JP2008130947A - Superconducting magnet device and magnetic resonance imaging device using the same - Google Patents

Superconducting magnet device and magnetic resonance imaging device using the same Download PDF

Info

Publication number
JP2008130947A
JP2008130947A JP2006316446A JP2006316446A JP2008130947A JP 2008130947 A JP2008130947 A JP 2008130947A JP 2006316446 A JP2006316446 A JP 2006316446A JP 2006316446 A JP2006316446 A JP 2006316446A JP 2008130947 A JP2008130947 A JP 2008130947A
Authority
JP
Japan
Prior art keywords
superconducting
coil
main coil
superconducting main
observation region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006316446A
Other languages
Japanese (ja)
Inventor
Takeshi Nakayama
武 中山
Yukinobu Imamura
幸信 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006316446A priority Critical patent/JP2008130947A/en
Publication of JP2008130947A publication Critical patent/JP2008130947A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnet device which allows enhancing a magnetic field strength produced in an observation region, even when a superconducting coil divided in an axial direction is employed, and furthermore allows inhibiting reduction of a space of the observation region, because of an increase in a board thickness of a supporting member, which is given allowing for occurrence of a quench, and to provide a magnetic resonance imaging device that uses the magnet device. <P>SOLUTION: The superconducting magnet device has a pair of annular superconducting main coils arranged oppositely across an observation region to produce a static magnetic field in the observation region; a pair of radiation shields which encapsulate the superconducting main coils; and a pair of vacuum vessels which accommodate the superconducting main coils and the radiation shields. Each superconducting main coil of the pair of superconducting main coils is provided with a first superconducting coil and a second superconducting coil, where the second superconducting main coil is located on the observation region side in the axial direction, with respect to the first superconducting main coil, having a magnetic material arranged between the first superconducting main coil and the second superconducting main coil. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、超電導コイルを用いた電磁石装置及びそれを用いた磁気共鳴イメージング装置に関する。   The present invention relates to an electromagnet apparatus using a superconducting coil and a magnetic resonance imaging apparatus using the same.

磁気共鳴イメージング装置(以下「MRI装置」という。)は、核磁気共鳴(以下
「NMR」という。)現象を利用したイメージング装置であり、NMR現象により水素原子核スピンが放出する電磁波を計測し、その信号を演算処理することにより、被検者体内中の水素原子核密度分布として断層像化する。MRI装置においては、観測領域内に強い磁場(0.2T以上)が必要であり、また、高い静磁場均一度(10ppm程度)を有する磁場分布を形成する必要がある。一般に、MRI装置においては、画像分解能を向上させるため、観測領域内に形成される静磁場強度を高める必要がある。水素原子核スピンが放出する電磁波強度が強いほど画像の分解能は向上するが、水素原子核スピンが放出する電磁波強度は静磁場強度に比例するため、画像の分解能を上げるためには静磁場強度を上げる必要がある。
A magnetic resonance imaging apparatus (hereinafter referred to as “MRI apparatus”) is an imaging apparatus that utilizes a nuclear magnetic resonance (hereinafter referred to as “NMR”) phenomenon, and measures an electromagnetic wave emitted by a hydrogen nuclear spin by the NMR phenomenon. By processing the signal, a tomographic image is obtained as a hydrogen nucleus density distribution in the body of the subject. In the MRI apparatus, a strong magnetic field (0.2 T or more) is required in the observation region, and a magnetic field distribution having high static magnetic field uniformity (about 10 ppm) needs to be formed. In general, in an MRI apparatus, it is necessary to increase the strength of a static magnetic field formed in an observation region in order to improve image resolution. The higher the electromagnetic wave intensity emitted by the hydrogen nuclear spins, the higher the resolution of the image, but the electromagnetic wave intensity emitted by the hydrogen nuclear spins is proportional to the static magnetic field intensity, so it is necessary to increase the static magnetic field intensity to increase the image resolution. There is.

観測領域内に形成される磁場強度を上げるためには、観測領域を挟んで対向して配置された超電導主コイルの対向間隔を近づけることが望ましい。しかし、単に超電導主コイルの対向間隔を狭めるだけでは、超電導主コイルを収納する真空容器の対向間隔が狭くなり、患者に圧迫感を与え、ひいては被検体を観測領域へ挿入するのが困難となる可能性もある。   In order to increase the strength of the magnetic field formed in the observation region, it is desirable to reduce the facing distance between the superconducting main coils arranged facing each other across the observation region. However, simply reducing the facing distance of the superconducting main coil narrows the facing distance of the vacuum container that houses the superconducting main coil, giving the patient a feeling of pressure and thus making it difficult to insert the subject into the observation region. There is a possibility.

この問題に対する解決策として、超電導主コイルを軸方向に分割するものがある(例えば、特許文献1参照。)。超電導主コイルを軸方向に分割すると、分割された超電導主コイルには互いに引き合う電磁カが働き、その合カは分割された超電導主コイル間に位置する支持部材に作用する。従って、超電導主コイルの観測領域側の支持部材は、超電導主コイルを分割しない場合に比べ、薄くすることができる。これにより、真空容器の対向間隔を狭くすることなく、超電導主コイルの対向間隔を狭くすることができる。   As a solution to this problem, there is one in which the superconducting main coil is divided in the axial direction (see, for example, Patent Document 1). When the superconducting main coil is divided in the axial direction, electromagnetic forces attracting each other act on the divided superconducting main coil, and the joint acts on a support member positioned between the divided superconducting main coils. Therefore, the support member on the observation region side of the superconducting main coil can be made thinner than when the superconducting main coil is not divided. Thereby, the opposing space | interval of a superconducting main coil can be narrowed, without narrowing the opposing space | interval of a vacuum vessel.

一方、超電導主コイルにクエンチ(超電導状態が崩れ、超電導コイルを流れる電流が減衰する現象)が発生した際には、超電導主コイルの観測領域側の輻射シールド部分に渦電流が流れ、超電導主コイルが輻射シールドと引き合う電磁力が発生する。つまり、クエンチ発生当初は、超電導コイル電流が流れているために、分割された超電導主コイルのうち観測領域側に位置する超電導主コイルは、観測領域側と反対側に位置する超電導主コイルに引かれる力が強いが、次第に、輻射シールドに引かれる力が上回り、その結果、電磁カが逆転し、(分割された超電導主コイルのうち観測領域側に位置する)超電導主コイルは輻射シールドと引き合うようになる。従って、クエンチ時の電磁力支持を考慮すると、輻射シールド側の支持部材は厚くせざるを得ず、その結果、真空容器の対向間隔が狭くなり、患者に圧迫感を与えることとなる。   On the other hand, when a quench occurs in the superconducting main coil (a phenomenon in which the superconducting state collapses and the current flowing through the superconducting coil decays), an eddy current flows through the radiation shield portion on the observation region side of the superconducting main coil, and the superconducting main coil Electromagnetic force that attracts the radiation shield is generated. In other words, since the superconducting coil current flows at the beginning of the quench, the superconducting main coil located on the observation region side among the divided superconducting main coils is pulled to the superconducting main coil located on the opposite side to the observation region side. Although the force applied is strong, the force attracted to the radiation shield gradually increases, and as a result, the electromagnetic force is reversed, and the superconducting main coil (located on the observation region side among the divided superconducting main coils) attracts the radiation shield. It becomes like this. Therefore, considering the electromagnetic force support at the time of quenching, the support member on the radiation shield side has to be thick, and as a result, the facing distance between the vacuum containers is narrowed, giving the patient a feeling of pressure.

特許第3624254号Japanese Patent No. 3624254

本発明は、軸方向に分割された超伝導コイルを用いる場合であっても、観測領域に形成する静磁場強度を高めるとともに、クエンチ発生を考慮した支持部材板厚の増大による観測領域空間の狭小化を抑制することが可能な磁石装置及びそれを用いた磁気共鳴イメージング装置を提供することを課題とする。   Even when a superconducting coil divided in the axial direction is used, the present invention increases the static magnetic field strength formed in the observation region and narrows the observation region space by increasing the thickness of the support member considering the occurrence of quenching. It is an object of the present invention to provide a magnet device capable of suppressing the formation of a magnetic field and a magnetic resonance imaging apparatus using the magnet device.

観測領域を挟んで対抗して配置され、前記観測領域に静磁場を形成する一対の円環状の超電導主コイルと、前記超伝導主コイルを内包する一対の輻射シールドと、前記超電導主コイル及び前記輻射シールドを収納する一対の真空容器とを備え、前記一対の超電導主コイルは、それぞれ、第1超伝導主コイルと第2超電導主コイルとを備え、前記第2超電導主コイルは前記第1超伝導主コイルに対して軸方向前記観測領域側に位置し、前記第1超伝導主コイルと前記第2超電導主コイルとの間には、磁性材が配置されている超電導磁石装置。   A pair of annular superconducting main coils arranged opposite to each other across the observation region and forming a static magnetic field in the observation region, a pair of radiation shields containing the superconducting main coil, the superconducting main coil, and the And a pair of superconducting main coils each including a first superconducting main coil and a second superconducting main coil, and the second superconducting main coil being the first superconducting coil. A superconducting magnet device, which is located on the observation region side in the axial direction with respect to the conduction main coil, and a magnetic material is disposed between the first superconducting main coil and the second superconducting main coil.

本実施例によれば、軸方向に分割された超伝導コイルを用いる場合であっても、分割された超伝導コイル間に磁性体を配置したので、クエンチが発生した際にも超伝導主コイルから輻射シールドに作用する電磁力を低減することができ、その結果、観測領域に形成する静磁場強度を高めるとともに、支持部材板厚の増大による観測領域空間の狭小化を抑制することができる。   According to the present embodiment, even when a superconducting coil divided in the axial direction is used, since the magnetic material is disposed between the divided superconducting coils, the superconducting main coil can be used even when a quench occurs. Thus, the electromagnetic force acting on the radiation shield can be reduced, and as a result, the strength of the static magnetic field formed in the observation region can be increased and the narrowing of the observation region space due to the increase in the thickness of the support member can be suppressed.

本発明のMRI装置においては、超電導コイルが軸方向に分割されるとともに、クエンチ発生時に作用する電磁力を考慮し、分割された超電導コイルの間に磁性体を配置する。以下、本発明の実施例を図面を用いて詳細に説明する。   In the MRI apparatus of the present invention, the superconducting coil is divided in the axial direction, and a magnetic material is disposed between the divided superconducting coils in consideration of the electromagnetic force acting when quenching occurs. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明に係る電磁石装置及びそれを用いたMRI装置の第1の実施例を図1−図6を用いて説明する。本実施例におけるMRI装置は、超電導主コイルが軸方向に分割されるとともに、クエンチ発生時に作用する電磁力を考慮し、支持部材板厚の増大による観測領域の対向間隔の低減を抑制するために、分割された超電導磁石の間に磁性体を配置するものである。   A first embodiment of an electromagnet apparatus according to the present invention and an MRI apparatus using the electromagnet apparatus will be described with reference to FIGS. The MRI apparatus in the present embodiment is divided in the axial direction in order to suppress the reduction of the facing distance of the observation region due to the increase in the thickness of the support member in consideration of the electromagnetic force acting when the quench occurs while the superconducting main coil is divided in the axial direction. A magnetic material is disposed between the divided superconducting magnets.

MRI装置は、NMR現象により水素原子核スピンが放出する電磁波を計測し、その信号を演算処理することにより、被検者体内中の水素原子核密度分布として断層像化する装置である。観測領域内には、強い磁場(0.2T以上)で、高い静磁場均一度(10ppm程度)を有する磁場分布を形成する必要がある。   The MRI apparatus is an apparatus that forms a tomographic image as a hydrogen nucleus density distribution in the body of a subject by measuring an electromagnetic wave emitted by a hydrogen nucleus spin due to an NMR phenomenon and processing the signal. In the observation region, it is necessary to form a magnetic field distribution having a high magnetic field uniformity (about 10 ppm) with a strong magnetic field (0.2 T or more).

MRI装置に設けられる電磁石装置の構成について、図1及び図2を用いて説明する。図2は開放型MRI装置の概念図を示しており、図1は図2のAA′断面図であり、本発明の第1の実施例における開放型MRI装置を示している。図1のベッド2は図2の
AA′断面とは異なるが、参考のため併記した。
The configuration of the electromagnet device provided in the MRI apparatus will be described with reference to FIGS. FIG. 2 is a conceptual diagram of the open type MRI apparatus, and FIG. 1 is a cross-sectional view taken along the line AA ′ of FIG. 2, showing the open type MRI apparatus in the first embodiment of the present invention. The bed 2 in FIG. 1 is different from the AA ′ cross section in FIG.

被験者1は、ベッド2により、観測領域を挟んで対抗するように配置された一対の真空容器3間に搬送され、予め定められた観測領域4に撮像する領域が一致するように位置決めされる。一対の真空容器3は支柱5で連結される。真空容器3内部には静磁場発生源が格納されており、観測領域4に矢印6の方向の静磁場を生成する。真空容器内部には、観測領域に矢印6の向きの静磁場を発生する環状の超電導主コイル7と、漏洩磁場を抑制するために超電導主コイルと逆向きの電流を流す環状の超電導シールドコイル8とが配置される。超電導主コイル7は主コイルボビン9、超電導シールドコイル8はシールドコイルボビン10によりそれぞれ保持される。   The subject 1 is transferred by the bed 2 between a pair of vacuum vessels 3 arranged so as to face each other across the observation region, and is positioned so that the region to be imaged coincides with the predetermined observation region 4. The pair of vacuum containers 3 are connected by a column 5. A static magnetic field generation source is stored inside the vacuum vessel 3 and generates a static magnetic field in the direction of the arrow 6 in the observation region 4. Inside the vacuum vessel, an annular superconducting main coil 7 that generates a static magnetic field in the direction of arrow 6 in the observation region, and an annular superconducting shield coil 8 that passes a current in the direction opposite to that of the superconducting main coil to suppress the leakage magnetic field. And are arranged. Superconducting main coil 7 is held by main coil bobbin 9, and superconducting shield coil 8 is held by shield coil bobbin 10.

MRI装置は、さらに、超電導主コイル7及び超電導シールドコイル8を内包し、極低温保持用の液体ヘリウムを格納する冷却容器11と、冷却容器11を内包し、真空容器3からの熱流束を緩和するための輻射シールド12と、冷却容器11と輻射シールド12とを支持するとともに、熱侵入量を低減するための断熱支持部材13とを備える。これらの構造物は、軸(観測領域4の中心部及び環状の超電導主コイル7の中心部を貫く、MRI装置の中心軸)14に対して概ね軸対称に、さらに観測領域4を挟んで概ね対称に配置される。真空容器3や冷却容器11にはステンレス鋼を、輻射シールド12には熱伝導の良いアルミニウムを、断熱支持部材13にはFRPをそれぞれ用いることができる。輻射や伝導による熱侵入を完全に除去することは難しいため、冷却容器11と輻射シールド12は、図示しない冷凍機に接続される。   The MRI apparatus further includes a superconducting main coil 7 and a superconducting shield coil 8, a cooling container 11 that stores liquid helium for cryogenic temperature maintenance, and a cooling container 11, and relaxes the heat flux from the vacuum container 3. And a heat insulating support member 13 for supporting the cooling container 11 and the radiation shield 12 and reducing the amount of heat penetration. These structures are generally axisymmetric with respect to the axis 14 (the central axis of the MRI apparatus passing through the central portion of the observation region 4 and the central portion of the ring-shaped superconducting main coil 7), and further, with the observation region 4 interposed therebetween. Arranged symmetrically. Stainless steel can be used for the vacuum vessel 3 and the cooling vessel 11, aluminum with good thermal conductivity can be used for the radiation shield 12, and FRP can be used for the heat insulating support member 13. Since it is difficult to completely remove heat intrusion due to radiation or conduction, the cooling container 11 and the radiation shield 12 are connected to a refrigerator (not shown).

被検者の撮像において空間位置情報を付与するために、真空容器3の観測領域4側に、磁場の空間的な変化(傾斜磁場)を印加する傾斜磁場コイル15が配置される。また、
NMR現象を引き起こすための共鳴周波数の電磁波を印加するために、傾斜磁場コイル
15の観測領域4側に、高周波照射コイル16が配置される。これらの構成を用いて被検体断面が画像化される。
In order to provide spatial position information in imaging of a subject, a gradient magnetic field coil 15 that applies a spatial change (gradient magnetic field) of a magnetic field is disposed on the observation region 4 side of the vacuum vessel 3. Also,
In order to apply an electromagnetic wave having a resonance frequency for causing an NMR phenomenon, a high-frequency irradiation coil 16 is disposed on the observation region 4 side of the gradient magnetic field coil 15. The cross section of the subject is imaged using these configurations.

具体的には、まず、静磁場発生源により観測領域に生成した均一静磁場に、傾斜磁場コイル15で磁場を重畳させることにより関心領域(通常1mm厚のスライス面)を所定の磁場強度に形成する。続いて、その領域に高周波照射コイル16を用いて共鳴周波数の電磁波を照射して、関心領域内の水素原子核だけにNMR現象を引き起こさせ、出される電磁波を受信して画像とする。一般に、MRI装置においては、画像分解能を向上させるため、観測領域内に形成される静磁場強度を高める必要がある。水素原子核スピンが放出する電磁波強度が強いほど画像の分解能は向上するが、水素原子核スピンが放出する電磁波強度は静磁場強度に比例するため、画像の分解能を上げるためには静磁場強度を上げる必要がある。   Specifically, first, a region of interest (usually a slice plane with a thickness of 1 mm) is formed with a predetermined magnetic field intensity by superimposing a magnetic field with a gradient coil 15 on a uniform static magnetic field generated in an observation region by a static magnetic field generation source. To do. Subsequently, the region is irradiated with an electromagnetic wave having a resonance frequency using the high-frequency irradiation coil 16 to cause only the hydrogen nuclei in the region of interest to cause an NMR phenomenon, and the emitted electromagnetic wave is received to form an image. In general, in an MRI apparatus, it is necessary to increase the strength of a static magnetic field formed in an observation region in order to improve image resolution. The higher the electromagnetic wave intensity emitted by the hydrogen nuclear spins, the higher the resolution of the image, but the electromagnetic wave intensity emitted by the hydrogen nuclear spins is proportional to the static magnetic field intensity, so it is necessary to increase the static magnetic field intensity to increase the image resolution. There is.

図1に示す構成の電磁石装置において観測領域内に形成される磁場強度を上げるためには、超電導主コイル7の対向間隔を近づけることが望ましい。しかし、単に超電導主コイルの対向間隔を狭めるだけでは、超電導主コイルを収納する真空容器の対向間隔が狭くなり、患者に圧迫感を与え、ひいては被検体を観測領域へ挿入するのが困難となる可能性もある。   In order to increase the strength of the magnetic field formed in the observation region in the electromagnet apparatus having the configuration shown in FIG. 1, it is desirable that the facing distance of the superconducting main coil 7 is made closer. However, simply reducing the facing distance of the superconducting main coil narrows the facing distance of the vacuum container that houses the superconducting main coil, giving the patient a feeling of pressure and thus making it difficult to insert the subject into the observation region. There is a possibility.

この問題に対する解決策として、超電導主コイルを軸方向に分割する。即ち、図1で示すように、超電導主コイル7を超電導主コイル7a,7bの様に軸14方向に分割する。図3を用いて、超電導主コイル7を超電導主コイル7a,7bに分割した場合の作用について説明する。図3は、図1の点線で囲まれた領域の拡大図である。観測領域4を挟んで対向して配置された超電導主コイル7は、それぞれ互いに引き合う電磁カが働くため、何も対策をしなければ、超電導主コイルの観測領域側に支持部材が必要となる。観測領域4に作る磁場が1T程度の場合、その電磁力は1MNオーダとなり、自重よりも3桁以上大きな力を支持することが必要となる。超電導主コイル7を軸14方向に分割すると、(分割された超電導主コイル7a,7bは同じ方向に電流が流れるので)超電導主コイル7a,7bは互いに引き合う電磁カが働き、その合カ20は超電導主コイル支持部材19に作用する。超電導主コイル支持部材19は、超電導主コイル7a,7bの間に位置するとともに、超電導主コイル7aを保持する。超電導主コイル7が観測領域側に作用する電磁力を低減することができるので、超電導主コイルを分割しない場合に比べ、超電導主コイル7bの観測領域4側の支持部材を薄くすることができる。これにより、真空容器3の対向間隔を狭くすることなく、超電導主コイル7の対向間隔を狭くすることができる。   As a solution to this problem, the superconducting main coil is divided in the axial direction. That is, as shown in FIG. 1, the superconducting main coil 7 is divided in the direction of the axis 14 like the superconducting main coils 7a and 7b. The operation when the superconducting main coil 7 is divided into the superconducting main coils 7a and 7b will be described with reference to FIG. FIG. 3 is an enlarged view of a region surrounded by a dotted line in FIG. The superconducting main coils 7 arranged facing each other across the observation region 4 act as electromagnetic forces attracting each other. Therefore, if no countermeasure is taken, a support member is required on the observation region side of the superconducting main coil. When the magnetic field created in the observation region 4 is about 1T, the electromagnetic force is on the order of 1 MN, and it is necessary to support a force that is three orders of magnitude greater than its own weight. When the superconducting main coil 7 is divided in the direction of the axis 14, the superconducting main coils 7a and 7b act as electromagnetic forces attracting each other (since the divided superconducting main coils 7a and 7b flow in the same direction). It acts on the superconducting main coil support member 19. The superconducting main coil support member 19 is located between the superconducting main coils 7a and 7b and holds the superconducting main coil 7a. Since the electromagnetic force acting on the observation region side by the superconducting main coil 7 can be reduced, the support member on the observation region 4 side of the superconducting main coil 7b can be made thinner than when the superconducting main coil is not divided. Thereby, the facing distance of the superconducting main coil 7 can be narrowed without narrowing the facing distance of the vacuum vessel 3.

さらに、このようなコイル分割構造を超電導シールドコイルに適用すれば、MRI装置の高さを低くすることができる。つまり、超電導シールドコイル8を図1に示す様に軸
14方向に分割することにより、超電導シールドコイル8に働く電磁カの合カ22を超電導シールドコイル支持部材21で支持させることができるため、MRI装置の天井及び床側の支持部材を薄くすることができ、その結果、装置の高さを低くすることができる。
Furthermore, if such a coil division structure is applied to a superconducting shield coil, the height of the MRI apparatus can be reduced. That is, since the superconducting shield coil 8 is divided in the direction of the axis 14 as shown in FIG. 1, the electromagnetic coupling 22 acting on the superconducting shield coil 8 can be supported by the superconducting shield coil support member 21. The ceiling and floor side support members of the device can be made thinner, and as a result, the height of the device can be reduced.

一方、発明者が超電導コイル7におけるクエンチ発生時の状況について検討した結果、超電導主コイル7にクエンチが発生した際には、超電導主コイル7の観測領域4側の輻射シールド部分12に渦電流23が流れ、超電導主コイル7が輻射シールド12と引き合う電磁力が発生することがわかった。図4は、クエンチが発生した際に、軸方向に分割された超電導主コイル7a,7bのうち輻射シールド12側の超電導主コイルに作用する電磁カの時間変化を示している。原点の時刻でクエンチが発生し、電磁力がゼロになった時点はコイル電流がゼロになった時刻を表している。超電導主コイル7bには、超電導主コイル7aより引かれる電磁カ24と輻射シールドと引き合う力25が作用する。図4において、超電導主コイル7aより引かれる電磁カ24と輻射シールドと引き合う力25との合力を、符号26で示している。クエンチ発生当初は、超電導コイル電流が流れているために、超電導主コイル7bは超電導主コイル7aに引かれる力が強いが、次第に、輻射シールド12に引かれる力が上回り、その結果、電磁カが逆転し、超電導主コイル7bは輻射シールド12と引き合うようになる。従って、クエンチ時の電磁力支持を考慮すると、輻射シールド側の支持部材は厚くせざるを得ず、その結果、真空容器の対向間隔が狭くなり、患者に圧迫感を与えることとなる。   On the other hand, as a result of examining the situation at the time of occurrence of quenching in the superconducting coil 7 by the inventor, when quenching occurs in the superconducting main coil 7, an eddy current 23 flows in the radiation shield portion 12 on the observation region 4 side of the superconducting main coil 7. It was found that an electromagnetic force that attracts the superconducting main coil 7 to the radiation shield 12 was generated. FIG. 4 shows the time variation of the electromagnetic force acting on the superconducting main coil on the radiation shield 12 side of the superconducting main coils 7a and 7b divided in the axial direction when quenching occurs. The time when the quenching occurs at the time of the origin and the electromagnetic force becomes zero represents the time when the coil current becomes zero. The superconducting main coil 7b is subjected to a force 25 that attracts the electromagnetic shield 24 and the radiation shield drawn from the superconducting main coil 7a. In FIG. 4, the resultant force of the electromagnetic force 24 drawn from the superconducting main coil 7a and the force 25 attracted by the radiation shield is indicated by reference numeral 26. Since the superconducting coil current flows at the beginning of the quench, the superconducting main coil 7b is strongly attracted to the superconducting main coil 7a. In reverse, the superconducting main coil 7b is attracted to the radiation shield 12. Therefore, considering the electromagnetic force support at the time of quenching, the support member on the radiation shield side has to be thick, and as a result, the facing distance between the vacuum containers is narrowed, giving the patient a feeling of pressure.

発明者は、超電導主コイル7a,7b間に磁性体を配置することで、上述した分割された超電導コイル7におけるクエンチ発生時の問題を解決できることを見出したので、以下詳細に説明する。図5は、クエンチが発生した際に、超電導主コイル7a,7b間に磁性体を配置したMRI装置において、超電導主コイル7bに作用する電磁カの時間変化を示している。原点の時刻でクエンチが発生し、電磁カがゼロになった時点はコイル電流がゼロになった時刻を表している。クエンチ発生時には、超電導主コイル7bには、超電導主コイル7aに引かれる電磁カ24と輻射シールド12と引合う力25が作用する。さらに、超電導主コイル7a,7b間に磁性体が配置されているので、超電導主コイル7a側に引かれる電磁カ28も作用する。これらの合カを26で示している。クエンチ発生当初は、超電導コイル電流が流れているために、超電導主コイル7aに引かれるカ24の方が、輻射シールド12側に引かれる力25に比べ大きいが、次第に、その2つの力関係は逆転する。しかしながら、本発明のように超電導主コイル7a,7b間に磁性体を配置することにより、超電導主コイル7a側に引かれる力28を発生させることができるので、超電導主コイル7が輻射シールド12側に引かれる力を低減することができる。   The inventor has found that by arranging a magnetic body between the superconducting main coils 7a and 7b, the problem at the time of occurrence of quenching in the divided superconducting coil 7 can be solved, which will be described in detail below. FIG. 5 shows the time variation of the electromagnetic force acting on the superconducting main coil 7b in the MRI apparatus in which the magnetic material is arranged between the superconducting main coils 7a and 7b when quenching occurs. When the quench occurs at the time of the origin and the electromagnetic force becomes zero, it indicates the time when the coil current becomes zero. When the quench occurs, the superconducting main coil 7b is acted on by the electromagnetic force 24 attracted by the superconducting main coil 7a and the force 25 attracting the radiation shield 12. Further, since the magnetic body is disposed between the superconducting main coils 7a and 7b, the electromagnetic force 28 drawn to the superconducting main coil 7a side also acts. These joints are indicated by 26. Since the superconducting coil current flows at the beginning of the quench, the force 24 drawn to the superconducting main coil 7a is larger than the force 25 drawn to the radiation shield 12 side, but gradually the relationship between the two forces is Reverse. However, by arranging a magnetic body between the superconducting main coils 7a and 7b as in the present invention, the force 28 drawn to the superconducting main coil 7a side can be generated, so that the superconducting main coil 7 is on the radiation shield 12 side. The force attracted by can be reduced.

本実施例においては、コイルボビン9が超電導主コイル7の内周側に内接するように円環状に配置される。磁性体部材27は、超電導主コイル7a,7b間に配置されるとともに、コイルボビン9外周側に鍔状に接続されている。磁性体部材27は超電導主コイルを支持する支持部材19として機能する。尚、このコイルボビン9の外周側に鍔状に配置されたの支持部材19には超電導コイルの合カ20が作用するため、支持部材19の根元には大きな曲げ応力が作用する。一般的に接合部分の剛性は低いため、コイルボビン9と磁性体部材27との接合部位は、支持部材19の根元位置を避けることが好ましい。強度上間題なければ、コイルボビン9と磁性体部材27との接合部位は支持部材19の根元位置とすることもできる。   In this embodiment, the coil bobbin 9 is arranged in an annular shape so as to be inscribed on the inner peripheral side of the superconducting main coil 7. The magnetic member 27 is disposed between the superconducting main coils 7a and 7b and is connected to the outer peripheral side of the coil bobbin 9 in a bowl shape. The magnetic member 27 functions as a support member 19 that supports the superconducting main coil. Since the superconducting coil coupling 20 acts on the support member 19 arranged in a bowl shape on the outer peripheral side of the coil bobbin 9, a large bending stress acts on the base of the support member 19. Generally, since the rigidity of the joint portion is low, it is preferable that the joint portion between the coil bobbin 9 and the magnetic body member 27 avoid the root position of the support member 19. If there is no problem in terms of strength, the joint portion between the coil bobbin 9 and the magnetic member 27 can be the base position of the support member 19.

超電導主コイル7a,7b間に配置される磁性体としては、鉄を代表とする強磁性体が望ましい。さらには、珪素鋼板等の初期透磁率の高い材料が好適である。特に、鉄よりも初期透磁率の高い材料が望ましい。図5からも分かるように、本発明の磁性体材料に求められる性質として、コイル電流が小さくなってもより高い磁気吸引力を維持できることが挙げられる。初期透磁率の高い材料は、まさにこの性質を備えている。   As the magnetic body disposed between the superconducting main coils 7a and 7b, a ferromagnetic body represented by iron is desirable. Furthermore, a material having a high initial permeability such as a silicon steel plate is suitable. In particular, a material having a higher initial permeability than iron is desirable. As can be seen from FIG. 5, the property required for the magnetic material of the present invention is that a higher magnetic attractive force can be maintained even when the coil current is reduced. A material with a high initial permeability has exactly this property.

本実施例によれば、軸方向に分割された超伝導コイルを用いる場合であっても、分割された超伝導コイル間に磁性体を配置したので、クエンチが発生した際にも超伝導主コイルから輻射シールドに作用する電磁力を低減することができ、その結果、観測領域に形成する静磁場強度を高めるとともに、支持部材板厚の増大による観測領域空間の狭小化を抑制することが可能となる。   According to the present embodiment, even when a superconducting coil divided in the axial direction is used, since the magnetic material is disposed between the divided superconducting coils, the superconducting main coil can be used even when a quench occurs. Electromagnetic force acting on the radiation shield can be reduced, and as a result, it is possible to increase the static magnetic field strength formed in the observation region and to suppress the narrowing of the observation region space due to the increase in the thickness of the support member Become.

以下、本発明に係る電磁石装置及びそれを用いたMRI装置の第2の実施例を図6を用いて説明する。図6は第2の実施例におけるMRI装置の断面図を示している。本実施例におけるMRI装置は、第1の実施例に記載のMRI装置と同様に、超電導主コイルが軸方向に分割されているとともに、クエンチ発生時に作用する電磁力を考慮し、支持部材板厚の増大による観測領域の対向間隔の低減を抑制するために、分割された超電導磁石間に磁性体を配置している。第1の実施例との相違点は、実施例1で示したコイルボビン9及び磁性体部材27全体として、磁性体ボビン29とした点にある。その他については実施例1と同様であるから、装置構成等の詳細説明については省略する。   A second embodiment of the electromagnet device and the MRI apparatus using the same according to the present invention will be described below with reference to FIG. FIG. 6 shows a cross-sectional view of the MRI apparatus in the second embodiment. Similar to the MRI apparatus described in the first embodiment, the MRI apparatus in the present embodiment has the superconducting main coil divided in the axial direction, and takes into consideration the electromagnetic force that acts when quenching occurs. In order to suppress a decrease in the facing distance of the observation region due to an increase in the magnetic field, a magnetic material is disposed between the divided superconducting magnets. The difference from the first embodiment is that the coil bobbin 9 and the magnetic member 27 shown in the first embodiment are formed as a magnetic bobbin 29. Since the rest is the same as that of the first embodiment, detailed description of the apparatus configuration and the like will be omitted.

本実施例のように、実施例1で示したコイルボビン9及び磁性体部材27全体として磁性体ボビン29としても、実施例1と同様に、クエンチが発生した際に超伝導主コイルから輻射シールドに作用する電磁力を低減することができ、その結果、支持部材板厚の増大による観測領域空間の狭小化を抑制することが可能となる。   As in the present embodiment, the coil bobbin 9 and the magnetic member 27 as a whole shown in the first embodiment are also used as the magnetic bobbin 29. As in the first embodiment, when the quench occurs, the superconducting main coil changes from the main coil to the radiation shield. The acting electromagnetic force can be reduced, and as a result, the narrowing of the observation region space due to the increase in the thickness of the support member can be suppressed.

以下、本発明に係る電磁石装置及びそれを用いたMRI装置の第3の実施例を図7を用いて説明する。図7は第3の実施例におけるMRI装置の断面図を示している。本実施例におけるMRI装置は、第1の実施例に記載のMRI装置と同様に、超電導主コイルが軸方向に分割されているとともに、クエンチ発生時に作用する電磁力を考慮し、支持部材板厚の増大による観測領域の対向間隔の低減を抑制するために、分割された超電導磁石間に磁性体を配置している。第1の実施例との相違点は、実施例1で示した磁性体部材27を内周(軸14方向)側へ延長し、磁性体部材27の内周位置を超電導主コイル7の内周位置よりも内側に位置させた磁性体部材30とした点にある。磁性体部材30はコイルボビン9に接続されるが、その接続部は、円環状に配置されたコイルボビン9の外周面よりも内側となる。支持部材19の根元位置を避けて、磁性体部材30とコイルボビン9とを接続することができる。その他については実施例1と同様であるから、装置構成等の詳細説明については省略する。   A third embodiment of the electromagnet device and the MRI apparatus using the same according to the present invention will be described below with reference to FIG. FIG. 7 shows a cross-sectional view of the MRI apparatus in the third embodiment. Similar to the MRI apparatus described in the first embodiment, the MRI apparatus in the present embodiment has the superconducting main coil divided in the axial direction, and takes into consideration the electromagnetic force that acts when quenching occurs. In order to suppress a decrease in the facing distance of the observation region due to an increase in the magnetic field, a magnetic material is disposed between the divided superconducting magnets. The difference from the first embodiment is that the magnetic member 27 shown in the first embodiment is extended toward the inner periphery (in the direction of the shaft 14), and the inner peripheral position of the magnetic member 27 is set to the inner periphery of the superconducting main coil 7. The magnetic material member 30 is located inside the position. The magnetic member 30 is connected to the coil bobbin 9, and the connecting portion is on the inner side of the outer peripheral surface of the coil bobbin 9 arranged in an annular shape. The magnetic body member 30 and the coil bobbin 9 can be connected while avoiding the root position of the support member 19. Since the rest is the same as that of the first embodiment, detailed description of the apparatus configuration and the like will be omitted.

本実施例のように、実施例1で示した磁性体部材30を内周(軸14方向)側へ延長し、磁性体部材27の内周位置を超電導主コイル7の内周位置よりも内側に位置させた磁性体部材30としても、実施例1と同様に、クエンチが発生した際に超伝導主コイルから輻射シールドに作用する電磁力を低減することができ、その結果、支持部材板厚の増大による観測領域空間の狭小化を抑制することが可能となる。   As in the present embodiment, the magnetic member 30 shown in the first embodiment is extended toward the inner periphery (in the direction of the shaft 14), and the inner peripheral position of the magnetic member 27 is located inside the inner peripheral position of the superconducting main coil 7. As in the first embodiment, the magnetic member 30 positioned on the magnetic member 30 can reduce the electromagnetic force that acts on the radiation shield from the superconducting main coil when quenching occurs. It is possible to suppress the narrowing of the observation area space due to the increase in the number of observations.

以下、本発明に係る電磁石装置及びそれを用いたMRI装置の第4の実施例を図8を用いて説明する。図8は第4の実施例におけるMRI装置の断面図を示している。本実施例におけるMRI装置は、第1の実施例に記載のMRI装置と同様に、超電導主コイルが軸方向に分割されているとともに、クエンチ発生時に作用する電磁力を考慮し、支持部材板厚の増大による観測領域の対向間隔の低減を抑制するために、分割された超電導磁石間に磁性体を配置している。第1の実施例との相違点は、超伝導コイル7a,7b間に配置された支持部材21中(好ましくは支持部材21板厚方向中央部)に磁性材31を配置した点にある。その他については実施例1と同様であるから、装置構成等の詳細説明については省略する。   A fourth embodiment of the electromagnet device and the MRI apparatus using the same according to the present invention will be described below with reference to FIG. FIG. 8 shows a cross-sectional view of the MRI apparatus in the fourth embodiment. Similar to the MRI apparatus described in the first embodiment, the MRI apparatus in the present embodiment has the superconducting main coil divided in the axial direction, and takes into consideration the electromagnetic force that acts when quenching occurs. In order to suppress a decrease in the facing distance of the observation region due to an increase in the magnetic field, a magnetic material is disposed between the divided superconducting magnets. The difference from the first embodiment is that the magnetic material 31 is disposed in the support member 21 (preferably the central portion in the plate thickness direction of the support member 21) disposed between the superconducting coils 7a and 7b. Since the rest is the same as that of the first embodiment, detailed description of the apparatus configuration and the like is omitted.

本実施例のように、超伝導コイル7a,7b間に配置された支持部材21中に磁性材を配置しても、実施例1と同様に、クエンチが発生した際に超伝導主コイルから輻射シールドに作用する電磁力を低減することができ、その結果、支持部材板厚の増大による観測領域空間の狭小化を抑制することが可能となる。   Even if a magnetic material is disposed in the support member 21 disposed between the superconducting coils 7a and 7b as in the present embodiment, radiation from the superconducting main coil occurs when quenching occurs as in the first embodiment. The electromagnetic force acting on the shield can be reduced, and as a result, it is possible to suppress the narrowing of the observation region space due to the increase in the thickness of the support member.

以下、本発明に係る電磁石装置及びそれを用いたMRI装置の第5の実施例を図9を用いて説明する。図9は第5の実施例におけるMRI装置の断面図を示している。本実施例におけるMRI装置は、第1の実施例に記載のMRI装置と同様に、超電導主コイルが軸方向に分割されているとともに、クエンチ発生時に作用する電磁力を考慮し、支持部材板厚の増大による観測領域の対向間隔の低減を抑制するために、分割された超電導磁石間に磁性体を配置している。第1の実施例との相違点は、超伝導コイル7a,7b間に配置された支持部材21と超伝導コイル7a,7bとが接する面に磁性材31を配置した点にある。その他については実施例1と同様であるから、装置構成等の詳細説明については省略する。   A fifth embodiment of the electromagnet device and the MRI apparatus using the same according to the present invention will be described below with reference to FIG. FIG. 9 shows a sectional view of the MRI apparatus in the fifth embodiment. Similar to the MRI apparatus described in the first embodiment, the MRI apparatus in the present embodiment has the superconducting main coil divided in the axial direction, and takes into consideration the electromagnetic force that acts when quenching occurs. In order to suppress a decrease in the facing distance of the observation region due to an increase in the magnetic field, a magnetic material is disposed between the divided superconducting magnets. The difference from the first embodiment is that the magnetic material 31 is disposed on the surface where the support member 21 disposed between the superconducting coils 7a and 7b and the superconducting coils 7a and 7b are in contact with each other. Since the rest is the same as that of the first embodiment, detailed description of the apparatus configuration and the like will be omitted.

本実施例のように、超伝導コイル7a,7b間に配置された支持部材21と超伝導コイル7a,7bとが接する面に磁性材31を配置しても、実施例1と同様に、クエンチが発生した際に超伝導主コイルから輻射シールドに作用する電磁力を低減することができ、その結果、支持部材板厚の増大による観測領域空間の狭小化を抑制することが可能となる。   Even if the magnetic material 31 is disposed on the surface where the support member 21 disposed between the superconducting coils 7a and 7b and the superconducting coils 7a and 7b are in contact with each other as in the present embodiment, the quenching is performed as in the first embodiment. When this occurs, the electromagnetic force acting on the radiation shield from the superconducting main coil can be reduced. As a result, it is possible to suppress the narrowing of the observation region space due to the increase in the thickness of the support member.

以下、本発明に係る電磁石装置及びそれを用いたMRI装置の第6の実施例を図10を用いて説明する。図10は第6の実施例におけるMRI装置の断面図を示している。本実施例におけるMRI装置は、第1の実施例に記載のMRI装置と同様に、超電導主コイルが軸方向に分割されているとともに、クエンチ発生時に作用する電磁力を考慮し、支持部材板厚の増大による観測領域の対向間隔の低減を抑制するために、分割された超電導磁石間に磁性体を配置している。第1の実施例との相違点は、分割された超伝導主コイル7a,7bのうち輻射シールド12から離れた方に位置する超電導主コイルコイル7a内に磁性体部材33を配置した点にある。磁性体部材31は、ブロック状,針金状,粉末状等、何れの形態で配置してもよい。その他については実施例1と同様であるから、装置構成等の詳細説明については省略する。   A sixth embodiment of the electromagnet apparatus according to the present invention and an MRI apparatus using the same will be described below with reference to FIG. FIG. 10 shows a cross-sectional view of the MRI apparatus in the sixth embodiment. Similar to the MRI apparatus described in the first embodiment, the MRI apparatus in the present embodiment has the superconducting main coil divided in the axial direction, and takes into consideration the electromagnetic force that acts when quenching occurs. In order to suppress a decrease in the facing distance of the observation region due to an increase in the magnetic field, a magnetic material is disposed between the divided superconducting magnets. The difference from the first embodiment is that the magnetic member 33 is disposed in the superconducting main coil coil 7a located farther from the radiation shield 12 among the divided superconducting main coils 7a and 7b. . The magnetic member 31 may be arranged in any form such as a block shape, a wire shape, or a powder shape. Since the rest is the same as that of the first embodiment, detailed description of the apparatus configuration and the like will be omitted.

本実施例のように、分割された超伝導主コイル7a,7bのうち輻射シールド12から離れた方に位置する超電導主コイルコイル7a内に磁性体部材33を配置しても、実施例1と同様に、クエンチが発生した際に超伝導主コイルから輻射シールドに作用する電磁力を低減することができ、その結果、支持部材板厚の増大による観測領域空間の狭小化を抑制することが可能となる。   Even if the magnetic body member 33 is arranged in the superconducting main coil coil 7a located away from the radiation shield 12 among the divided superconducting main coils 7a and 7b as in the present embodiment, Similarly, it is possible to reduce the electromagnetic force acting on the radiation shield from the superconducting main coil when quenching occurs, and as a result, it is possible to suppress the narrowing of the observation region space due to the increase in the thickness of the support member It becomes.

上記各実施例においては、超伝導コイルを2分割する実施例について説明したが、コイルの分割数は2以上であればよく、超電導コイルの分割数は2つに限定されない。   In each of the above embodiments, the embodiment in which the superconducting coil is divided into two parts has been described. However, the number of divisions of the coil may be two or more, and the number of divisions of the superconducting coil is not limited to two.

上記各実施例においては、超電導主コイル7を例にして、本実施例について説明したが、超電導シールドコイル8を分割しても同じ作用により、輻射シールド12側に引かれる電磁カを低減できる。これにより、超電導コイルの輻射シールド側の支持部材を薄くできるため、装置高さや重量を軽減できる。   In each of the above embodiments, the superconducting main coil 7 has been described as an example. However, even if the superconducting shield coil 8 is divided, the electromagnetic force drawn to the radiation shield 12 side can be reduced by the same action. Thereby, since the support member by the side of the radiation shield of a superconducting coil can be made thin, apparatus height and weight can be reduced.

また、上記各実施例においては、中心軸14を鉛直方向としているが、本発明で対象とする力は重カではなく、電磁力であるため、中心軸14が水平方向を向いていても本発明の構造を適用すれば同じ効果が得られる。   In each of the above embodiments, the central axis 14 is set in the vertical direction. However, since the force targeted by the present invention is not a heavy force but an electromagnetic force, the center axis 14 is not limited to the horizontal direction. The same effect can be obtained by applying the structure of the invention.

本発明の第1の実施例におけるMRI装置の断面図。1 is a cross-sectional view of an MRI apparatus in a first embodiment of the present invention. 開放型MRI装置の概観図。An overview of an open MRI apparatus. 図1のMRI装置の拡大断面図。The expanded sectional view of the MRI apparatus of FIG. 超電導主コイルに作用する軸方向電磁カの時間変化を示す図。The figure which shows the time change of the axial direction electromagnetic force which acts on a superconducting main coil. 超電導主コイルに作用する軸方向電磁カの時間変化を示す図。The figure which shows the time change of the axial direction electromagnetic force which acts on a superconducting main coil. 本発明の第2の実施例におけるMRI装置の断面図。Sectional drawing of the MRI apparatus in the 2nd Example of this invention. 本発明の第3の実施例におけるMRI装置の断面図。Sectional drawing of the MRI apparatus in the 3rd Example of this invention. 本発明の第4実施例におけるMRI装置の断面図。Sectional drawing of the MRI apparatus in 4th Example of this invention. 本発明の第5実施例におけるMRI装置の断面図。Sectional drawing of the MRI apparatus in 5th Example of this invention. 本発明の第6実施例におけるMRI装置の断面図。Sectional drawing of the MRI apparatus in 6th Example of this invention.

符号の説明Explanation of symbols

1 被験者
2 ベッド
3 真空容器
4 観測領域
5 支柱
7 超電導主コイル
8 超電導シールドコイル
9 超電導主コイルボビン
10 超電導シールドコイルボビン
11 冷却容器
12 輻射シールド
13 断熱支持部
15 傾斜磁場コイル
16 高周波照射装置
17 拡大部
18 コイル電流の方向
19,21 超電導コイル支持部材
20,22 超電導コイル支持部材に軸方向に作用する電磁力の向き
23 輻射シールド上の渦電流の方向
24 超電導主コイル7aによる超電導主コイル7bの軸方向電磁カ
25 輻射シールド上の渦電流による超電導主コイル7bの軸方向電磁力
26 超電導主占イル7bの軸方向電磁力の合力
27,29,30,31,32,33 磁性体部材
28 本発明の強磁性体部材による超電導主コイル7bの軸方向電磁力
DESCRIPTION OF SYMBOLS 1 Subject 2 Bed 3 Vacuum container 4 Observation area 5 Support column 7 Superconducting main coil 8 Superconducting shield coil 9 Superconducting main coil bobbin 10 Superconducting shield coil bobbin 11 Cooling container 12 Radiation shield 13 Heat insulation support part 15 Gradient magnetic field coil 16 High frequency irradiation apparatus 17 Enlargement part 18 Coil current direction 19, 21 Superconducting coil support member 20, 22 Direction of electromagnetic force acting in the axial direction on the superconducting coil support member 23 Direction of eddy current on the radiation shield 24 Axial direction of superconducting main coil 7b by superconducting main coil 7a Electromagnetic force 25 Axial electromagnetic force 26 of superconducting main coil 7b due to eddy current on radiation shield A resultant force 27, 29, 30, 31, 32, 33 of the axial electromagnetic force of superconducting main fork 7b Magnetic member 28 of the present invention Axial electromagnetic force of superconducting main coil 7b by a ferromagnetic member

Claims (13)

観測領域を挟んで対抗して配置され、前記観測領域に静磁場を形成する一対の円環状の超電導主コイルと、前記超伝導主コイルを内包する一対の輻射シールドと、前記超電導主コイル及び前記輻射シールドを収納する一対の真空容器とを備え、
前記一対の超電導主コイルは、それぞれ、第1超伝導主コイルと第2超電導主コイルとを備え、
前記第2超電導主コイルは前記第1超伝導主コイルに対して軸方向前記観測領域側に位置し、
前記第1超伝導主コイルと前記第2超電導主コイルとの間には、磁性材が配置されていることを特徴とする超電導磁石装置。
A pair of annular superconducting main coils arranged opposite to each other across the observation region and forming a static magnetic field in the observation region, a pair of radiation shields containing the superconducting main coil, the superconducting main coil, and the A pair of vacuum containers for storing the radiation shield,
Each of the pair of superconducting main coils includes a first superconducting main coil and a second superconducting main coil,
The second superconducting main coil is positioned on the observation region side in the axial direction with respect to the first superconducting main coil,
A superconducting magnet device, wherein a magnetic material is disposed between the first superconducting main coil and the second superconducting main coil.
請求項1に記載の超電導磁石装置であって、前記第1超伝導主コイルと前記第2超電導主コイルとの間には、前記第1超伝導主コイルを保持する保持部材が配置され、前記保持部材は前記磁性材であることを特徴とする超電導磁石装置。   The superconducting magnet device according to claim 1, wherein a holding member for holding the first superconducting main coil is disposed between the first superconducting main coil and the second superconducting main coil, A superconducting magnet device, wherein the holding member is the magnetic material. 請求項1に記載の超電導磁石装置であって、前記第1超伝導主コイルと前記第2超電導主コイルとの間には、前記第1超伝導主コイルを保持する保持部材が配置され、前記保持部材の外周部に前記磁性材が配置されていることを特徴とする超電導磁石装置。   The superconducting magnet device according to claim 1, wherein a holding member for holding the first superconducting main coil is disposed between the first superconducting main coil and the second superconducting main coil, A superconducting magnet device, wherein the magnetic material is disposed on an outer periphery of a holding member. 請求項1に記載の超電導磁石装置であって、前記第1超伝導主コイルと前記第2超電導主コイルとの間には、前記第1超伝導主コイルを保持する保持部材が配置され、前記保持部材の内部に前記磁性材が配置されていることを特徴とする超電導磁石装置。   The superconducting magnet device according to claim 1, wherein a holding member for holding the first superconducting main coil is disposed between the first superconducting main coil and the second superconducting main coil, A superconducting magnet apparatus, wherein the magnetic material is disposed inside a holding member. 観測領域を挟んで対抗して配置され、前記観測領域に静磁場を形成する一対の円環状の超電導主コイルと、前記超伝導主コイルを内包する一対の輻射シールドと、前記超電導主コイル及び前記輻射シールドを収納する一対の真空容器とを備え、
前記一対の超電導主コイルは、それぞれ、第1超伝導主コイルと第2超電導主コイルとを備え、
前記第2超電導主コイルは前記第1超伝導主コイルに対して軸方向前記観測領域側に位置し、
前記第1超伝導主コイル内部に磁性材が配置されていることを特徴とする超電導磁石装置。
A pair of annular superconducting main coils arranged opposite to each other across the observation region and forming a static magnetic field in the observation region, a pair of radiation shields containing the superconducting main coil, the superconducting main coil, and the A pair of vacuum containers for storing the radiation shield,
Each of the pair of superconducting main coils includes a first superconducting main coil and a second superconducting main coil,
The second superconducting main coil is positioned on the observation region side in the axial direction with respect to the first superconducting main coil,
A superconducting magnet apparatus, wherein a magnetic material is disposed inside the first superconducting main coil.
観測領域を挟んで対抗して配置され、前記観測領域に静磁場を形成する一対の円環状の超電導主コイルと、前記超電導主コイルによる生じる漏洩磁場を抑制するための円環状の超電導シールドコイルと、前記超伝導主コイル及び前記超電導シールドコイルを内包する一対の輻射シールドと、前記超電導主コイル、前記超伝導シールドコイル及び前記輻射シールドを収納する一対の真空容器とを備え、
前記一対の超電導シールドコイルは、それぞれ、第1超伝導シールドコイルと第2超電導シールドコイルとを備え、
前記第2超電導シールドコイルは前記第1超伝導シールドコイルに対して軸方向前記観測領域側に位置し、
前記第1超伝導シールドコイルと前記第2超電導シールドコイルとの間には、磁性材が配置されていることを特徴とする超電導磁石装置。
A pair of annular superconducting main coils arranged opposite to each other across the observation region and forming a static magnetic field in the observation region; and an annular superconducting shield coil for suppressing a leakage magnetic field generated by the superconducting main coil; A pair of radiation shields that contain the superconducting main coil and the superconducting shield coil, and a pair of vacuum containers that house the superconducting main coil, the superconducting shield coil, and the radiation shield,
Each of the pair of superconducting shield coils includes a first superconducting shield coil and a second superconducting shield coil,
The second superconducting shield coil is positioned on the observation region side in the axial direction with respect to the first superconducting shield coil,
A superconducting magnet device, wherein a magnetic material is disposed between the first superconducting shield coil and the second superconducting shield coil.
請求項6に記載の超電導磁石装置であって、前記第1超伝導シールドコイルと前記第2超電導シールドコイルとの間には、前記第1超伝導シールドコイルを保持する保持部材が配置され、前記保持部材は前記磁性材であることを特徴とする超電導磁石装置。   The superconducting magnet device according to claim 6, wherein a holding member for holding the first superconducting shield coil is disposed between the first superconducting shield coil and the second superconducting shield coil, A superconducting magnet device, wherein the holding member is the magnetic material. 請求項6に記載の超電導磁石装置であって、前記第1超伝導シールドコイルと前記第2超電導シールドコイルとの間には、前記第1超伝導シールドコイルを保持する保持部材が配置され、前記保持部材の外周部に前記磁性材が配置されていることを特徴とする超電導磁石装置。   The superconducting magnet device according to claim 6, wherein a holding member for holding the first superconducting shield coil is disposed between the first superconducting shield coil and the second superconducting shield coil, A superconducting magnet device, wherein the magnetic material is disposed on an outer periphery of a holding member. 請求項6に記載の超電導磁石装置であって、前記第1超伝導シールドコイルと前記第2超電導シールドコイルとの間には、前記第1超伝導シールドコイルを保持する保持部材が配置され、前記保持部材の内部に前記磁性材が配置されていることを特徴とする超電導磁石装置。   The superconducting magnet device according to claim 6, wherein a holding member for holding the first superconducting shield coil is disposed between the first superconducting shield coil and the second superconducting shield coil, A superconducting magnet apparatus, wherein the magnetic material is disposed inside a holding member. 観測領域を挟んで対抗して配置され、前記観測領域に静磁場を形成する一対の円環状の超電導主コイルと、前記超電導主コイルによる生じる漏洩磁場を抑制するための円環状の超電導シールドコイルと、前記超伝導主コイル及び前記超電導シールドコイルを内包する一対の輻射シールドと、前記超電導主コイル、前記超伝導シールドコイル及び前記輻射シールドを収納する一対の真空容器とを備え、
前記一対の超電導シールドコイルは、それぞれ、第1超伝導シールドコイルと第2超電導シールドコイルとを備え、
前記第2超電導シールドコイルは前記第1超伝導シールドコイルに対して軸方向前記観測領域側に位置し、
前記第1超伝導主コイル内部に磁性材が配置されていることを特徴とする超電導磁石装置。
A pair of annular superconducting main coils arranged opposite to each other across the observation region and forming a static magnetic field in the observation region; and an annular superconducting shield coil for suppressing a leakage magnetic field generated by the superconducting main coil; A pair of radiation shields that contain the superconducting main coil and the superconducting shield coil, and a pair of vacuum containers that house the superconducting main coil, the superconducting shield coil, and the radiation shield,
Each of the pair of superconducting shield coils includes a first superconducting shield coil and a second superconducting shield coil,
The second superconducting shield coil is positioned on the observation region side in the axial direction with respect to the first superconducting shield coil,
A superconducting magnet apparatus, wherein a magnetic material is disposed inside the first superconducting main coil.
請求項1乃至10の何れかに記載の超電導磁石装置において、前記磁性材は鉄であることを特徴とする超電導磁石装置。   The superconducting magnet device according to any one of claims 1 to 10, wherein the magnetic material is iron. 請求項1乃至10の何れかに記載の超電導磁石装置において、前記磁性材の初期透磁率が鉄よりも高いことを特徴とする超電導磁石装置。   The superconducting magnet device according to any one of claims 1 to 10, wherein the magnetic material has an initial permeability higher than that of iron. 請求項1乃至12の何れかに記載の超電導磁石装置を備えた磁気共鳴イメージング装置。   A magnetic resonance imaging apparatus comprising the superconducting magnet apparatus according to claim 1.
JP2006316446A 2006-11-24 2006-11-24 Superconducting magnet device and magnetic resonance imaging device using the same Pending JP2008130947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006316446A JP2008130947A (en) 2006-11-24 2006-11-24 Superconducting magnet device and magnetic resonance imaging device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006316446A JP2008130947A (en) 2006-11-24 2006-11-24 Superconducting magnet device and magnetic resonance imaging device using the same

Publications (1)

Publication Number Publication Date
JP2008130947A true JP2008130947A (en) 2008-06-05

Family

ID=39556457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006316446A Pending JP2008130947A (en) 2006-11-24 2006-11-24 Superconducting magnet device and magnetic resonance imaging device using the same

Country Status (1)

Country Link
JP (1) JP2008130947A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103950206A (en) * 2014-04-03 2014-07-30 江苏美时医疗技术有限公司 Method for manufacturing magnetic resonance superconducting magnet pull bar
CN111330167A (en) * 2020-03-06 2020-06-26 上海联影医疗科技有限公司 Magnetic resonance image guided radiotherapy system
CN112424625A (en) * 2018-05-16 2021-02-26 优瑞技术公司 Resistive electromagnetic system
US12000914B2 (en) 2021-12-22 2024-06-04 Viewray Systems, Inc. Resistive electromagnet systems and methods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103950206A (en) * 2014-04-03 2014-07-30 江苏美时医疗技术有限公司 Method for manufacturing magnetic resonance superconducting magnet pull bar
CN112424625A (en) * 2018-05-16 2021-02-26 优瑞技术公司 Resistive electromagnetic system
JP2021527459A (en) * 2018-05-16 2021-10-14 ビューレイ・テクノロジーズ・インコーポレイテッドViewRay Technologies, Inc. Normal conduction electromagnet system
JP7383643B2 (en) 2018-05-16 2023-11-20 ビューレイ・テクノロジーズ・インコーポレイテッド Normal electromagnet system
CN111330167A (en) * 2020-03-06 2020-06-26 上海联影医疗科技有限公司 Magnetic resonance image guided radiotherapy system
US12000914B2 (en) 2021-12-22 2024-06-04 Viewray Systems, Inc. Resistive electromagnet systems and methods

Similar Documents

Publication Publication Date Title
JP5534713B2 (en) Superconducting magnet
JP4856430B2 (en) Electromagnet device
JPH10225447A (en) Plane-type magnetic resonance imaging magnet
JP2008029441A (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus
JP4247948B2 (en) Magnet apparatus and MRI apparatus
JP4541092B2 (en) Superconducting magnet device of magnetic resonance imaging system
JP6266225B2 (en) Magnetic resonance imaging apparatus and magnet for magnetic resonance imaging apparatus
JP2008130947A (en) Superconducting magnet device and magnetic resonance imaging device using the same
JP2001078982A (en) Open type magnet device
JP2002065631A (en) Magnet device and magnetic resonance imaging apparatus using the same
JP4866213B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus
JP4886482B2 (en) Superconducting magnet apparatus and nuclear magnetic resonance imaging apparatus
JP2008028146A (en) Thermal shield for superconducting magnet, superconducting magnet device, and magnetic resonance imaging apparatus
WO2013150951A1 (en) Superconductor electromagnet and magnetic resonance imaging device
JP4814765B2 (en) Magnetic resonance imaging system
JP4866215B2 (en) Superconducting magnet apparatus and nuclear magnetic resonance imaging apparatus
JP2006141613A (en) Magnet system and magnetic resonance image diagnostic apparatus
JP2010233736A (en) Electromagnetic device and magnetic resonance imaging apparatus
JP5198805B2 (en) Active magnetic shielding type magnet apparatus and magnetic resonance imaging apparatus
JP5416528B2 (en) Magnetic resonance imaging system
JP2006326177A (en) Superconductive magnet device for mri
JP4749699B2 (en) Magnetic resonance imaging system
JP4651236B2 (en) Magnetic resonance imaging system
WO2014156341A1 (en) Magnetic resonance imaging device
JP2005185318A (en) Magnetic device, and magnetic resonance imaging device