JP2005156052A - Superconductive member cooling device - Google Patents

Superconductive member cooling device Download PDF

Info

Publication number
JP2005156052A
JP2005156052A JP2003397026A JP2003397026A JP2005156052A JP 2005156052 A JP2005156052 A JP 2005156052A JP 2003397026 A JP2003397026 A JP 2003397026A JP 2003397026 A JP2003397026 A JP 2003397026A JP 2005156052 A JP2005156052 A JP 2005156052A
Authority
JP
Japan
Prior art keywords
gas
cooling
heat insulating
liquid nitrogen
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003397026A
Other languages
Japanese (ja)
Inventor
Takahiro Umeno
高裕 梅野
Shigeru Yoshida
茂 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2003397026A priority Critical patent/JP2005156052A/en
Publication of JP2005156052A publication Critical patent/JP2005156052A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent solidification of low temperature liquefied gas without using an electric heater in a device cooling low temperature liquefied gas such as liquid nitrogen to a supercooling temperature under the atmospheric pressure by a GM refrigerating machine, and cooling a superconductive member by the supercooled liquid nitrogen. <P>SOLUTION: In the superconductive member cooling device, mixed gas of adding gas (for example, nitrogen gas) of the same type as the low temperature liquefied gas (for example, liquid nitrogen) to gaseous helium is used as a working mixture for the refrigerating machine, and a temperature of the low temperature liquefied gas in a heat insulation vessel is prevented from dropping to a solidification temperature or less. Particularly, in the mixed gas, proportions of the low temperature liquefied gas to the gas of the same type are within a range of 3-30vol%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、超電導トランスや超電導マグネット、そのほか各種の超電導コイル、あるいは超電導ケーブルなどの超電導部材、特に高温超電導部材を、液体窒素等の低温液化ガスによって低温に冷却・保持するための超電導部材冷却装置に関するものである。   The present invention relates to a superconducting member cooling device for cooling and holding a superconducting member such as a superconducting transformer, a superconducting magnet, various other superconducting coils, or a superconducting cable, in particular, a high-temperature superconducting member at a low temperature by a low-temperature liquefied gas such as liquid nitrogen. It is about.

超電導コイルなどの超電導部材、特に高温超電導を利用した超電導部材を冷却するにあたっては、冷却媒体として、窒素、水素、ネオン、ヘリウム等の低温液化ガスを使用することができるが、一般的には比較的安価な液体窒素(LN)を使用することが多い。この場合従来一般には、大気圧の飽和液体窒素、すなわち約77Kの液体窒素が用いられている。すなわち、真空断熱されたクライオスタットと称される大気に実質的に開放された断熱容器に超電導部材を収容しておき、その断熱容器内に約77Kの大気圧飽和液体窒素を注入して、その液体窒素中に超電導部材を浸漬させ、超電導部材を冷却・保持するのが通常である。 When cooling a superconducting member such as a superconducting coil, especially a superconducting member using high-temperature superconductivity, a low-temperature liquefied gas such as nitrogen, hydrogen, neon, or helium can be used as a cooling medium. In many cases, inexpensive liquid nitrogen (LN 2 ) is used. In this case, in general, saturated liquid nitrogen at atmospheric pressure, that is, liquid nitrogen of about 77 K is used. That is, a superconducting member is accommodated in a heat insulating container substantially open to the atmosphere called a cryostat that is vacuum-insulated, and about 77 K of atmospheric pressure saturated liquid nitrogen is injected into the heat insulating container. Usually, the superconducting member is immersed in nitrogen to cool and hold the superconducting member.

ところで高温超電導部材においては、若干でも温度が下がれば、超電導特性が大幅に向上することが知られている。例えば臨界電流は、77Kから70Kに下がっただけでも数倍に大きくなることが知られている。そこで最近では、大気圧下での飽和温度よりも低い温度(すなわち大気圧下での過冷却温度)の液体窒素等を用いて超電導部材を冷却する試みが種々なされている。   By the way, in a high-temperature superconducting member, it is known that the superconducting characteristics will be greatly improved if the temperature is slightly lowered. For example, it is known that the critical current increases several times even if it falls from 77K to 70K. Therefore, recently, various attempts have been made to cool the superconducting member using liquid nitrogen or the like having a temperature lower than the saturation temperature under atmospheric pressure (that is, the supercooling temperature under atmospheric pressure).

その一つの手法として本発明者等は、GM冷凍機(ギフォードマクマホン冷凍機)で代表される小型超低温冷凍機によって液体窒素を大気圧下での過冷却温度、例えば65Kまで冷却し、得られた大気圧下での過冷却温度の液体窒素を、超電導部材を冷却するための冷却媒体として用いるようにした超電導部材冷却装置を、特許文献1において提案している。   As one of the methods, the present inventors obtained liquid nitrogen by cooling it to a supercooling temperature under atmospheric pressure, for example, 65K, using a small ultra-low temperature refrigerator represented by a GM refrigerator (Gifford McMahon refrigerator). Patent Document 1 proposes a superconducting member cooling device in which liquid nitrogen at a supercooling temperature under atmospheric pressure is used as a cooling medium for cooling the superconducting member.

上記特許文献1による超電導部材冷却装置は、基本的には、超電導部材を収容してその超電導部材を冷却するための大気に実質的に開放された冷却側断熱容器と、前記冷却側断熱容器へ供給すべき液体窒素を収容するための大気圧に実質的に開放された供給側断熱容器と、前記供給側断熱容器へ液体窒素を供給するための液体窒素供給手段と、前記供給側断熱容器内の液体窒素を、大気圧下での過冷却温度まで冷却するための冷凍機と、前記供給側断熱容器内において大気圧下での過冷却温度まで冷却された液体窒素を前記冷却側断熱容器に移送するための移送手段とを有してなり、供給側断熱容器および冷却側断熱容器の液面上の空間を大気圧とするかまたは大気圧よりも高い圧力とし、かつ前記移送手段によって前記冷却側断熱容器内に供給された過冷却状態の液体窒素中に前記超電導部材を浸漬させるようにしたことを特徴とするものであり、その具体例を図2に示す。   The superconducting member cooling device according to Patent Document 1 basically includes a cooling-side heat insulating container that contains a superconducting member and is substantially open to the atmosphere for cooling the superconducting member, and the cooling-side heat insulating container. A supply-side heat insulation container substantially open to atmospheric pressure for containing liquid nitrogen to be supplied; liquid nitrogen supply means for supplying liquid nitrogen to the supply-side heat insulation container; and in the supply-side heat insulation container A refrigerator for cooling the liquid nitrogen to the supercooling temperature under atmospheric pressure, and the liquid nitrogen cooled to the supercooling temperature under atmospheric pressure in the supply side heat insulating container in the cooling side heat insulating container A space on the liquid surface of the supply side heat insulating container and the cooling side heat insulating container is set to atmospheric pressure or a pressure higher than atmospheric pressure, and the cooling is performed by the transfer means. In the side insulation container Which is characterized in that as the order of the superconducting member is immersed in liquid nitrogen supply has been supercooled state, shows a specific example in FIG.

図2において、冷却対象となる超電導部材1は冷却側断熱容器3の底部に配置されている。この冷却側断熱容器3は、大気に実質的に開放された一般的な汎用のクライオスタットからなるものであって、その外周壁部および底壁部が真空断熱構造5とされ、また上端には開閉可能な蓋部7が設けられている。この蓋部7は、容器本体に対して真空封止されたものではなく、またこの蓋部7には汎用のクライオスタットと同様な電流導入端子等が設けられており、このような蓋部7と容器本体部分との間の隙間や電流導入端子等を通じて冷却側断熱容器3の内部は実質的に大気開放された状態となっている。なお蓋部7には安全弁19が設けられているが、この安全弁19は、内部圧力が外部の大気圧に対して例えば+10kPaを越えた場合に開放されて、内部圧力を大気圧〜大気圧+10kPaの範囲内、すなわち大気圧もしくは大気圧より若干高い圧力に保持するように機能する。そして超電導部材1は蓋部7から支持部材9A,9Bによって吊下げた状態となっている。   In FIG. 2, the superconducting member 1 to be cooled is disposed at the bottom of the cooling side heat insulating container 3. The cooling-side heat insulating container 3 is composed of a general-purpose cryostat substantially open to the atmosphere, the outer peripheral wall portion and the bottom wall portion being a vacuum heat insulating structure 5, and the upper end being opened and closed A possible lid 7 is provided. The lid portion 7 is not vacuum-sealed with respect to the container body, and the lid portion 7 is provided with a current introduction terminal similar to a general-purpose cryostat. The inside of the cooling side heat insulating container 3 is substantially open to the atmosphere through a gap between the container main body part and a current introduction terminal. In addition, although the safety valve 19 is provided in the cover part 7, this safety valve 19 is open | released when internal pressure exceeds +10 kPa with respect to external atmospheric pressure, for example, and internal pressure is made into atmospheric pressure-atmospheric pressure +10 kPa. In the range of, i.e., atmospheric pressure or slightly higher than atmospheric pressure. The superconducting member 1 is suspended from the lid portion 7 by support members 9A and 9B.

冷却側断熱容器3内の底部には、後述するようにトランスファチューブ45を介して大気圧下での過冷却温度の液体窒素(冷却用液体窒素)11が供給されて、超電導部材1がその液体窒素11に浸漬される。またその冷却側断熱容器3内における液体窒素11の液面11Aよりもわずかに下方の位置には、水平横断面の外形形状が冷却側断熱容器3の水平横断面内周形状と実質的に相似の形状をなしかつ上下方向に所定の厚みを有する断熱部材13が配設されている。この断熱部材13は、前述の支持部材9A,9Bによって蓋部7から吊下げられており、またその断熱部材13の周囲が冷却側断熱容器3の内周壁面に対して若干の隙間14を保つように作られている。一方冷却側断熱容器3における冷却用液体窒素11の液面11Aの上方に残された空間(蓋部7と液面11Aとの間の空間)15には、外部の第1の窒素ガス供給源16から窒素ガス供給管18を経て大気圧の窒素ガスが供給される。また冷却側断熱容器3内における断熱部材13の下面側の位置には、後述する還流管17の一端が開口している。   As will be described later, liquid nitrogen (cooling liquid nitrogen) 11 at a supercooling temperature under atmospheric pressure is supplied to the bottom of the cooling side heat insulating container 3 via a transfer tube 45 as described later, and the superconducting member 1 is liquid. Immerse in nitrogen 11. Further, the outer shape of the horizontal cross section is substantially similar to the inner peripheral shape of the horizontal cross section of the cooling side heat insulating container 3 at a position slightly below the liquid surface 11A of the liquid nitrogen 11 in the cooling side heat insulating container 3. And a heat insulating member 13 having a predetermined thickness in the vertical direction. The heat insulating member 13 is suspended from the lid portion 7 by the support members 9A and 9B described above, and the periphery of the heat insulating member 13 maintains a slight gap 14 with respect to the inner peripheral wall surface of the cooling side heat insulating container 3. It is made like so. On the other hand, in the space 15 (the space between the lid 7 and the liquid surface 11A) 15 left above the liquid surface 11A of the cooling liquid nitrogen 11 in the cooling-side heat insulating container 3, an external first nitrogen gas supply source is provided. A nitrogen gas at atmospheric pressure is supplied from 16 through a nitrogen gas supply pipe 18. Further, one end of a reflux pipe 17 to be described later is opened at a position on the lower surface side of the heat insulating member 13 in the cooling side heat insulating container 3.

さらに前述のように大気に実質的に開放された冷却側断熱容器3とは別に、供給側断熱容器21が配設されている。   Further, a supply-side heat insulating container 21 is provided separately from the cooling-side heat insulating container 3 that is substantially open to the atmosphere as described above.

供給側断熱容器21は、前述の冷却側断熱容器3と同様に大気に実質的に開放されたものであって、その外周壁部および底壁部が真空断熱構造23とされ、また上端には開閉可能な蓋部25が設けられている。この蓋部25は容器本体に対して真空封止されたものではなく、このような蓋部25と容器本体部分との間の隙間などを通じて供給側断熱容器21の内部は実質的に大気に開放された状態となっている。この供給側断熱容器21には、外部の液体窒素供給源27から、制御弁29および供給管31を介して液体窒素33が供給されるようになっている。そして供給側断熱容器21内における液体窒素33の液面33Aよりもわずかに下方の位置には、水平横断面の外形形状が供給側断熱容器21の水平横断面形状と実質的に相似の形状をなしかつ上下方向に所定の厚みを有する断熱部材35が、蓋部25から支持部材37A,37Bによって吊下げられた状態で配設されている。この断熱部材35も、その周囲が供給側断熱容器21の内周壁面に対して若干の隙間39を保持していることは、冷却側断熱容器3内の断熱部材13と同様である。   The supply side heat insulating container 21 is substantially open to the atmosphere like the cooling side heat insulating container 3 described above, and the outer peripheral wall portion and the bottom wall portion thereof are the vacuum heat insulating structure 23, and the upper end is A lid 25 that can be opened and closed is provided. The lid 25 is not vacuum-sealed with respect to the container body, and the inside of the supply-side heat insulating container 21 is substantially open to the atmosphere through a gap between the lid 25 and the container body. It has become a state. The supply-side heat insulation container 21 is supplied with liquid nitrogen 33 from an external liquid nitrogen supply source 27 through a control valve 29 and a supply pipe 31. Then, at a position slightly lower than the liquid surface 33A of the liquid nitrogen 33 in the supply side heat insulating container 21, the outer shape of the horizontal cross section is substantially similar to the horizontal cross section shape of the supply side heat insulating container 21. None and the heat insulating member 35 having a predetermined thickness in the vertical direction is disposed in a state of being suspended from the lid portion 25 by the support members 37A and 37B. Similarly to the heat insulating member 13 in the cooling side heat insulating container 3, the heat insulating member 35 also has a slight gap 39 around the inner peripheral wall surface of the supply side heat insulating container 21.

さらに供給側断熱容器21には、その供給側断熱容器21内の液体窒素33を、大気圧下での飽和液体窒素の温度よりも低い過冷却温度(約77Kよりも低い温度、例えば65K)に冷却するための冷凍機41が配設されている。この冷凍機41は、作動ガス(通常は純ヘリウムガス)を圧縮するための圧縮機(コンプレッサ)41Aと、圧縮された高圧の作動ガスを膨張させて低温を得るとともににその低温を冷却対象(液体窒素)と熱交換するための冷却ヘッド41Bと、圧縮機41Aからの高圧の作動ガスと冷却ヘッド41Bから戻る膨張された低圧の作動ガスの流れを切替えるためのバルブモーター等の切替部41Cと、その切替部41Cと冷却ヘッド41Bとの間で作動ガスを往復させる通路を内部に形成したシリンダ部41Dとからなるものであり、その切替部41Cが供給側断熱容器21の蓋部25上に配置され、シリンダ部41Dが切替部41Cから蓋部25を下方へ貫通して供給側断熱容器21内の液体窒素の液面33A上の空間47を通り、その下端が液体窒素中に浸漬され、その部分すなわち液体窒素中に浸漬された部分に冷却ヘッド41Bが設けられている。ここで冷却ヘッド41Bは、その外面に銅等の良伝熱材料からなる伝熱ブロックを設けた構成とされている。なお圧縮機41Aは通常は供給側断熱容器21から離れた位置に配置され、その圧縮機41Aと切替部41Cとの間が、作動ガスを流通させるための高圧ガス管路41E、低圧ガス管路41Fによって結ばれている。   Further, in the supply-side heat insulation container 21, the liquid nitrogen 33 in the supply-side heat insulation container 21 is brought to a supercooling temperature lower than the temperature of the saturated liquid nitrogen under atmospheric pressure (a temperature lower than about 77K, for example, 65K). A refrigerator 41 for cooling is disposed. The refrigerator 41 has a compressor (compressor) 41A for compressing a working gas (usually pure helium gas), expands the compressed high-pressure working gas to obtain a low temperature, and cools the low temperature ( A cooling head 41B for exchanging heat with liquid nitrogen), a switching unit 41C such as a valve motor for switching the flow of the high-pressure working gas from the compressor 41A and the expanded low-pressure working gas returning from the cooling head 41B; The cylinder portion 41D is formed with a passage for reciprocating the working gas between the switching portion 41C and the cooling head 41B. The switching portion 41C is disposed on the lid portion 25 of the supply-side heat insulating container 21. The cylinder part 41D passes through the lid part 25 downward from the switching part 41C and passes through the space 47 on the liquid nitrogen liquid surface 33A in the supply side heat insulating container 21, and below it. There are immersed in liquid nitrogen, the cooling head 41B is provided in the immersion portion in its portion or in liquid nitrogen. Here, the cooling head 41B has a configuration in which a heat transfer block made of a good heat transfer material such as copper is provided on the outer surface thereof. The compressor 41A is normally disposed at a position away from the supply-side heat insulating container 21, and a high-pressure gas pipe 41E and a low-pressure gas pipe for circulating the working gas between the compressor 41A and the switching unit 41C. It is tied by 41F.

また供給側断熱容器21内には、蓋部25から吊下げられた状態で送液ポンプ43が配設されている。この送液ポンプ43は、その取入口(汲出口)が供給側断熱容器21における断熱部材35よりも下方(通常は供給側断熱容器21の底部近く)に位置するように配設されている。そしてこの送液ポンプ43の出口側はトランスファーチューブ45に接続されており、このトランスファーチューブ45は前述のように冷却側断熱容器3内に導かれている。さらに前記冷却側断熱容器3からの還流管17が供給側断熱容器21内へ導かれており、その還流管17の先端側開口端が供給側断熱容器21内において開口している。   In addition, a liquid feed pump 43 is disposed in the supply side heat insulating container 21 in a state of being hung from the lid portion 25. The liquid feed pump 43 is disposed such that the intake (pump outlet) is positioned below the heat insulating member 35 in the supply side heat insulating container 21 (usually near the bottom of the supply side heat insulating container 21). The outlet side of the liquid feed pump 43 is connected to a transfer tube 45, and the transfer tube 45 is guided into the cooling side heat insulating container 3 as described above. Further, the reflux pipe 17 from the cooling side heat insulating container 3 is led into the supply side heat insulating container 21, and the leading end side opening end of the reflux pipe 17 opens in the supply side heat insulating container 21.

また供給側断熱容器21における液体窒素33の液面33Aの上方に残された空間(蓋部25と液面33Aとの間の空間)47には、外部の第2の窒素ガス供給源49から窒素ガス供給管51を経て大気圧もしくは大気圧より若干高い圧力の窒素ガスが供給されるようになっている。   Further, a space 47 (a space between the lid portion 25 and the liquid surface 33A) 47 left above the liquid surface 33A of the liquid nitrogen 33 in the supply side heat insulating container 21 is supplied from an external second nitrogen gas supply source 49. Through the nitrogen gas supply pipe 51, nitrogen gas at atmospheric pressure or a pressure slightly higher than atmospheric pressure is supplied.

ここで、液体窒素供給源27、制御弁29、および供給管31は、供給側断熱容器21に液体窒素を供給するための液体窒素供給手段63を構成している。さらに送液ポンプ43およびトランスファチユーブ45は、供給側断熱容器21内において大気圧で過冷却状態に冷却された液体窒素を冷却側断熱容器3に移送するための移送手段65を構成している。一方第1の窒素ガス供給源16、窒素ガス供給管18は、冷却側断熱容器3における液面上の空間15に大気圧もしくは大気圧より若干高い圧力の窒素ガスを供給するための第1の窒素ガス供給手段67を構成しており、また第2の窒素ガス供給源49、窒素ガス供給管51は、供給側断熱容器21における液面上の空間47に大気圧もしくは大気圧より若干高い圧力の窒素ガスを供給するための第2の窒素ガス供給手段69を構成している。   Here, the liquid nitrogen supply source 27, the control valve 29, and the supply pipe 31 constitute liquid nitrogen supply means 63 for supplying liquid nitrogen to the supply side heat insulating container 21. Furthermore, the liquid feed pump 43 and the transfer tube 45 constitute transfer means 65 for transferring the liquid nitrogen cooled to the supercooled state at atmospheric pressure in the supply side heat insulating container 21 to the cooling side heat insulating container 3. On the other hand, the first nitrogen gas supply source 16 and the nitrogen gas supply pipe 18 are the first for supplying nitrogen gas at atmospheric pressure or a pressure slightly higher than atmospheric pressure to the space 15 on the liquid surface in the cooling side heat insulating container 3. The nitrogen gas supply means 67 is configured, and the second nitrogen gas supply source 49 and the nitrogen gas supply pipe 51 are at atmospheric pressure or slightly higher than atmospheric pressure in the space 47 on the liquid surface in the supply side heat insulating container 21. The second nitrogen gas supply means 69 for supplying the nitrogen gas is configured.

以上のような図2に示される特許文献1の超電導部材冷却装置の全体的な機能について以下に説明する。   The overall function of the superconducting member cooling device of Patent Document 1 shown in FIG. 2 as described above will be described below.

液体窒素供給手段63の液体窒素供給源27から供給側断熱容器21に供給される液体窒素は、77K程度のものであるが、その液体窒素は供給側断熱容器21内において、冷凍機41の冷却ヘッド41Bによって大気圧〜大気圧+10kPa程度の圧力のもとで冷却されて、大気圧下での飽和液体窒素温度(77K程度)よりも低い温度、例えば65K程度まで温度降下される。そしてその65K程度に過冷却された大気圧もしくは大気圧より若干高い圧力の液体窒素33は、送液ポンプ43によって供給側断熱容器21の底部付近から汲み上げられ、トランスファチューブ45を介して、大気に実質的に開放された冷却側断熱容器3内に導かれる。冷却側断熱容器3内に導かれた過冷却状態の液体窒素を図2では符号11で示しており、これが冷却用液体窒素に相当する。   The liquid nitrogen supplied from the liquid nitrogen supply source 27 of the liquid nitrogen supply means 63 to the supply-side heat insulating container 21 is about 77K. The liquid nitrogen is cooled in the supply-side heat insulating container 21 by the refrigerator 41. The head 41B is cooled under a pressure of about atmospheric pressure to atmospheric pressure + 10 kPa, and the temperature is lowered to a temperature lower than the saturated liquid nitrogen temperature (about 77K) under atmospheric pressure, for example, about 65K. Then, the liquid nitrogen 33 that has been supercooled to about 65K or slightly higher than atmospheric pressure is pumped from the vicinity of the bottom of the supply-side heat insulating container 21 by the liquid feed pump 43, and is transferred to the atmosphere via the transfer tube 45. It is led into the cooling side heat insulating container 3 which is substantially opened. The supercooled liquid nitrogen introduced into the cooling-side heat insulating container 3 is indicated by reference numeral 11 in FIG. 2 and corresponds to the cooling liquid nitrogen.

冷却側断熱容器3内においては、前述のような例えば65Kの過冷却状態の液体窒素11によって超電導部材1が例えば67〜70K程度に冷却・保持される。また冷却側断熱容器3内において超電導部材1からの熱などによって例えば70K程度以上に温度上昇した液体窒素は、還流管17を介して供給側断熱容器21へ戻る。このようにして供給側断熱容器21へ還流された流体窒素は、冷凍機41の冷却ヘッド41Bにより再び65〜70K程度まで大気圧もしくは大気圧より若干高い圧力のもとで冷却され、前述のように送液ポンプ43によって冷却側断熱容器3に再び送られることになる。   In the cooling-side heat insulating container 3, the superconducting member 1 is cooled and held at, for example, about 67 to 70K by the liquid nitrogen 11 in a supercooled state of 65K as described above. Further, the liquid nitrogen whose temperature has risen to, for example, about 70 K or more due to heat from the superconducting member 1 in the cooling side heat insulating container 3 returns to the supply side heat insulating container 21 via the reflux pipe 17. The fluid nitrogen refluxed to the supply-side heat insulating container 21 in this manner is cooled again to about 65 to 70K by the cooling head 41B of the refrigerator 41 under atmospheric pressure or a pressure slightly higher than atmospheric pressure, as described above. Then, it is sent again to the cooling side heat insulating container 3 by the liquid feed pump 43.

ここで、冷却側断熱容器3内における冷却用液体窒素11の液面11Aの上方の空間15には窒素ガス供給管18を介して大気圧もしくは大気圧より若干高い圧力の窒素ガスが導入される。したがって冷却側断熱容器3の液面上の空間15は大気圧もしくは大気圧より若干高い圧力の窒素ガスで満たされることになる。そのため冷却側断熱容器3内の圧力が大気圧もしくは大気圧以上の圧力に維持され、蓋部7の封止部分や電流導入端子部分などを介して外部から空気が引き込まれて侵入することが防止される。   Here, nitrogen gas at atmospheric pressure or slightly higher than atmospheric pressure is introduced into the space 15 above the liquid surface 11A of the cooling liquid nitrogen 11 in the cooling-side heat insulating container 3 through the nitrogen gas supply pipe 18. . Therefore, the space 15 on the liquid surface of the cooling side heat insulating container 3 is filled with nitrogen gas at atmospheric pressure or slightly higher than atmospheric pressure. Therefore, the pressure in the cooling side heat insulating container 3 is maintained at atmospheric pressure or a pressure higher than atmospheric pressure, and air is prevented from being drawn in from outside through the sealing portion of the lid portion 7 or the current introduction terminal portion. Is done.

また冷却側断熱容器3内における冷却用液体窒素11の液面下には断熱部材13が配設されているから、冷却用液体窒素11の液面(気液界面であるため約77K)とその断熱部材13よりも下側、特に超電導部材1が位置している冷却側断熱容器底部との間で熱勾配を与えることができる。またその断熱部材13の存在によって液面11A付近に底部側との間での対流撹拌が阻止される。そしてこれらの結果、超電導部材1が位置する底部の冷却用液体窒素11を、65K程度の低温の過冷却状態に維持することができる。そしてこのように超電導部材1が例えば65〜70Kの過冷却状態の低温の液体窒素11によって取囲まれるため、超電導部材1の作動時において超電導部材1が発熱しても、その周囲の液体窒素が大気圧下での気化温度(約77K)以上となるまでには10K程度の余裕があり、そのため超電導部材1の発熱によってその周囲の液体窒素が直ちに気化してガス気泡が発生してしまうことを有効に防止できる。   Further, since the heat insulating member 13 is disposed under the liquid level of the cooling liquid nitrogen 11 in the cooling side heat insulating container 3, the liquid level of the cooling liquid nitrogen 11 (about 77K because it is a gas-liquid interface) and its A thermal gradient can be applied to the lower side of the heat insulating member 13, particularly to the bottom of the cooling side heat insulating container where the superconducting member 1 is located. Further, the presence of the heat insulating member 13 prevents convective stirring between the bottom surface near the liquid surface 11A. As a result, the cooling liquid nitrogen 11 at the bottom where the superconducting member 1 is located can be maintained in a supercooled state at a low temperature of about 65K. Thus, since the superconducting member 1 is surrounded by the low-temperature liquid nitrogen 11 in a supercooled state of, for example, 65 to 70K, even if the superconducting member 1 generates heat during operation of the superconducting member 1, the surrounding liquid nitrogen remains. There is a margin of about 10K before the vaporization temperature under atmospheric pressure (about 77K) or higher, so that the heat generation of the superconducting member 1 immediately vaporizes the surrounding liquid nitrogen and generates gas bubbles. It can be effectively prevented.

なお供給側断熱容器21内における液体窒素33の液面33Aの上方の空間47にも、窒素ガス供給管51を介して大気圧もしくは大気圧より若干高い圧力の窒素ガスが導入されて、その窒素ガスで満たされることになる。そのため供給側断熱容器21内の圧力が大気圧もしくは大気圧より若干高い圧力に維持され、蓋部25の封止部分などを介して外部から空気が引き込まれて侵入することが防止される。   Note that nitrogen gas at atmospheric pressure or slightly higher than atmospheric pressure is introduced into the space 47 above the liquid surface 33A of the liquid nitrogen 33 in the supply-side heat insulating container 21 through the nitrogen gas supply pipe 51, and the nitrogen It will be filled with gas. Therefore, the pressure in the supply side heat insulating container 21 is maintained at atmospheric pressure or a pressure slightly higher than atmospheric pressure, and air is prevented from being drawn in from the outside through the sealing portion of the lid portion 25 and the like.

また冷却側断熱容器3と同様に、供給側断熱容器21内における液体窒素33の液面下にも断熱部材35が配設されており、そのため液体窒素33の液面(気液界面であるため約77K)とその断熱部材35よりも下側、特に冷凍機41の冷却ヘッド41B付近との間で熱勾配を与えることができる。またその断熱部材35の存在によって液面33A付近と断熱部材35よりも下側の部分との間での対流撹拌が阻止される。そしてこれらの結果、送液ポンプ43の取入口付近の液体窒素33を、65〜70K程度の低温の過冷却状態に維持して、その65〜70K程度の低温の過冷却状態の液体窒素を冷却側断熱容器3へ送り込むことができる。   Further, similarly to the cooling side heat insulating container 3, a heat insulating member 35 is also disposed below the liquid nitrogen 33 level in the supply side heat insulating container 21, and therefore the liquid surface of the liquid nitrogen 33 (because it is a gas-liquid interface). A thermal gradient can be given between about 77K) and the lower side of the heat insulating member 35, in particular, near the cooling head 41B of the refrigerator 41. Further, the presence of the heat insulating member 35 prevents convective stirring between the vicinity of the liquid surface 33 </ b> A and a portion below the heat insulating member 35. As a result, the liquid nitrogen 33 in the vicinity of the inlet of the liquid feed pump 43 is maintained in a low-temperature supercooled state of about 65 to 70K, and the low-temperature supercooled liquid nitrogen of about 65 to 70K is cooled. It can be fed into the side heat insulating container 3.

このような特許文献1に示される超電導部材冷却装置においては、通常の77K程度の大気圧下での飽和液体窒素を冷却媒体として用いた場合よりも超電導部材を確実に低温に冷却することができ、そのため超電導部材の性能を向上させることができる。しかもこの場合、冷却側断熱容器内の過冷却状態の冷却用液体窒素の液面上の空間が、大気圧もしくは大気圧より若干高い圧力の窒素ガスで満たされることにより、外部から水分を含む大気圧の空気が内部に吸い込まれるおそれを少なくして、冷却側断熱容器の蓋部や電流導入端子等の封止に厳密さが要求されないようにすることができ、さらには超電導部材を浸漬させた冷却用液体窒素が前述のように過冷却状態であるため、超電導部材の作動時において超電導部材が発熱しても、その発熱部位周辺で液体窒素が気化温度に達するには温度的余裕があり、そのため直ちには発熱部周辺でガス気泡が発生せず、したがってガス気泡によって超電導部材の絶縁性が低下したり冷却効率が低下したりするおそれも少ないなどの利点があり、さらには冷凍機によって大気圧下での過冷却温度まで供給側断熱容器内の液体窒素を冷却して、これを循環させているため、供給側断熱容器内への液体窒素補給のために運転を停止させる必要がないから、長時間連続して運転することができ、液体窒素補給のための手間や運転停止−再開の手間も不要となる等、種々の利点がある。   In such a superconducting member cooling device shown in Patent Document 1, the superconducting member can be cooled to a lower temperature more reliably than when saturated liquid nitrogen at atmospheric pressure of about 77 K is used as a cooling medium. Therefore, the performance of the superconducting member can be improved. Moreover, in this case, the space on the liquid surface of the supercooled cooling liquid nitrogen in the cooling-side heat insulating container is filled with nitrogen gas at atmospheric pressure or a pressure slightly higher than atmospheric pressure, so that a large amount of moisture is contained from the outside. It is possible to reduce the possibility that air at atmospheric pressure is sucked into the inside, so that strictness is not required for the sealing of the lid portion of the cooling side heat insulating container and the current introduction terminal, and further, the superconducting member is immersed. Since the liquid nitrogen for cooling is in a supercooled state as described above, even if the superconducting member generates heat during the operation of the superconducting member, there is a temperature margin for the liquid nitrogen to reach the vaporization temperature around the heat generating portion. Therefore, gas bubbles are not generated immediately around the heat generating part, and therefore there is an advantage that the gas bubbles are less likely to reduce the insulation of the superconducting member or the cooling efficiency. Since the liquid nitrogen in the supply-side heat insulation container is cooled to the supercooling temperature under atmospheric pressure by the refrigerator and circulated, the operation is stopped to supply liquid nitrogen to the supply-side heat insulation container. Since it is not necessary, it can be operated continuously for a long time, and there are various advantages such as the trouble of replenishing liquid nitrogen and the trouble of stopping and resuming operation are unnecessary.

特許第2859250号公報Japanese Patent No. 2859250

前述のように特許文献1に示されるような冷凍機を用いた超電導部材冷却装置は、種々の利点を有するが、本発明者等がその実用化のための実験・検討を重ねたところ、未だ改良すべき点があることが判明した。   As described above, the superconducting member cooling apparatus using the refrigerator as disclosed in Patent Document 1 has various advantages, but the present inventors have repeatedly conducted experiments and examinations for practical use, and have yet to do so. It turns out that there are points to be improved.

すなわち、このような冷凍機を用いた超電導部材冷却装置においては、超電導部材の発熱や外部からの熱侵入による熱負荷、特に異常な超電導部材の発熱や過大な熱侵入により著しく大きな熱負荷が加わった場合でも、確実に超電導部材を所定の低温に冷却・維持させるべく、冷凍機としては正常な運転時に必要な冷却能力よりも充分に大きな冷却能力を有するものを使用する必要がある。言い換えれば、正常な運転時に必要な冷却能力に対して過剰な冷却能力を有する冷凍機を使用せざるを得ない。   That is, in a superconducting member cooling device using such a refrigerator, a heat load due to heat generation from the superconducting member or external heat intrusion, particularly an extremely large heat load due to abnormal heat generation from the superconducting member or excessive heat intrusion is applied. Even in such a case, in order to reliably cool and maintain the superconducting member at a predetermined low temperature, it is necessary to use a refrigerator having a cooling capacity sufficiently larger than that required during normal operation. In other words, it is necessary to use a refrigerator having an excessive cooling capacity with respect to the cooling capacity required during normal operation.

ところがこのように過剰な冷却能力を有する冷凍機を用いた場合、正常な運転時、すなわち異常な熱負荷が加わっていない状態では、冷凍機の冷却ヘッドを挿入した供給側断熱容器内の液体窒素が過剰に冷却されて、液体窒素がその凝固温度(約63K)よりも低温となり、冷却ヘッド付近で液体窒素の凝固が開始されてしまうことがある。   However, when a refrigerator having an excessive cooling capacity is used in this way, during normal operation, that is, when an abnormal heat load is not applied, the liquid nitrogen in the supply-side heat insulating container into which the cooling head of the refrigerator is inserted Is excessively cooled, the liquid nitrogen becomes lower than its solidification temperature (about 63K), and solidification of liquid nitrogen may start near the cooling head.

このように液体窒素の凝固が開始されれば、供給側断熱容器内での液体窒素の自然対流が生じにくくなり、その結果冷却ヘッドから供給側断熱容器内の液体窒素の全体への熱伝達が阻害されて、冷却ヘッドから離れた位置の液体窒素が逆に充分に冷却されずに温度上昇してしまう事態が生じ、その温度上昇した液体窒素が冷却側断熱容器に送給されれば、超電導部材が充分に冷却されずに温度上昇してしまう事態が生じるおそれがある。また供給側断熱容器内で発生した液体窒素の凝固塊が送液ポンプに詰まり、供給側断熱容器内で冷却された液体窒素が円滑に冷却側断熱容器内へ送り込まれなくなって、超電導部材の温度が上昇してしまうことがある。さらに場合によっては、液体窒素の凝固によって、超電導部材を構成している超電導コイルに応力が加わって、コイルが緩んだり破壊されたりすることもある。ここで図2に示した装置では、超伝導部材が供給側断熱容器とは別の冷却側断熱容器内に配設されているため、液体窒素の凝固による応力が超電導部材冷却部材に直接加わるおそれは少ないが、後述するように冷凍機を設けた断熱容器内の液体窒素中に超電導部材を直接的に浸漬させておくことも考えられ、その場合には前述のような液体窒素の凝固による応力が直接超電導部材に加わってしまうおそれがある。   If solidification of liquid nitrogen is started in this way, natural convection of liquid nitrogen in the supply-side heat insulation container is less likely to occur, and as a result, heat transfer from the cooling head to the entire liquid nitrogen in the supply-side heat insulation container is prevented. If the liquid nitrogen at a position away from the cooling head is hindered and the temperature rises without being sufficiently cooled, and the liquid nitrogen that has risen in temperature is fed to the cooling side insulation container, the superconductivity There is a possibility that the temperature of the member may rise without being sufficiently cooled. Also, the solidified mass of liquid nitrogen generated in the supply-side heat insulation container is clogged in the liquid feed pump, so that the liquid nitrogen cooled in the supply-side heat insulation container cannot be smoothly sent into the cooling-side heat insulation container, and the temperature of the superconducting member May rise. Further, depending on the case, the solidification of liquid nitrogen may apply stress to the superconducting coil constituting the superconducting member, and the coil may be loosened or broken. Here, in the apparatus shown in FIG. 2, since the superconducting member is disposed in the cooling side heat insulating container different from the supply side heat insulating container, stress due to solidification of liquid nitrogen is directly applied to the superconducting member cooling member. Although it is rare, it is conceivable that the superconducting member is directly immersed in liquid nitrogen in a heat insulating container provided with a refrigerator as will be described later. May directly add to the superconducting member.

このように冷凍機を用いて液体窒素を冷却するようにした超電導部材冷却装置では、液体窒素を凝固させてしまった場合、種々の問題が生じる。このような問題を回避するための一般的な方策としては、冷凍機の冷却ヘッドに電気ヒータを設置しておき、温度センサにより冷却ヘッドの温度を検出して、冷却ヘッドの温度が低くなり過ぎたときには電気ヒータを作動させて冷却ヘッド表面の温度を上昇させ、これにより液体窒素の凝固温度以下に冷却ヘッドの温度を下げないように制御することが考えられる。   In the superconducting member cooling device that cools liquid nitrogen using a refrigerator as described above, various problems arise when liquid nitrogen is solidified. As a general measure for avoiding such problems, an electric heater is installed in the cooling head of the refrigerator, the temperature of the cooling head is detected by a temperature sensor, and the temperature of the cooling head becomes too low. In such a case, it is conceivable to control the temperature of the cooling head so as not to be lowered below the solidification temperature of liquid nitrogen by operating the electric heater to raise the temperature of the cooling head surface.

しかしながらこのような電気ヒータを用いた方法を実施する場合、冷却ヘッドに直接またはその近傍に温度センサを配置する必要があり、しかもその温度センサによる信号を用いてヒータ出力を制御する機器が必要となるなど、冷却装置全体のコストが高額とならざるを得ない。さらに上述のように電気ヒータを用いた場合でも、制御機構が正常に作動しなかったり、応答が遅れたり、あるいは温度センサに故障もしくは不具合が発生したりすれば、冷却ヘッドの温度が63K以下に低下して、液体窒素の凝固が開始されてしまうことも全くないとは言えない。   However, when implementing a method using such an electric heater, it is necessary to arrange a temperature sensor directly on or near the cooling head, and a device for controlling the heater output using a signal from the temperature sensor is required. For example, the cost of the entire cooling device must be high. Further, even when an electric heater is used as described above, if the control mechanism does not operate normally, the response is delayed, or the temperature sensor malfunctions or malfunctions, the temperature of the cooling head becomes 63K or less. It cannot be said that the solidification of liquid nitrogen is not started at all.

なお以上のところでは、超電導部材を冷却するための冷却媒体として液体窒素を用いた場合を例にとって説明したが、それ以外の低温液化ガス、例えば液体ネオンや液体水素等を冷却媒体として用いてこれを冷凍機により大気圧下での過冷却温度まで冷却する場合にも同様な問題が生じることは明らかである。すなわち、低温液化ガスを冷凍機により冷却して大気圧下での過冷却温度まで冷却した場合、凝固温度以下まで冷却されて凝固してしまうおそれは常に存在し、その解決策として電気ヒータを用いても、前述のような危惧が常に存在していたのである。   In the above description, the case where liquid nitrogen is used as a cooling medium for cooling the superconducting member has been described as an example. However, other low-temperature liquefied gases such as liquid neon and liquid hydrogen are used as the cooling medium. It is clear that a similar problem occurs when the refrigeration unit is cooled to a supercooling temperature under atmospheric pressure using a refrigerator. In other words, when the low-temperature liquefied gas is cooled to a supercooling temperature under atmospheric pressure by cooling with a refrigerator, there is always a risk of cooling to below the solidification temperature and solidifying, and an electric heater is used as a solution. However, there was always the fear as mentioned above.

この発明は以上の事情を背景としてなされたもので、低温液化ガスを冷凍機により大気圧下での過冷却温度まで冷却して超電導部材の冷却媒体として用いるようにした超電導部材冷却装置において、電気ヒータを用いることなく、低温液化ガスがその凝固温度以下に冷却されて凝固が開始されてしまうような事態が発生することを確実かつ安定して防止することができ、また装置的にも低コストの超電導部材冷却装置を提供することを目的とするものである。   The present invention has been made against the background described above. In a superconducting member cooling apparatus in which a low-temperature liquefied gas is cooled to a supercooling temperature under atmospheric pressure by a refrigerator and used as a cooling medium for the superconducting member. Without using a heater, it is possible to reliably and stably prevent a situation in which the low-temperature liquefied gas is cooled below its solidification temperature and start to solidify, and the apparatus is also low in cost. An object of the present invention is to provide a superconducting member cooling apparatus.

前述のような課題を解決するため、この発明の超電導部材冷却装置では、基本的には冷凍機の作動ガスとして、ヘリウムガスに超電導部材冷却用媒体の低温液化ガスと同種のガスを添加した混合ガスを用いることとした。すなわちGM冷凍機の作動ガスとしては一般的に純ヘリウムガスが使用されているが、これに超電導部材冷却用冷却媒体の低温液化ガスと同種のガスを少量添加・混合させておけば、冷凍機の冷却能力が前記低温液化ガスの凝固温度付近で急激に低下するという特異な現象が生じる。そこでこのような現象を利用して、断熱容器内で冷凍機により冷却される低温液化ガスが、その凝固温度以下に温度降下することを回避するようにした。   In order to solve the above-described problems, in the superconducting member cooling device of the present invention, basically, as the working gas of the refrigerator, mixing is performed by adding the same kind of gas as the low-temperature liquefied gas of the superconducting member cooling medium to helium gas. Gas was used. That is, pure helium gas is generally used as the working gas of the GM refrigerator, but if a small amount of the same kind of gas as the low-temperature liquefied gas of the cooling medium for cooling the superconducting member is added and mixed with this, the refrigerator A unique phenomenon occurs in which the cooling capacity of the gas rapidly decreases near the solidification temperature of the low-temperature liquefied gas. Therefore, by utilizing such a phenomenon, the temperature of the low-temperature liquefied gas cooled by the refrigerator in the heat insulating container is prevented from dropping below its solidification temperature.

具体的には、請求項1の発明は、断熱容器内に低温液化ガスを収容するとともに、その断熱容器内に冷凍機の冷却ヘッドを挿入して、断熱容器内の低温液化ガスを大気圧下での過冷却温度に冷却し、その大気圧下での過冷却温度の低温液化ガスにより超電導部材を冷却するようにした超電導部材冷却装置において、前記冷凍機の作動ガスとして、ヘリウムガスに、前記低温液化ガスと同種のガスを添加した混合ガスを用いて、断熱容器内の低温液化ガスがその凝固温度以下に温度低下しないようにしたことを特徴とするものである。   Specifically, according to the first aspect of the present invention, the low-temperature liquefied gas is accommodated in the heat insulation container, and the cooling head of the refrigerator is inserted into the heat insulation container so that the low-temperature liquefied gas in the heat insulation container is brought into atmospheric pressure In the superconducting member cooling apparatus that is cooled to the supercooling temperature at the subcooling temperature, and the superconducting member is cooled by the low-temperature liquefied gas at the supercooling temperature under atmospheric pressure, helium gas is used as the working gas of the refrigerator. Using a mixed gas to which the same kind of gas as the low-temperature liquefied gas is added, the low-temperature liquefied gas in the heat insulating container is prevented from being lowered below its solidification temperature.

また請求項2の発明は、請求項1に記載の超電導部材冷却装置において、前記混合ガスについて、低温液化ガスと同種のガスの割合を、3〜30vol%の範囲内としたことを特徴とするものである。   The invention according to claim 2 is the superconducting member cooling device according to claim 1, wherein a ratio of the same kind of gas as the low-temperature liquefied gas is set in the range of 3 to 30 vol% in the mixed gas. Is.

この発明の超電導部材冷却装置およびその制御方法によれば、冷凍機によって大気圧下での過冷却温度まで低温液化ガスを冷却するにあたり、電気ヒータを用いることなく、低温液化ガスが凝固してしまうことを確実かつ安定して防止でき、電気ヒータを用いた場合よりも装置全体としての信頼性を上昇させることができるとともに、装置コストも低減することができる。   According to the superconducting member cooling device and the control method therefor according to the present invention, when the low-temperature liquefied gas is cooled to the supercooling temperature under the atmospheric pressure by the refrigerator, the low-temperature liquefied gas is solidified without using an electric heater. This can be reliably and stably prevented, and the reliability of the entire apparatus can be increased as compared with the case where an electric heater is used, and the apparatus cost can be reduced.

この発明の超電導部材冷却装置の実施例においては、装置の外観的な構成は図2に示した従来技術の超電導部材冷却装置と同様であれば良く、したがって装置の外観的な構成についてはその説明は省略し、以下の説明でも図2に示した外観的装置構成についての符号を引用して記述する。   In the embodiment of the superconducting member cooling device of the present invention, the external configuration of the device may be the same as that of the conventional superconducting member cooling device shown in FIG. 2, and therefore the external configuration of the device will be described. In the following description, reference is made to the reference numerals for the external device configuration shown in FIG.

GM冷凍機で代表される冷凍機41の冷却ヘッド41Bは、供給側断熱容器21内に挿入されて、その供給側断熱容器21内の低温液化ガスとしての液体窒素33中に浸漬されており、その冷却ヘッド41Bにより液体窒素33が大気圧下での過冷却温度、例えば65Kまで冷却されるようになっている。なおここで請求項1で言うところの“断熱容器”は、この実施例では供給側断熱容器21に相当する。   A cooling head 41B of a refrigerator 41 represented by a GM refrigerator is inserted into the supply-side heat insulation container 21 and immersed in liquid nitrogen 33 as a low-temperature liquefied gas in the supply-side heat insulation container 21. The cooling head 41B cools the liquid nitrogen 33 to a supercooling temperature under atmospheric pressure, for example, 65K. In this embodiment, the “insulated container” in claim 1 corresponds to the supply-side insulated container 21 in this embodiment.

GM冷凍機で代表される冷凍機においては、その作動ガスは、圧縮機41Aによって圧縮されて高圧ガス管路41Eを経て切替部41Cを介し冷却ヘッド41Bの内部に至り、さらにその冷却部41Bの内部から切替部41Cを介し低圧ガス管路41Fに戻るという循環流を形成するものであって、その間における作動ガスのサイモン膨張により冷却能が得られる。そして特にこの発明の超電導部材冷却装置では、低温液化ガスとして液体窒素33を用いている場合、冷凍機41の作動ガスとして、ヘリウムガスに対して前記低温液化ガスと同種のガス(したがってこの例では窒素ガス)を添加・混合したガスを用いる。   In the refrigerator represented by the GM refrigerator, the working gas is compressed by the compressor 41A, reaches the inside of the cooling head 41B via the switching portion 41C via the high-pressure gas pipe 41E, and further flows in the cooling portion 41B. A circulation flow is formed such that the flow returns from the inside to the low-pressure gas pipe 41F via the switching part 41C, and cooling capacity is obtained by Simon expansion of the working gas in the meantime. In particular, in the superconducting member cooling device of the present invention, when liquid nitrogen 33 is used as the low-temperature liquefied gas, the same kind of gas as the low-temperature liquefied gas with respect to helium gas as the working gas of the refrigerator 41 (therefore, in this example) Nitrogen gas is added and mixed.

ここで、GM冷凍機で代表される小型超低温冷凍機の作動ガスとしては、従来一般には純ヘリウムガスを用いるのが通常である。   Here, as a working gas of a small cryogenic refrigerator represented by a GM refrigerator, pure helium gas is usually used conventionally.

しかるにGM冷凍機において、ヘリウムガスに他のガスを適量だけ添加・混入させた作動ガスを用いた場合に、その添加ガスの凝固温度近くでGM冷凍機の冷却能力(冷凍機出力)が急激に低下し、添加ガスの凝固温度で出力がほとんど零となる現象が存在することが、既に文献(“Experimental study on pulse tube refrigeration with helium and nitrogen mixtures”,Z.H.Gan,G.B.Chen,G.Thummes,C.Heiden,Cryogenics 40(2000)333−339)において報告されている。この文献による報告は、飽くまで学術的な興味から実験室的に行なったものであり、工業的な利用を意図したものではないが、上述のような現象を有効利用すれば、冷凍機41の冷却ヘッド41Bの温度が液体窒素の凝固温度以下とならないように確実に制御することが可能となる。   However, in a GM refrigerator, when working gas in which an appropriate amount of other gas is added to and mixed with helium gas is used, the cooling capacity (refrigerator output) of the GM refrigerator rapidly increases near the solidification temperature of the added gas. It has already been reported in the literature ("Experimental study on pulse tube refrigeration with helium and nitrogen mixture", ZH Gan, G.B. Chen) that the output is reduced to almost zero at the solidification temperature of the additive gas. G. Thummes, C. Heiden, Cryogenics 40 (2000) 333-339). The report in this document was made in the laboratory from an academic interest until the end, and is not intended for industrial use. However, if the above phenomenon is used effectively, the cooling of the refrigerator 41 is performed. It is possible to reliably control the temperature of the head 41B so that it does not become lower than the solidification temperature of liquid nitrogen.

すなわち前記文献においては、GM冷凍機の作動ガスとして、ヘリウムガスに3〜25vol%の範囲内の種々の割合で窒素ガスを混入させた場合、図1に示すように、冷凍機の出力は、液体窒素の凝固温度(63K)近くで急激に低下し、凝固温度でほとんど零となってしまう現象があることが示されている。   That is, in the above document, when nitrogen gas is mixed in helium gas at various ratios in the range of 3 to 25 vol% as the working gas of the GM refrigerator, as shown in FIG. It has been shown that there is a phenomenon in which the temperature rapidly decreases near the solidification temperature (63 K) of liquid nitrogen and becomes almost zero at the solidification temperature.

そして本発明者らも同様な実験を行なったところ、前記文献記載のものと同様な現象が生じることが確認された。またヘリウムガスに窒素ガス以外のガス、例えば水素ガスやネオンガスを添加した場合にも、同様にその添加ガスの凝固温度近くで急激に冷凍機出力が低下し、添加ガスの凝固温度で冷凍機出力がほとんど零となってしまう現象が見られることが確認されている。   And when the present inventors performed the same experiment, it was confirmed that the same phenomenon as the above-mentioned literature occurs. Also, when a gas other than nitrogen gas, such as hydrogen gas or neon gas, is added to the helium gas, the output of the refrigerator suddenly drops near the solidification temperature of the additive gas, and the output of the refrigerator at the solidification temperature of the additive gas. It has been confirmed that there is a phenomenon that becomes almost zero.

そこで図2に示される超電導部材冷却装置において、冷凍機41の作動ガスとして、ヘリウムガスに適量の窒素ガスを添加した混合ガスを用いれば、前記の現象により、冷凍機41の冷却ヘッド41Bの表面もしくはその近傍の温度が液体窒素の凝固温度にまで下がってしまうことを確実に防止できる。すなわち、冷却ヘッド41Bの温度が液体窒素の凝固温度である約63K近くまで低下すれば、その温度に近付くにつれて冷凍機41の冷却能力が急激に低下し、凝固温度では冷凍能力がほとんど零となってしまうから、冷却ヘッド41Bが液体窒素の凝固温度に達してその付近で液体窒素の凝固が開始されてしまうことを確実に防止できる。   Therefore, in the superconducting member cooling device shown in FIG. 2, if a mixed gas obtained by adding an appropriate amount of nitrogen gas to helium gas is used as the working gas of the refrigerator 41, the surface of the cooling head 41 </ b> B of the refrigerator 41 is caused by the above phenomenon. Or it can prevent reliably that the temperature of the vicinity falls to the solidification temperature of liquid nitrogen. That is, if the temperature of the cooling head 41B decreases to about 63K, which is the solidification temperature of liquid nitrogen, the cooling capacity of the refrigerator 41 rapidly decreases as it approaches that temperature, and the freezing capacity becomes almost zero at the solidification temperature. Therefore, it is possible to reliably prevent the cooling head 41B from reaching the solidification temperature of liquid nitrogen and starting solidification of liquid nitrogen in the vicinity thereof.

ここで、図2の例では超電導部材を冷却・保持するための冷却媒体(低温液化ガス)として液体窒素を用いている関係上、冷凍機の作動ガスとしてのヘリウムガスに混入・添加するガスとして、窒素ガスを用いることとしているが、要は超電導部材を冷却するための冷却媒体としての低温液化ガス(冷凍機41によって供給側断熱容器31内で大気圧下での過冷却温度まで冷却される対象となる低温液化ガス)と同種のガスをヘリウムガスに添加して、その混合ガスを冷凍機の作動ガスとすれば良い。例えば低温液化ガスとして液体ネオンを用いている場合には、冷凍機の作動ガスとしてヘリウムガスにネオンガスを添加したものを用いれば良く、また低温液化ガスが液体水素の場合は冷凍機の作動ガスとしてヘリウムガスに水素ガスを添加したものを用いれば良い。   Here, in the example of FIG. 2, liquid nitrogen is used as a cooling medium (low-temperature liquefied gas) for cooling and holding the superconducting member, and as a gas to be mixed / added to helium gas as the working gas of the refrigerator. Nitrogen gas is used, but in short, a low-temperature liquefied gas as a cooling medium for cooling the superconducting member (cooled to the supercooling temperature under atmospheric pressure in the supply side heat insulating container 31 by the refrigerator 41) The same kind of gas as the target low-temperature liquefied gas) may be added to the helium gas, and the mixed gas may be used as a working gas for the refrigerator. For example, when liquid neon is used as the low-temperature liquefied gas, it is sufficient to use helium gas with neon gas added as the working gas for the refrigerator. When the low-temperature liquefied gas is liquid hydrogen, the working gas for the refrigerator is used. What added helium gas to hydrogen gas may be used.

また上述のように冷凍機の作動ガスとしてヘリウムガスに混入・添加するガス(低温液化ガスと同種のガス)の添加割合は、通常は混合ガス全体を100%として3vol%〜30vol%程度を占めるように配合することが好ましい。添加ガスの割合が3vol%未満では、その添加ガスの凝固温度付近で急激に冷却能力が低下する現象が得難くなり、一方30vol%を越えれば、冷凍機の冷却能力が全体的に低下する傾向を示し、効率的でなくなる。   Further, as described above, the addition ratio of the gas mixed and added to the helium gas as the working gas of the refrigerator (the same kind of gas as the low-temperature liquefied gas) usually occupies about 3 vol% to 30 vol% with the entire mixed gas being 100%. It is preferable to blend as described above. If the ratio of the additive gas is less than 3 vol%, it is difficult to obtain a phenomenon in which the cooling capacity rapidly decreases near the solidification temperature of the additive gas. On the other hand, if it exceeds 30 vol%, the cooling capacity of the refrigerator tends to decrease overall. And become inefficient.

なお図2の例においては、供給側断熱容器21とは別に冷却側断熱容器3を設けて、冷却対象となる超電導部材1を冷却側断熱容器3内に配置し、供給側断熱容器21から送液ポンプ43によって大気圧下での過冷却温度の液体窒素を冷却側断熱容器3に移送して、冷却側断熱容器3内において超電導部材1を冷却・保持するようにしているが、場合によっては冷却側断熱容器3を省いて、供給側断熱容器21内の液体窒素中に超電導部材1を浸漬させ、直接的に超電導部材1を冷却・保持する構成としても良く、その場合においても、冷凍機41の作動ガスとして前記と同様な混合ガスを用いることができる。   In the example of FIG. 2, the cooling-side heat insulating container 3 is provided separately from the supply-side heat insulating container 21, and the superconducting member 1 to be cooled is disposed in the cooling-side heat insulating container 3 and sent from the supply-side heat insulating container 21. The liquid pump 43 transfers liquid nitrogen at a supercooling temperature under atmospheric pressure to the cooling-side heat insulating container 3 to cool and hold the superconducting member 1 in the cooling-side heat insulating container 3. The cooling side heat insulating container 3 may be omitted, and the superconducting member 1 may be immersed in the liquid nitrogen in the supply side heat insulating container 21 to directly cool and hold the superconducting member 1. As the working gas 41, the same mixed gas as described above can be used.

また図2の例では供給側断熱容器21、冷却側断熱容器3の液面上の各空間に大気圧もしくは大気圧よりも若干高い圧力の窒素ガスを導入して加圧するようにしているが、窒素ガスよりも凝縮温度が低いガス、例えばネオンガスや水素ガス、あるいはヘリウムガスを各液面上の空間に導入して大気圧もしくは大気圧よりも若干高い圧力に加圧しても良い。   In the example of FIG. 2, nitrogen gas having a pressure slightly higher than atmospheric pressure or slightly higher than atmospheric pressure is introduced into each space on the liquid surface of the supply side heat insulating container 21 and the cooling side heat insulating container 3 to pressurize it. A gas having a lower condensation temperature than nitrogen gas, for example, neon gas, hydrogen gas, or helium gas may be introduced into the space above each liquid surface and pressurized to atmospheric pressure or a pressure slightly higher than atmospheric pressure.

さらに、図2では冷凍機41の冷却ヘッド41Bの全体を液体窒素33中に浸漬させた状態を示しているが、場合によっては、冷却ヘッド41Bの下部のみ液体窒素33中に浸漬させて上部は液面上の空間に露呈させたり、あるいは冷却ヘッド41Bを液体窒素33中に浸漬させずに、その全体が液面上の空間に位置するように冷却ヘッドを配置しても良く、これらの場合は液面下の断熱部材35,13を省くことができる。   2 shows a state in which the entire cooling head 41B of the refrigerator 41 is immersed in the liquid nitrogen 33. In some cases, only the lower part of the cooling head 41B is immersed in the liquid nitrogen 33, and the upper part is The cooling head may be arranged so that the whole is located in the space above the liquid level without exposing it to the space above the liquid level or immersing the cooling head 41B in the liquid nitrogen 33. Can omit the heat insulating members 35 and 13 below the liquid surface.

図2に示される超電導部材冷却装置において、供給側断熱容器21として容量160lのものを用い、その供給側断熱容器21内に67Kの液体窒素33を130l注入し、かつその液面上の空間を窒素ガスによってゲージ圧7kPaに加圧した。一方冷凍機41としては、冷却ヘッド41Bが64Kのときの冷凍出力が140WのGM冷凍機を用い、かつその冷凍機の作動ガスとして、純ヘリウムガスに10vol%の窒素ガスを添加したものを用いた。   In the superconducting member cooling device shown in FIG. 2, a supply-side heat insulating container 21 having a capacity of 160 l is used, and 67 l of liquid nitrogen 33 of 67K is injected into the supply-side heat insulating container 21, and the space above the liquid surface is filled The gauge pressure was increased to 7 kPa with nitrogen gas. On the other hand, as the refrigerator 41, a GM refrigerator having a refrigeration output of 140 W when the cooling head 41B is 64K and a working gas of the refrigerator with 10 vol% nitrogen gas added to pure helium gas is used. It was.

このような装置でGM冷凍機41を作動させて供給側断熱容器21内の液体窒素33を冷却する運転実験を24時間ずつ5回、延べ120時間行ない、冷却ヘッド41Bの下部表面の温度をセンサにより測定したところ、冷却ヘッド41Bの表面温度は定常的に64〜65Kに保たれ、液体窒素が凝固する現象が生じないことが確認された。   The operation experiment of operating the GM refrigerator 41 with such an apparatus to cool the liquid nitrogen 33 in the supply-side heat insulating container 21 is performed five times every 24 hours for a total of 120 hours, and the temperature of the lower surface of the cooling head 41B is detected as a sensor. As a result of measurement, it was confirmed that the surface temperature of the cooling head 41B was constantly kept at 64 to 65K, and the phenomenon that liquid nitrogen solidified did not occur.

また、冷凍機41の作動ガス(ヘリウム・窒素ガスの混合ガス)における窒素ガスの割合を5%もしくは25%に変えて同様な実験を行なったところ、いずれの場合も冷却ヘッド41Bの温度が定常的に64〜65Kに保たれることが判明した。   Similar experiments were performed by changing the ratio of nitrogen gas in the working gas of the refrigerator 41 (mixed gas of helium and nitrogen gas) to 5% or 25%. In either case, the temperature of the cooling head 41B was steady. In particular, it was found to be kept at 64 to 65K.

一方、冷凍機41の作動ガスにおける窒素ガスの割合を1%に変えて同様な実験を行なったところ、冷却ヘッド41Bの表面温度が63K以下となって液体窒素の凝固が開始される場合があることが確認された。   On the other hand, when the same experiment was performed by changing the ratio of nitrogen gas in the working gas of the refrigerator 41 to 1%, the surface temperature of the cooling head 41B may be 63K or less, and solidification of liquid nitrogen may be started. It was confirmed.

さらに、冷凍機41の作動ガスにおける窒素ガスの割合を50%に変えて同様な実験を行なったところ、冷却ヘッド41Bの温度が70Kのとき、作動ガスが100%純ヘリウムの冷凍機と比べて冷凍能力が1/3程度に低下し、充分な冷凍能力を確保できないことが確認された。   Further, a similar experiment was performed by changing the ratio of nitrogen gas in the working gas of the refrigerator 41 to 50%. When the temperature of the cooling head 41B was 70K, the working gas was 100% pure helium as compared with the refrigerator. It was confirmed that the refrigerating capacity was reduced to about 1/3 and sufficient refrigerating capacity could not be secured.

GM冷凍機の作動ガスとして、ヘリウムガスに対して窒素ガスを種々の割合で混入・添加した場合の冷凍機の冷却ヘッドの温度と冷凍機の出力の関係を示す線図である。It is a diagram which shows the relationship between the temperature of the cooling head of a refrigerator, and the output of a refrigerator when nitrogen gas is mixed and added in various ratios with respect to helium gas as working gas of GM refrigerator. 従来の超電導部材冷却装置の一例を示すブロック図である。It is a block diagram which shows an example of the conventional superconducting member cooling device.

符号の説明Explanation of symbols

1 超電導部材
21 断熱容器としての供給側断熱容器
33 低温液化ガスとしての液体窒素
41 冷凍機
41A 圧縮機
41B 冷却ヘッド
DESCRIPTION OF SYMBOLS 1 Superconducting member 21 Supply side heat insulation container as heat insulation container 33 Liquid nitrogen as low temperature liquefied gas 41 Refrigerator 41A Compressor 41B Cooling head

Claims (2)

断熱容器内に低温液化ガスを収容するとともに、その断熱容器内に冷凍機の冷却ヘッドを挿入して、断熱容器内の低温液化ガスを大気圧下での過冷却温度に冷却し、その大気圧下での過冷却温度の低温液化ガスにより超電導部材を冷却するようにした超電導部材冷却装置において、
前記冷凍機の作動ガスとして、ヘリウムガスに、前記低温液化ガスと同種のガスを添加した混合ガスを用いて、断熱容器内の低温液化ガスがその凝固温度以下に温度低下しないようにしたことを特徴とする、超電導部材冷却装置。
While storing the low-temperature liquefied gas in the heat insulation container, the cooling head of the refrigerator is inserted into the heat insulation container to cool the low-temperature liquefied gas in the heat insulation container to the supercooling temperature under atmospheric pressure, and the atmospheric pressure. In the superconducting member cooling device that cools the superconducting member with a low-temperature liquefied gas having a supercooling temperature below,
As a working gas of the refrigerator, a mixed gas in which the same kind of gas as the low-temperature liquefied gas is added to helium gas so that the low-temperature liquefied gas in the heat insulation container does not drop below its solidification temperature. A superconducting member cooling device.
請求項1に記載の超電導部材冷却装置において、
前記混合ガスについて、低温液化ガスと同種のガスの割合を、3〜30vol%の範囲内としたことを特徴とする、超電導部材冷却装置。
The superconducting member cooling device according to claim 1,
The superconducting member cooling device, wherein the mixed gas has a ratio of the same type of gas as the low-temperature liquefied gas in a range of 3 to 30 vol%.
JP2003397026A 2003-11-27 2003-11-27 Superconductive member cooling device Pending JP2005156052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003397026A JP2005156052A (en) 2003-11-27 2003-11-27 Superconductive member cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003397026A JP2005156052A (en) 2003-11-27 2003-11-27 Superconductive member cooling device

Publications (1)

Publication Number Publication Date
JP2005156052A true JP2005156052A (en) 2005-06-16

Family

ID=34722298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003397026A Pending JP2005156052A (en) 2003-11-27 2003-11-27 Superconductive member cooling device

Country Status (1)

Country Link
JP (1) JP2005156052A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216333A (en) * 2008-03-12 2009-09-24 Taiyo Nippon Sanso Corp Cooling method of superconductive member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216333A (en) * 2008-03-12 2009-09-24 Taiyo Nippon Sanso Corp Cooling method of superconductive member

Similar Documents

Publication Publication Date Title
JP5196781B2 (en) Closed loop precooling method and apparatus for equipment cooled to cryogenic temperature
JP2009243837A (en) Very low temperature cooling device
JPH04350906A (en) Method and apparatus for cooling oxide superconducting coil
JP2008249201A (en) Recondenser, its mounting method and superconducting magnet using the same
JP2017172813A (en) Cryogenic cooling apparatus and cryogenic cooling method
JP2007271254A (en) Cooling apparatus
JP2859250B2 (en) Superconducting member cooling device
JP4808465B2 (en) Cryogenic equipment
JP2005156051A (en) Superconductive member cooling device, and its control method
EP0937953A1 (en) Refrigerator
JP4514346B2 (en) Superconducting material cooling device
JP2005156052A (en) Superconductive member cooling device
JP5014206B2 (en) Superconducting member cooling method
JP2010177677A (en) Cooling device for superconducting member
JP4733842B2 (en) Superconducting material cooling device
JP4686149B2 (en) Cooling system using slush nitrogen
JP2001284665A (en) Superconducting material cooling device
JP3908975B2 (en) Cooling device and cooling method
JP5175595B2 (en) Cooling device and superconducting device
JP2005183440A (en) Superconducting member cooling apparatus
JPH07142234A (en) Apparatus for cooling cryogenic-temperature superconducting coil
JP4917291B2 (en) Cryostat
JP2007225229A (en) Method and device for cooling liquid
JP2005019884A (en) Cryogenic cooling device
JP2009065016A (en) Superconduction part cooling apparatus and its operating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819