JPH03116908A - Superconducting electromagnet - Google Patents

Superconducting electromagnet

Info

Publication number
JPH03116908A
JPH03116908A JP25588389A JP25588389A JPH03116908A JP H03116908 A JPH03116908 A JP H03116908A JP 25588389 A JP25588389 A JP 25588389A JP 25588389 A JP25588389 A JP 25588389A JP H03116908 A JPH03116908 A JP H03116908A
Authority
JP
Japan
Prior art keywords
container
superconducting coil
cryogenic temperature
pressure
temperature refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25588389A
Other languages
Japanese (ja)
Inventor
Tamiko Hirumachi
蛭町 多美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25588389A priority Critical patent/JPH03116908A/en
Publication of JPH03116908A publication Critical patent/JPH03116908A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To prevent abnormal boost of pressure in a cryogenic temperature container even when the caliber of a pressure-releasing tube is small by a method wherein a porous insulated layer is arranged on the outer layer of a superconducting coil. CONSTITUTION:A superconducting electromagnet is composed in such a manner that a cryogenic temperature refrigerant such as liquid helium and the like and a superconducting coil 3 are housed in a cryogenic temperature refrigerant container 1 in which both aperture parts of an inner cylinder 1a and an outer cylinder 1b are blocked up with a pair of upper and lower annular terminal plates. A pressure-releasing tube 5 of small caliber is attached to the hole provided on the outer tube 1b of the cryogenic temperature refrigerant container, and a porous insulated layer 6 is provided on the outer circumference of the superconducting coil 3. A cryogenic temperature refrigerant container 1, in which a cryogenic refrigerant 2, a superconducting coil 3 and a porous insulating layer 6 are housed, is coaxially placed in a vacuum heat insulating container, which is a size larger than the above-mentioned container 1, and it is used in a vacuum heat-insulated state. As a result, a pressure-releasing tube of small caliber can be used, the flow-in of heat can sharply be reduced through the pressure-releasing tube, and the quantity of evaporation of cryogenic temperature refrigerant in normal state can also be suppressed low.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、医療用磁気共鳴イメージング装置(MR1装
置)等において使用される超電導磁石に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a superconducting magnet used in a medical magnetic resonance imaging apparatus (MR1 apparatus) and the like.

(従来の技術) MHI装置では、強く、かつ均一な磁界を必要とすると
ころから超電導磁石が使用されることが多い。
(Prior Art) Superconducting magnets are often used in MHI devices because they require a strong and uniform magnetic field.

この超電導磁石は、第2図に示すように、内筒1aと外
筒1bの両開孔部を上下一対の環状の端板(図示せず)
で閉塞した極低温冷媒容器1内に液体ヘリウム等の極低
温冷′vX、2と超電導コイル3とを収容して構成され
ている。極低温冷媒容器の外筒1bに開けた孔には大口
径の放圧管4が取付けられている。
As shown in FIG. 2, this superconducting magnet has a pair of upper and lower annular end plates (not shown) extending through the openings of both the inner cylinder 1a and the outer cylinder 1b.
The superconducting coil 3 is constructed by housing a cryogenic coolant such as liquid helium and a superconducting coil 3 in a cryogenic refrigerant container 1 closed with liquid helium. A large-diameter pressure relief pipe 4 is attached to a hole drilled in the outer cylinder 1b of the cryogenic refrigerant container.

極低温冷媒容器1は、通常、それと類似の形状でもう−
回り大きな寸法の真空断熱容器(図示せず)内に同軸的
に納められ、真空断熱される。
The cryogenic refrigerant container 1 usually has a similar shape to that of the cryogenic refrigerant container 1.
It is housed coaxially in a vacuum insulated container (not shown) with a large circumference and is vacuum insulated.

このような構成の超電導磁石においては、超電導コイル
が極低温冷媒に直接接しているため、何らかの原因によ
って超電導コイルがクエンチすると、超電導コイルから
の熱によって極低温冷媒が急激に蒸発してしまう。
In a superconducting magnet with such a configuration, the superconducting coil is in direct contact with the cryogenic refrigerant, so if the superconducting coil quenches for some reason, the cryogenic refrigerant will rapidly evaporate due to the heat from the superconducting coil.

そこで、極低温冷媒容器には、クエンチ発生時の異常な
圧力上昇を避けるため、大口径の放圧管を設けておく必
要があった。
Therefore, it was necessary to provide a large-diameter pressure relief pipe in the cryogenic refrigerant container in order to avoid an abnormal pressure rise when quenching occurs.

(発明が解決しようとする課′8) しかしながら、大口径放圧管を備えた超電導磁石におい
ては、そこを通して流入する大気からの熱侵入が大きく
なり、定常時における極低温冷媒の蒸発量が大きく、熱
効率が低いという課題かあった。
(Problem to be solved by the invention '8) However, in a superconducting magnet equipped with a large-diameter pressure relief tube, heat intrusion from the atmosphere flowing through the tube becomes large, and the amount of evaporation of the cryogenic refrigerant during steady state is large. There was also the issue of low thermal efficiency.

本発明は上記課題を解決するためになされたもので、小
口径の放圧管を用いても超電導コイルのクエンチ時にお
ける異常上昇を押えることができる超電導磁石を提供す
ることを目的とするものである。
The present invention has been made in order to solve the above problems, and an object of the present invention is to provide a superconducting magnet that can suppress abnormal rise during quenching of a superconducting coil even if a small-diameter pressure relief tube is used. .

[発明の構成コ (課題を解決するための手段) 本発明の超電導磁石は、極低温冷媒容器と、この冷媒容
器内に収納された極低温冷媒および超電導コイルとを備
えた超電導磁石において、前記超電導コイルの外層にポ
ーラス絶縁層を配置したことを特徴とするものである。
[Configuration of the Invention (Means for Solving the Problems) A superconducting magnet of the present invention includes a cryogenic refrigerant container, a cryogenic refrigerant housed in the refrigerant container, and a superconducting coil. It is characterized in that a porous insulating layer is disposed on the outer layer of the superconducting coil.

(作用) 上述のような構成の本発明装置においては、超電導コイ
ルにクエンチが発生しても、超電導コイルの外側に設け
たポーラス絶縁層の断熱効果によって、極低温冷媒の急
激な蒸発が抑制され、従って、放圧管の口径を小口径と
しておいても極低温冷媒容器内の圧力が異常に上昇する
ことを防止できる。
(Function) In the device of the present invention configured as described above, even if quench occurs in the superconducting coil, rapid evaporation of the cryogenic refrigerant is suppressed by the heat insulating effect of the porous insulating layer provided on the outside of the superconducting coil. Therefore, even if the diameter of the pressure relief pipe is made small, it is possible to prevent the pressure inside the cryogenic refrigerant container from increasing abnormally.

(実施例) 次に、図面を参照しながら本発明の詳細な説明する。(Example) Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明にかかる超電導磁石の実施例を示すもの
で、第2図におけると同一部分には同一の符号を付しで
ある。
FIG. 1 shows an embodiment of a superconducting magnet according to the present invention, and the same parts as in FIG. 2 are given the same reference numerals.

第1図において、超電導磁石は内筒1aと外筒1bの両
開孔部を上下一対の環状の端板(図示せず)で閉塞した
極低温冷媒容器1内に液体ヘリウム等の極低温冷媒2と
超電導コイル3とを収容して構成されている。極低温冷
媒容器の外筒1bに開けた孔には小口径の放圧管5が取
付けられている。
In FIG. 1, a superconducting magnet is installed in a cryogenic refrigerant container 1 in which both openings in an inner cylinder 1a and an outer cylinder 1b are closed with a pair of upper and lower annular end plates (not shown), and a cryogenic refrigerant such as liquid helium is stored in the cryogenic refrigerant container 1. 2 and a superconducting coil 3. A small-diameter pressure relief pipe 5 is attached to a hole drilled in the outer cylinder 1b of the cryogenic refrigerant container.

また、超電導コイル3の外周にはポーラス絶縁層6が設
けられている。このポーラス絶縁層は例えばガラス布の
巻回層でもよく、あるいは超電導コイル表面に直接、発
泡剤を吹付けたり、非金属材料を低温溶射させたもので
もよいが、いずれの場合も常時は液体ヘリウム等の極低
温冷媒かしみこみ、かつ適度の熱絶縁性と、冷媒の通過
を抑制する性質を備えたものを使用する。
Further, a porous insulating layer 6 is provided on the outer periphery of the superconducting coil 3. This porous insulating layer may be, for example, a wound layer of glass cloth, or may be made by spraying a foaming agent directly onto the superconducting coil surface or by low-temperature spraying a nonmetallic material, but in either case, liquid helium is used at all times. Use a material that can penetrate cryogenic refrigerant, such as, has appropriate thermal insulation properties, and has properties that suppress the passage of refrigerant.

上記のようにして極低温冷媒2、超電導コイル3および
ポーラス絶縁層6を収納した極低温冷媒容器1は、第2
図の場合と同様に、それと類似の形状でもう−回り大き
な寸法の真空断熱容器(図示せず)内に同軸的に納めら
れ、真空断熱されて使用される。
The cryogenic refrigerant container 1 containing the cryogenic refrigerant 2, the superconducting coil 3, and the porous insulating layer 6 as described above has a second
As in the case shown in the figure, it is housed coaxially in a vacuum insulated container (not shown) of a similar shape but larger in size, and is used while being vacuum insulated.

このような構成の本発明の超電導磁石においては、定常
時には、極低温冷媒2がポーラス絶縁層6にしみこみ、
超電導コイルを冷却して超電導状態に保つ。
In the superconducting magnet of the present invention having such a configuration, during normal operation, the cryogenic coolant 2 penetrates into the porous insulating layer 6,
Cools the superconducting coil and maintains it in a superconducting state.

一方、超電導コイル3がクエンチした場合にはポーラス
絶縁層6は熱絶縁機能と極低温冷媒2の流動抵抗とによ
る断熱効果をもたらすので、超電導コイル3と極低温冷
媒2間の過渡的な熱伝達は悪くなる。そのため、クエン
チ時における極低温冷媒の急激な蒸発は抑制される。
On the other hand, when the superconducting coil 3 is quenched, the porous insulating layer 6 provides a thermal insulation effect due to the thermal insulation function and the flow resistance of the cryogenic coolant 2, so that transient heat transfer between the superconducting coil 3 and the cryogenic coolant 2 is prevented. becomes worse. Therefore, rapid evaporation of the cryogenic refrigerant during quenching is suppressed.

以上の理由から、放圧管の口径を小さくしても極低温冷
媒容器内の圧力が異常に上昇することはない。
For the above reasons, even if the diameter of the pressure relief pipe is made small, the pressure inside the cryogenic refrigerant container will not rise abnormally.

このように、本発明によれば、小口径放圧管の使用が可
能となり、放圧管を通しての熱流入を大幅に低減するこ
とができ、定常時における極低温冷媒の蒸発量を低く抑
えることができる。
As described above, according to the present invention, it is possible to use a small-diameter pressure relief pipe, the heat inflow through the pressure relief pipe can be significantly reduced, and the amount of evaporation of cryogenic refrigerant during steady state can be kept low. .

[発明の効果] 上述のごとく、本発明に係る超電導磁石においては、放
圧管を通しての熱流入を大幅に低減することができ、定
常時における極低温冷媒の蒸発量を低く抑えることがで
きる。
[Effects of the Invention] As described above, in the superconducting magnet according to the present invention, the heat inflow through the pressure relief tube can be significantly reduced, and the amount of evaporation of the cryogenic refrigerant during steady state can be suppressed to a low level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超電導磁石の実施例を示す横断概略図
、第2図は従来の超電導磁石の横断概略図である。 1・・・・・・・・・極低温冷媒容器 1a・・・・・・内筒 1b・・・・・・外筒 2・・・・・・・・・極低温冷媒 3・・・・・・・・・超電導コイル 4・・・・・・・・・大口径放圧管 5・・・・・・・・・小口径放圧管 6・・・・・・・・・ポーラス絶縁層
FIG. 1 is a cross-sectional schematic diagram showing an embodiment of the superconducting magnet of the present invention, and FIG. 2 is a cross-sectional schematic diagram of a conventional superconducting magnet. 1...Cryogenic refrigerant container 1a...Inner tube 1b...Outer tube 2...Cryogenic refrigerant 3... ......Superconducting coil 4......Large diameter pressure relief tube 5......Small diameter pressure relief tube 6...Porous insulation layer

Claims (1)

【特許請求の範囲】[Claims]  極低温冷媒容器と、この冷媒容器内に収納された極低
温冷媒および超電導コイルとを備えた超電導磁石におい
て、前記超電導コイルの外層にポーラス絶縁層を配置し
たことを特徴とする超電導磁石。
A superconducting magnet comprising a cryogenic refrigerant container, a cryogenic refrigerant housed in the refrigerant container, and a superconducting coil, characterized in that a porous insulating layer is disposed on the outer layer of the superconducting coil.
JP25588389A 1989-09-29 1989-09-29 Superconducting electromagnet Pending JPH03116908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25588389A JPH03116908A (en) 1989-09-29 1989-09-29 Superconducting electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25588389A JPH03116908A (en) 1989-09-29 1989-09-29 Superconducting electromagnet

Publications (1)

Publication Number Publication Date
JPH03116908A true JPH03116908A (en) 1991-05-17

Family

ID=17284890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25588389A Pending JPH03116908A (en) 1989-09-29 1989-09-29 Superconducting electromagnet

Country Status (1)

Country Link
JP (1) JPH03116908A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080940A (en) * 2005-09-12 2007-03-29 Toshiba Corp Superconducting coil apparatus
WO2019239650A1 (en) * 2018-06-15 2019-12-19 株式会社日立製作所 Superconducting electromagnet device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080940A (en) * 2005-09-12 2007-03-29 Toshiba Corp Superconducting coil apparatus
WO2019239650A1 (en) * 2018-06-15 2019-12-19 株式会社日立製作所 Superconducting electromagnet device

Similar Documents

Publication Publication Date Title
JPH0670908A (en) Superconductive magnetic structural body
KR20060022282A (en) Method and apparatus of cryogenic cooling for high temperature superconductor devices
US8996084B2 (en) Superconducting magnet device and magnetic resonance imaging system
US4212169A (en) Cryostat for superconducting NMR spectrometer
US5991647A (en) Thermally shielded superconductor current lead
EP0189970A1 (en) Superconductor magnet
JPH03116908A (en) Superconducting electromagnet
JP2013008975A (en) Superconducting magnet systems
JPH04258103A (en) Cooling device of superconducting coil
EP0250675B1 (en) Superconducting magnet
JPH0340489B2 (en)
JPWO2019229923A1 (en) Superconducting magnet
JPH0622168B2 (en) Radiant shield
JPH04180203A (en) Very low temperature apparatus
JPS63117409A (en) Cryogenic container with freezer
Damyanovich et al. Design of a high-power NMR probe for low-temperature studies
JPS6229113A (en) Superconducting device
JPS5835908A (en) Current lead for superconducting magnet
JPH06302869A (en) Superconducting magnet cooling system
JPS63217606A (en) Cryogenic container for superconductng electromagnet
JPH0256905A (en) Superconducting magnet apparatus
JPH0423476A (en) Superconducting magnet system
JPS62262408A (en) Superconducting device
JPH03248580A (en) Cooling method of oxide superconductor
JP2004014882A (en) Superconducting magnet device