rotation speed of 50 Hz, and obtain a discharge pressure of 0.2 MPa as a pressure difference between the inlet and the outlet. Can do. From the pump outlet, a pipe 6 with a diameter of 3 cm leads to the heat exchange 7 of the freezer.
[0039] 冷凍機 8は、 GM冷凍機またはスターリング冷凍機など力 なり、寒冷を作る低温へ ッドに熱交換器がつながり、循環する液体窒素を低温に冷却している。本発明では、 lkWの冷凍能力をもつスターリング冷凍機を用いており、 30L/minの液体窒素力 冷 凍機で冷却された熱交^^を通過することで、入口で 77Kであったものを 74Kまで冷 去 Pすることができる。  [0039] The refrigerator 8 is powered by a GM refrigerator, a Stirling refrigerator, etc., and a heat exchanger is connected to a low-temperature head for generating cold, and the circulating liquid nitrogen is cooled to a low temperature. In the present invention, a Stirling refrigerator having an refrigeration capacity of 1 kW is used. By passing through a heat exchanger ^^ cooled by a 30 L / min liquid nitrogen power refrigerator, the one that was 77 K at the inlet is used. Can be cooled to 74K.
[0040] 冷凍機で冷却された液体窒素は、直径 3cmの配管 9で超電導電力機器の入口 10 に水密につながれている。本実施例の超電導ケーブル 11を冷却するための冷却シ
Figure imgf000013_0001
、ては、超電導ケーブル内を冷凍機で冷やされた液体窒素が流通するこ とによって、超電導ケーブルを冷却する。超電導ケーブルを冷却した液体窒素は、温 度が上昇するが、上昇した温度は沸点以下であるために液体窒素中に気泡の発生 のないサブクール状態を維持している。そのため、 500mの超電導ケーブルでも圧力 損失は O.lMPa以下であり、十分小さぐ安定して液体窒素を流すことができる。
[0040] The liquid nitrogen cooled by the refrigerator is connected to the superconducting power equipment inlet 10 through a pipe 9 having a diameter of 3 cm. It is connected to water tightly. A cooling system for cooling the superconducting cable 11 of this embodiment.
Figure imgf000013_0001
The superconducting cable is cooled by circulating the liquid nitrogen cooled by the refrigerator in the superconducting cable. The temperature of liquid nitrogen that has cooled the superconducting cable rises, but since the increased temperature is below the boiling point, a subcooled state in which no bubbles are generated in the liquid nitrogen is maintained. For this reason, even with a 500 m superconducting cable, the pressure loss is less than O.lMPa, and it is sufficiently small and allows liquid nitrogen to flow stably.
[0041] また、気泡の発生しな 、液体窒素が超電導ケーブルの電気絶縁層に滲みこんで!/ヽ るために、良好な電気絶縁を保持することができる。超電導ケーブルの出口 12を出 た液体窒素は、配管 13により、リザーバータンク 1に戻ることによって、循環ループが 形成される。リザーバータンク 1、循環ポンプ 2、冷凍機の熱交 3、超電導ケープ ル 4、およびこれら機器を結ぶ窒素配管は全て外界力ゝらの侵入熱を低減するために 、真空断熱を用いた 2重容器構造となっている。  [0041] In addition, since liquid nitrogen permeates into the electric insulation layer of the superconducting cable without causing bubbles, the electric insulation can be maintained. Liquid nitrogen that has exited the outlet 12 of the superconducting cable returns to the reservoir tank 1 through the pipe 13 to form a circulation loop. The reservoir tank 1, the circulation pump 2, the heat exchange 3 of the refrigerator, the superconducting cable 4, and the nitrogen piping connecting these devices are all double containers that use vacuum insulation to reduce the intrusion heat from external forces. It has a structure.
[0042] リザーバータンクへ戻った配管 13は、リザーバータンクの上部から底部まで届く配 管 14であって、リザーバータンクの底部に出口 15から、液をリザーバータンクに戻す また、循環ポンプに結ばれる液取口 3も、リザーバータンクの底部に位置する。循環 中において、リザーバータンクの液体窒素は、出口 15の位置に対して少なくとも 20c m以上高 、位置に液面 2があるように窒素が溜められて 、る。  [0042] The pipe 13 returned to the reservoir tank is a pipe 14 that reaches from the top to the bottom of the reservoir tank, and returns the liquid to the reservoir tank from the outlet 15 to the bottom of the reservoir tank. Also, the liquid connected to the circulation pump Inlet 3 is also located at the bottom of the reservoir tank. During the circulation, the liquid nitrogen in the reservoir tank is stored so that it is at least 20 cm higher than the outlet 15 position and the liquid level 2 is at the position.
[0043] 本発明の循環ポンプの出口圧力によってリザーバータンクを加圧する方法は、ボン プ出口の配管 6から、直径 6mmのステンレス製の配管 16が分岐されて取り出されて いる。配管 16の内部を通る液体窒素は、循環ポンプの真空容器から出た後に、気化 器 17を通り、全てが液体窒素から常温の窒素ガスに変わる。  [0043] In the method of pressurizing the reservoir tank by the outlet pressure of the circulation pump of the present invention, a stainless steel pipe 16 having a diameter of 6 mm is branched and taken out from the pipe 6 at the pump outlet. The liquid nitrogen passing through the inside of the pipe 16 exits from the vacuum vessel of the circulation pump, and then passes through the vaporizer 17 where everything is changed from liquid nitrogen to room temperature nitrogen gas.
[0044] 気化器としては、本実施例では、温水容器の内部に銅製の 6mm配管力 6mコイル 形状に巻かれたものを使用しており、温水に浸されて内部の液体窒素を昇温してい る。気化器としては、本実施例以外でも、たとえばコイルの外側にヒータが巻きつけら れて、通電によるヒータ発熱で昇温する方法や、配管にフィンが取り付けられて、大 気との熱交換で暖める方式など、内部の液体窒素を室温のガスにできるものであれ ば良い。気化器 17を出た配管 18には、出口圧力が所定の圧力以下になるとガスを 流し、所定の圧力以上になるとガスを止める圧力制御機能を持つノ レブ 19が取り付 けられている。バルブ 19を出た配管 20は、リザーバータンクの上部に取り付けられて 、リザーバータンクを加圧できるようになつている。 [0044] As the vaporizer, in this embodiment, a copper hot water container with a copper 6mm piping force wound in a 6m coil shape is used, and the liquid nitrogen inside is heated by being immersed in the hot water. ing. As a vaporizer, in addition to this embodiment, for example, a heater is wound around the outside of the coil and the temperature is increased by heating the heater by energization, or fins are attached to the piping to exchange heat with the atmosphere. It is sufficient if the liquid nitrogen inside can be turned into room temperature gas, such as a heating method. The pipe 18 exiting the vaporizer 17 is filled with gas when the outlet pressure falls below a predetermined pressure. A nozzle 19 is installed that has a pressure control function that stops the gas when the pressure exceeds the specified pressure. The pipe 20 exiting the valve 19 is attached to the upper part of the reservoir tank so that the reservoir tank can be pressurized.
[0045] なお、気化器 17を通過した以降の配管 18、 20は室温であるので特に断熱構造に する必要はないが、循環ポンプ出口力も気化器までの配管 16は、発泡ウレタンなど の断熱材で囲われているほうが、配管 16に霜がつくことが無ぐ美観上好適である。 なお、バルブ 19は、低温で動作するバルブを用いれば、バルブ 19と気化器 17の位 置を逆にすることもできる力 低温用のバルブは常温用に比べて高価であり、経済的 には適当な配置とはならない。なお、本実施例としては、圧力取り出しの配管 16をポ ンプ出口の配管 6より取り出したが、冷凍機の熱交換器の出口の配管 9でも、超電導 機器の入口部 10からでもリザーバータンクの圧力より高い部分であれば、どこから取 り出しても本発明の目的を達成できるもので、その意味でポンプ出口を単にポンプの 出口直近を示すのではなぐポンプの出口より下流のすべてを総称している。  [0045] The pipes 18 and 20 after passing through the vaporizer 17 are at room temperature, so there is no need for a heat insulation structure. However, the circulation pump outlet force and the pipe 16 up to the vaporizer are made of a heat insulating material such as urethane foam. It is more aesthetically preferable that the pipe 16 is not frosted. Note that if the valve 19 is operated at a low temperature, the position of the valve 19 and the vaporizer 17 can be reversed. The low temperature valve is more expensive than the normal temperature, and economically. It is not an appropriate arrangement. In this example, the pressure extraction pipe 16 was taken out from the pump outlet pipe 6. However, the pressure in the reservoir tank could be from the refrigerant heat exchanger outlet pipe 9 or the superconducting equipment inlet 10. As long as it is higher, the object of the present invention can be achieved no matter where it is taken out. In this sense, the pump outlet is not simply indicated as the immediate vicinity of the pump outlet, but all downstream from the pump outlet is collectively referred to. Yes.
[0046] 実施例 2  [0046] Example 2
実施例 1では、循環ポンプがリザーバータンクの外にある場合について説明したが 、循環ポンプがリザーバータンクの内部にある場合においても本発明を実施すること 力 Sできる。図 3は、この発明の超電導電力機器の冷却システムの他の 1つの態様の 1 つの部分を示す図である。即ち、図 3に、冷却システムのうち、本実施例を説明する ために、リザーバータンク部の抽出図を示す。循環ポンプ 5のうち、液を送るフィン部 5cがリザーバータンクの液中にあり、モータ 5aの回転を長軸 5bで伝えている。液体 窒素は、リザーバータンクから汲み出され、配管 6を通り、リザーバータンクを出て、液 体窒素を冷却する冷  In the first embodiment, the case where the circulation pump is outside the reservoir tank has been described. However, the present invention can be implemented even when the circulation pump is inside the reservoir tank. FIG. 3 is a diagram showing one part of another embodiment of the cooling system for a superconducting power device according to the present invention. That is, FIG. 3 shows an extraction diagram of the reservoir tank portion in order to explain the present embodiment in the cooling system. Of the circulation pump 5, the fin portion 5c for sending the liquid is in the liquid in the reservoir tank, and the rotation of the motor 5a is transmitted by the long shaft 5b. Liquid nitrogen is pumped out of the reservoir tank, passes through pipe 6, exits the reservoir tank, and cools the liquid nitrogen.
凍機につながつている。  Connected to the freezer.
加圧用の配管は、この場合、リザーバータンクから出た配管 6の部分に付けられ、そ の後は実施例 1と同じぐ気化器 17、バルブ 19を通して、リザーバータンクに戻る。  In this case, the piping for pressurization is attached to the portion of the piping 6 coming out from the reservoir tank, and then returns to the reservoir tank through the same vaporizer 17 and valve 19 as in the first embodiment.
[0047] 実施例 3 [0047] Example 3
実施例 1では、リザーバータンクの加圧手段としては、ポンプ出口からのガスによる ものだけである。この場合、配管が 6mmと細いうえに、圧力もポンプの吐出圧力分し かないために、ガス供給も少なぐ所定の圧力になるのに非常に長い時間がかかる。 特にリザーバータンクが大型になると、数十時間かかる。そこで、図 4に示すように、 補助手段として、リザーバータンクに外部配管 21をつけて高圧の窒素ボンべ 22ゃ窒 素カードルカもガスを供給する。また、リザーバータンク内部の気相部分が低温に冷 えると、液ィ匕が促進してしまうので、気相部分にヒータ 23を配置して液ィ匕を抑制しても よい。 In Example 1, the pressurizing means of the reservoir tank is only by gas from the pump outlet. In this case, the pipe is as thin as 6 mm and the pressure is divided by the pump discharge pressure. For this reason, it takes a very long time to reach a predetermined pressure with less gas supply. Especially when the reservoir tank is large, it takes tens of hours. Therefore, as shown in FIG. 4, as a supplementary means, an external pipe 21 is attached to the reservoir tank to supply gas to the high-pressure nitrogen cylinder 22 or nitrogen curdka. Further, when the gas phase portion inside the reservoir tank is cooled to a low temperature, the liquid is promoted. Therefore, the heater 23 may be disposed in the gas phase to suppress the liquid.
産業上の利用可能性 Industrial applicability
この発明によると、加圧に用いた液ィ匕ガスより沸点の低 、ガスが液ィ匕ガス中に溶解 して、液化ガスの循環の不安定性要因や、電気機器の絶縁に関するトラブルを起こ さず、液ィ匕ガスをサブクール状態で長期間循環を行うことのできる、超電導電力機器 の冷却システムを提供することができる。  According to the present invention, the boiling point is lower than that of the liquid gas used for pressurization, and the gas dissolves in the liquid gas, causing instability in the circulation of the liquefied gas and troubles related to insulation of the electrical equipment. In addition, it is possible to provide a cooling system for superconducting power equipment that can circulate liquid gas in a subcooled state for a long period of time.

Claims

請求の範囲 The scope of the claims
[1] 液ィ匕ガスを貯溜するリザーバータンク、循環ポンプ、液化ガスを冷却する熱交換器、 および、液ィ匕ガスが循環する循環ループを備え、前記液ィ匕ガスを、循環ポンプを用 いてサブクール状態で循環して超電導電力機器を冷却する超電導電力機器の冷却 システムであって、  [1] A reservoir tank for storing liquid gas, a circulation pump, a heat exchanger for cooling the liquefied gas, and a circulation loop for circulating the liquid gas, and using the circulation pump A cooling system for superconducting power equipment that circulates in a subcooled state and cools the superconducting power equipment,
リザーバータンクを前記液ィ匕ガスと同種のガスで加圧する加圧手段をさらに備え、前 記液ィ匕ガスを加圧状態で貯溜するリザーバータンクの液面が、循環する液ィ匕ガスの 戻りラインの出口よりも、少なくとも加圧ガスの溶け込み深さ + (プラス)液面移動補正 量だけ上部に位置して!/ヽることを特徴とする超電導電力機器の冷却システム。  The reservoir tank further includes pressurizing means for pressurizing the reservoir tank with the same kind of gas as the liquid gas, and the liquid level of the reservoir tank that stores the liquid gas in a pressurized state is the return of the circulating liquid gas. Cooling system for superconducting power equipment, characterized in that it is positioned at least the depth of the pressurized gas + (plus) liquid level movement correction amount!
[2] リザーバータンクを液ィ匕ガスと同種のガスで加圧する前記加圧手段は、前記液化ガ スと同種のガスを高圧で貯めたガスボンベから、圧力調整弁を介して所定圧力でカロ 圧することからなって!/ヽることを特徴とする、請求項 1に記載の超電導電力機器の冷 却システム。  [2] The pressurizing means for pressurizing the reservoir tank with the same kind of gas as the liquid gas is pressurized by a predetermined pressure via a pressure regulating valve from a gas cylinder storing the same kind of gas as the liquefied gas at a high pressure. The cooling system for a superconducting power device according to claim 1, characterized in that it consists of
[3] リザーバータンクを液ィ匕ガスと同種のガスで加圧する前記加圧手段は、リザーバータ ンク力 サブクール状態の液ィヒガスを送出する循環ポンプの出口から、前記超電導 電力機器に送る液ィ匕ガスの一部と分岐してリザーバータンクに戻る配管によって、循 環ポンプの吐出圧力を用いてリザーバータンクを加圧することからなっていることを特 徴とする、請求項 1に記載の超電導電力機器の冷却システム。  [3] The pressurizing means for pressurizing the reservoir tank with the same kind of gas as the liquid gas is a liquid tank that is supplied to the superconducting power device from the outlet of the circulation pump that sends the liquid gas in the reservoir tank force subcooled state. The superconducting power equipment according to claim 1, characterized in that the reservoir tank is pressurized using the discharge pressure of the circulating pump by a pipe branching off from a part of the gas and returning to the reservoir tank. Cooling system.
[4] リザーバータンクを液ィ匕ガスと同種のガスで加圧する前記加圧手段は、リザーバータ ンク力 サブクール状態の液ィヒガスを送出する前記循環ポンプの出口から、超電導 電力機器に送る液ィ匕ガスの一部と分岐してリザーバータンクに戻る配管に設けられ た、液化ガスを気化させる気化器と圧力調整用の圧力調整弁からなっていることを特 徴とする、請求項 3に記載の超電導電力機器の冷却システム。  [4] The pressurizing means for pressurizing the reservoir tank with the same kind of gas as the liquid gas is a liquid tank that is supplied to the superconducting power device from the outlet of the circulation pump that sends the liquid gas in the reservoir tank force subcooled state. 4. The method according to claim 3, comprising a vaporizer for vaporizing liquefied gas and a pressure regulating valve for regulating pressure, which are provided in a pipe branched from a part of the gas and returned to the reservoir tank. Cooling system for superconducting power equipment.
[5] 前記加圧手段の補助手段を更に備え、前記補助手段が、液化ガスと同種のガスをガ スボンべ力も供給して加圧することからなって 、ることを特徴とする、請求項 3または 請求項 4に記載の超電導電力機器の冷却システム。  [5] The auxiliary means of the pressurizing means is further provided, and the auxiliary means is configured to pressurize the same kind of gas as the liquefied gas by supplying a gas cylinder force. Or a cooling system for a superconducting power device according to claim 4.
[6] 前記加圧手段の補助手段を更に備え、前記補助手段が、リザーバータンクの気相部 分に加温装置を配置して、リザーバータンク気相部のガスを過熱体積膨張させること からなつていることを特徴とする、請求項 1から請求項 5の何れか 1項に記載の超電導 電力機器の冷却システム。 [6] The apparatus further includes auxiliary means for the pressurizing means, and the auxiliary means arranges a heating device in the gas phase part of the reservoir tank to superheat and expand the gas in the gas phase part of the reservoir tank. The cooling system for a superconducting electric power device according to any one of claims 1 to 5, characterized by comprising:
PCT/JP2005/010936 2004-06-28 2005-06-15 Cooling system for superconducting power apparatus WO2006001203A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05751512A EP1780482A4 (en) 2004-06-28 2005-06-15 Cooling system for superconducting power apparatus
CN2005800196798A CN1969158B (en) 2004-06-28 2005-06-15 Cooling system for superconducting power apparatus
KR1020067019841A KR101142901B1 (en) 2004-06-28 2005-06-15 Cooling system for superconducting power apparatus
US11/630,889 US20080202127A1 (en) 2004-06-28 2005-06-15 Cooling System for Superconducting Power Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-189117 2004-06-28
JP2004189117A JP4728601B2 (en) 2004-06-28 2004-06-28 Cooling system for superconducting power equipment

Publications (1)

Publication Number Publication Date
WO2006001203A1 true WO2006001203A1 (en) 2006-01-05

Family

ID=35779645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010936 WO2006001203A1 (en) 2004-06-28 2005-06-15 Cooling system for superconducting power apparatus

Country Status (6)

Country Link
US (1) US20080202127A1 (en)
EP (1) EP1780482A4 (en)
JP (1) JP4728601B2 (en)
KR (1) KR101142901B1 (en)
CN (1) CN1969158B (en)
WO (1) WO2006001203A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013043A1 (en) * 2006-07-24 2008-01-31 The Furukawa Electric Co., Ltd. Superconducting wire, superconducting conductor and superconducting cable
WO2008015941A1 (en) * 2006-08-02 2008-02-07 The Furukawa Electric Co., Ltd. Composite superconducting wire rod, method for manufacturing composite superconducting wire rod, and superconducting cable
KR100920883B1 (en) 2008-01-25 2009-10-09 엘에스전선 주식회사 Superconducting Cable to Improve Cooling Ability
US8280467B2 (en) 2008-10-03 2012-10-02 American Superconductor Corporation Electricity transmission cooling system
KR101640607B1 (en) * 2010-01-21 2016-07-19 엘에스전선 주식회사 Cooling apparatus of superconduction cable line
DE102010028750B4 (en) * 2010-05-07 2014-07-03 Bruker Biospin Gmbh Low-loss cryostat arrangement
DE102011002622A1 (en) * 2011-01-13 2012-07-19 Siemens Aktiengesellschaft Cooling device for a superconductor and superconducting synchronous machine
CN103262179B (en) * 2011-02-25 2016-08-31 株式会社前川制作所 superconducting cable cooling system
US20130090242A1 (en) * 2011-10-05 2013-04-11 Varian Semiconductor Equipment Associates, Inc. Techniques for Sub-Cooling in a Superconducting System
JP6046341B2 (en) * 2011-12-14 2016-12-14 株式会社前川製作所 Cooling device for superconducting power supply system
JP5916517B2 (en) * 2012-05-29 2016-05-11 古河電気工業株式会社 Cooling container
JP5991096B2 (en) * 2012-09-07 2016-09-14 富士電機株式会社 Method and apparatus for heating superconducting equipment
JP6048647B2 (en) * 2012-09-27 2016-12-21 住友電気工業株式会社 Cooling system
CN102881381A (en) * 2012-09-27 2013-01-16 张家港韩中深冷科技有限公司 Superconducting cable cooling system
WO2014104643A1 (en) * 2012-12-26 2014-07-03 Jeon Seung Chae System for liquefied gas storage tank having ultra-low temperature and automatic flow path conversion valve for liquefied gas storage tank having ultra-low temperature
KR101388510B1 (en) * 2013-05-23 2014-04-23 전승채 Auto flow path selector valve for cryogenic storage tank
KR101368379B1 (en) * 2012-12-26 2014-02-28 전승채 Cryogenic storage tank system and auto flow path selector valve therefor
JP6180735B2 (en) * 2012-12-26 2017-08-16 株式会社前川製作所 Cooling system and cooling method for superconducting device
JP6084547B2 (en) * 2013-10-18 2017-02-22 ジャパンスーパーコンダクタテクノロジー株式会社 Cryostat
KR101569650B1 (en) 2015-03-25 2015-11-17 한국기계연구원 Pressurization system using floating heater for cryogenic pressure vessel
JP2016217616A (en) * 2015-05-20 2016-12-22 株式会社 フジヒラ Cryogenic temperature cooling device
KR102337181B1 (en) * 2015-05-22 2021-12-09 한국전력공사 Cooling system for superconducting machine
CN105402971B (en) * 2016-01-07 2018-06-08 上海应用技术学院 A kind of directional freezing device using liquid nitrogen
US10670189B2 (en) * 2017-07-19 2020-06-02 General Electric Company Systems and methods for storing and distributing gases
CN114111082A (en) * 2021-11-02 2022-03-01 深圳供电局有限公司 Supercooled liquid nitrogen circulating system based on GM refrigerator
US20230295771A1 (en) * 2022-03-16 2023-09-21 Chengdu University Of Technology Waste mercury recovery device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874A (en) * 1981-06-24 1983-01-05 日本真空技術株式会社 Solenoid valve type automatic pressure increasing low-temperature refrigerant vessel
JPH0579600A (en) * 1991-03-30 1993-03-30 Toshiba Corp Method and device for pumping up extremely low temperature liquid
JP2001289546A (en) * 2000-03-31 2001-10-19 Taiyo Toyo Sanso Co Ltd Superconducting member cooling device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200099A (en) * 1986-02-27 1987-09-03 Mitsubishi Electric Corp Very low temperature liquid supply system
DE3741145A1 (en) * 1987-12-04 1989-06-15 Deutsche Forsch Luft Raumfahrt TREATMENT SYSTEM FOR LIQUID HYDROGEN
US5243821A (en) * 1991-06-24 1993-09-14 Air Products And Chemicals, Inc. Method and apparatus for delivering a continuous quantity of gas over a wide range of flow rates
US5228295A (en) * 1991-12-05 1993-07-20 Minnesota Valley Engineering No loss fueling station for liquid natural gas vehicles
US5954101A (en) * 1996-06-14 1999-09-21 Mve, Inc. Mobile delivery and storage system for cryogenic fluids
JP2003336923A (en) * 2002-05-20 2003-11-28 Central Japan Railway Co Very low temperature refrigerating device
US6865897B2 (en) * 2003-07-10 2005-03-15 Praxair Technology, Inc. Method for providing refrigeration using capillary pumped liquid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874A (en) * 1981-06-24 1983-01-05 日本真空技術株式会社 Solenoid valve type automatic pressure increasing low-temperature refrigerant vessel
JPH0579600A (en) * 1991-03-30 1993-03-30 Toshiba Corp Method and device for pumping up extremely low temperature liquid
JP2001289546A (en) * 2000-03-31 2001-10-19 Taiyo Toyo Sanso Co Ltd Superconducting member cooling device

Also Published As

Publication number Publication date
KR20070036027A (en) 2007-04-02
CN1969158B (en) 2010-12-22
EP1780482A4 (en) 2010-04-21
KR101142901B1 (en) 2012-05-10
CN1969158A (en) 2007-05-23
JP4728601B2 (en) 2011-07-20
JP2006012654A (en) 2006-01-12
EP1780482A1 (en) 2007-05-02
US20080202127A1 (en) 2008-08-28

Similar Documents

Publication Publication Date Title
WO2006001203A1 (en) Cooling system for superconducting power apparatus
JP4796491B2 (en) Controlled storage of liquefied gas
US5243821A (en) Method and apparatus for delivering a continuous quantity of gas over a wide range of flow rates
US7143598B2 (en) Energy system making use of a thermoelectric power unit and natural gas stored in liquid form
KR102053387B1 (en) Device for cooling a consumer with a super-cooled liquid in a cooling circuit
US20150362128A1 (en) Device and method for supplying fluid
JP5313338B2 (en) Device and method for pumping cryogenic fluid
Herzog et al. Cooling unit for the AmpaCity project–One year successful operation
JP7346453B2 (en) Methods and equipment for storing and distributing liquefied hydrogen
JPS6399459A (en) Method and system of obtaining package of plurality of separate discrete low-temperature liquefied co2
US7935450B2 (en) Method for operation of an energy system, as well as an energy system
JP6959425B2 (en) Systems and methods for controlling the pressure of cryogenic energy storage systems
KR101574940B1 (en) A closed cryogen cooling system and method for cooling a superconducting magnet
KR100395596B1 (en) Triple storage cryogenic tank cooling down liquid oxygen with liquid nitrogen
JP2016169880A (en) Superconductive cable cooling device and superconductive cable cooling method
WO2022058543A1 (en) A system for conditioning of lng
KR20210095930A (en) Device for generating gaseous gas from liquefied gas
JP3908975B2 (en) Cooling device and cooling method
JP2009216333A (en) Cooling method of superconductive member
JPH05280696A (en) Method and apparatus for liquefying and gasifying town gas
KR102512996B1 (en) System and Method for Controlling Boil-Off Gas of Liquefied Hydrogen
US20210348841A1 (en) Method for operating a reliquefaction system
KR102423639B1 (en) A method and apparatus for cooling a load and a system comprising the corresponding apparatus and load
KR20240017575A (en) Liquefied Hydrogen Supply System and Method
JP2024045087A (en) Liquid helium transfer device with reduced transfer loss

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067019841

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580019679.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005751512

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067019841

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005751512

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11630889

Country of ref document: US