JP2016049159A - Superconducting magnet and magnetic resonance imaging apparatus - Google Patents

Superconducting magnet and magnetic resonance imaging apparatus Download PDF

Info

Publication number
JP2016049159A
JP2016049159A JP2014174725A JP2014174725A JP2016049159A JP 2016049159 A JP2016049159 A JP 2016049159A JP 2014174725 A JP2014174725 A JP 2014174725A JP 2014174725 A JP2014174725 A JP 2014174725A JP 2016049159 A JP2016049159 A JP 2016049159A
Authority
JP
Japan
Prior art keywords
heat transfer
cooling member
superconducting coil
transfer cooling
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014174725A
Other languages
Japanese (ja)
Inventor
幸信 今村
Yukinobu Imamura
幸信 今村
学 青木
Manabu Aoki
学 青木
知新 堀
Tomochika Hori
知新 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014174725A priority Critical patent/JP2016049159A/en
Publication of JP2016049159A publication Critical patent/JP2016049159A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an MRI apparatus using a superconducting coil capable of maintaining a temperature of superconducting state while suppressing the power consumption of a refrigerator by cooling the superconducting coil to a temperature required for a superconducting state with heat removal means using a refrigerator comprising a heat transfer cooling member without using a liquid refrigerant and reducing the heat resistance of the contact face between the heat transfer cooling member and the superconducting coil.SOLUTION: The present invention relates to a superconducting magnet including a superconducting coil which uses a superconducting material for magnetic poles generating a static magnetic field and an MRI apparatus, the superconducting coil being annularly constructed of a good thermal conductive material such as a metal and installed contacting a heat transfer cooling member 11b which has a heat transfer path between a heat removal apparatus such as a refrigerator and the superconducting coil. The heat transfer cooling member 11b has a lattice-like slits 15 in a circumferential direction of the annular ring to allow for superior heat transfer in both circumferential and radial directions. In addition, the superconducting coil and the heat transfer cooling member 11b are integrally formed by resin hardening or adhesion.SELECTED DRAWING: Figure 1

Description

本発明は、超電導コイルを使用した超電導磁石または磁気共鳴イメージング装置において、冷媒を使用しない或いは使用量を低減できる超電導コイルの冷却構造に関する。   The present invention relates to a superconducting coil cooling structure that does not use a refrigerant or can reduce the amount of use in a superconducting magnet or magnetic resonance imaging apparatus using a superconducting coil.

超電導コイル磁石装置は、極低温に冷却された超電導材質からなるコイルに電流を通電し、所望の磁場を発生させる装置である。超電導材質はある一定の温度以下となった場合に電気抵抗がゼロとなる物質であり、通常の常温での導電性金属よりも大きな電流を通電できるため、強い磁場が必要な装置、特に、磁気共鳴イメージング装置(以下、MRI装置という)等に使用されている。MRI装置は、均一な静磁場中に置かれた被検体に高周波パルスを照射したときに生じる核磁気共鳴現象を利用して、被検体の物理的、化学的性質を示す断面画像を得る装置であり、特に、医療用として用いられている。   A superconducting coil magnet device is a device that generates a desired magnetic field by passing a current through a coil made of a superconducting material cooled to a cryogenic temperature. Superconducting material is a substance whose electric resistance becomes zero when the temperature falls below a certain temperature, and it can pass a larger current than a normal conductive metal at normal temperature, so it is a device that requires a strong magnetic field, especially magnetic It is used in a resonance imaging apparatus (hereinafter referred to as an MRI apparatus). An MRI device is a device that obtains a cross-sectional image showing the physical and chemical properties of a subject by utilizing the nuclear magnetic resonance phenomenon that occurs when a subject placed in a uniform static magnetic field is irradiated with a high-frequency pulse. In particular, it is used for medical purposes.

MRI装置は、主に被検体が挿入される撮像空間に均一な静磁場を生成する磁石装置と、撮像空間に位置情報を付与するために空間的に強度が勾配した磁場をパルス状に発生させる傾斜磁場コイル、被検体に高周波パルスを照射するRFコイル、被検体からの磁気共鳴信号を受信する受信コイル、および、受信した信号を処理して画像を表示するコンピュータシステムから構成されている。   An MRI apparatus generates a magnetic field that generates a uniform static magnetic field mainly in an imaging space into which a subject is inserted, and a magnetic field that is spatially gradient in intensity to give positional information to the imaging space. A gradient magnetic field coil, an RF coil that irradiates a subject with a high frequency pulse, a receiving coil that receives a magnetic resonance signal from the subject, and a computer system that processes the received signal and displays an image.

MRI装置の主な性能向上の手段として、磁石装置が発生する静磁場の強度の向上がある。静磁場がより強い程、鮮明な画像が得られるため、MRI装置は磁場強度の向上を指向して開発が続けられている。特に、0.5テスラ以上の静磁場強度を有するMRI装置においては、超電導コイルを用いた磁石装置が主流となっている。   As a main means for improving the performance of the MRI apparatus, there is an improvement in the strength of the static magnetic field generated by the magnet apparatus. Since the stronger the static magnetic field, the clearer the image, the MRI system is being developed to improve the magnetic field strength. In particular, in an MRI apparatus having a static magnetic field strength of 0.5 Tesla or more, a magnet apparatus using a superconducting coil has become mainstream.

超電導コイルは、極低温に冷却すると電気抵抗がゼロとなる超電導物質でコイルを生成しているが、その温度は、材質により異なるものの、絶対温度で4ケルビンから77ケルビンまで冷却する必要がある。このため、現在一般的なMRI装置に使用されている超電導コイルの材質である、ニオブ・チタン材による超電導コイルは、4ケルビンに冷却した状態を保持するため、液体のヘリウム中に浸されている。また、ヘリウムが液体状態を保持するため、超電導コイルと液体ヘリウムはヘリウム容器とよばれる金属容器とそれを取り囲み輻射による伝熱を遮蔽する輻射シールド、および、内部を真空状態として外部からの熱伝導による熱侵入を低減する真空容器内に収められている。さらに、冷凍機によって液体ヘリウムの蒸発を抑えることにより極低温の状態を保持している。   The superconducting coil is made of a superconducting material whose electric resistance becomes zero when cooled to a very low temperature. The temperature varies depending on the material, but it must be cooled from 4 to 77 Kelvin in absolute temperature. For this reason, a superconducting coil made of niobium / titanium, which is a material of a superconducting coil currently used in a general MRI apparatus, is immersed in liquid helium in order to maintain a state cooled to 4 Kelvin. . In addition, since helium maintains a liquid state, the superconducting coil and liquid helium are a metal container called a helium container, a radiation shield that surrounds it and shields heat transfer by radiation, and heat conduction from the outside with a vacuum inside. It is housed in a vacuum vessel that reduces heat intrusion due to. Furthermore, the cryogenic state is maintained by suppressing evaporation of liquid helium by a refrigerator.

液体ヘリウムは収集することが困難であるために高価であり、また、装置の小型化の要請からも、液体ヘリウムの使用量を低減または使用しないMRI装置の開発が進められている。   Liquid helium is expensive because it is difficult to collect, and the demand for downsizing of the apparatus has led to the development of MRI apparatuses that reduce or do not use liquid helium.

本技術分野の背景技術として、特開平10−189328号広報(特許文献1)がある。この公報には、超電導コイル間に生じる電磁力が加わるコイル面に冷却するための良熱伝導の部材を有することで、超電導コイルが発熱して超電導状態が失われることを抑える技術が開示されている。また、特開2011−222729公報(特許文献2)には、コイルの外周に金属の線状部材を巻きつけることにより、ヘリウム容器および真空容器の小型を実現する技術が示されている。
As a background art in this technical field, there is a publication of JP-A-10-189328 (Patent Document 1). This publication discloses a technique for suppressing the loss of the superconducting state due to heat generation of the superconducting coil by having a member with good heat conduction for cooling the coil surface to which the electromagnetic force generated between the superconducting coils is applied. Yes. Japanese Patent Application Laid-Open No. 2011-222729 (Patent Document 2) discloses a technique for realizing a small size of a helium vessel and a vacuum vessel by winding a metal linear member around the outer periphery of a coil.

特開平10−189328号広報JP 10-189328 A 特開2011−222729号広報JP2011-222729

特許文献1が示すように、超電導コイルを液体冷媒によらず冷却するためには、冷却源である冷凍機までの熱経路として良熱伝導体を介する必要がある。一方、一般に超電導コイルは金属と樹脂の複合部材であるため、金属などの良熱伝導体に対して熱伝導率が小さく、超電導コイル全体が超電導状態となる極低温以下とするためには、全体を均一に冷却する必要がある。   As shown in Patent Document 1, in order to cool a superconducting coil without using a liquid refrigerant, it is necessary to use a good heat conductor as a heat path to a refrigerator that is a cooling source. On the other hand, since a superconducting coil is generally a composite member of a metal and a resin, it has a low thermal conductivity with respect to a good heat conductor such as a metal, and in order to make the whole superconducting coil be in a superconducting state or less, the whole Must be cooled uniformly.

このため、超電導コイルを周回方向に均一に冷却することを目的として、超電導コイルの周回方向に良熱伝導体である伝熱冷却部材を配している。しかしながら、超電導コイルと伝熱冷却部材の間の接触状態によっては互いの間の熱抵抗が大きくなり、充分な超電導コイルの冷却効果が得られない場合がある。このため、特許文献1は、超電導コイルに発生するコイル軸方向の電磁力によって超電導コイルを伝熱冷却部材に抑えつけ、互いの接触部分の熱抵抗を小さくする技術である。   For this reason, for the purpose of uniformly cooling the superconducting coil in the circumferential direction, a heat transfer cooling member that is a good heat conductor is arranged in the circumferential direction of the superconducting coil. However, depending on the contact state between the superconducting coil and the heat transfer cooling member, the thermal resistance between them increases, and a sufficient cooling effect of the superconducting coil may not be obtained. For this reason, Patent Document 1 is a technique in which the superconducting coil is held against the heat transfer cooling member by electromagnetic force in the coil axial direction generated in the superconducting coil, thereby reducing the thermal resistance of the contact portion.

しかしながら、本技術ではコイルに通電する前の電磁力が生じない場合においては、伝熱冷却部材との接触部分の熱抵抗は大きく、また、伝熱冷却部材の位置も超電導コイルが電磁力で押さえつけられる方向に設置しなければならないと言った課題があった。また、特許文献2に示すように、超電導コイルの外周に線状の金属からなる伝熱冷却部材を巻き付けた場合は、超電導コイルの電磁力の方向に依存せず、線状体の金属による巻き締め力で超電導コイルと伝熱冷却部材の間を密着させることが出来る。しかしながら、一般に超電導コイルと金属の伝熱冷却部材は冷却に伴う熱収縮率が異なり、極低温に冷却すると、超電導コイルが伝熱冷却部材より収縮するために巻き締め力による密着の効果が充分に得られない場合があった。   However, in this technology, when no electromagnetic force is generated before the coil is energized, the thermal resistance of the contact portion with the heat transfer cooling member is large, and the position of the heat transfer cooling member is also suppressed by the superconducting coil with electromagnetic force. There was a problem that it had to be installed in the direction to be able to. Further, as shown in Patent Document 2, when a heat transfer cooling member made of a linear metal is wound around the outer periphery of the superconducting coil, the winding of the linear body with the metal is not dependent on the direction of the electromagnetic force of the superconducting coil. The superconducting coil and the heat transfer cooling member can be brought into close contact with each other by the tightening force. However, in general, a superconducting coil and a metal heat transfer cooling member have different heat shrinkage rates due to cooling, and when cooled to an extremely low temperature, the superconducting coil contracts more than the heat transfer cooling member, so that the effect of close contact due to the tightening force is sufficient. In some cases, it could not be obtained.

このように、従来技術では液体ヘリウムなどの液体冷媒によらず、伝熱冷却部材により超電導コイルを冷却出来るが、極低温下で超電導コイルと伝熱冷却部材間の接触に伴う熱抵抗の低減に関しては充分ではなかった。いま一つの方法として、伝熱冷却部材と超電導コイルを一体で樹脂成型、あるいは、伝熱冷却部材を接着により超電導コイルに貼りつける方法であれば、接触部の熱抵抗を低減できるが、常温で成型後、極低温に冷却するため、伝熱冷却部材と超電導コイルの熱収縮率差によって接触面の剥離が生じ熱抵抗が増大する課題があった。   Thus, in the prior art, the superconducting coil can be cooled by the heat transfer cooling member regardless of the liquid refrigerant such as liquid helium. Was not enough. As another method, if the heat transfer cooling member and the superconducting coil are integrally molded with resin, or if the heat transfer cooling member is attached to the superconducting coil by adhesion, the thermal resistance of the contact portion can be reduced, but at room temperature. In order to cool to a very low temperature after molding, there is a problem in that the contact surface is peeled off due to the difference in thermal shrinkage between the heat transfer cooling member and the superconducting coil, and the thermal resistance increases.

本発明は、このような事情に鑑みてなされたものであり、液体冷媒によらず、伝熱冷却部材を介した冷凍機による除熱手段によって超電導コイルを超電導状態に必要な温度まで冷却し、伝熱冷却部材と超電導コイルとの接触面の熱抵抗を小さくすることで、冷凍機の消費電力を抑えつつ、超電導状態の温度を維持することが可能な超電導コイルを使用したMRI装置が実現する。
The present invention has been made in view of such circumstances, and the superconducting coil is cooled to a temperature necessary for the superconducting state by a heat removal means by a refrigerator via a heat transfer cooling member, regardless of the liquid refrigerant, By reducing the thermal resistance of the contact surface between the heat transfer cooling member and the superconducting coil, an MRI system using a superconducting coil that can maintain the temperature of the superconducting state while reducing the power consumption of the refrigerator is realized. .

上記課題を解決するために、本発明には様々な態様が考えられるが、その一例として、本発明の一実施形態である超電導磁石は、超電導コイルと、超電導コイルが巻き回されたボビンと、前記超電導コイルと前記ボビンのフランジとの間に設けられた環状の伝熱冷却部材と、を備え、前記伝熱冷却部材は良熱伝導材で構成され、かつ複数の空隙が全面に亘って形成されている。   In order to solve the above problems, various aspects can be considered in the present invention.As an example, a superconducting magnet according to an embodiment of the present invention includes a superconducting coil, a bobbin around which the superconducting coil is wound, An annular heat transfer cooling member provided between the superconducting coil and the bobbin flange, the heat transfer cooling member is made of a good heat conductive material, and a plurality of voids are formed over the entire surface. Has been.

本構成の超電導磁石によれば、超電導コイルの通電の有無によらず、また、超電導状態となる極低温までの冷却時においても、液体冷媒によらず良好な超電導コイルの冷却性能が得られる。すなわち、除熱手段である冷凍機の消費電力が抑えられ、超電導コイルがより低温に維持されるため、常伝導状態への転移が抑えられることで、安定な磁場発生状態を維持できる超電導磁石、および、それを用いたMRI装置が実現する。   According to the superconducting magnet of this configuration, a good superconducting coil cooling performance can be obtained regardless of whether or not the superconducting coil is energized, and even when cooling to a cryogenic temperature at which the superconducting state is achieved. That is, since the power consumption of the refrigerator as a heat removal means is suppressed and the superconducting coil is maintained at a lower temperature, the superconducting magnet that can maintain a stable magnetic field generation state by suppressing the transition to the normal state, And the MRI apparatus using it is realized.

本発明の第1実施形態であるMRI装置に使用される伝熱冷却部材の構造を示す正面図である。FIG. 2 is a front view showing the structure of a heat transfer cooling member used in the MRI apparatus that is the first embodiment of the present invention. 本発明の実施形態であるMRI装置の摸式外観斜視図である。1 is a vertical external perspective view of an MRI apparatus according to an embodiment of the present invention. 本発明の実施形態であるMRI装置の他の方式を示す摸式外観斜視図である。It is a vertical external perspective view which shows the other system of the MRI apparatus which is embodiment of this invention. 本発明の第1実施形態であるMRI装置に使用される、超電導コイルと伝熱冷却部材の配置構成を示す部分断面時である。FIG. 3 is a partial cross-sectional view showing an arrangement configuration of a superconducting coil and a heat transfer cooling member used in the MRI apparatus according to the first embodiment of the present invention. (a)従来構造と(b)本発明の第1実施形態における伝熱冷却部材と超電導コイルの冷却に伴う熱収縮の状態を説明する図である。It is a figure explaining the state of the thermal contraction accompanying cooling of the heat transfer cooling member and superconducting coil in 1st Embodiment of this invention (a) conventional structure. 第2実施形態の伝熱冷却部材と超電導コイルの冷却に伴う熱収縮の状態を説明する図である。It is a figure explaining the state of the thermal contraction accompanying cooling of the heat-transfer cooling member and superconducting coil of 2nd Embodiment. 第3実施形態の伝熱冷却部材の構造を示す正面図である。It is a front view which shows the structure of the heat-transfer cooling member of 3rd Embodiment. 第4実施形態の伝熱冷却部材の構造を示す正面図である。It is a front view which shows the structure of the heat-transfer cooling member of 4th Embodiment. 第5実施形態の伝熱冷却部材の構造を示す正面図である。It is a front view which shows the structure of the heat-transfer cooling member of 5th Embodiment. 第6実施形態の伝熱冷却部材の構造を示す斜視図である。It is a perspective view which shows the structure of the heat-transfer cooling member of 6th Embodiment. 第6実施形態の伝熱冷却部材と超電導コイルとボビンとの構成を示す部分断面図である。It is a fragmentary sectional view which shows the structure of the heat-transfer cooling member of 6th Embodiment, a superconducting coil, and a bobbin. 第7実施形態の伝熱冷却部材と超電導コルとボビンとの構成を示す部分断面図(a)と、冷却時の効果を説明する図(b)である。It is the fragmentary sectional view (a) which shows the structure of the heat-transfer cooling member of 7th Embodiment, a superconducting coll, and a bobbin, and a figure (b) explaining the effect at the time of cooling. 第8実施形態の伝熱冷却部材と超電導コイルとボビンとの構成を示す部分断面図である。It is a fragmentary sectional view which shows the structure of the heat-transfer cooling member of 8th Embodiment, a superconducting coil, and a bobbin.

以下、本発明の実施形態を図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図2に示すように、一般的なMRI装置は、超電導コイルからなる円筒状の磁極1を有しており、撮像空間2に矢印3で示す方向に静磁場を発生する。被検者4は可動式のベッド5によって、撮像空間3に運ばれて画像が取得される。MRI装置は、超電導コイルによる磁極1の内部に同心円筒の傾斜磁場コイル6と高周波照射コイル7を有しており、傾斜磁場コイル6が生体に対して磁場による位置情報を付与し、高周波照射コイル7が生体を構成する元素(水素)に磁気共鳴を生じさせ信号を取得する。いずれも常伝導のコイルである。   As shown in FIG. 2, a general MRI apparatus has a cylindrical magnetic pole 1 made of a superconducting coil, and generates a static magnetic field in an imaging space 2 in a direction indicated by an arrow 3. The subject 4 is carried to the imaging space 3 by the movable bed 5 and an image is acquired. The MRI apparatus has a concentric cylindrical gradient magnetic field coil 6 and a high-frequency irradiation coil 7 inside a magnetic pole 1 made of a superconducting coil. The gradient magnetic field coil 6 gives positional information by a magnetic field to a living body, and the high-frequency irradiation coil. 7 generates a magnetic resonance in the element (hydrogen) constituting the living body to acquire a signal. Both are normal conducting coils.

これらは、磁極1と一体で図示されていないカバーで覆われている。なお、MRI装置は、これ以外の主要な構成器機として、傾斜磁場コイル6や高周波照射コイル7に電流を供給する電源装置と操作や画像を表示するためのコンピュータシステムを有するが、これらは図では省略されている。   These are covered with a cover (not shown) integrally with the magnetic pole 1. The MRI apparatus includes a power supply apparatus that supplies current to the gradient magnetic field coil 6 and the high-frequency irradiation coil 7 and a computer system for displaying operations and images as other main components. It is omitted.

図3には、MRI装置のもう一つの一般的な方式である開放型と呼ばれるMRI装置の構造を示す。円盤形状の上下磁極1を撮像空間2の上下に配置し、撮像空間には矢印3の方向に静磁場を発生する。被検者4が可動式のベッド5によって撮像空間3に運ばれて画像を取得するのは、図2と同様である。   FIG. 3 shows a structure of an MRI apparatus called an open type, which is another general method of the MRI apparatus. Disk-shaped upper and lower magnetic poles 1 are arranged above and below the imaging space 2, and a static magnetic field is generated in the direction of the arrow 3 in the imaging space. The subject 4 is carried to the imaging space 3 by the movable bed 5 to acquire an image, as in FIG.

本形態のMRI装置では、上下磁極間は柱などの構造物で支持される他、図3のような概略C字形状を有する磁性体のリターンヨーク8で連結される場合があり、特に静磁場の磁場強度が1テスラ以下の装置に見られる。開放型のMRI装置では、傾斜磁場コイル6と高周波照射コイルは磁極と同じく撮像空間3の上下に配した円盤形状で、磁極と一体で図示していないカバーで覆われている。   In the MRI apparatus of this embodiment, the upper and lower magnetic poles are supported by a structure such as a column, and may be connected by a magnetic return yoke 8 having a substantially C shape as shown in FIG. Can be seen in devices with a magnetic field strength of 1 Tesla or less. In the open-type MRI apparatus, the gradient magnetic field coil 6 and the high-frequency irradiation coil have a disk shape arranged on the top and bottom of the imaging space 3 like the magnetic pole, and are covered with a cover (not shown) integrally with the magnetic pole.

磁極1は図4に示すように、円環状の超電導コイル9で構成されており、超電導コイル9を互いに同心軸となるように単数または複数組み合わせることで、撮像空間2に所望の静磁場を発生させる。超電導コイル9は、巻き回した超電導線材をエポキシなどの樹脂や蝋で成型した複合部材である。なお超電導線材は、ニオブ-チタンやビスマスおよびマグネシウムなどの化合物と銅やニッケルなどの金属とから構成されている。   As shown in FIG. 4, the magnetic pole 1 is composed of an annular superconducting coil 9, and a desired static magnetic field is generated in the imaging space 2 by combining one or more superconducting coils 9 so as to be concentric with each other. Let The superconducting coil 9 is a composite member obtained by molding a wound superconducting wire with a resin such as epoxy or wax. The superconducting wire is composed of a compound such as niobium-titanium, bismuth and magnesium and a metal such as copper and nickel.

また、超電導コイル9は、通常、ステンレスやアルミ材または銅などの金属製のボビンと呼ばれる巻き枠10に巻かれており、その位置と形状を保持している。   The superconducting coil 9 is usually wound around a winding frame 10 called a bobbin made of metal such as stainless steel, aluminum, or copper, and maintains its position and shape.

超電導コイル9は超電導線材の電気抵抗がゼロとなる温度(材質により異なるが通常は77〜4ケルビン以下)まで冷却され、その温度を維持するため、液体ヘリウム(4ケルビン)や液体窒素(77ケルビン)などの液体冷媒に浸されて冷却される場合と、冷凍機などの除熱装置から構造物による伝熱部材を介して超電導コイルを冷却する場合がある。双方が併用される場合もあるが、前者では超電導コイルをボビン毎液体ヘリウム中に封入するための容器が必要となるため、後者に対して磁極が大きくなる傾向にある。   The superconducting coil 9 is cooled to a temperature at which the electric resistance of the superconducting wire becomes zero (depending on the material, usually 77 to 4 Kelvin or less), and in order to maintain that temperature, liquid helium (4 Kelvin) or liquid nitrogen (77 Kelvin) The superconducting coil may be cooled by being immersed in a liquid refrigerant such as) or by a heat removal device such as a refrigerator through a heat transfer member made of a structure. Although both may be used together, the former requires a container for enclosing the superconducting coil in liquid helium for each bobbin, and therefore the magnetic pole tends to be larger than the latter.

一方、後者においては、ヘリウム容器は必要ないがコイルを冷却するための伝熱冷却部材11が必要となる。伝熱冷却部材11は一般に銅やアルミなどの熱伝導率の良い金属が使用される。伝熱冷却部材11により超電導コイル9を所望の温度まで冷却し、超電導状態を維持するためには、伝熱冷却部材と超電導コイル間の熱抵抗が充分小さい必要がある。特に、これら超電導コイルと伝熱冷却部材の界面は隙間が生じることで熱抵抗が大きくなりやすい。   On the other hand, the latter does not require a helium vessel, but requires a heat transfer cooling member 11 for cooling the coil. The heat transfer cooling member 11 is generally made of a metal having good thermal conductivity such as copper or aluminum. In order to cool the superconducting coil 9 to a desired temperature by the heat transfer cooling member 11 and maintain the superconducting state, the thermal resistance between the heat transfer cooling member and the superconducting coil needs to be sufficiently small. In particular, there is a gap at the interface between the superconducting coil and the heat transfer cooling member, which tends to increase the thermal resistance.

図5は図4の超電導コイル9と伝導冷却部材11の断面を拡大して示した図である。超電導コイル9は超電導線材と樹脂の複合物であり、一方の伝熱冷却部材11は金属である。このため、双方の熱収縮率は異なり、一般に樹脂を有する超電導コイルの方が冷却に伴う収縮率が大きい。   FIG. 5 is an enlarged view of the cross section of the superconducting coil 9 and the conductive cooling member 11 of FIG. The superconducting coil 9 is a composite of a superconducting wire and a resin, and one heat transfer cooling member 11 is a metal. For this reason, the thermal contraction rate of both is different, and the superconducting coil having resin generally has a higher shrinkage rate due to cooling.

このため、図5(a)に示すように、従来の伝熱冷却部材を有する構造においては、極低温まで冷却した場合、互いの界面で熱収縮の差に伴うせん断力12が生じ、表面の凹凸を起点とする隙間が生じる。破線13と14は超電導コイル9と伝熱冷却部材11の製作時点である常温時の断面形状を示している。   For this reason, as shown in FIG. 5 (a), in the structure having a conventional heat transfer cooling member, when it is cooled to a very low temperature, a shearing force 12 due to the difference in thermal shrinkage occurs at the interface between the two, A gap is generated starting from the unevenness. Dashed lines 13 and 14 show the cross-sectional shape at normal temperature, which is the time when the superconducting coil 9 and the heat transfer cooling member 11 are manufactured.

このため、従来、超電導コイルと伝熱冷却部材との熱抵抗の上昇を抑制するにあたっては、互いに押し付け合うような構造が必要であった。また、超電導コイル9と伝熱冷却部材11を樹脂で一体に硬化あるいは接着するという考えもあるが、製作時では隙間が無くても、冷却に伴い互いが剥離することを抑制できない。   For this reason, conventionally, in order to suppress an increase in thermal resistance between the superconducting coil and the heat transfer cooling member, a structure in which they are pressed against each other has been required. Further, although there is an idea that the superconducting coil 9 and the heat transfer cooling member 11 are integrally cured or bonded with a resin, even if there is no gap at the time of manufacture, it is not possible to suppress separation from each other with cooling.

そこで、本実施例では、図1に示すように、超電導コイル9と同様に円環形状を有し、周方向のスリット15を半径方向に交互に配置する構造を有した伝熱冷却部材11bを設置している。   Therefore, in this embodiment, as shown in FIG. 1, a heat transfer cooling member 11b having an annular shape like the superconducting coil 9 and a structure in which circumferential slits 15 are alternately arranged in the radial direction is provided. It is installed.

より具体的には、本実施例における伝熱冷却板11bは、一つの径方向位置において、周回方向におおむね等間隔に4つのスリット15が配置された構造を基本とし、このようなスリット15を径方向において4カ所に設けている。各スリットの周回方向の長さは、設置箇所とz軸との距離を半径としたときの周長に対しておおよそ1/4弱程度の長さを持つ。なお、上述したスリット15の周回方向に関する長さは一例に過ぎず、任意のものを採用することもできる。   More specifically, the heat transfer cooling plate 11b in the present embodiment basically has a structure in which four slits 15 are arranged at equal intervals in the circumferential direction at one radial position. There are four locations in the radial direction. The circumferential length of each slit has a length of about a quarter of the circumference when the distance between the installation location and the z axis is a radius. Note that the length of the slit 15 in the circumferential direction is merely an example, and any length can be adopted.

また各スリット15の周回方向に関する中心位置は、径方向に関して隣あっているスリット同士は異なるように設けられている。図1においてこの配置関係を説明すると、z軸から見てもっとも径方向に関する位置がz軸に近いスリット15の配置箇所を一層目とするならば、一層目と三層目のスリット15の中心位置は同じだが、これらと二層目や四層目の中心位置は異なるという関係になる。   Further, the center positions of the slits 15 in the circumferential direction are provided so that adjacent slits in the radial direction are different from each other. This arrangement relationship will be described with reference to FIG. 1. If the arrangement position of the slit 15 whose position in the radial direction as viewed from the z axis is closest to the z axis is the first layer, the center position of the first layer and the third layer slit 15 is assumed. Are the same, but the center positions of the second and fourth layers are different.

なお、本実施例における伝熱冷却部材11bは円環形状を有しているが、これに限らず例えば輪郭が多角形となっていてもよい。また、伝熱冷却部材11bは図4に示すように、超電導コイル9とボビン10のフランジ部分との間に挿入されている。   In addition, although the heat-transfer cooling member 11b in a present Example has an annular shape, it is not restricted to this, For example, the outline may be a polygon. Further, the heat transfer cooling member 11b is inserted between the superconducting coil 9 and the flange portion of the bobbin 10, as shown in FIG.

本構成、すなわち電熱冷却部材11bの全面に亘って空隙を形成することにより、伝熱冷却部材11bはスリットの隙間が超電導コイルの熱収縮に応じて変形するため、図5(b)に示すように、超電導コイル9と伝熱冷却部材11bを樹脂で一体化または接着し、極低温冷却した状態でも剥離せずに互いの間に隙間を生じない。   As shown in FIG. 5B, since the gap is formed in the heat transfer cooling member 11b in accordance with the thermal contraction of the superconducting coil by forming a gap over the entire surface of this configuration, that is, the electrothermal cooling member 11b. In addition, the superconducting coil 9 and the heat transfer cooling member 11b are integrated or bonded with a resin, and even when cooled at a cryogenic temperature, they do not peel and no gap is formed between them.

これにより、伝熱冷却部材11bと超電導コイル9間の熱抵抗は小さく保たれる。また、格子状にスリット15を配する、つまり先に述べたように中心軸に対して径方向の位置が隣り合っているスリット15同士は、その周回方向の中心位置を異ならせることで、超電導コイル9の周方向だけでなく半径方向の伝熱を良好にでき、超電導コイルを均一に冷却することが可能となる。また、スリット内に樹脂が入り込むことで、超電導コイル9と伝熱冷却部材11bはより強固に一体化される。   Thereby, the thermal resistance between the heat transfer cooling member 11b and the superconducting coil 9 is kept small. In addition, the slits 15 are arranged in a lattice shape, that is, as described above, the slits 15 that are adjacent to each other in the radial direction with respect to the central axis have different superconductivity by changing the center positions in the circumferential direction. Heat transfer not only in the circumferential direction of the coil 9 but also in the radial direction can be improved, and the superconducting coil can be cooled uniformly. Further, the superconducting coil 9 and the heat transfer cooling member 11b are more firmly integrated by the resin entering the slit.

図6には、本発明の第2実施形態における伝熱冷却部材11bの形状を示す。本実施形態において、伝熱冷却部材11bは周回方向の切断部分16を少なくとも1箇所以上有している。ここで言う切断部分16とは図6に示すように、伝熱冷却部材11bに設けられた内径から外径まで到達するギャップのことを指す。   FIG. 6 shows the shape of the heat transfer cooling member 11b in the second embodiment of the present invention. In the present embodiment, the heat transfer cooling member 11b has at least one cutting portion 16 in the circumferential direction. As shown in FIG. 6, the cut portion 16 here refers to a gap reaching from the inner diameter to the outer diameter provided in the heat transfer cooling member 11b.

超電導コイルは励磁などによる磁場変化により、金属製の伝熱冷却部材に渦電流が発生し、不要な発熱や電磁力の原因となる場合がある。しかし、本実施形態のように切断部分16を設けることで渦電流の発生を低減することが出来る。また、この場合もスリット15が半径方向に交互に配置されることで、半径方向の熱伝導がよくなることで、超電導コイルの温度が均一となる効果が得られる。   In a superconducting coil, an eddy current is generated in a metal heat transfer cooling member due to a magnetic field change caused by excitation or the like, which may cause unnecessary heat generation or electromagnetic force. However, the generation of eddy current can be reduced by providing the cut portion 16 as in the present embodiment. In this case as well, the slits 15 are alternately arranged in the radial direction, so that the heat conduction in the radial direction is improved, so that the temperature of the superconducting coil becomes uniform.

図7には、本発明の第3実施形態における伝熱冷却部材11bの形状を示す。本実施形態において、伝熱冷却部材11bは周回方向に延びるスリット15に加えて半径方向に延びるスリット17を有している。   In FIG. 7, the shape of the heat-transfer cooling member 11b in 3rd Embodiment of this invention is shown. In the present embodiment, the heat transfer cooling member 11b has a slit 17 extending in the radial direction in addition to the slit 15 extending in the circumferential direction.

スリット17により、超電導コイル9の周回方向の熱収縮が大きい場合でも伝熱冷却部材11bが伸縮することにより剥離を抑えることが出来る。   The slit 17 can suppress the separation by the expansion and contraction of the heat transfer cooling member 11b even when the thermal contraction in the circumferential direction of the superconducting coil 9 is large.

図8には、本発明の第4実施形態における伝熱冷却部材の形状を示す。本実施形態において、伝熱冷却部材11bにはスリット15やスリット17の代わりに孔18が設けてある。このように伝熱冷却部材11bの全面に孔を設ける構造であっても実施例1と同様の効果を得ることができる。   In FIG. 8, the shape of the heat-transfer cooling member in 4th Embodiment of this invention is shown. In the present embodiment, holes 18 are provided in the heat transfer cooling member 11b in place of the slits 15 and 17. Thus, even if it is the structure which provides a hole in the whole surface of the heat-transfer cooling member 11b, the effect similar to Example 1 can be acquired.

図8は均一な丸穴であるが、特に丸穴である必要はなく、多角形や複数の大きさ・形状を持つ孔でも良い。本実施形態によれば、特にパンチングなどを用いた製作方法に好適である。     Although FIG. 8 shows a uniform round hole, it need not be a round hole in particular, and may be a polygon or a hole having a plurality of sizes and shapes. According to this embodiment, it is particularly suitable for a manufacturing method using punching or the like.

図9には、本発明の第5実施形態における伝熱冷却部材11bの構造を示す。本実施形態において、伝熱冷却部材11bは銅またはアルミなどの良熱伝導体で成型した金網または編み込み線で構成されている。   FIG. 9 shows the structure of the heat transfer cooling member 11b in the fifth embodiment of the present invention. In the present embodiment, the heat transfer cooling member 11b is constituted by a wire mesh or a braided wire molded with a good heat conductor such as copper or aluminum.

本実施形態によれば、伝熱冷却部材11bは超電導コイルとの接触面に対して平行な任意の方向に伸縮可能であり、冷却時の熱収縮に伴う超電導コイルとの剥離が抑えられるだけでなく、表面積が増えるため、超電導コイルと伝熱冷却部材との接着または樹脂による一体化がより強固となる。     According to the present embodiment, the heat transfer cooling member 11b can be expanded and contracted in any direction parallel to the contact surface with the superconducting coil, and only peeling from the superconducting coil due to thermal contraction during cooling can be suppressed. However, since the surface area increases, the adhesion between the superconducting coil and the heat transfer cooling member or the integration by the resin becomes stronger.

図10には、本発明の第6実施形態における伝熱冷却部材の構造を示す。本実施形態において、伝熱冷却部材11bは超電導コイルと同心円の円筒形状で、図11(a)に示すように超電導コイル9の半径方向外周面に設置した場合と、図11(b)に示すように超電導コイル9の半径方向内周面に設置した場合の2種類の設置方法がある。また、本実施形態のように、伝熱冷却部材を超電導コイルの半径方向内周面または外周面に設置した場合でも実施形態2から実施形態5で説明した伝熱冷却部材の構造を併用することも可能である。   In FIG. 10, the structure of the heat-transfer cooling member in 6th Embodiment of this invention is shown. In this embodiment, the heat transfer cooling member 11b has a cylindrical shape concentric with the superconducting coil, and is installed on the outer peripheral surface in the radial direction of the superconducting coil 9 as shown in FIG. 11 (a), and as shown in FIG. 11 (b). As described above, there are two types of installation methods when the superconducting coil 9 is installed on the radially inner peripheral surface. Moreover, even when the heat transfer cooling member is installed on the radially inner or outer peripheral surface of the superconducting coil as in this embodiment, the structure of the heat transfer cooling member described in the second to fifth embodiments is used in combination. Is also possible.

図12には、本発明の第7の実施形態として、伝熱冷却部材11bを超電導コイル9の外周面に設置した場合に、伝熱冷却部材11bのさらに外周面に樹脂製のバインド19を設置した場合を示している。   In FIG. 12, as a seventh embodiment of the present invention, when the heat transfer cooling member 11b is installed on the outer peripheral surface of the superconducting coil 9, a resin bind 19 is installed on the outer peripheral surface of the heat transfer cooling member 11b. Shows the case.

本実施形態によれば、冷却時において、樹脂製のバインド19が超電導コイル9および伝熱冷却部材11bよりも大きく熱収縮することから、超電導コイル9と伝熱冷却部材11bの間をより強固に接触することが出来、双方の間の熱抵抗を小さく保持することが出来る。   According to the present embodiment, during the cooling, the resin-made bind 19 is more thermally contracted than the superconducting coil 9 and the heat transfer cooling member 11b, so that the space between the superconducting coil 9 and the heat transfer cooling member 11b is made stronger. It is possible to make contact and to keep the thermal resistance between the two small.

樹脂製のバインドはガラス繊維や炭素繊維を用いた樹脂複合材料(FRP)を使用することで、冷却により超電導コイルよりも大きく収縮させることが出来、また、伝熱冷却部材11bを超電導コイル9に抑えつけるのに充分な強度を有することが可能である。樹脂製のバインド19は熱収縮時にボビン10と干渉しないように超電導コイル9または伝熱冷却部材11bのz軸方向幅以下となっている。   By using resin composite material (FRP) using glass fiber or carbon fiber, resin-made binding can be contracted more than the superconducting coil by cooling, and the heat transfer cooling member 11b can be used as the superconducting coil 9. It is possible to have sufficient strength to hold down. The resin-made bind 19 has a width equal to or less than the width in the z-axis direction of the superconducting coil 9 or the heat transfer cooling member 11b so as not to interfere with the bobbin 10 during heat shrinkage.

図12(b)に示すように樹脂製バインド19の熱収縮に伴う押し付け力20は、超電導コイル9の軸方向の収縮差に伴う形状に伝熱冷却部材11bを変形させる効果がある。また、樹脂製のバインドは常温時に予め大きな巻き締め力で伝熱冷却部材を締め付ける必要がないため、超電導コイルに不要な力を発生させることによる損傷を防ぐ効果がある。   As shown in FIG. 12B, the pressing force 20 accompanying the heat shrinkage of the resin bind 19 has the effect of deforming the heat transfer cooling member 11b into a shape accompanying the shrinkage difference of the superconducting coil 9 in the axial direction. In addition, since the resin binding does not require the heat transfer cooling member to be fastened with a large fastening force in advance at room temperature, it has an effect of preventing damage caused by generating unnecessary force on the superconducting coil.

図13には、本発明の第8の実施形態における伝熱冷却部材の構造を示す。本実施形態において、ボビン10は超電導コイル9を半径方向外側から支持している。本構成において、伝熱冷却部材11bを超電導コイル9の半径方向内周面に設置する場合、伝熱冷却部材11bの更に内周面側に超電導コイル9よりも熱収縮率の小さいバインド21が設置される。、
定常状態から極低温に至るまで冷却すると、円環形状を有する超電導コイル9は中心軸に向けて熱収縮する。一方、バインド21は超電導コイル9よりも熱収縮率が小さい、つまり熱収縮しにくい部材であるため、超電導コイル9の熱収縮には追従しない。結果的に、バインド21は超電導コイル9を内径側から突っ張る構造となり、伝熱冷却部材11bを超電導コイル9に内周側から押し付けることが出来る。内周に設置するバインド21の材質としては、SUSやアルミなどの金属の他、セラミックなどの熱収縮率が樹脂よりも小さい材質が挙げられる。
In FIG. 13, the structure of the heat-transfer cooling member in the 8th Embodiment of this invention is shown. In the present embodiment, the bobbin 10 supports the superconducting coil 9 from the outside in the radial direction. In this configuration, when the heat transfer cooling member 11b is installed on the radially inner peripheral surface of the superconducting coil 9, a bind 21 having a smaller heat shrinkage than the superconducting coil 9 is installed on the inner peripheral surface side of the heat transfer cooling member 11b. Is done. ,
When cooling from a steady state to a very low temperature, the superconducting coil 9 having an annular shape is thermally contracted toward the central axis. On the other hand, the bind 21 is a member having a thermal contraction rate smaller than that of the superconducting coil 9, that is, a member that is not easily heat shrunk. As a result, the bind 21 has a structure in which the superconducting coil 9 is stretched from the inner diameter side, and the heat transfer cooling member 11b can be pressed against the superconducting coil 9 from the inner peripheral side. Examples of the material of the bind 21 installed on the inner periphery include a material having a smaller thermal contraction rate than a resin, such as ceramic, in addition to a metal such as SUS or aluminum.

1 磁極
2 撮像空間
3 静磁場およびその方向を示す矢印
4 被検者
5 可動式ベッド
6 傾斜磁場コイル
7 高周波照射コイル
8 リターンヨーク
9 超電導コイル
10 ボビン
11 伝熱冷却部材
11a 従来の伝熱冷却部材
11b 本発明の伝熱冷却部材
12 冷却時のせん断力の方向
13 超電導コイルの常温時の断面形状
14 伝熱冷却部材の常温時の断面形状
15 スリット
16 切断部
17 半径方向スリット
18 孔
19 樹脂製バインド
20 バインドによる押し付け力
21 コイル内周側のバインド
DESCRIPTION OF SYMBOLS 1 Magnetic pole 2 Imaging space 3 Arrow which shows a static magnetic field and its direction 4 Subject 5 Movable bed 6 Gradient magnetic field coil 7 High frequency irradiation coil 8 Return yoke 9 Superconducting coil 10 Bobbin 11 Heat transfer cooling member 11a Conventional heat transfer cooling member 11b Heat transfer cooling member 12 of the present invention Direction of shear force during cooling 13 Cross section shape of superconducting coil at room temperature 14 Cross section shape of heat transfer cooling member at room temperature 15 Slit 16 Cutting portion 17 Radial slit 18 Hole 19 Made of resin Binding 20 Pushing force 21 by binding Binding on the inner circumference side of the coil

Claims (13)

超電導コイルと、
超電導コイルが巻き回されたボビンと、
前記超電導コイルと前記ボビンのフランジとの間に設けられた環状の伝熱冷却部材と、を備え、
前記伝熱冷却部材は良熱伝導材で構成され、かつ複数の空隙が全面に亘って形成されている
超電導磁石。
A superconducting coil;
A bobbin around which a superconducting coil is wound;
An annular heat transfer cooling member provided between the superconducting coil and a flange of the bobbin,
The superconducting magnet, wherein the heat transfer cooling member is made of a good heat conductive material, and a plurality of voids are formed over the entire surface.
前記空隙が周回方向に延びるスリットであって、
前記スリットが、伝熱冷却部材の径方向の異なる位置に複数設けられている請求項1に記載の超電導磁石。
The gap is a slit extending in the circumferential direction,
The superconducting magnet according to claim 1, wherein a plurality of the slits are provided at different positions in the radial direction of the heat transfer cooling member.
前記伝熱冷却部材は銅材またはアルミ材などの金属を用いたことを特徴とする請求項1または請求項2に記載の超電導磁石。   The superconducting magnet according to claim 1, wherein the heat transfer cooling member is made of a metal such as a copper material or an aluminum material. 前記伝熱冷却部材と前記超電導コイルとは共に樹脂による一体成型または接着により一体化されている請求項1から請求項3のいずれか1項に記載の超電導磁石。   The superconducting magnet according to any one of claims 1 to 3, wherein the heat transfer cooling member and the superconducting coil are integrated by integral molding or adhesion using a resin. 前記伝熱冷却部材は、略円環の形状を有し、かつ周回方向に切断部を有する請求項1から請求項4のいずれか1項に記載の超電導磁石。   The superconducting magnet according to any one of claims 1 to 4, wherein the heat transfer cooling member has a substantially annular shape and has a cut portion in a circumferential direction. 前記伝熱冷却部材は、略円環の形状を有し、かつ半径方向に延びるスリットを有する請求項1から請求項5のいずれか1項に記載の超電導磁石。   The superconducting magnet according to any one of claims 1 to 5, wherein the heat transfer cooling member has a substantially annular shape and has a slit extending in a radial direction. 前記空隙は、孔である請求項1に記載の超電導磁石。   The superconducting magnet according to claim 1, wherein the gap is a hole. 前記伝熱冷却部材は、良熱伝導体の網または編み線である請求項1に記載の超電導磁石。   The superconducting magnet according to claim 1, wherein the heat transfer cooling member is a mesh or a braided wire of a good heat conductor. 撮像空間に勾配した強度を持つ磁場を発生させる一対の傾斜磁場コイルと、
前記撮像空間に高周波磁場を照射する一対のRFコイルと、を備えた請求項1から請求項9のいずれか1項に記載の超電導磁石を有する磁気共鳴イメージング装置。
A pair of gradient coils for generating a magnetic field with a gradient intensity in the imaging space;
10. A magnetic resonance imaging apparatus having a superconducting magnet according to claim 1, further comprising: a pair of RF coils that irradiate the imaging space with a high-frequency magnetic field. 11.
超電導コイルと、
略円筒形状の伝熱冷却部材と、を備え、
前記伝熱冷却部材は前記超電導コイルと同軸上、かつ前記超電導コイルと接して設置され、
さらに前記伝熱冷却部材は良熱伝導材で構成され、周方向に延びるスリットを軸方向に交互に配したことを特徴とする超電導磁石。
A superconducting coil;
A substantially cylindrical heat transfer cooling member,
The heat transfer cooling member is installed coaxially with and in contact with the superconducting coil,
Further, the heat transfer cooling member is made of a good heat conductive material, and slits extending in the circumferential direction are alternately arranged in the axial direction.
前記略円筒形状の伝熱冷却部材は、前記超電導コイルの外周面に設置され、更にその外周面に樹脂製のバインドを巻き回したことを特徴とする請求項10に記載の超電導磁石。   11. The superconducting magnet according to claim 10, wherein the substantially cylindrical heat transfer cooling member is installed on an outer peripheral surface of the superconducting coil, and a resin binding is wound around the outer peripheral surface. 前記略円筒形状の伝熱冷却部材は前記超電導コイルの内周面に設置され、更にその内周面に、前記超電導コイルよりも熱収縮率の小さい部材から成るバインドを配することを特徴とした請求項10に記載の超電導磁石。   The substantially cylindrical heat transfer cooling member is installed on an inner peripheral surface of the superconducting coil, and further, a binding made of a member having a thermal contraction rate smaller than that of the superconducting coil is arranged on the inner peripheral surface. The superconducting magnet according to claim 10. 撮像空間に勾配した強度を持つ磁場を発生させる一対の傾斜磁場コイルと、
前記撮像空間に高周波磁場を照射する一対のRFコイルと、を備えた請求項10から請求項12のいずれか1項に記載の超電導磁石を備える磁気共鳴イメージング装置。
A pair of gradient coils for generating a magnetic field with a gradient intensity in the imaging space;
A magnetic resonance imaging apparatus comprising the superconducting magnet according to claim 10, further comprising a pair of RF coils that irradiate the imaging space with a high-frequency magnetic field.
JP2014174725A 2014-08-29 2014-08-29 Superconducting magnet and magnetic resonance imaging apparatus Pending JP2016049159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014174725A JP2016049159A (en) 2014-08-29 2014-08-29 Superconducting magnet and magnetic resonance imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014174725A JP2016049159A (en) 2014-08-29 2014-08-29 Superconducting magnet and magnetic resonance imaging apparatus

Publications (1)

Publication Number Publication Date
JP2016049159A true JP2016049159A (en) 2016-04-11

Family

ID=55657177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014174725A Pending JP2016049159A (en) 2014-08-29 2014-08-29 Superconducting magnet and magnetic resonance imaging apparatus

Country Status (1)

Country Link
JP (1) JP2016049159A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6599079B1 (en) * 2019-05-20 2019-10-30 三菱電機株式会社 Superconducting coil and manufacturing method thereof
WO2019239650A1 (en) * 2018-06-15 2019-12-19 株式会社日立製作所 Superconducting electromagnet device
WO2022185568A1 (en) * 2021-03-02 2022-09-09 株式会社 東芝 Superconductive electromagnet device and method for cooling superconductive electromagnet device
KR20220161833A (en) * 2021-05-31 2022-12-07 주식회사 수퍼제닉스 Bobbin for superconducting coil

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019239650A1 (en) * 2018-06-15 2019-12-19 株式会社日立製作所 Superconducting electromagnet device
JP6599079B1 (en) * 2019-05-20 2019-10-30 三菱電機株式会社 Superconducting coil and manufacturing method thereof
WO2020234960A1 (en) * 2019-05-20 2020-11-26 三菱電機株式会社 Superconducting coil and method for manufacturing same
WO2022185568A1 (en) * 2021-03-02 2022-09-09 株式会社 東芝 Superconductive electromagnet device and method for cooling superconductive electromagnet device
KR20220161833A (en) * 2021-05-31 2022-12-07 주식회사 수퍼제닉스 Bobbin for superconducting coil
KR102516808B1 (en) * 2021-05-31 2023-03-31 주식회사 수퍼제닉스 Bobbin for superconducting coil

Similar Documents

Publication Publication Date Title
US9543066B2 (en) Superconducting magnets with thermal radiation shields
JP2007288193A (en) Method of manufacturing solenoid magnet
JP2007027715A (en) Low magnetic field loss cold mass structure for superconducting magnet
JPH10225447A (en) Plane-type magnetic resonance imaging magnet
GB2484079A (en) Cylindrical stiffener for cryoshield
JP2016049159A (en) Superconducting magnet and magnetic resonance imaging apparatus
US20170052237A1 (en) Superconducting Magnet Device or Magnetic Resonance Imaging Apparatus
JP4928477B2 (en) Superconducting magnet apparatus, magnetic resonance imaging apparatus using the same, and nuclear magnetic resonance apparatus
CN106898452B (en) The NMR shimming device for the cryogenic refrigeration being easily accessible to
US8917153B2 (en) Supported pot magnet for magnetic resonance system
JP6268108B2 (en) Superconducting magnet and magnetic resonance imaging device
US20150234018A1 (en) Superconducting magnet device and magnetic resonance imaging device
JP2816256B2 (en) Coil body
KR101356642B1 (en) Superconductive electromagnet device
JP3861058B2 (en) Open magnet with embedded magnetic field forming coil
JP2017046987A (en) Superconducting magnet device and magnetic resonance imaging apparatus using the same
WO2018150819A1 (en) Superconducting magnet device and magnetic resonance imaging apparatus in which same is used
JP5980651B2 (en) Superconducting magnet
JP2016116804A (en) Magnetic resonance imaging apparatus
JP2008130947A (en) Superconducting magnet device and magnetic resonance imaging device using the same
JP6452599B2 (en) Superconducting electromagnet apparatus and manufacturing method thereof
JP4866215B2 (en) Superconducting magnet apparatus and nuclear magnetic resonance imaging apparatus
JP2013098449A (en) Superconducting magnet device and mri system with the same
JP2017056119A (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus
JP6534630B2 (en) Superconducting electromagnet device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170112