JP2017046987A - Superconducting magnet device and magnetic resonance imaging apparatus using the same - Google Patents

Superconducting magnet device and magnetic resonance imaging apparatus using the same Download PDF

Info

Publication number
JP2017046987A
JP2017046987A JP2015173434A JP2015173434A JP2017046987A JP 2017046987 A JP2017046987 A JP 2017046987A JP 2015173434 A JP2015173434 A JP 2015173434A JP 2015173434 A JP2015173434 A JP 2015173434A JP 2017046987 A JP2017046987 A JP 2017046987A
Authority
JP
Japan
Prior art keywords
superconducting
coil
magnet device
temperature
bobbin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015173434A
Other languages
Japanese (ja)
Inventor
幸信 今村
Yukinobu Imamura
幸信 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015173434A priority Critical patent/JP2017046987A/en
Publication of JP2017046987A publication Critical patent/JP2017046987A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superconducting magnet device that can maintain a homogeneous magnetic field distribution and a stable temperature in a superconducting state by making it easy to install a conductive cooling member at a superconducting coil requiring a calcination reaction and to replace a bobbin with a good heat conductor and also by preventing failed winding of a wire after calcination, and provide a magnetic resonance imaging apparatus using the same.SOLUTION: A superconducting magnet device has: a toric superconducting coil; and a refrigerator that cools the superconducting coil. The superconducting coil includes: superconducting wire 17 that is wound multiple times; and an adhesive 18 that mutually fixes the superconducting wire 17 between each winding. The superconducting wire 17 is made of a member that: is obtained after a superconductive material is sintered; and has a superconductive transition temperature of 25K or higher. The adhesive 18 has a hardening temperature lower than a calcination temperature of the superconducting wire 17 and has a softening temperature higher than the calcination temperature of the superconducting wire 17.SELECTED DRAWING: Figure 1

Description

本発明は超電導磁石装置、それを用いた磁気共鳴イメージング装置に関する。   The present invention relates to a superconducting magnet apparatus and a magnetic resonance imaging apparatus using the same.

本技術分野の背景技術として、特開平8―316022号広報(特許文献1)がある。この広報には、超電導線に無機絶縁層あるいは無機化する絶縁層を被覆して絶縁導線を生成し、この絶縁導線をボビンに巻き回して巻線部を形成した後、熱処理を加えて焼成される超電導コイルにおいて、焼成温度で軟化または溶融するアルミニウム、あるいはアルミニウム合金等の固着材を絶縁導線の巻回時に巻線部に巻き込んでコイルを生成する技術が示されている。   As a background art in this technical field, there is a publication of Japanese Patent Application Laid-Open No. 8-316022. In this public relations, a superconducting wire is coated with an inorganic insulating layer or an insulating layer to be mineralized to produce an insulating conducting wire, and this insulating conducting wire is wound around a bobbin to form a winding portion, followed by heat treatment and firing. In such a superconducting coil, a technique has been shown in which a fixing material such as aluminum, which is softened or melted at a firing temperature, or an aluminum alloy is wound around a winding portion when an insulated conductor is wound, thereby generating a coil.

また、本技術分野の背景技術として、特開昭62−19682号広報(特許文献2)がある。この広報には、分割構造のボビンと巻線との間に薄肉の巻枠を設置して焼成し、樹脂含浸して硬化する技術が示されている。   Further, as background art in this technical field, there is a publication of Japanese Patent Laid-Open No. 62-19682 (Patent Document 2). This publicity shows a technique in which a thin winding frame is placed between a bobbin having a split structure and a winding, fired, and impregnated with resin to be cured.

特開平8−316022号広報JP-A-8-316022 特開昭62−19682号広報JP-A 62-19682

しかし特許文献1の場合、焼成反応時に固着材がボビンにも固着するため、焼成反応後、ボビンと線材との熱収縮率の違いにより、せん断が生じて常伝導転移の原因となることが考えられる。また、コイルに対して冷却部材を設置する場合に、巻線がボビンから露出している部分のみ設置可能のため、ボビンと巻線の間に設置、または、ボビンそのものを熱良導体の金属製に交換することが難しく、ひいては超電導コイルを安定的に運転温度で維持することが困難になるおそれも考えられる。   However, in the case of Patent Document 1, since the fixing material is also fixed to the bobbin at the time of the firing reaction, it is considered that after the firing reaction, shearing occurs due to the difference in thermal shrinkage between the bobbin and the wire, causing the normal conduction transition. It is done. In addition, when installing a cooling member for the coil, only the part where the winding is exposed from the bobbin can be installed, so it can be installed between the bobbin and the winding, or the bobbin itself can be made of a metal with good thermal conductivity. It may be difficult to replace, and thus it may be difficult to stably maintain the superconducting coil at the operating temperature.

また、特許文献2が示すように、分割構造のボビンと薄い巻枠による二重構造は、焼成時は線材間が固定されていないため、焼成後の工程で巻崩れが生じる可能性が考えられる。また、モールド後に冷却部材を設置する場合には、薄い巻枠の外側に設置する必要があり、伝導冷却経路の熱抵抗の原因となることが考えられる。   In addition, as shown in Patent Document 2, the double structure with the divided bobbin and the thin winding frame is not fixed between the wire materials at the time of firing. . Moreover, when installing a cooling member after a mold, it is necessary to install in the outer side of a thin winding frame, and it is considered that it becomes the cause of the thermal resistance of a conduction cooling path.

このように、従来技術では、超電導線材を巻き回し後に高温で焼成反応が必要な超電導コイルにおいて、焼成時または焼成後に巻線を一体化することはできるが、伝導冷却の為の冷却部材の設置に制限、または、線材巻崩れの原因となる場合が考えられた。
そこで、本発明は、焼成後の線材の巻崩れを抑制し、安定的に運転温度を維持することが可能な超電導磁石装置、これを利用した磁気共鳴イメージング装置を提供することを課題とする。
Thus, in the conventional technology, in a superconducting coil that requires a firing reaction at a high temperature after winding the superconducting wire, the winding can be integrated at the time of firing or after firing, but the installation of a cooling member for conductive cooling is possible. In some cases, it was limited to the above, or the wire rod collapsed.
Accordingly, an object of the present invention is to provide a superconducting magnet device capable of suppressing the collapse of the wire after firing and maintaining the operation temperature stably, and a magnetic resonance imaging apparatus using the superconducting magnet device.

上記課題を解決する為に、本発明は様々な実施形態が検討されるが、その一例として本発明の超電導磁石装置は、円環状の超電導コイルと、前記超電導コイルを冷却する冷凍機と、を有し、前記超電導コイルは、複数ターン巻き回された超電導線材と、異なるターン間で前記超電導線材を互いに固定する接着剤と、を構成に含み、前記超電導線材は、超電導材料が焼結された部材であって、かつ超電導転移温度が25K以上の部材であって、前記接着剤は、硬化温度が前記超電導線材の焼成温度よりも低く、軟化温度が前記超電導線材の焼成温度よりも高いことを特徴とする。   In order to solve the above problems, various embodiments of the present invention are studied. As an example, the superconducting magnet apparatus of the present invention includes an annular superconducting coil and a refrigerator that cools the superconducting coil. The superconducting coil includes a superconducting wire wound around a plurality of turns and an adhesive for fixing the superconducting wires to each other between different turns, and the superconducting wire is formed by sintering a superconducting material. The adhesive is a member having a superconducting transition temperature of 25K or higher, and the adhesive has a curing temperature lower than a firing temperature of the superconducting wire and a softening temperature higher than a firing temperature of the superconducting wire. Features.

本発明によれば、焼成反応が必要な超電導コイルに伝導冷却部材の設置または熱良導体によるボビンへの受け替えを容易にし、かつ、焼成後の線材の巻崩れを防止することで、均一な磁場分布と安定な超電導状態の温度を維持することが可能な超電導磁石装置、これを利用した磁気共鳴イメージング装置を提供できる。   According to the present invention, a uniform magnetic field can be obtained by facilitating the installation of a conductive cooling member in a superconducting coil that requires a firing reaction or replacing it with a bobbin by a good thermal conductor, and preventing the wire rod from collapsing after firing. It is possible to provide a superconducting magnet apparatus capable of maintaining the distribution and the temperature of a stable superconducting state, and a magnetic resonance imaging apparatus using the superconducting magnet apparatus.

本発明の第1実施形態である超電導コイルの構造を示す断面図である。1 is a cross-sectional view showing the structure of a superconducting coil according to a first embodiment of the present invention. 本発明の実施形態であるMRI装置の摸式外観斜視図である。1 is a vertical external perspective view of an MRI apparatus according to an embodiment of the present invention. 本発明の実施形態であるMRI装置の他の方式を示す摸式外観斜視図である。It is a vertical external perspective view which shows the other system of the MRI apparatus which is embodiment of this invention. 本発明の第1実施形態であるMRI装置に使用される、超電導コイルと伝熱冷却部材の配置構成を示す部分断面時である。FIG. 3 is a partial cross-sectional view showing an arrangement configuration of a superconducting coil and a heat transfer cooling member used in the MRI apparatus according to the first embodiment of the present invention. 本発明の第1実施形態である超電導コイルの焼成反応後の構造を示す断面図である。It is sectional drawing which shows the structure after baking reaction of the superconducting coil which is 1st Embodiment of this invention. 本発明の第2実施形態である超電導コイルの焼成前の状態を示す断面図である。It is sectional drawing which shows the state before baking of the superconducting coil which is 2nd Embodiment of this invention. 本発明の第3実施形態である超電導コイルの焼成後の状態を示す断面図である。It is sectional drawing which shows the state after baking of the superconducting coil which is 3rd Embodiment of this invention. 本発明の第4実施形態である超電導コイルの焼成後の状態を示す断面図である。It is sectional drawing which shows the state after baking of the superconducting coil which is 4th Embodiment of this invention.

本発明に関し、その技術的意義を説明する。   The technical significance of the present invention will be described.

超電導磁石装置は、極低温に冷却された超電導材質からなるコイルに電流を通電し、所望の磁場を発生させる装置である。超電導材質はある一定の温度以下となった場合に電気抵抗がゼロとなる物質であり、通常の常温での導電性金属よりも大きな電流を通電できるため、強い磁場が必要な装置、特に、磁気共鳴イメージング装置(以下、MRI装置という)等に使用されている。   A superconducting magnet device is a device that generates a desired magnetic field by passing a current through a coil made of a superconducting material cooled to a cryogenic temperature. Superconducting material is a substance whose electric resistance becomes zero when the temperature falls below a certain temperature, and it can pass a larger current than a normal conductive metal at normal temperature, so it is a device that requires a strong magnetic field, especially magnetic It is used in a resonance imaging apparatus (hereinafter referred to as an MRI apparatus).

MRI装置は、均一な静磁場中に置かれた被検体に高周波パルスを照射したときに生じる核磁気共鳴現象を利用して、被検体の物理的、化学的性質を示す断面画像を得る装置であり、特に、医療用として用いられている。   An MRI device is a device that obtains a cross-sectional image showing the physical and chemical properties of a subject by utilizing the nuclear magnetic resonance phenomenon that occurs when a subject placed in a uniform static magnetic field is irradiated with a high-frequency pulse. In particular, it is used for medical purposes.

MRI装置は、主に被検体が挿入される撮像空間に均一な静磁場を生成する磁石装置と、撮像空間に位置情報を付与するために空間的に強度が勾配した磁場をパルス状に発生させる傾斜磁場コイル、被検体に高周波パルスを照射するRFコイル、被検体からの磁気共鳴信号を受信する受信コイル、および、受信した信号を処理して画像を表示するコンピュータシステムから構成されている。   An MRI apparatus generates a magnetic field that generates a uniform static magnetic field mainly in an imaging space into which a subject is inserted, and a magnetic field that is spatially gradient in intensity to give positional information to the imaging space. A gradient magnetic field coil, an RF coil that irradiates a subject with a high frequency pulse, a receiving coil that receives a magnetic resonance signal from the subject, and a computer system that processes the received signal and displays an image.

MRI装置の主な性能向上の手段として、磁石装置が発生する静磁場の強度の向上がある。静磁場がより強い程、鮮明な画像が得られるため、MRI装置は磁場強度の向上を指向して開発が続けられている。特に、0.5テスラ以上の静磁場強度を有するMRI装置においては、超電導コイルを用いた磁石装置が主流となっている。   As a main means for improving the performance of the MRI apparatus, there is an improvement in the strength of the static magnetic field generated by the magnet apparatus. Since the stronger the static magnetic field, the clearer the image, the MRI system is being developed to improve the magnetic field strength. In particular, in an MRI apparatus having a static magnetic field strength of 0.5 Tesla or more, a magnet apparatus using a superconducting coil has become mainstream.

超電導コイルは、極低温に冷却すると電気抵抗がゼロとなる超電導物質でコイルを生成しているが、その温度は、材質により異なるものの、絶対温度で4ケルビンから77ケルビンまで冷却する必要がある。このため、現在一般的なMRI装置に使用されている超電導コイルの材質である、ニオブ・チタン材による超電導コイルは、4ケルビンに冷却した状態を保持するため、液体のヘリウム中に浸されている。   The superconducting coil is made of a superconducting material whose electric resistance becomes zero when cooled to a very low temperature. The temperature varies depending on the material, but it must be cooled from 4 to 77 Kelvin in absolute temperature. For this reason, a superconducting coil made of niobium / titanium, which is a material of a superconducting coil currently used in a general MRI apparatus, is immersed in liquid helium in order to maintain a state cooled to 4 Kelvin. .

また、ヘリウムが液体状態を保持するため、超電導コイルと液体ヘリウムはヘリウム容器とよばれる金属容器とそれを取り囲み輻射による伝熱を遮蔽する輻射シールド、および、内部を真空状態として外部からの熱伝導による熱侵入を低減する真空容器内に収められている。さらに、冷凍機によって液体ヘリウムの蒸発を抑えることにより極低温の状態を保持している。   In addition, since helium maintains a liquid state, the superconducting coil and liquid helium are a metal container called a helium container, a radiation shield that surrounds it and shields heat transfer by radiation, and heat conduction from the outside with a vacuum inside. It is housed in a vacuum vessel that reduces heat intrusion due to. Furthermore, the cryogenic state is maintained by suppressing evaporation of liquid helium by a refrigerator.

液体ヘリウムは収集することが困難であるために高価であり、また、装置の小型化の要請からも、液体ヘリウムの使用量を低減または使用しないMRI装置の開発が進められている。液体ヘリウムを使用しない方法の一つとして、冷凍機から固体熱伝導物質を介して冷却される伝導冷却型の超電導コイルの採用がある。特に、超電導状態となる温度が、熱の良導体である銅の熱伝導率が最大となる20ケルビン以上の超電導物質を線材に使用できれば好適である。このような超電導物質にニホウ化マグネシウム(MgB2)材がある。   Liquid helium is expensive because it is difficult to collect, and the demand for downsizing of the apparatus has led to the development of MRI apparatuses that reduce or do not use liquid helium. One method that does not use liquid helium is to employ a conduction cooling type superconducting coil that is cooled from a refrigerator through a solid heat conductive material. In particular, it is preferable that a superconducting material with a temperature at which a superconducting state is 20 Kelvin or higher, at which the thermal conductivity of copper, which is a good heat conductor, is maximized, can be used for the wire. One such superconducting material is magnesium diboride (MgB2).

これを超電導線材として使用する為に600℃以上の高温で熱処理、すなわち、焼成反応を必要とする。焼成反応後の線材は脆くなるため、コイルに巻くと通電性能が低下する場合がある。これを避けるため、焼成反応前の線材をボビンに巻き回した後に、ボビンと一緒に高温で焼成することにより、コイル化する方法がある。   In order to use this as a superconducting wire, a heat treatment at a high temperature of 600 ° C. or higher, that is, a firing reaction is required. Since the wire after the firing reaction becomes brittle, when it is wound around a coil, the current-carrying performance may be reduced. In order to avoid this, there is a method of forming a coil by winding the wire before the firing reaction around the bobbin and firing it at a high temperature together with the bobbin.

焼成反応では線材が超電導化するが、巻き回した線材同士は互いに独立であるために、通電中に電磁力や熱応力によって摩擦熱が生じて常伝導転移を引き起こす可能性がある。常伝導転移はコイルの電流を失わせるため、結果として大きな電流を流すことが困難となる。また、素線間の熱抵抗が大きいために伝導方式でコイルを均一に冷却することが困難となる。   In the firing reaction, the wire becomes superconducting. However, since the wound wires are independent of each other, frictional heat is generated by electromagnetic force or thermal stress during energization, which may cause a normal conduction transition. The normal conduction transition causes the coil current to be lost, and as a result, it becomes difficult to pass a large current. Moreover, since the thermal resistance between the strands is large, it is difficult to cool the coil uniformly by the conduction method.

以降で説明する本構成の超電導コイルによれば、製作過程に高温による焼成反応が必要な超電導コイルにおいて、焼成反応後に巻崩れが生じにくい超電導磁石装置を提供できる。また、焼成反応時に巻線を一体としつつも巻線とボビンが固着することを防ぎ、焼成反応後の冷却部材の設置工程、ボビンの交換工程、または、樹脂モールド工程における線材の巻崩れを抑制することが可能になる。このように巻崩れする可能性を抑制することによって、伝導冷却部材の設置が容易になるとともに、巻崩れに伴う磁場精度の劣化を防ぐことができる。その結果、除熱手段である冷凍機の消費電力が抑えられ、かつ、安定な磁場発生状態を維持できる超電導磁石装置、および、それを用いたMRI装置を実現することができる。   According to the superconducting coil of this configuration described below, it is possible to provide a superconducting magnet device that is less likely to be collapsed after the firing reaction in a superconducting coil that requires a firing reaction at a high temperature in the manufacturing process. In addition, the winding and bobbin are prevented from sticking while the winding is integrated during the firing reaction, and the winding member is prevented from collapsing in the cooling member installation process, bobbin replacement process, or resin molding process after the firing reaction. It becomes possible to do. In this way, by suppressing the possibility of collapse, installation of the conductive cooling member is facilitated, and deterioration of the magnetic field accuracy due to collapse can be prevented. As a result, it is possible to realize a superconducting magnet device that can suppress power consumption of a refrigerator that is a heat removal means and can maintain a stable magnetic field generation state, and an MRI apparatus using the superconducting magnet device.

以下、本発明の実施形態を、図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図2に示すように、一般的なMRI装置は、超電導コイルからなる円筒状の磁極1を有しており、撮像空間2に矢印3で示す方向に静磁場を発生する。被検者4は可動式のベッド5によって、撮像空間3に運ばれて画像を取得する。MRI装置は、超電導コイルによる磁極の内部に同心円筒の傾斜磁場コイル6と高周波照射コイル7を有しており、これらは、それぞれ画像取得の位置情報と磁気共鳴を生じさせ信号を取得する常伝導のコイルである。これらは、磁極と一体で図示されていないカバーで覆われている。   As shown in FIG. 2, a general MRI apparatus has a cylindrical magnetic pole 1 made of a superconducting coil, and generates a static magnetic field in an imaging space 2 in a direction indicated by an arrow 3. The subject 4 is carried to the imaging space 3 by the movable bed 5 and acquires an image. The MRI apparatus has a concentric cylindrical gradient coil 6 and a high-frequency irradiation coil 7 inside the magnetic pole formed by a superconducting coil, which generate position information and magnetic resonance for image acquisition and acquire normal signals, respectively. Coil. These are covered with a cover (not shown) integral with the magnetic pole.

なお、MRI装置には、これ以外の主要な構成器機として、傾斜磁場コイルや常伝導コイルに電流を供給する電源装置と操作や画像を表示するためのコンピュータシステムがあるが、これらは図では省略されている。   In addition, in the MRI apparatus, there are a power supply device that supplies current to the gradient magnetic field coil and the normal conduction coil and a computer system for displaying operations and images as other main components, but these are omitted in the figure. Has been.

図3には、MRI装置のもう一つの一般的な方式である開放型と呼ばれるMRI装置の構造を示す。円盤形状の上下磁極1を撮像空間2の上下に配置し、撮像空間には矢印3の方向に静磁場を発生する。   FIG. 3 shows a structure of an MRI apparatus called an open type, which is another general method of the MRI apparatus. Disk-shaped upper and lower magnetic poles 1 are arranged above and below the imaging space 2, and a static magnetic field is generated in the direction of the arrow 3 in the imaging space.

被検者4が可動式のベッド5によって撮像空間3に運ばれて画像を取得するのは、図2と同様である。本形態のMRI装置では、上下磁極間は柱などの構造物で支持される他、図3のような概略C字形状を有する磁性体のリターンヨーク8で連結される場合があり、特に静磁場の磁場強度が1テスラ以下の装置に見られる。開放型のMRI装置では、傾斜磁場コイル6と高周波照射コイルは磁極と同じく撮像空間3の上下に配した円盤形状で、磁極と一体で図示していないカバーで覆われている。   The subject 4 is carried to the imaging space 3 by the movable bed 5 to acquire an image, as in FIG. In the MRI apparatus of this embodiment, the upper and lower magnetic poles are supported by a structure such as a column, and may be connected by a magnetic return yoke 8 having a substantially C shape as shown in FIG. Can be seen in devices with a magnetic field strength of 1 Tesla or less. In the open-type MRI apparatus, the gradient magnetic field coil 6 and the high-frequency irradiation coil have a disk shape arranged on the top and bottom of the imaging space 3 like the magnetic pole, and are covered with a cover (not shown) integrally with the magnetic pole.

磁極1は図4に示すように、円環状の超電導コイル9で構成されており、超電導コイルを互いに同心軸となるように単数または複数組み合わせることで、撮像空間3に所望の静磁場を発生させる。超電導コイル9は、超電導物質(例えば、二ホウ化マグネシウム)と銅や鉄、ニッケルなどの金属材料ととから構成される超電導線材と、超電導線材を巻き回した巻線をエポキシなど樹脂や蝋で一体化させた複合物である。また、超電導コイルは、通常、ステンレスやアルミ材または銅などの金属製のボビンと呼ばれる巻き枠10に巻かれており、その位置と形状を保持している。   As shown in FIG. 4, the magnetic pole 1 is composed of an annular superconducting coil 9, and a desired static magnetic field is generated in the imaging space 3 by combining one or a plurality of superconducting coils so as to be concentric with each other. . The superconducting coil 9 is composed of a superconducting wire composed of a superconducting material (for example, magnesium diboride) and a metal material such as copper, iron, or nickel, and a winding around which the superconducting wire is wound with a resin or wax such as epoxy. It is an integrated composite. The superconducting coil is usually wound around a winding frame 10 called a bobbin made of metal such as stainless steel, aluminum, or copper, and maintains its position and shape.

超電導コイルは超電導線材の電気抵抗がゼロとなる温度(材質により異なるが通常は4から77ケルビン以下)まで冷却され、その温度を維持するため、液体ヘリウム(4ケルビン)や液体窒素(77ケルビン)などの液体冷媒に浸されて冷却される場合と、冷凍機30などの除熱装置から構造物による伝熱冷却部材を介して超電導コイルを冷却する場合がある。双方が併用される場合もあるが、前者では超電導コイルをボビンごと液体冷媒中に封入するための容器が必要となるため、後者に対して磁極が大きくなる傾向にある。   The superconducting coil is cooled to a temperature at which the electrical resistance of the superconducting wire becomes zero (depending on the material, but usually 4 to 77 Kelvin or less). To maintain this temperature, liquid helium (4 Kelvin) or liquid nitrogen (77 Kelvin) There are cases where the superconducting coil is cooled by being immersed in a liquid refrigerant such as a cooling medium, and cooling from a heat removal device such as the refrigerator 30 via a heat transfer cooling member made of a structure. Although both may be used together, the former requires a container for enclosing the superconducting coil together with the bobbin in the liquid refrigerant, so that the magnetic pole tends to be larger than the latter.

一方、後者においては、液体冷媒容器は必要ないがコイルを冷却するための伝熱冷却部材11が必要となる。伝熱冷却部材は一般に銅やアルミなどの熱伝導率の良い金属が使用される。伝熱冷却部材により超電導コイル9を所望の温度まで冷却し、超電導状態を維持するためには、伝熱冷却部材と超電導コイル間の熱抵抗が充分小さい必要がある。特に、これら超電導コイルと伝熱冷却部材の界面は隙間が生じることで熱抵抗が大きくなりやすい。   On the other hand, in the latter case, the liquid refrigerant container is not necessary, but the heat transfer cooling member 11 for cooling the coil is necessary. The heat transfer cooling member is generally made of a metal having good thermal conductivity such as copper or aluminum. In order to cool the superconducting coil 9 to a desired temperature by the heat transfer cooling member and maintain the superconducting state, the thermal resistance between the heat transfer cooling member and the superconducting coil needs to be sufficiently small. In particular, there is a gap at the interface between the superconducting coil and the heat transfer cooling member, which tends to increase the thermal resistance.

超電導線材に二ホウ化マグネシウムまたはニオブスズ(Nb3Sn)を使用する場合、線材が極低温下で超電導特性を発揮する為には、400℃から600℃の環境下で焼成反応(焼結反応、単に焼結とも言う)を生じさせる必要がある。焼成反応後の線材をボビンに巻き回してコイルを生成する場合もあるが、焼成反応後の超電導物質は脆くなり、曲げや引っ張り等を伴う巻線工程で通電性能が低下しやすい。   When magnesium diboride or niobium tin (Nb3Sn) is used for the superconducting wire, in order for the wire to exhibit superconducting properties at extremely low temperatures, a firing reaction (sintering reaction, simply firing) in an environment of 400 ° C to 600 ° C. It is necessary to give rise to (also referred to as conclude). In some cases, the wire after the firing reaction is wound around a bobbin to generate a coil, but the superconducting material after the firing reaction becomes brittle, and the current-carrying performance tends to be lowered in a winding process involving bending or pulling.

このため、焼成反応前の線材をステンレスなどの焼成温度に耐える部材で構成される巻枠(ボビン)に巻き回して高温で焼成反応して生成する手法が採用される。なお、コイルの構造物は焼成温度に耐えうる必要があるため、ボビンの部材として熱伝導率の良い銅材やアルミ材を使用することは困難であった。また、焼成反応後に銅材やアルミ材からなる伝熱冷却部材を設置する為には、焼成時のボビンから受け替えまたは一部部材の交換が生じるが、その際、ボビンに巻き回された線材が巻崩れる場合がある。   For this reason, a method is adopted in which the wire material before the firing reaction is wound around a winding frame (bobbin) made of a member that can withstand the firing temperature, such as stainless steel, and is fired at a high temperature. Since the coil structure must be able to withstand the firing temperature, it has been difficult to use a copper material or an aluminum material having good thermal conductivity as the bobbin member. In addition, in order to install a heat transfer cooling member made of copper or aluminum after the firing reaction, the bobbin at the time of firing is replaced or part of the member is replaced, but at that time, the wire wound around the bobbin May collapse.

このため、本実施例では、図1に示すように、焼成前の超電導線材17巻き回し(巻線工程)時において、ステンレス材などの耐熱部材から成るボビン10(筒状部10)、フランジ部13の表面に、薄い紙または樹脂などの有機物からなる部材19(有機物シート部材19)を設置する。なお事前に、焼成温度に耐える(軟化温度が焼成温度よりも高い)耐熱接着剤18を焼成前の超電導線材17に塗布し(塗布工程)、その後で超電導線材17がボビン10に巻き回される。あるいは、超電導線材が巻き回された後に耐熱接着剤18を塗布する。なお、説明を簡単にするために、硬化前後で耐熱接着材16と耐熱接着剤18と異なる符号を付しているが、これらは同じ接着剤である。   For this reason, in this embodiment, as shown in FIG. 1, the bobbin 10 (cylindrical portion 10), the flange portion made of a heat-resistant member such as a stainless material, etc. at the time of winding the superconducting wire 17 before firing (winding process) On the surface of 13, a member 19 (organic sheet member 19) made of organic material such as thin paper or resin is installed. In advance, heat resistant adhesive 18 that can withstand the firing temperature (softening temperature is higher than firing temperature) is applied to superconducting wire 17 before firing (coating process), and then superconducting wire 17 is wound around bobbin 10 . Alternatively, the heat-resistant adhesive 18 is applied after the superconducting wire is wound. For the sake of simplicity, the heat-resistant adhesive 16 and the heat-resistant adhesive 18 are given different signs before and after curing, but these are the same adhesive.

ボビン10、フランジ部13は、焼成後に分解して巻線部20と分離できる構造とする。図1では、ボビンの巻軸部両端に設けられたフランジ部13の少なくとも一方が、図1に示すようにボルト12の締結により取り外し可能な構造を有している。なお、巻線部20とは、図1に示すように超電導線材17が複数ターン巻き回された構造を言う。   The bobbin 10 and the flange portion 13 have a structure that can be disassembled and separated from the winding portion 20 after firing. In FIG. 1, at least one of the flange portions 13 provided at both ends of the bobbin winding shaft portion has a structure that can be removed by fastening bolts 12 as shown in FIG. In addition, the coil | winding part 20 means the structure where the superconducting wire 17 was wound by multiple turns as shown in FIG.

耐熱接着剤16(18)は例えばアルミナ系のものを使用できる。アルミナ系の耐熱接着剤は硬化温度が200℃程度、耐熱温度が1000℃以上である。そして、焼成反応前に、耐熱接着剤16を硬化温度(200℃程度)で硬化することで、超電導線材17間が接着され巻線部20が一体化する(第1硬化工程)。このように本実施例における耐熱接着剤18は、硬化温度が超電導線材17の焼成温度よりも低いため、超電導線材17の焼成反応前に硬化し、各ターンに属する超電導線材17を互いに固定する。さらに硬化した後の耐熱接着剤18は、軟化温度が焼成温度よりも高いため、超電導線材17を焼成温度まで加熱したとしても、各ターンの超電導線材17同士は強固に接着され、巻崩れが抑制される。   As the heat-resistant adhesive 16 (18), for example, an alumina-based one can be used. Alumina-based heat-resistant adhesive has a curing temperature of about 200 ° C and a heat-resistant temperature of 1000 ° C or higher. Then, before the firing reaction, the heat-resistant adhesive 16 is cured at a curing temperature (about 200 ° C.), so that the superconducting wire 17 is bonded and the winding portion 20 is integrated (first curing step). Thus, since the curing temperature of the heat-resistant adhesive 18 in this embodiment is lower than the firing temperature of the superconducting wire 17, it is cured before the firing reaction of the superconducting wire 17 and fixes the superconducting wires 17 belonging to each turn to each other. Further, since the heat-resistant adhesive 18 after curing has a softening temperature higher than the firing temperature, even if the superconducting wire 17 is heated to the firing temperature, the superconducting wires 17 of each turn are firmly bonded to each other and curling is suppressed. Is done.

この時、巻線部20有機物シート部材19は、耐熱接着剤16によって一体化するが、ボビン10との間は有機物シート部材19が存在するため接触しておらず接着されていない。さらに、焼成温度付近まで上昇させ、酸素雰囲気中で還元反応によって紙または樹脂を焼失させる(ヒートクリーニング工程)。その後、所定の焼成温度と時間で焼成反応を生じさせた後、常温まで冷却する(焼成工程)。図5に示すように、焼成反応後の巻線部20は一体化されており、かつ、ボビン10、フランジ部13とは固着していないためにボルト締結部12の締結を解除して、ボビン10とフランジ部13を解体(分割工程)しても巻線部20は崩れる可能性が低い。   At this time, the winding part 20 organic material sheet member 19 is integrated by the heat resistant adhesive 16, but the bobbin 10 is not in contact with and not bonded to the bobbin 10 because the organic material sheet member 19 exists. Further, the temperature is raised to near the firing temperature, and the paper or resin is burned away by a reduction reaction in an oxygen atmosphere (heat cleaning step). Thereafter, a firing reaction is caused at a predetermined firing temperature and time, and then cooled to room temperature (firing step). As shown in FIG. 5, the winding part 20 after the firing reaction is integrated, and since the bobbin 10 and the flange part 13 are not fixed, the fastening of the bolt fastening part 12 is released, and the bobbin Even if 10 and the flange portion 13 are disassembled (dividing step), the winding portion 20 is unlikely to collapse.

このため、ボビン10の一部(フランジ部13)または全部を、銅やアルミなどの良熱伝導部材に交換(ボビン交換工程あるいはフランジ部交換工程)、または、図4に示すように、巻線部20とフランジ部13との間に冷凍機30からの冷却経路となる伝熱冷却部材11を設置する(設置工程)ことが容易となる。また、伝熱冷却部材11と巻線部20を樹脂で含浸し硬化させる(第2硬化工程)、すなわち一体でモールドすることで、伝熱冷却部材11と巻線部20間および超電導線材17間の熱抵抗を小さくでき、冷凍機30の消費電力を小さく、かつ、超電導コイル9の温度を均一化しやすくなる。   For this reason, a part of the bobbin 10 (flange portion 13) or all of the bobbin 10 is replaced with a good heat conductive member such as copper or aluminum (bobbin replacement step or flange portion replacement step), or as shown in FIG. It becomes easy to install the heat transfer cooling member 11 that serves as a cooling path from the refrigerator 30 between the part 20 and the flange part 13 (installation process). Further, the heat transfer cooling member 11 and the winding portion 20 are impregnated with resin and cured (second curing step), that is, molded integrally, so that the heat transfer cooling member 11 and the winding portion 20 and between the superconducting wires 17 are formed. , The power consumption of the refrigerator 30 can be reduced, and the temperature of the superconducting coil 9 can be made uniform easily.

なお、耐熱接着剤18を硬化温度で硬化した後は、図5のように線材巻き回し時に必要なボビン10から取り外しても巻線部20は巻崩れにくいため、焼成反応前に巻線部20をボビン10から取り外し、巻線部20のみで焼成した後に、熱伝導率の良い銅やアルミ材で生成されたボビン(図示せず)、または、伝熱冷却部材11を設置したボビン10に取り付けることが出来る。この場合も巻線部20とボビンまたは伝熱冷却部材11を一体で樹脂モールドまたは接着すれば、冷凍機30からの熱伝導による冷却能力がより増加する。   After the heat-resistant adhesive 18 is cured at the curing temperature, the winding portion 20 is not easily collapsed even if it is removed from the bobbin 10 necessary for winding the wire as shown in FIG. Is removed from the bobbin 10 and fired with only the winding part 20, and then attached to a bobbin (not shown) made of copper or aluminum material having good thermal conductivity, or attached to the bobbin 10 provided with the heat transfer cooling member 11. I can do it. Also in this case, if the winding part 20 and the bobbin or the heat transfer cooling member 11 are integrally molded or bonded, the cooling capacity by heat conduction from the refrigerator 30 is further increased.

以上、実施例1として、常温よりも低温に冷却することで超電導状態となる超電導コイル9を使用した磁石装置において、超電導コイル9は高温下で焼成反応することにより極低温で超電導状態の性質を有する超電導線材17をボビン10に巻き回して生成され、超電導線材17には焼成反応温度よりも低温度で硬化しかつ硬化後に焼成温度に耐えるような耐熱接着剤18を塗布され、焼成温度以下の環境下にて超電導線材17に対して耐熱接着剤16が硬化されて一体化し、焼成反応によって極低温下で超電導特性を有するようにした超電導コイル9を説明した。   As described above, in Example 1, in the magnet device using the superconducting coil 9 that is brought into the superconducting state by being cooled to a temperature lower than the normal temperature, the superconducting coil 9 has a property of the superconducting state at an extremely low temperature by performing a firing reaction at a high temperature. The superconducting wire 17 is wound around the bobbin 10 and is applied to the superconducting wire 17 with a heat-resistant adhesive 18 that cures at a temperature lower than the firing reaction temperature and withstands the firing temperature after curing. The superconducting coil 9 has been described in which the heat-resistant adhesive 16 is cured and integrated with the superconducting wire 17 in an environment and has superconducting characteristics at a very low temperature by a firing reaction.

また、この超電導コイル9は、超電導線材17とボビン10との間に紙または樹脂などからなるシート状の有機物から成る部材を配置し、耐熱接着剤18を塗布した超電導線材17をボビン10に巻き回した後に焼成反応させて、極低温下で超電導特性を有するようにした。   The superconducting coil 9 has a sheet-like organic material made of paper or resin disposed between the superconducting wire 17 and the bobbin 10, and the superconducting wire 17 coated with the heat-resistant adhesive 18 is wound around the bobbin 10. After turning, a baking reaction was performed so as to have superconducting properties at extremely low temperatures.

また、超電導コイル9は焼成反応前に焼成反応の温度よりも低い温度で耐熱性接着剤18を硬化させて超電導線材17部分からなる巻線部20を一体化し、その後、焼成反応以下の温度の酸素雰囲気下で紙または樹脂などからなるシート状の有機物から成る部材を焼失させ、巻線部20とボビン10とが耐熱接着剤16によって接着されないようにしている。また、巻線部20は分割可能なボビン10に巻き回され、巻線部20とボビン10とは分離される構造であってもよいなお、分割可能なボビン10は、その一部(例えばフランジ部13)を銅やアルミ材などの高熱伝導率部材で構成してもよい。あるいは分割可能なボビン10を一度分割し、巻線部20と接触するように銅やアルミ材などの高熱伝導率部材を配置し、その後分割したボビン10を再度組み立てるようにしてもよい。   Further, the superconducting coil 9 cures the heat-resistant adhesive 18 at a temperature lower than the temperature of the firing reaction before the firing reaction, and integrates the winding portion 20 composed of the superconducting wire 17 portion. A member made of a sheet-like organic material made of paper or resin is burned out in an oxygen atmosphere so that the winding portion 20 and the bobbin 10 are not bonded by the heat-resistant adhesive 16. Further, the winding part 20 may be wound around the separable bobbin 10 and the winding part 20 and the bobbin 10 may be separated from each other. Part 13) may be made of a high thermal conductivity member such as copper or aluminum. Alternatively, the separable bobbin 10 may be divided once, a high thermal conductivity member such as copper or aluminum material may be disposed so as to be in contact with the winding portion 20, and then the divided bobbin 10 may be reassembled.

また、超電導コイル9は、焼成反応後、耐熱接着剤16によって一体化された巻線部20を更に樹脂で含浸し硬化させてもよい。この際に、分割可能なボビン10のフランジ部13を高熱伝導性の材質に置換または高熱伝導率部材2をフランジ部13との間に配置するときに、樹脂で含浸して硬化または接着して一体化してもよい。   Further, after the firing reaction, the superconducting coil 9 may be further impregnated with a resin with the winding portion 20 integrated by the heat-resistant adhesive 16 and cured. At this time, when the flange portion 13 of the separable bobbin 10 is replaced with a high thermal conductivity material or the high thermal conductivity member 2 is disposed between the flange portion 13 and impregnated with resin, it is cured or adhered. It may be integrated.

図6には、本発明の第2実施形態における焼成反応前の超電導超電導コイルの例を示す。本実施形態では、巻線部20において、焼成反応前の超電導線材17の表面に耐熱接着剤18を塗布し、巻線部表面とボビン10、フランジ部13との間に紙または樹脂板19(有機物シート状部材)を設置しているのは実施例1と同様であるが、紙または樹脂版19と超電導超電導線材17の間には、耐熱性の絶縁部材21を設置している。   FIG. 6 shows an example of a superconducting superconducting coil before the firing reaction in the second embodiment of the present invention. In the present embodiment, in the winding portion 20, a heat-resistant adhesive 18 is applied to the surface of the superconducting wire 17 before the firing reaction, and a paper or resin plate 19 (between the surface of the winding portion and the bobbin 10 and the flange portion 13 ( The organic material sheet-like member is installed in the same manner as in Example 1, but a heat-resistant insulating member 21 is installed between the paper or resin plate 19 and the superconducting superconducting wire 17.

本形態により、耐熱接着剤18の硬化後は超電導線材17、絶縁部材21とおよび有機物シート状部材19が一体となった巻線部20を形成し、焼成反応後は巻線部20の表面は絶縁部材21に覆われ、熱伝導率の良い材質から成るボビンまたは伝熱冷却部材11と、超電導線材17との間に絶縁構造を生成することが出来る。これにより、超電導超電導コイル9の励消磁や常伝導転移に伴い、超電導線材17に過渡的な電圧が生じた場合でも、絶縁破壊の発生を抑えることができ、安定的に常伝導状態へ移行させることが可能になる。   According to this embodiment, after the heat-resistant adhesive 18 is cured, the superconducting wire 17, the insulating member 21, and the organic sheet-like member 19 are formed as a unitary winding part 20, and after the firing reaction, the surface of the winding part 20 is An insulating structure can be generated between the superconducting wire 17 and the bobbin or heat transfer cooling member 11 covered with the insulating member 21 and made of a material having good thermal conductivity. Thereby, even when a transient voltage is generated in the superconducting wire 17 due to excitation and demagnetization and normal conduction transition of the superconducting superconducting coil 9, it is possible to suppress the occurrence of dielectric breakdown and to stably shift to the normal conduction state. It becomes possible.

耐熱絶縁部材21としては、例えばアルミナまたはガラス繊維またはセラミックなどから成るシートまたは板が使用できる。また、本実施形態においても、焼成反応後の巻線部20は、熱良導体で構成したボビンまたは伝熱冷却部材11と一体で樹脂モールドまたは接着することにより、冷凍機30からの伝熱経路の熱抵抗を小さくすることが出来る。また、耐熱接着剤18の硬化後は、巻線部20をボビン10から取り外して単独で焼成反応させることが出来ることも第1実施形態と同様に可能である。   As the heat-resistant insulating member 21, for example, a sheet or plate made of alumina, glass fiber, ceramic, or the like can be used. Also in the present embodiment, the winding part 20 after the firing reaction is integrally molded with or bonded to a bobbin or heat transfer cooling member 11 made of a good heat conductor so that the heat transfer path from the refrigerator 30 can be obtained. Thermal resistance can be reduced. Further, after the heat-resistant adhesive 18 is cured, it is possible to remove the winding part 20 from the bobbin 10 and cause a baking reaction alone, as in the first embodiment.

図7には、本発明の第3実施形態における焼成反応後の超電導コイル9の例を示す。伝導冷却部材11は焼成反応後の巻線部20を受け替えるボビン、フランジ部の一部、または、全部をアルミや銅などの熱良導体から成る金属で構成しても良いが、本実施形態に示すように、ボビン22やフランジ部23はSUSや鉄またはセラミック材などの高抵抗または高強度の部材とし、巻線部20とボビン22およびフランジ部23との間に伝導冷却部材11を設置してもよい。   FIG. 7 shows an example of the superconducting coil 9 after the firing reaction in the third embodiment of the present invention. The conductive cooling member 11 may be constituted by a bobbin that replaces the winding part 20 after the firing reaction, a part of the flange part, or all of the metal made of a good heat conductor such as aluminum or copper. As shown, the bobbin 22 and the flange portion 23 are high resistance or high strength members such as SUS, iron or ceramic material, and the conductive cooling member 11 is installed between the winding portion 20, the bobbin 22 and the flange portion 23. May be.

なお、実施例1および実施例2におけるボビン10、フランジ部13に対して、ボビン22およびフランジ部23という異なる記号を付したが、これは材質の相違があるため、これを明確化する意味で異なる符号を付したのであって、ボビンおよびフランジ部の形状や巻線部20を支持する部材であるという意味において両者は相違しない。   In addition, although the different symbols of the bobbin 22 and the flange portion 23 are given to the bobbin 10 and the flange portion 13 in the first embodiment and the second embodiment, this has a difference in material, so that this is clarified. They are given different reference numerals, and they are not different in the sense that they are members that support the shape of the bobbin and the flange part and the winding part 20.

本実施形態によれば、ボビン22やフランジ部23の剛性を維持することで超電導コイル9の変形を先に述べた実施例以上に抑える事が出来、さらに伝導冷却部材11による冷却の効果を得ることが出来る。なお、本実施形態に置いても、巻線部20とボビン23および伝熱冷却部材11を、樹脂モールドまたは接着により一体化する事で、冷凍機30からの熱抵抗を低減でき、極低温の状態を安定に保つことが可能となる。   According to the present embodiment, the deformation of the superconducting coil 9 can be suppressed more than the above-described example by maintaining the rigidity of the bobbin 22 and the flange portion 23, and further the cooling effect by the conductive cooling member 11 is obtained. I can do it. Even in the present embodiment, by integrating the winding part 20, the bobbin 23, and the heat transfer cooling member 11 by resin molding or adhesion, the thermal resistance from the refrigerator 30 can be reduced, and the cryogenic temperature can be reduced. It becomes possible to keep the state stable.

図8には、本発明の第4実施形態における焼成反応後の超電導コイルの例を示す。伝導冷却部材11は、焼成反応後の巻線部20を受け替えるボビン22、フランジ部23と巻線部20との間にあって、巻線部20と接している。本実施形態によれば、ボビン22とフランジ部23とをSUSや鉄またはセラミック材等の高強度の部材を使用しつつ、巻線部20は伝熱冷却部材11によって冷凍機30に対する熱抵抗を小さく保つ事が可能であり、また、伝熱冷却部材11と焼成反応後の巻線部20とが一体となる(互いを固定し合う)ように樹脂モールドまたは接着することによって、巻線部20の熱抵抗をより小さくすることが出来、冷凍機30による伝導冷却でも極低温の超電導超電導状態を安定に維持することが可能である。   In FIG. 8, the example of the superconducting coil after the baking reaction in 4th Embodiment of this invention is shown. The conductive cooling member 11 is in contact with the winding part 20 between the bobbin 22, the flange part 23, and the winding part 20 that replace the winding part 20 after the firing reaction. According to the present embodiment, the bobbin 22 and the flange portion 23 are made of a high-strength member such as SUS, iron, or a ceramic material, and the winding portion 20 has a heat resistance against the refrigerator 30 by the heat transfer cooling member 11. The coil portion 20 can be kept small, and is also formed by resin molding or bonding so that the heat transfer cooling member 11 and the winding portion 20 after the firing reaction are integrated (fixed to each other). It is possible to further reduce the thermal resistance of the superconducting state at a very low temperature even with conduction cooling by the refrigerator 30.

また、ボビン22と伝導冷却部材11との間は固定されていないので、冷却時における、ボビン22およびフランジ部23の熱収縮率と巻線部20の熱収縮率との差に伴う超電導コイル9の変形や応力の集中を緩和でき、応力の開放や巻線部20とボビン22との間の摩擦に伴う発熱や、超電導コイル9の変形による磁場不均一を抑えることで、安定な超電導状態と磁場発生を可能にできる。また、更に巻線部20と冷却伝熱部材11との間の接触熱抵抗を下げるために、図8に示すように、押しばね24が締結具12に対して設置されてもよい。   In addition, since the space between the bobbin 22 and the conductive cooling member 11 is not fixed, the superconducting coil 9 due to the difference between the thermal contraction rate of the bobbin 22 and the flange portion 23 and the thermal contraction rate of the winding portion 20 during cooling. It is possible to relieve the deformation and stress concentration, and to suppress the heat generation due to the release of the stress, friction between the winding part 20 and the bobbin 22, and the magnetic field non-uniformity due to the deformation of the superconducting coil 9, thereby achieving a stable superconducting state. Magnetic field generation can be made possible. Further, in order to further reduce the contact thermal resistance between the winding portion 20 and the cooling heat transfer member 11, a push spring 24 may be installed on the fastener 12 as shown in FIG.

なお、上述する各実施例で説明した超電導コイル9について、その製造方法を工程で整理すると例えば次のようになる。まず、超電導線材17に耐熱接着材18を塗布する塗布工程、超電導線材17と紙や樹脂などの有機物シート部材19をボビン10に巻き回す巻線工程、耐熱接着材18の硬化温度以上であって超電導線材17の焼成温度未満の温度にて耐熱接着剤18を硬化させる第1硬化工程、超電導線材17の焼成温度以上であって耐熱接着剤16の軟化温度未満の温度にて超電導線材17を焼結させる焼成工程、が基本的な工程となる。なお塗布工程と巻線工程とを入れ替えてもよい。なお、第1硬化工程と焼成工程との間に、焼成反応温度未満の酸素雰囲気下でシート状の有機部材を焼失させるヒートクリーニング工程を置いてもよい。   In addition, about the superconducting coil 9 demonstrated in each Example mentioned above, when the manufacturing method is arranged in a process, it will become as follows, for example. First, the application process of applying the heat-resistant adhesive 18 to the superconducting wire 17, the winding process of winding the superconducting wire 17 and an organic sheet member 19 such as paper or resin around the bobbin 10, and the curing temperature of the heat-resistant adhesive 18 A first curing step for curing the heat-resistant adhesive 18 at a temperature lower than the firing temperature of the superconducting wire 17, and firing the superconducting wire 17 at a temperature that is equal to or higher than the firing temperature of the superconductive wire 17 and lower than the softening temperature of the heat-resistant adhesive 16. The baking process to be combined is a basic process. The coating process and the winding process may be interchanged. In addition, you may put the heat cleaning process which burns down a sheet-like organic member in oxygen atmosphere below baking reaction temperature between a 1st hardening process and a baking process.

また、焼成工程後に、分割可能なボビン10の分割工程を設け、続いて、焼成反応に耐える耐熱性ボビン10を熱伝導性のよい励磁用のボビンと交換するボビン交換工程(あるいは熱伝導性のよいフランジ部に交換するフランジ部交換工程、もしくは高熱伝導性部材11をフランジ部13との間に設置する設置工程)を実施してもよい。なお、焼成工程前に分割工程を設け、巻線部20をボビン10から取り外し、巻線部20を別個に焼成する焼成工程を設け、その後、ボビン交換工程などを設けてもよい。またこれらの工程後に、巻線部20を樹脂で含浸し、これを硬化させる第2硬化工程を設けてもよい
上述するような製造方法によれば、円環状の超電導コイル9と、超電導コイル9を冷却する冷凍機30と、を有し、超電導コイル9は、複数ターン巻き回された超電導線材17と、異なるターン間で超電導線材17を互いに固定する接着剤16と、を構成に含み、超電導線材17は、超電導材料が焼結された部材であって、かつ超電導転移温度が25K以上の部材であって、接着剤18は、硬化温度が前記超電導線材の焼成温度よりも低く、軟化温度が超電導線材17の焼成温度よりも高い超電導磁石装置を製造することができる。
In addition, after the firing process, a splitting process of the separable bobbin 10 is provided, followed by a bobbin replacement process (or a thermally conductive bobbin 10 for replacing the heat-resistant bobbin 10 that can withstand the firing reaction with an excitation bobbin having good thermal conductivity. A flange replacement step for replacing the flange portion with a good flange portion or an installation step for installing the high thermal conductivity member 11 between the flange portion 13 may be performed. A dividing step may be provided before the firing step, the winding part 20 may be removed from the bobbin 10, a firing process for separately firing the winding part 20 may be provided, and then a bobbin replacement process may be provided. Further, after these steps, a second curing step may be provided in which the winding portion 20 is impregnated with resin and cured. According to the manufacturing method as described above, the annular superconducting coil 9 and the superconducting coil 9 The superconducting coil 9 includes a superconducting wire 17 wound around a plurality of turns and an adhesive 16 that fixes the superconducting wire 17 to each other between different turns. The wire 17 is a member in which a superconducting material is sintered and has a superconducting transition temperature of 25 K or more. The adhesive 18 has a curing temperature lower than the firing temperature of the superconducting wire and a softening temperature. A superconducting magnet device higher than the firing temperature of the superconducting wire 17 can be manufactured.

この超電導磁石装置は、超電導線材17の焼成前後において巻崩れが生じにくいため、例えば焼成に適した耐熱性ボビンを励磁用の高伝熱性のボビンに置き換えることや、あるいはボビンのフランジ部13を取り外して高伝熱性のフランジ部へ置き換えることを容易に実施することができる。特に転移温度が25K以上となるような高温超電導線材を利用する場合に、焼成後に巻線するようなコイル成型方式でなくとも、巻線崩れを抑制しつつも効果的な冷却構造を提供できる点で有用である。   Since this superconducting magnet device is less likely to collapse before and after the superconducting wire 17 is fired, for example, a heat-resistant bobbin suitable for firing is replaced with a high heat-transfer bobbin for excitation, or the bobbin flange 13 is removed. Therefore, it is possible to easily replace the flange portion with high heat conductivity. In particular, when a high-temperature superconducting wire having a transition temperature of 25K or higher is used, an effective cooling structure can be provided while suppressing collapse of the winding, even if the coil molding method is not used for winding after firing. It is useful in.

また、先に述べたように、上述の実施例で説明する超電導コイル9を有する超電導磁石装置は、超電導コイル9の内径側に配置された筒状部(ボビン10、22)と、筒状部から円環状に張り出したフランジ部(フランジ部13、23)とを備え、超電導コイル9は、フランジ部および筒状部から支持される構造を採る。フランジ部は筒状部に対して、例えばボルト締結部12を介して着脱自在に取り付けられる。   Further, as described above, the superconducting magnet device having the superconducting coil 9 described in the above-described embodiment includes a cylindrical portion (bobbins 10 and 22) disposed on the inner diameter side of the superconducting coil 9, and a cylindrical portion. The superconducting coil 9 has a structure that is supported from the flange portion and the tubular portion. The flange portion is detachably attached to the tubular portion via, for example, a bolt fastening portion 12.

これによって筒状部とフランジ部とを分割することが可能となるため、焼成工程後に、フランジ部を例えば銅やアルミに代表される高熱伝導性部材で作られたものに置換、あるいは筒状部とフランジ部との間に冷却伝熱部材11を設置した後に、フランジ部を再度固定することができる。また、図1に示すように、フランジ部は筒状部に対して、筒状部の軸方向(z軸方向)から締結具によって締結される構造とすると、フランジ部の取り外しが容易である。   This makes it possible to divide the cylindrical portion and the flange portion. Therefore, after the firing process, the flange portion is replaced with a member made of a high thermal conductivity member typified by copper or aluminum, or the cylindrical portion. After the cooling heat transfer member 11 is installed between the flange portion and the flange portion, the flange portion can be fixed again. In addition, as shown in FIG. 1, if the flange portion is structured to be fastened to the tubular portion by a fastener from the axial direction (z-axis direction) of the tubular portion, the flange portion can be easily removed.

また、締結具は、フランジ部に対して前記軸方向に押圧を印加する押しばねを有することで、巻線部と伝熱冷却部材11、もしくは高熱伝導率の材質で形成されたフランジ部との面圧を確保し、接触熱抵抗を抑制することができ、超電導コイル9を更に安定的に動作させることができる。なお、フランジ部は、筒状部よりも高い熱伝導率の材料から形成された部分を有するものであってもよい。   In addition, the fastener has a push spring that applies pressure to the flange portion in the axial direction, so that the winding portion and the heat transfer cooling member 11, or a flange portion formed of a material having high thermal conductivity. The surface pressure can be secured, the contact thermal resistance can be suppressed, and the superconducting coil 9 can be operated more stably. Note that the flange portion may have a portion formed of a material having a higher thermal conductivity than the cylindrical portion.

なお、フランジ部と巻線部20との間に設置された伝熱冷却部材11、もしくは高熱伝導率部材で作られたフランジ部は、冷凍機30と接続される伝熱パス部材31を有する。   Note that the heat transfer cooling member 11 installed between the flange portion and the winding portion 20 or the flange portion made of a high thermal conductivity member has a heat transfer path member 31 connected to the refrigerator 30.

なお、上述の各実施例は、本発明の要旨を越えない範囲において適宜、形状や材料を変更することができる。また、磁気共鳴イメージング装置に利用される超電導コイルを想定し説明したが、これに限ることなく、例えば超電導コイルを利用する粒子捕獲装置や加速器などに広く応用できる。また、伝導冷却式の超電導コイルに限らず、浸漬冷却方式の超電導コイルに適用したとしても、巻線崩れが生じにくい超電導磁石装置を提供することができる。   In addition, in the above-mentioned each Example, a shape and material can be changed suitably in the range which does not exceed the summary of this invention. In addition, the superconducting coil used in the magnetic resonance imaging apparatus has been assumed and described. However, the present invention is not limited to this and can be widely applied to, for example, a particle trapping apparatus and an accelerator using the superconducting coil. In addition, it is possible to provide a superconducting magnet device that is less likely to cause winding collapse even when applied to an immersion cooling superconducting coil, not limited to a conduction cooling superconducting coil.

1 磁極
2 撮像空間
3 静磁場およびその方向を示す矢印
4 被検者
5 可動式ベッド
6 傾斜磁場コイル
7 高周波照射コイル
8 リターンヨーク
9 超電導コイル
10 ボビン(筒状部)
11 伝熱冷却部材
12 固定ボルト(締結部)
13 フランジ部
14 フランジ部取り外し方向
15 ボビンの取り外し方向
16 硬化後の耐熱接着剤
17 超電導超電導線材
18 硬化前の耐熱接着剤
19 紙または樹脂板(有機物シート部材)
20 巻線部
21 耐熱絶縁部材
22 焼成反応後に受け替えたボビン(高強度のボビン)
23 焼成反応後に受け替えたボビン(高強度のフランジ部)
24 押しばね
30 冷凍機30
31 伝熱パス部材31
DESCRIPTION OF SYMBOLS 1 Magnetic pole 2 Imaging space 3 Static magnetic field and the arrow which shows the direction 4 Subject 5 Movable bed 6 Gradient magnetic field coil 7 High frequency irradiation coil 8 Return yoke 9 Superconducting coil 10 Bobbin (cylindrical part)
11 Heat transfer cooling member 12 Fixing bolt (fastening part)
13 Flange part 14 Flange part removal direction 15 Bobbin removal direction 16 Heat-resistant adhesive 17 after curing 17 Superconducting superconducting wire 18 Heat-resistant adhesive 19 before curing 19 Paper or resin plate (organic sheet member)
20 Winding part 21 Heat-resistant insulating member 22 Bobbin replaced after firing reaction (high-strength bobbin)
23 Bobbins exchanged after firing reaction (high-strength flange)
24 Press spring 30 Refrigerator 30
31 Heat transfer path member 31

Claims (8)

円環状の超電導コイルと、
前記超電導コイルを冷却する冷凍機と、を有し、
前記超電導コイルは、
複数ターン巻き回された超電導線材と、
異なるターン間で前記超電導線材を互いに固定する接着剤と、を構成に含み、
前記超電導線材は、超電導材料が焼結された部材であって、かつ超電導転移温度が25K以上の部材であって、
前記接着剤は、硬化温度が前記超電導線材の焼成温度よりも低く、軟化温度が前記超電導線材の焼成温度よりも高い
超電導磁石装置。
An annular superconducting coil;
A refrigerator for cooling the superconducting coil,
The superconducting coil is
A superconducting wire wound by multiple turns,
An adhesive for fixing the superconducting wires to each other between different turns,
The superconducting wire is a member obtained by sintering a superconducting material and a member having a superconducting transition temperature of 25K or more,
The adhesive is a superconducting magnet device having a curing temperature lower than a firing temperature of the superconducting wire and a softening temperature higher than a firing temperature of the superconducting wire.
請求項1に記載の超電導磁石装置であって、
前記超電導コイルの内径側に配置された筒状部と、
前記筒状部から円環状に張り出したフランジ部と、
を備え、
前記超電導コイルは、前記フランジ部および前記筒状部から支持される
超電導磁石装置。
The superconducting magnet device according to claim 1,
A cylindrical portion disposed on the inner diameter side of the superconducting coil;
A flange portion projecting in an annular shape from the tubular portion;
With
The superconducting coil is a superconducting magnet device supported from the flange portion and the cylindrical portion.
請求項2に記載の超電導磁石装置であって、
前記フランジ部は前記筒状部に対して着脱自在に取り付けられた
超電導磁石装置。
The superconducting magnet device according to claim 2,
A superconducting magnet device in which the flange portion is detachably attached to the cylindrical portion.
請求項3に記載の超電導磁石装置であって、
前記フランジ部を前記筒状部に対して、前記筒状部の軸方向から締結した締結具を有する
超電導磁石装置。
The superconducting magnet device according to claim 3,
A superconducting magnet apparatus having a fastener that fastens the flange portion to the cylindrical portion from an axial direction of the cylindrical portion.
請求項4に記載の超電導磁石装置であって、
前記締結具は、前記フランジ部に対して前記軸方向に押圧を印加する弾性部を有する
超電導磁石装置。
The superconducting magnet device according to claim 4,
The said fastener is a superconducting magnet apparatus which has an elastic part which applies a press to the said axial direction with respect to the said flange part.
請求項3から請求項5のいずれか1項に記載の超電導磁石装置であって、
前記フランジ部は、前記筒状部よりも高い熱伝導率の材料から形成された部分を有する
超電導磁石装置。
The superconducting magnet device according to any one of claims 3 to 5,
The flange portion is a superconducting magnet device having a portion formed of a material having a higher thermal conductivity than the cylindrical portion.
請求項2から請求項6のいずれか1項に記載の超電導磁石装置であって、
前記フランジ部と前記超電導コイルとの間に設置された伝熱冷却部材と、
前記伝熱部材と前記冷凍機とを接続する伝熱パス部材と、
を備える
超電導磁石装置。
A superconducting magnet device according to any one of claims 2 to 6,
A heat transfer cooling member installed between the flange and the superconducting coil;
A heat transfer path member connecting the heat transfer member and the refrigerator;
A superconducting magnet device.
請求項1から請求項7のいずれか1項に記載の超電導磁石装置を静磁場装置として備える磁気共鳴イメージング装置。 A magnetic resonance imaging apparatus comprising the superconducting magnet apparatus according to any one of claims 1 to 7 as a static magnetic field apparatus.
JP2015173434A 2015-09-03 2015-09-03 Superconducting magnet device and magnetic resonance imaging apparatus using the same Pending JP2017046987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015173434A JP2017046987A (en) 2015-09-03 2015-09-03 Superconducting magnet device and magnetic resonance imaging apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015173434A JP2017046987A (en) 2015-09-03 2015-09-03 Superconducting magnet device and magnetic resonance imaging apparatus using the same

Publications (1)

Publication Number Publication Date
JP2017046987A true JP2017046987A (en) 2017-03-09

Family

ID=58280764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015173434A Pending JP2017046987A (en) 2015-09-03 2015-09-03 Superconducting magnet device and magnetic resonance imaging apparatus using the same

Country Status (1)

Country Link
JP (1) JP2017046987A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020535926A (en) * 2017-10-06 2020-12-10 シーメンス ヘルスケア リミテッドSiemens Healthcare Limited MRI electromagnet with mechanical support structure
JP2021048154A (en) * 2019-09-17 2021-03-25 株式会社日立製作所 Conduction-cooled superconducting coil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020535926A (en) * 2017-10-06 2020-12-10 シーメンス ヘルスケア リミテッドSiemens Healthcare Limited MRI electromagnet with mechanical support structure
JP7184883B2 (en) 2017-10-06 2022-12-06 シーメンス ヘルスケア リミテッド Electromagnet for MRI with mechanical support structure
JP2021048154A (en) * 2019-09-17 2021-03-25 株式会社日立製作所 Conduction-cooled superconducting coil
JP7343859B2 (en) 2019-09-17 2023-09-13 株式会社日立製作所 Conduction-cooled superconducting coil

Similar Documents

Publication Publication Date Title
JP6453185B2 (en) Superconducting magnet device or magnetic resonance imaging device
JP2007288193A (en) Method of manufacturing solenoid magnet
US9588198B2 (en) Open-type nuclear magnetic resonance magnet system having an iron ring member
US10365337B2 (en) Superconducting magnet coil arrangement
CN103887035A (en) Superconducting magnet structure for nuclear magnetic resonance imaging system
JP2013219195A (en) Conduction cooling plate of superconducting coil and superconducting coil device
JP6268108B2 (en) Superconducting magnet and magnetic resonance imaging device
US8305726B2 (en) Method for progressively introducing current into a superconducting coil mounted on a former
JP2017046987A (en) Superconducting magnet device and magnetic resonance imaging apparatus using the same
US20130321109A1 (en) Supported pot magnet for magnetic resonance system
JP2016049159A (en) Superconducting magnet and magnetic resonance imaging apparatus
Mizuno et al. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev
CN112038033B (en) 2T conduction cooling superconducting magnet for magnetic resonance imaging
JP2014165383A (en) Superconducting coil and method for manufacturing the same
EP2734856B1 (en) Helium vapor magnetic resonance magnet
Cheng et al. Progress of the 9.4-T whole-body MRI superconducting coils manufacturing
Boffo et al. Performance of SCU15: The new conduction-cooled superconducting undulator for ANKA
WO2018150819A1 (en) Superconducting magnet device and magnetic resonance imaging apparatus in which same is used
JP6941703B2 (en) Superconducting magnet devices and methods for magnetizing superconducting bulk magnets by field cooling via a ferromagnetic shield
JP7214575B2 (en) Wind & react type superconducting coil, method for manufacturing wind & react type superconducting coil, superconducting electromagnet device
JP2017056119A (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus
US10185003B2 (en) System and method for enhancing thermal reflectivity of a cryogenic component
JP6400387B2 (en) Superconducting electromagnet
WO2023105974A1 (en) Superconducting coil apparatus
JP2019201126A (en) Superconducting magnet device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170113