JP2006141613A - Magnet system and magnetic resonance image diagnostic apparatus - Google Patents

Magnet system and magnetic resonance image diagnostic apparatus Download PDF

Info

Publication number
JP2006141613A
JP2006141613A JP2004334279A JP2004334279A JP2006141613A JP 2006141613 A JP2006141613 A JP 2006141613A JP 2004334279 A JP2004334279 A JP 2004334279A JP 2004334279 A JP2004334279 A JP 2004334279A JP 2006141613 A JP2006141613 A JP 2006141613A
Authority
JP
Japan
Prior art keywords
magnetic field
gradient
pair
coil
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004334279A
Other languages
Japanese (ja)
Inventor
Takahiro Matsumoto
隆博 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004334279A priority Critical patent/JP2006141613A/en
Publication of JP2006141613A publication Critical patent/JP2006141613A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the vibration of a gradient magnetic coil and to improve the quality of an MR image in a magnetic system for a magnetic resonance image diagnostic apparatus. <P>SOLUTION: The magnet system comprises a superconductive magnet with a pair of superconductive coil groups for generating uniform static magnetic fields, a pair of vacuum containers for storing the pair of superconductive coil groups respectively and a vacuum container connection member for connecting the pair of vacuum containers, and a pair of gradient magnetic field coils for generating gradient magnetic fields with a gradient in the uniform static magnetic field region. The pair of gradient magnetic field coils are connected to each other by a gradient magnetic field coil connection member, and the gradient magnetic field coil connection member and one vacuum container of the superconductive magnet are connected to each other by a support member. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、磁気共鳴画像診断装置(MRI装置)の技術分野に属するものであり、均一静磁場を発生する超電導電磁石及び傾斜磁場を発生する傾斜磁場コイルを有する磁石装置に関するものである。   The present invention belongs to the technical field of a magnetic resonance imaging diagnosis apparatus (MRI apparatus), and relates to a superconducting electromagnet that generates a uniform static magnetic field and a magnet apparatus having a gradient magnetic field coil that generates a gradient magnetic field.

MRI装置は、物質のもつ原子核の磁気共鳴現象を応用した画像診断装置であって、超電導電磁石などが発生する均一静磁場領域に載置された被検者の体内の成分または構造を画像化するものである。   An MRI apparatus is an image diagnostic apparatus that applies a magnetic resonance phenomenon of a nucleus of a substance, and images a component or structure in the body of a subject placed in a uniform static magnetic field generated by a superconducting electromagnet or the like. Is.

MRI装置は、均一静磁場領域を発生する超電導電磁石と、均一静磁場領域にX、Y及びZの3方向(均一静磁場方向をZ方向とする)に傾斜を持った傾斜磁場を発生する一対の傾斜磁場コイル及び傾斜磁場電源と、均一静磁場領域に載置された被検者に高周波電波を照射して被検者からの核磁気共鳴信号を受信する高周波コイル及び高周波磁場発生機と、高周波コイルによって受信した核磁気共鳴信号をデジタル化し、画像処理を行う計算機とを備えている。   The MRI apparatus includes a superconducting electromagnet that generates a uniform static magnetic field region and a pair that generates a gradient magnetic field having gradients in three directions X, Y, and Z (the uniform static magnetic field direction is the Z direction) in the uniform static magnetic field region. A high-frequency coil and a high-frequency magnetic field generator for receiving a nuclear magnetic resonance signal from the subject by irradiating a subject placed in a uniform static magnetic field region with a high-frequency radio wave, And a computer that digitizes the nuclear magnetic resonance signal received by the high-frequency coil and performs image processing.

第一の従来のMRI装置(例えば、特許文献1参照)では、超電導コイルを収容する真空容器が円環状であって、傾斜磁場コイルは真空容器の中央空隙に配置されて傾斜磁場コイル支持体を介して鉄ヨークに固定されている。   In the first conventional MRI apparatus (see, for example, Patent Document 1), the vacuum vessel that accommodates the superconducting coil is annular, and the gradient magnetic field coil is disposed in the central space of the vacuum vessel to provide the gradient coil support. Via an iron yoke.

また、第二の従来のMRI装置(例えば、特許文献2参照)では、超電導コイルを収容する真空容器が円環状であって、傾斜磁場コイルは真空容器の中央空隙に配置されて円筒状の傾斜磁場コイル支持体を介して平板状の傾斜磁場コイル支持体に固定されている。平板状の傾斜磁場コイル支持体は、固定柱に連結されることで、真空容器に接触しないようになっている。   In the second conventional MRI apparatus (see, for example, Patent Document 2), the vacuum vessel that accommodates the superconducting coil is annular, and the gradient magnetic field coil is disposed in the central space of the vacuum vessel so as to have a cylindrical inclination. It is being fixed to the flat gradient magnetic field coil support body via the magnetic field coil support body. The flat gradient coil support is connected to the fixed column so as not to contact the vacuum vessel.

特開2002−17705号公報(図2)Japanese Patent Laid-Open No. 2002-17705 (FIG. 2) 特開2002−52004号公報(図1、図6)JP 2002-52004 A (FIGS. 1 and 6)

傾斜磁場コイルには、傾斜磁場を発生する際に、数百アンペアに及ぶパルス電流が流される。このとき、上下の傾斜磁場コイルの間には、数百kgf〜1000kgfに近い電磁力が上下左右方向に加わる。そのため、傾斜磁場コイルは、激しく振動する。   When the gradient magnetic field is generated, a pulse current of several hundred amperes flows through the gradient magnetic field coil. At this time, an electromagnetic force close to several hundred kgf to 1000 kgf is applied between the upper and lower gradient magnetic field coils in the vertical and horizontal directions. Therefore, the gradient magnetic field coil vibrates violently.

従来の技術では、上下の傾斜磁場コイルが別々の支持体に支持されているため、上下の傾斜磁場コイルの振動形態が大きく異なると、振動の対称性を確保できないことがあった。この場合、傾斜磁場コイルの振動が超電導コイルに伝わり、均一静磁場の磁場強度が数ppm変動するために、高速連続撮影の際に磁気共鳴画像の画質が低下するという問題があった。   In the conventional technique, since the upper and lower gradient coils are supported on separate supports, if the vibration forms of the upper and lower gradient coils are greatly different, the symmetry of vibration may not be ensured. In this case, the vibration of the gradient magnetic field coil is transmitted to the superconducting coil, and the magnetic field strength of the uniform static magnetic field fluctuates by several ppm.

この発明は、上記のような問題点を解決するためになされたものであり、傾斜磁場コイルの振動を低減し、磁気共鳴画像の高画質化を目的とする。   The present invention has been made to solve the above problems, and aims to reduce the vibration of the gradient coil and to improve the image quality of the magnetic resonance image.

この発明における磁石装置は、均一静磁場を発生する一対の超電導コイル群及び前記一対の超電導コイル群をそれぞれ収容する一対の真空容器並びに前記一対の真空容器を連結する真空容器連結部材を有する超電導電磁石と、均一静磁場領域に傾斜を持った傾斜磁場を発生する一対の傾斜磁場コイルと、前記一対の傾斜磁場コイルを連結する傾斜磁場コイル連結部材と、前記傾斜磁場コイル連結部材と前記超電導電磁石の一方の真空容器とを接続する支持部材とを備えるものである。   A magnet apparatus according to the present invention includes a pair of superconducting coils that generate a uniform static magnetic field, a pair of vacuum containers that respectively accommodate the pair of superconducting coils, and a vacuum container connecting member that connects the pair of vacuum containers. A pair of gradient magnetic field coils that generate a gradient magnetic field having a gradient in a uniform static magnetic field region, a gradient magnetic field coil coupling member that couples the pair of gradient magnetic field coils, a gradient magnetic field coil coupling member, and the superconducting electromagnet And a support member for connecting one of the vacuum containers.

また、この発明における磁石装置は、均一静磁場を発生する一対の超電導コイル群及び前記一対の超電導コイル群をそれぞれ収容する一対の真空容器並びに前記一対の真空容器を連結する真空容器連結部材を有する超電導電磁石と、均一静磁場領域に傾斜を持った傾斜磁場を発生する一対の傾斜磁場コイルと、前記一対の傾斜磁場コイルを連結する傾斜磁場コイル連結部材と、前記傾斜磁場コイル連結部材と前記超電導電磁石の前記真空容器連結部材とを接続する支持部材とを備えるものである。   The magnet device according to the present invention includes a pair of superconducting coil groups that generate a uniform static magnetic field, a pair of vacuum containers that respectively accommodate the pair of superconducting coil groups, and a vacuum container connecting member that connects the pair of vacuum containers. A superconducting electromagnet, a pair of gradient coils that generate a gradient magnetic field having a gradient in a uniform static magnetic field region, a gradient coil coupling member that couples the pair of gradient coils, the gradient coil coupling member, and the superconductivity And a support member that connects the vacuum vessel connecting member of the electromagnet.

この発明によれば、一対の傾斜磁場コイルを連結して一体化したので、傾斜磁場コイル間で働く電磁力が打ち消される。そのため、傾斜磁場コイルの振動が低減されるので、超電導コイルに伝わる振動も小さくなる。その結果として、超電導コイルが発生する均一静磁場の磁場強度変動を抑制し、磁気共鳴画像の高画質化が図られる。   According to the present invention, since the pair of gradient magnetic field coils are connected and integrated, the electromagnetic force acting between the gradient magnetic field coils is canceled out. Therefore, since the vibration of the gradient coil is reduced, the vibration transmitted to the superconducting coil is also reduced. As a result, the magnetic field intensity fluctuation of the uniform static magnetic field generated by the superconducting coil is suppressed, and the image quality of the magnetic resonance image is improved.

実施の形態1.
図1は、本発明が適用されるMRI装置における実施の形態1を説明するための概略構成図である。図1に示すようにMRI装置は、被検者を寝載する寝台110と、被検者に与える均一静磁場を発生する超電導電磁石100と、均一静磁場領域に傾斜を持った傾斜磁場を発生する傾斜磁場コイル8a、8b及び傾斜磁場電源120と、高周波磁場を被検者に対して送信し被検者からの核磁気共鳴信号を受信する高周波コイル130a、130b及び高周波磁場発生機140と、核磁気共鳴信号から画像処理を行うことができる計算機150と、計算機150で画像処理された画像信号を断層画像として表示する表示装置160とを備える。
Embodiment 1 FIG.
FIG. 1 is a schematic configuration diagram for explaining Embodiment 1 in an MRI apparatus to which the present invention is applied. As shown in FIG. 1, the MRI apparatus generates a magnetic field having a gradient in a uniform static magnetic field region, a bed 110 for placing the subject, a superconducting electromagnet 100 that generates a uniform static magnetic field applied to the subject, and the like. The gradient magnetic field coils 8a and 8b and the gradient magnetic field power source 120, the high frequency coils 130a and 130b and the high frequency magnetic field generator 140 for transmitting a high frequency magnetic field to the subject and receiving a nuclear magnetic resonance signal from the subject, A computer 150 that can perform image processing from a nuclear magnetic resonance signal and a display device 160 that displays an image signal processed by the computer 150 as a tomographic image are provided.

図2は、この実施の形態における磁石装置の部分断面図である。図示左側が断面である。磁石装置は、超電導電磁石100と一対の傾斜磁場コイル8a及び8bを有する。ここでは、磁石装置は、アンカー13によって基礎土台10に固定されている。   FIG. 2 is a partial cross-sectional view of the magnet device according to this embodiment. The left side is a cross section. The magnet device has a superconducting electromagnet 100 and a pair of gradient coils 8a and 8b. Here, the magnet device is fixed to the foundation base 10 by the anchor 13.

まず、超電導電磁石100について説明する。図示上側に配置された複数の超電導コイル1aからなる超電導コイル群と、図示下側に配置された複数の超電導コイル1bからなる超電導コイル群とが一対となって、0.7〜1テスラ程度の均一静磁場を発生する。とくに、均一静磁場領域2においては、静磁場均一度として数ppm程度が求められる。MRI装置による撮影は、被検者の撮影したい部位をこの均一静磁場領域2に配置して行われる。   First, the superconducting electromagnet 100 will be described. A superconducting coil group made up of a plurality of superconducting coils 1a arranged on the upper side of the figure and a superconducting coil group made up of a plurality of superconducting coils 1b arranged on the lower side of the figure are paired, and about 0.7 to 1 Tesla Generate a uniform static magnetic field. In particular, in the uniform static magnetic field region 2, a static magnetic field uniformity of about several ppm is required. Imaging by the MRI apparatus is performed by arranging a part of the subject to be imaged in the uniform static magnetic field region 2.

上側の超電導コイル群は上側のヘリウム容器3aに収容され、下側の超電導コイル群は下側のヘリウム容器3bに収容されている。ヘリウム容器3a及び3bに貯蔵された冷媒としての液体ヘリウムは、それぞれの超電導コイル1a及び1bを超電導状態となる極低温度の4.2Kに冷却している。   The upper superconducting coil group is housed in the upper helium container 3a, and the lower superconducting coil group is housed in the lower helium container 3b. Liquid helium as a refrigerant stored in the helium containers 3a and 3b cools the superconducting coils 1a and 1b to 4.2 K which is an extremely low temperature at which the superconducting coils 1a and 1b are brought into a superconducting state.

さらに真空断熱のために、上側のヘリウム容器3aは上側の真空容器4aに収容され、下側のヘリウム容器3bは下側の真空容器4bに収容されている。真空容器4a及び4bは、互いに対向する円環状である。上側の熱シールド5aは、ヘリウム容器3aと真空容器4aの間に配置され、真空容器4aからヘリウム容器3aへの輻射熱を遮蔽している。同様に、下側の熱シールド5bは、ヘリウム容器3bと真空容器4bの間に配置され、真空容器4bからヘリウム容器3bへの輻射熱を遮蔽している。熱シールド5a及び5bは、熱伝導率の良いアルミニウム等の材料で構成される。また、図示してないが、真空容器4aと熱シールド5aの間、真空容器4bと熱シールド5bの間には、アルミニウム蒸着フィルムとネットを交互に20〜40層程度積層した多層断熱材が配置されている。これによって、真空容器4a及び4bから極低温度のヘリウム容器3a及び3bにそれぞれ入る熱量を低減できる。   Further, for vacuum insulation, the upper helium container 3a is accommodated in the upper vacuum container 4a, and the lower helium container 3b is accommodated in the lower vacuum container 4b. The vacuum vessels 4a and 4b have an annular shape facing each other. The upper heat shield 5a is disposed between the helium vessel 3a and the vacuum vessel 4a and shields radiant heat from the vacuum vessel 4a to the helium vessel 3a. Similarly, the lower heat shield 5b is disposed between the helium vessel 3b and the vacuum vessel 4b and shields radiant heat from the vacuum vessel 4b to the helium vessel 3b. The heat shields 5a and 5b are made of a material such as aluminum having good thermal conductivity. Moreover, although not shown in figure, the multilayer heat insulating material which laminated | stacked the aluminum vapor deposition film and the net | network about 20-40 layers alternately is arrange | positioned between the vacuum vessel 4a and the heat shield 5a, and between the vacuum vessel 4b and the heat shield 5b. Has been. As a result, the amount of heat entering the ultra-low temperature helium containers 3a and 3b from the vacuum containers 4a and 4b can be reduced.

一対のヘリウム容器3a及び3bは、ヘリウム容器連結部材6aで連結されている。ヘリウム容器連結部材6aは、ヘリウム容器3a及び3bの間に働く電磁力を支持するとともに、その内部に上下の超電導コイル群間を接続する超電導線(図示していない)を配線している。一対の熱シールド5a及び5bは、熱シールド連結部材6bで連結されている。熱シールド連結部材6bは、上下の熱シールド5a及び5bを連結することで、熱シールド5bに入った熱を熱シールド5aに伝える。一対の真空容器4a及び4bは、真空容器連結部材6cで連結されている。真空容器連結部材6cは、その内部が真空になっていてヘリウム容器3a及び3bを真空断熱するとともに、真空容器4aの重量や真空容器4a及び4bの間に働く電磁力を支持している。なお、ヘリウム容器連結部材6a、熱シールド連結部材6b及び真空容器連結部材6cは、図示左右合わせて2本の場合を例示しているが、その本数並びに配置位置は適宜選択できる。   The pair of helium containers 3a and 3b are connected by a helium container connecting member 6a. The helium vessel connecting member 6a supports the electromagnetic force acting between the helium vessels 3a and 3b, and has a superconducting wire (not shown) connecting the upper and lower superconducting coil groups therein. The pair of heat shields 5a and 5b are connected by a heat shield connecting member 6b. The heat shield connecting member 6b transfers the heat that has entered the heat shield 5b to the heat shield 5a by connecting the upper and lower heat shields 5a and 5b. The pair of vacuum vessels 4a and 4b are connected by a vacuum vessel connecting member 6c. The vacuum container connecting member 6c is evacuated to insulate the helium containers 3a and 3b from vacuum, and supports the weight of the vacuum container 4a and the electromagnetic force acting between the vacuum containers 4a and 4b. In addition, although helium container connecting member 6a, heat shield connecting member 6b, and vacuum container connecting member 6c are illustrated as two cases in total in the drawing, the number and arrangement position thereof can be appropriately selected.

熱シールド5a及び5b、ヘリウム容器3a及び3bは、冷凍機7と図示していない圧縮機との組み合わせで冷却される。なお、熱シールド5a及び5bが一重の場合を示したが、これに限定するものではない。通常は、熱シールド5a及び5bを二重に配置し、シールド冷凍機7により真空容器側の熱シールドを約70Kに、ヘリウム容器側の熱シールドを約20Kに冷却することで、液体ヘリウム消費量を0.1リットル/時間程度以下に低減している。さらに、ヘリウム容器3a及び3bも4.2K以下に冷却できる冷凍機7を搭載することで、液体ヘリウム消費量をほぼ0リットル/時間とすることもできる。   The heat shields 5a and 5b and the helium containers 3a and 3b are cooled by a combination of the refrigerator 7 and a compressor (not shown). In addition, although the case where the heat shields 5a and 5b are single was shown, it is not limited to this. Normally, the heat shields 5a and 5b are arranged in a double, and the heat shield on the vacuum vessel side is cooled to about 70K and the heat shield on the helium vessel side is cooled to about 20K by the shield refrigerator 7. Is reduced to about 0.1 liter / hour or less. Further, by installing the refrigerator 7 that can cool the helium containers 3a and 3b to 4.2K or less, the liquid helium consumption can be reduced to approximately 0 liter / hour.

次に、一対の傾斜磁場コイル8a及び8bについて説明する。傾斜磁場コイル8aは真空容器4aの対向面の凹部に、傾斜磁場コイル8bは真空容器4bの対向面の凹部に、均一静磁場領域2を挟んで配置されている。傾斜磁場コイル8a及び8bは、均一静磁場領域2に対してX、Y及びZの3方向の傾斜を持った傾斜磁場を発生する。   Next, the pair of gradient magnetic field coils 8a and 8b will be described. The gradient magnetic field coil 8a is disposed in the recess on the opposing surface of the vacuum vessel 4a, and the gradient magnetic field coil 8b is disposed in the recess on the opposing surface of the vacuum vessel 4b with the uniform static magnetic field region 2 interposed therebetween. The gradient magnetic field coils 8 a and 8 b generate gradient magnetic fields having gradients in three directions of X, Y, and Z with respect to the uniform static magnetic field region 2.

傾斜磁場コイル連結部材9aは、例えば長さ500mm程度のステンレス鋼等のように高強度で非磁性な材料からなり、傾斜磁場コイル8a及び8bを機械的に一体となるように連結するものである。さらに、支持部材11aは、傾斜磁場コイル連結部材9aと超電導電磁石100の下側の真空容器4bとを接続するものである。これによって、傾斜磁場コイル8a及び8bは、傾斜磁場コイル連結部材9aと支持部材11aとを介して、真空容器4bに固定される。なお、傾斜磁場コイル連結部材9a及び支持部材11aは、図示左右合わせて2個の場合を例示しているが、その個数並びに配置位置は適宜選択できる。   The gradient coil connecting member 9a is made of a high-strength nonmagnetic material such as stainless steel having a length of about 500 mm, and connects the gradient coils 8a and 8b so as to be mechanically integrated. . Further, the support member 11 a connects the gradient coil connecting member 9 a and the vacuum container 4 b below the superconducting electromagnet 100. Thereby, the gradient magnetic field coils 8a and 8b are fixed to the vacuum vessel 4b via the gradient magnetic field coil connecting member 9a and the support member 11a. In addition, although the gradient magnetic field coil coupling member 9a and the support member 11a are illustrated as being two in total in the drawing, the number and arrangement position thereof can be appropriately selected.

次に動作について説明する。傾斜磁場コイル8a及び8bが、均一静磁場領域2に対してX、Y及びZの3方向にパルス状の20ミリテスラ/m程度の傾斜を持った傾斜磁場を発生する。例えば、均一静磁場方向であるZ方向の傾斜磁場の場合、傾斜磁場コイル形状がZ方向に対して垂直な面を有する円板状となるので、傾斜磁場コイル8a及び8bの間には互いに反発力または吸引力が発生する。その電磁力は、数百kgfから1000kgfになるため、傾斜磁場コイル8a及び8bは激しく振動する。   Next, the operation will be described. The gradient coils 8a and 8b generate a gradient magnetic field having a pulsed gradient of about 20 millitesla / m in the three directions X, Y, and Z with respect to the uniform static magnetic field region 2. For example, in the case of a gradient magnetic field in the Z direction, which is a uniform static magnetic field direction, the gradient magnetic field coil shape is a disk shape having a surface perpendicular to the Z direction, so that the gradient magnetic field coils 8a and 8b repel each other. Force or suction force is generated. Since the electromagnetic force becomes several hundred kgf to 1000 kgf, the gradient coils 8a and 8b vibrate vigorously.

この実施の形態では、振動する傾斜磁場コイル8a及び8bを、左右一対の傾斜磁場コイル連結部材9aで連結して一体化したので、傾斜磁場コイル8a及び8bの間で働く反対方向の電磁力が打ち消される。そのため、傾斜磁場コイル8a及び8bの振動が低減するので、超電導コイル1a及び1bに伝わる振動も小さくなる。その結果として、超電導コイル1a及び1bが発生する均一静磁場の磁場強度変動を抑制し、磁気共鳴画像の高画質化が図られる。   In this embodiment, the oscillating gradient coils 8a and 8b are connected and integrated by a pair of left and right gradient coil connecting members 9a, so that the opposite electromagnetic force acting between the gradient coils 8a and 8b is generated. Be countered. Therefore, the vibrations of the gradient magnetic field coils 8a and 8b are reduced, and the vibrations transmitted to the superconducting coils 1a and 1b are also reduced. As a result, the magnetic field intensity fluctuation of the uniform static magnetic field generated by the superconducting coils 1a and 1b is suppressed, and the image quality of the magnetic resonance image is improved.

実施の形態2.
図3は、実施の形態2を説明するための磁石装置の部分断面図である。この実施の形態は、実施の形態1における傾斜磁場コイル連結部材の構成を変更したものである。変更部分について説明する。
Embodiment 2. FIG.
FIG. 3 is a partial cross-sectional view of the magnet device for explaining the second embodiment. In this embodiment, the configuration of the gradient coil connecting member in the first embodiment is changed. The changed part will be described.

傾斜磁場コイル連結部材9bは、一対の梁状部12a及び12bと柱状部12cとからなる。上側の梁状部12aは、傾斜磁場コイル8aの外径より内側に接触する接触領域と、傾斜磁場コイル8aの外径より外側に突出する非接触領域とからなる。同様に、下側の梁状部12bは、傾斜磁場コイル8bの外径より内側に接触する接触領域と、傾斜磁場コイル8bの外径より外側に突出する非接触領域とからなる。柱状部12cは、一対の梁状部12a及び12bの非接触領域同士を接続する。   The gradient coil connecting member 9b includes a pair of beam-like portions 12a and 12b and a columnar portion 12c. The upper beam-like portion 12a is composed of a contact area that contacts the inside of the outer diameter of the gradient magnetic field coil 8a and a non-contact area that protrudes outside of the outer diameter of the gradient magnetic field coil 8a. Similarly, the lower beam-like portion 12b includes a contact area that contacts the inside of the outer diameter of the gradient magnetic field coil 8b and a non-contact area that protrudes outside of the outer diameter of the gradient magnetic field coil 8b. The columnar part 12c connects the non-contact areas of the pair of beam-like parts 12a and 12b.

このような傾斜磁場コイル連結部材9bを用いることによって、柱状部12cは傾斜磁場コイル8a及び8bの外径より外側に配置されることになる。すなわち、柱状部12cを均一静磁場領域2から遠ざけることができるので、被検者が入る空間が図示左右方向に広くなり、開放性が向上する。   By using such a gradient coil connecting member 9b, the columnar portion 12c is disposed outside the outer diameter of the gradient coils 8a and 8b. That is, since the columnar part 12c can be moved away from the uniform static magnetic field region 2, the space for the subject to enter becomes wider in the horizontal direction in the figure, and the openness is improved.

さらに、柱状部12cが均一静磁場領域2から遠ざかるのに伴って、傾斜磁場コイル連結部材9bと真空容器4bとを接続する支持部材11bも均一静磁場領域2から遠ざかることになる。この実施の形態では、支持部材11bを、真空容器4bの対向面の外縁部に接続している。この外縁部は、真空容器4bの外筒と対向面との接合部近傍であることから、剛性の高い部分である。このように、支持部材11bを剛性の高い真空容器4bの対向面の外縁部に固定したことによって、傾斜磁場コイル8a及び8bの振動を一段と低減できる。その結果として、超電導コイル1a及び1bが発生する均一静磁場の磁場強度変動を抑制し、磁気共鳴画像の高画質化が図られる。   Further, as the columnar portion 12 c moves away from the uniform static magnetic field region 2, the support member 11 b that connects the gradient coil connecting member 9 b and the vacuum vessel 4 b also moves away from the uniform static magnetic field region 2. In this embodiment, the support member 11b is connected to the outer edge portion of the facing surface of the vacuum vessel 4b. Since this outer edge is in the vicinity of the joint between the outer cylinder of the vacuum vessel 4b and the opposing surface, it is a highly rigid part. Thus, by fixing the support member 11b to the outer edge portion of the opposing surface of the highly rigid vacuum vessel 4b, the vibration of the gradient magnetic field coils 8a and 8b can be further reduced. As a result, the magnetic field intensity fluctuation of the uniform static magnetic field generated by the superconducting coils 1a and 1b is suppressed, and the image quality of the magnetic resonance image is improved.

実施の形態3.
図4は、実施の形態3を説明するための磁石装置の部分断面図である。この実施の形態は、実施の形態2における支持部材の形状を変更したものである。変更部分について説明する。
Embodiment 3 FIG.
FIG. 4 is a partial cross-sectional view of the magnet device for explaining the third embodiment. In this embodiment, the shape of the support member in the second embodiment is changed. The changed part will be described.

支持部材11cは、傾斜磁場コイル連結部材9bの柱状部12cの中央部分に接続されるものであって、実施の形態2と比較して縦長形状になっている。ここで、傾斜磁場コイル8a及び8bの間に働く電磁力は、均一静磁場領域2を中心として、上下、前後、左右といったあらゆる方向に対称に発生する。そのため、傾斜磁場コイル8a及び8bは、均一静磁場領域2を中心として、上下、前後、左右といったあらゆる方向に対称に振動するが、傾斜磁場コイル連結部材9bによって一体化されているので、お互いの振動を打ち消し合う。   The support member 11c is connected to the central portion of the columnar portion 12c of the gradient coil connecting member 9b, and has a vertically long shape as compared with the second embodiment. Here, the electromagnetic force acting between the gradient magnetic field coils 8a and 8b is generated symmetrically in all directions such as up and down, front and rear, and left and right with the uniform static magnetic field region 2 as the center. Therefore, the gradient magnetic field coils 8a and 8b vibrate symmetrically in all directions such as up and down, front and rear, and left and right with the uniform static magnetic field region 2 as the center, but are integrated by the gradient magnetic field coil coupling member 9b. Counteract vibrations.

また、図4において、傾斜磁場コイル連結部材9bの柱状部12cの中央部分は、均一静磁場領域2の中心部分と同じ高さにある。すなわち、支持部材11cは、傾斜磁場コイル8a及び8bの振動の中立点となる傾斜磁場コイル連結部材9bの中央部分に接続されている。支持部材11cは、最も振動が小さい振動の中立点に固定されているので、要求される剛性が低くてもすむ。   In FIG. 4, the central portion of the columnar portion 12 c of the gradient coil connecting member 9 b is at the same height as the central portion of the uniform static magnetic field region 2. That is, the support member 11c is connected to the central portion of the gradient coil connecting member 9b that is a neutral point of vibration of the gradient coils 8a and 8b. Since the support member 11c is fixed at the neutral point of the vibration with the smallest vibration, the required rigidity may be low.

このように、支持部材11cを傾斜磁場コイル8a及び8bの振動の中立点に接続するので、低剛性の支持部材11cであっても、傾斜磁場コイル8a及び8bの間で働く反対方向の電磁力を効果的に打ち消すことができる。したがって、傾斜磁場コイル8a及び8bの振動を効果的に低減できる。その結果として、超電導コイル1a及び1bが発生する均一静磁場の磁場強度変動を抑制し、磁気共鳴画像の高画質化が図られる。   Thus, since the support member 11c is connected to the neutral point of the vibration of the gradient magnetic field coils 8a and 8b, the electromagnetic force in the opposite direction that acts between the gradient magnetic field coils 8a and 8b even if the support member 11c has a low rigidity. Can be effectively counteracted. Therefore, vibrations of the gradient magnetic field coils 8a and 8b can be effectively reduced. As a result, the magnetic field intensity fluctuation of the uniform static magnetic field generated by the superconducting coils 1a and 1b is suppressed, and the image quality of the magnetic resonance image is improved.

また、支持部材11cと真空容器4cとの間には、緩衝材13aが設けられている。緩衝材13aは、傾斜磁場コイル8a及び8bの振動を吸収するので、真空容器4bに伝達する振動を低減できる。この緩衝材13aは、支持部材11cと傾斜磁場コイル連結部材9bとの間に設けられていても同様の効果が得られる。   In addition, a buffer material 13a is provided between the support member 11c and the vacuum vessel 4c. Since the buffer material 13a absorbs the vibration of the gradient magnetic field coils 8a and 8b, the vibration transmitted to the vacuum vessel 4b can be reduced. Even if the buffer material 13a is provided between the support member 11c and the gradient coil connecting member 9b, the same effect can be obtained.

実施の形態4.
図5は、実施の形態4を説明するための磁石装置の部分断面図である。この実施の形態は、実施の形態2における支持部材の形状と接続先を変更したものである。変更部分について説明する。
Embodiment 4 FIG.
FIG. 5 is a partial cross-sectional view of a magnet device for explaining the fourth embodiment. In this embodiment, the shape and connection destination of the support member in the second embodiment are changed. The changed part will be described.

支持部材11dは、傾斜磁場コイル連結部材9bと真空容器連結部材6cとを接続するものである。この実施の形態では、支持部材11dを、傾斜磁場コイル連結部材9bと真空容器連結部材6cとの最短距離を接続できる程度に短くできる。ここで、支持部材11dの剛性は長さの3乗に反比例するので、支持部材11dを短くすれば、剛性が高まり振動の低減に有利である。このように、支持部材11dの剛性を高めたことによって、傾斜磁場コイル8a及び8bの振動を一段と低減できる。その結果として、超電導コイル1a及び1bが発生する均一静磁場の磁場強度変動を抑制し、磁気共鳴画像の高画質化が図られる。   The support member 11d connects the gradient magnetic field coil coupling member 9b and the vacuum vessel coupling member 6c. In this embodiment, the support member 11d can be shortened to such an extent that the shortest distance between the gradient coil connecting member 9b and the vacuum vessel connecting member 6c can be connected. Here, since the rigidity of the support member 11d is inversely proportional to the cube of the length, shortening the support member 11d increases the rigidity and is advantageous for reducing vibration. Thus, the vibration of the gradient magnetic field coils 8a and 8b can be further reduced by increasing the rigidity of the support member 11d. As a result, the magnetic field intensity fluctuation of the uniform static magnetic field generated by the superconducting coils 1a and 1b is suppressed, and the image quality of the magnetic resonance image is improved.

また、支持部材11dと真空容器連結部材6cとの間には、緩衝材13bが設けられている。緩衝材13bは、傾斜磁場コイル8a及び8bの振動を吸収するので、真空容器連結部材6cに伝達する振動を低減できる。この緩衝材13bは、支持部材11dと傾斜磁場コイル連結部材9bとの間に設けられていても同様の効果が得られる。   Further, a buffer material 13b is provided between the support member 11d and the vacuum vessel connecting member 6c. Since the buffer material 13b absorbs the vibration of the gradient magnetic field coils 8a and 8b, the vibration transmitted to the vacuum vessel connecting member 6c can be reduced. Even if the buffer material 13b is provided between the support member 11d and the gradient coil connecting member 9b, the same effect can be obtained.

実施の形態5.
図6は、実施の形態5を説明するための磁石装置の部分断面図である。この実施の形態は、傾斜磁場コイルの外周にステンレス鋼リングを取り付けたものである。ここでは、実施の形態3の変更例として説明するが、他の実施の形態にも適用できることはいうまでもない。変更部分について説明する。
Embodiment 5. FIG.
FIG. 6 is a partial cross-sectional view of a magnet device for explaining the fifth embodiment. In this embodiment, a stainless steel ring is attached to the outer periphery of the gradient coil. Here, although it demonstrates as a modification of Embodiment 3, it cannot be overemphasized that it can apply also to other Embodiment. The changed part will be described.

上側のステンレス鋼リング14aは、上側の傾斜磁場コイル8aの外周に取り付けられている。同様に、下側のステンレス鋼リング14bは、下側の傾斜磁場コイル8bの外周に取り付けられている。ステンレス鋼リング14a及び14bは、非磁性である。   The upper stainless steel ring 14a is attached to the outer periphery of the upper gradient magnetic field coil 8a. Similarly, the lower stainless steel ring 14b is attached to the outer periphery of the lower gradient coil 8b. Stainless steel rings 14a and 14b are non-magnetic.

このようなステンレス鋼リングを取り付けることで、傾斜磁場コイル8a及び8bの質量が大きくなると同時に剛性が向上する。これによって、傾斜磁場コイル8a及び8bは、両者の間に働く電磁力が同じであれば、振動しにくくなる。したがって、傾斜磁場コイル8a及び8bの振動を一段と低減できる。その結果として、超電導コイル1a及び1bが発生する均一静磁場の磁場強度変動を抑制し、磁気共鳴画像の高画質化が図られる。   By attaching such a stainless steel ring, the mass of the gradient magnetic field coils 8a and 8b is increased, and at the same time, the rigidity is improved. As a result, the gradient coils 8a and 8b are less likely to vibrate if the electromagnetic force acting between them is the same. Therefore, the vibration of the gradient magnetic field coils 8a and 8b can be further reduced. As a result, the magnetic field intensity fluctuation of the uniform static magnetic field generated by the superconducting coils 1a and 1b is suppressed, and the image quality of the magnetic resonance image is improved.

実施の形態1を説明するためのMRI装置の概略構成図である。1 is a schematic configuration diagram of an MRI apparatus for explaining Embodiment 1. FIG. 実施の形態1を説明するための磁石装置の部分断面図である。FIG. 3 is a partial cross-sectional view of a magnet device for explaining the first embodiment. 実施の形態2を説明するための磁石装置の部分断面図である。FIG. 5 is a partial cross-sectional view of a magnet device for explaining a second embodiment. 実施の形態3を説明するための磁石装置の部分断面図である。FIG. 6 is a partial cross-sectional view of a magnet device for explaining a third embodiment. 実施の形態4を説明するための磁石装置の部分断面図である。FIG. 10 is a partial cross-sectional view of a magnet device for explaining a fourth embodiment. 実施の形態5を説明するための磁石装置の部分断面図である。FIG. 10 is a partial cross-sectional view of a magnet device for explaining a fifth embodiment.

符号の説明Explanation of symbols

1a、1b 超電導コイル、4a、4b 真空容器、6c 真空容器連結部材、8a、8b 傾斜磁場コイル、9a、9b 傾斜磁場コイル連結部材、11a〜11d 支持部材、12a、12b 梁状部、12c 柱状部、13a、13b 緩衝材、14a、14b ステンレス鋼リング、100 超電導電磁石、120 傾斜磁場電源、130a、130b 高周波コイル、140 高周波磁場発生機、150 計算機、160 表示装置。
1a, 1b Superconducting coil, 4a, 4b Vacuum container, 6c Vacuum container connecting member, 8a, 8b Gradient magnetic field coil, 9a, 9b Gradient magnetic field coil connecting member, 11a-11d Support member, 12a, 12b Beam-shaped part, 12c Columnar part , 13a, 13b Buffer material, 14a, 14b Stainless steel ring, 100 superconducting electromagnet, 120 gradient magnetic field power source, 130a, 130b high frequency coil, 140 high frequency magnetic field generator, 150 computer, 160 display device.

Claims (9)

均一静磁場を発生する一対の超電導コイル群及び前記一対の超電導コイル群をそれぞれ収容する一対の真空容器並びに前記一対の真空容器を連結する真空容器連結部材を有する超電導電磁石と、均一静磁場領域に傾斜を持った傾斜磁場を発生する一対の傾斜磁場コイルと、前記一対の傾斜磁場コイルを連結する傾斜磁場コイル連結部材と、前記傾斜磁場コイル連結部材と前記超電導電磁石の一方の真空容器とを接続する支持部材とを備える磁石装置。   A superconducting electromagnet having a pair of superconducting coils that generate a uniform static magnetic field, a pair of vacuum containers that respectively accommodate the pair of superconducting coils, and a vacuum container connecting member that connects the pair of vacuum containers; and a uniform static magnetic field region Connecting a pair of gradient magnetic field coils that generate a gradient magnetic field having a gradient, a gradient coil coupling member that couples the pair of gradient coil, and one vacuum vessel of the gradient coil coupling member and one of the superconducting magnets A magnet device comprising a supporting member. 前記傾斜磁場コイル連結部材は、前記一対の傾斜磁場コイルに接触する接触領域と前記一対の傾斜磁場コイルの外径より外側に突出する非接触領域とからなる一対の梁状部と、前記一対の梁状部の非接触領域同士を接続する柱状部とを備える請求項1記載の磁石装置。   The gradient coil connecting member includes a pair of beam-shaped portions each formed of a contact region that contacts the pair of gradient magnetic field coils and a non-contact region that protrudes outside an outer diameter of the pair of gradient coil. The magnet device according to claim 1, further comprising: a columnar portion that connects non-contact regions of the beam-shaped portion. 前記一対の真空容器は互いに対向する円環状であり、前記支持部材は、前記一方の真空容器の対向面の外縁部に接続されている請求項1または2記載の磁石装置。   3. The magnet device according to claim 1, wherein the pair of vacuum containers are in an annular shape facing each other, and the support member is connected to an outer edge portion of an opposing surface of the one vacuum container. 前記支持部材は、前記傾斜磁場コイル連結部材の中央部分に接続されている請求項1〜3のいずれかに記載の磁石装置。   The magnet device according to claim 1, wherein the support member is connected to a central portion of the gradient coil connecting member. 前記支持部材と前記一方の真空容器との間または前記支持部材と前記傾斜磁場コイル連結部材との間に介在する緩衝材を備える請求項1〜4のいずれかに記載の磁石装置。   The magnet device according to any one of claims 1 to 4, further comprising a buffer material interposed between the support member and the one vacuum vessel or between the support member and the gradient coil connecting member. 均一静磁場を発生する一対の超電導コイル群及び前記一対の超電導コイル群をそれぞれ収容する一対の真空容器並びに前記一対の真空容器を連結する真空容器連結部材を有する超電導電磁石と、均一静磁場領域に傾斜を持った傾斜磁場を発生する一対の傾斜磁場コイルと、前記一対の傾斜磁場コイルを連結する傾斜磁場コイル連結部材と、前記傾斜磁場コイル連結部材と前記超電導電磁石の前記真空容器連結部材とを接続する支持部材とを備える磁石装置。   A superconducting electromagnet having a pair of superconducting coils that generate a uniform static magnetic field, a pair of vacuum containers that respectively accommodate the pair of superconducting coils, and a vacuum container connecting member that connects the pair of vacuum containers; and a uniform static magnetic field region A pair of gradient magnetic field coils that generate a gradient magnetic field having a gradient, a gradient magnetic field coil coupling member that couples the pair of gradient magnetic field coils, the gradient magnetic field coil coupling member, and the vacuum vessel coupling member of the superconducting electromagnet. A magnet device comprising a supporting member to be connected. 前記支持部材と前記真空容器連結部材との間または前記支持部材と前記傾斜磁場コイル連結部材との間に介在する緩衝材を備える請求項6記載の磁石装置。   The magnet apparatus according to claim 6, further comprising a buffer material interposed between the support member and the vacuum vessel connecting member or between the support member and the gradient coil connecting member. 前記一対の傾斜磁場コイルは、それぞれの外周に取り付けられたステンレス鋼リングを備える請求項1〜7のいずれかに記載の磁石装置。   The magnet device according to claim 1, wherein the pair of gradient coils includes a stainless steel ring attached to each outer periphery. 被検者に与える均一静磁場を発生する超電導電磁石及び均一静磁場領域に傾斜を持った傾斜磁場を発生する傾斜磁場コイルを備える磁石装置と、前記傾斜磁場コイルに接続された傾斜磁場電源と、高周波磁場を前記被検者に対して送信し前記被検者からの核磁気共鳴信号を受信する高周波コイル及び高周波磁場発生機と、前記核磁気共鳴信号から画像処理を行うことができる計算機と、前記計算機で画像処理された画像信号を断層画像として表示する表示装置とを備える磁気共鳴画像診断装置において、
前記磁石装置は、請求項1〜8のいずれかに記載された磁石装置である磁気共鳴画像診断装置。

A superconducting electromagnet that generates a uniform static magnetic field to be given to a subject, a magnet apparatus including a gradient magnetic field coil that generates a gradient magnetic field having a gradient in the uniform static magnetic field region, a gradient magnetic field power source connected to the gradient magnetic field coil, A high-frequency coil and a high-frequency magnetic field generator for transmitting a high-frequency magnetic field to the subject and receiving a nuclear magnetic resonance signal from the subject; a calculator capable of performing image processing from the nuclear magnetic resonance signal; In a magnetic resonance diagnostic imaging apparatus comprising a display device that displays an image signal image-processed by the computer as a tomographic image,
The said magnet apparatus is a magnetic resonance diagnostic imaging apparatus which is a magnet apparatus described in any one of Claims 1-8.

JP2004334279A 2004-11-18 2004-11-18 Magnet system and magnetic resonance image diagnostic apparatus Pending JP2006141613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004334279A JP2006141613A (en) 2004-11-18 2004-11-18 Magnet system and magnetic resonance image diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004334279A JP2006141613A (en) 2004-11-18 2004-11-18 Magnet system and magnetic resonance image diagnostic apparatus

Publications (1)

Publication Number Publication Date
JP2006141613A true JP2006141613A (en) 2006-06-08

Family

ID=36621954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004334279A Pending JP2006141613A (en) 2004-11-18 2004-11-18 Magnet system and magnetic resonance image diagnostic apparatus

Country Status (1)

Country Link
JP (1) JP2006141613A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1895315A3 (en) * 2006-08-30 2010-10-13 Bruker BioSpin AG Split coil magnet assembly with an improved mechanical structure
JP2011143033A (en) * 2010-01-13 2011-07-28 Toshiba Corp Magnetic resonance imaging apparatus
USD833029S1 (en) 2017-01-09 2018-11-06 Toothshower, Llc Gum massager
US10478267B2 (en) 2017-01-09 2019-11-19 ToothShower LLC Oral irrigator
USD882067S1 (en) 2017-01-09 2020-04-21 Toothshower, Llc Oral irrigator
US10874206B2 (en) 2018-04-02 2020-12-29 Toothshower, Llc Oral cleaning system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1895315A3 (en) * 2006-08-30 2010-10-13 Bruker BioSpin AG Split coil magnet assembly with an improved mechanical structure
JP2011143033A (en) * 2010-01-13 2011-07-28 Toshiba Corp Magnetic resonance imaging apparatus
USD833029S1 (en) 2017-01-09 2018-11-06 Toothshower, Llc Gum massager
US10478267B2 (en) 2017-01-09 2019-11-19 ToothShower LLC Oral irrigator
USD882067S1 (en) 2017-01-09 2020-04-21 Toothshower, Llc Oral irrigator
US10874206B2 (en) 2018-04-02 2020-12-29 Toothshower, Llc Oral cleaning system

Similar Documents

Publication Publication Date Title
EP1882958B1 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus
US7714574B2 (en) Superconducting magnet with refrigerator and magnetic resonance imaging apparatus using the same
JP5025164B2 (en) Equipment for heat shielding superconducting magnets
CN103901371A (en) System for magnetic field distortion compensation and method of making same
EP1811314A1 (en) Electromagnet apparatus
JP4247948B2 (en) Magnet apparatus and MRI apparatus
JP2005152632A (en) Mri system utilizing supplemental static field-shaping coils
US7112966B2 (en) Magnetic resonance imaging apparatus
JP2006141613A (en) Magnet system and magnetic resonance image diagnostic apparatus
US10317013B2 (en) Dynamic boil-off reduction with improved cryogenic vessel
US10416254B2 (en) System for reducing thermal shield vibrations
US6664876B2 (en) Superconducting magnet and magnetic resonance imaging apparatus using the same
JP3939489B2 (en) Magnet apparatus and magnetic resonance imaging apparatus using the same
JP5128211B2 (en) Superconducting magnet device and magnetic resonance imaging device
US7205767B2 (en) Magnetic apparatus, installation method for magnetic apparatus, and magnetic resonance imaging diagnosis system
JP6369851B2 (en) Magnetic field generation apparatus and magnetic field generation method
US6667676B2 (en) Superconducting magnet and magnetic resonance imaging apparatus using the same
JP4886482B2 (en) Superconducting magnet apparatus and nuclear magnetic resonance imaging apparatus
JP4814765B2 (en) Magnetic resonance imaging system
JP4118015B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus using the same
US6504372B1 (en) High field open magnetic resonance magnet with reduced vibration
JPWO2013150951A1 (en) Superconducting magnet and magnetic resonance imaging system
JP4866215B2 (en) Superconducting magnet apparatus and nuclear magnetic resonance imaging apparatus
JP5298056B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus
JP2004329526A (en) Magnetic resonance imaging apparatus