JP6491600B2 - アルカリ水溶液を用いた多孔質セルロースビーズの製造方法 - Google Patents

アルカリ水溶液を用いた多孔質セルロースビーズの製造方法 Download PDF

Info

Publication number
JP6491600B2
JP6491600B2 JP2015539401A JP2015539401A JP6491600B2 JP 6491600 B2 JP6491600 B2 JP 6491600B2 JP 2015539401 A JP2015539401 A JP 2015539401A JP 2015539401 A JP2015539401 A JP 2015539401A JP 6491600 B2 JP6491600 B2 JP 6491600B2
Authority
JP
Japan
Prior art keywords
cellulose
beads
porous
water
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015539401A
Other languages
English (en)
Other versions
JPWO2015046473A1 (ja
Inventor
尊弘 大久保
尊弘 大久保
義和 河井
義和 河井
優 平野
優 平野
史憲 鴻池
史憲 鴻池
慶一 唐杉
慶一 唐杉
本田 達也
達也 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JPWO2015046473A1 publication Critical patent/JPWO2015046473A1/ja
Application granted granted Critical
Publication of JP6491600B2 publication Critical patent/JP6491600B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • B01D15/3804Affinity chromatography
    • B01D15/3809Affinity chromatography of the antigen-antibody type, e.g. protein A, G, L chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/3212Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • B01J20/3219Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • B01J20/3274Proteins, nucleic acids, polysaccharides, antibodies or antigens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • C08B1/08Alkali cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/005Crosslinking of cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/08Fractionation of cellulose, e.g. separation of cellulose crystallites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/10Crosslinking of cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B16/00Regeneration of cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/06Cellulose acetate, e.g. mono-acetate, di-acetate or tri-acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/52Sorbents specially adapted for preparative chromatography
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • C08J2301/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/18Spheres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は、第1の態様において、多孔質セルロースビーズの製造方法に関し、より具体的には、液−液分散を利用した、多孔質セルロースビーズ製造方法に関する。また本発明は、第2の態様において、多糖類多孔質ビーズからなるリガンド固定化用担体およびそれを用いた吸着体に関する。
(1)多孔質セルロースビーズ(第1の態様)に関して
セルロースは酸、塩基性溶媒に耐性があり、修飾することで様々な置換基を付加させることができる。そのためセルロース多孔質ビーズは、様々な物質の吸着体として利用されている(特許文献1、2)。
セルロースを溶解できる溶媒はほとんどなく、一般的にはチオシアン酸カルシウムなど毒性が高い溶媒に溶解し、セルロース多孔質粒子を製造している。しかしながら、このような製造方法によってセルロース多孔質ビーズを製造するには、腐食性や安全性の面で、取扱いが困難であり、設備化が容易ではないのが現状である。
一方で、近年、不揮発性かつ広い温度域で液体となる特徴を持つイオン液体が注目されている。イオン液体は主に、機能性溶媒やイオニクスデバイス、ポリペプチドなど生体由来材料の溶媒として適用されている。近年、このイオン液体は、セルロースも溶解することがわかり、繊維の製造などに適用されている(特許文献3)。しかし、イオン液体は高価であり、セルロースを安価な方法で成形することは容易ではない。
このような状況のもと、安価、かつ簡易な方法でセルロースビーズを成形する方法(特許文献4)が報告されている。しかしながら特許文献4にはセルロースビーズの細孔径、粒子径等について、具体的な制御方法については記載がない。そのため、様々な物質の吸着体等として利用するためには、さらなる改良が必要である。
(1)リガンド固定化用担体(第2の態様)に関して
上述した様に多孔質セルロースビーズは、その製造方法について改善の余地がある。さらに、こういった多孔質セルロースビーズを含む多糖類多孔質ビーズは、それを用いてリガンド固定化用担体にする際にも解決課題を有する。すなわち、多糖類多孔質ビーズはリガンド固定化用担体として有用であり、例えば、非特許文献1は、多孔質セルロースビーズ担体にアフィニティリガンドを固定化して吸着体として使用することを教示する。この様なリガンドを固定した多糖類多孔質ビーズは、一般にカラムに充填され、このカラムに処理対象を通液することで対象物が吸着される。しかし、リガンド固定化用担体の強度が低いと、送液圧力によって担体の圧密化が生じたり、圧損が大きくなるなどの不具合が生じる。特に処理スケールの大型化や高線速化が進むほど、作用圧が増大するため、リガンド固定化用担体の高強度化が強く求められる。
リガンド固定化用担体の強度を高める方法として、多糖類多孔質ビーズを架橋する方法が知られている。例えば、特許文献5では、セルロース系ビーズ担体を架橋することで強度を高めており、特許文献6ではアガロース系ビーズ担体を架橋することで強度を高めている。
しかし、言うまでもなく、リガンド固定化用担体は、強度のみならずリガンドを固定化した時の吸着量も良好であることが望ましい。
特開平1−278534号公報 特開平11−158202号公報 特開2008−248466号公報 国際公開WO2012−121258号 特開2008−279366号公報 特表2000−508361号公報
"アフィニティクロマトグラフィー"、笠井献一ら著、東京化学同人、1991年
本発明の目的は、その第1の態様(多孔質セルロースビーズの改善)の場合、様々な物質の吸着体として利用可能な多孔質のセルロースビーズをチオシアン酸カルシウムなどの毒性が高い溶媒を使わず、安全かつ簡便に製造し、セルロースビーズのビーズ特性を制御する方法を提供することである。
本発明の目的は、その第2の態様(リガンド固定化用担体の改善)の場合、多糖類多孔質ビーズをリガンド固定化用の担体として使用する時に、強度を高めるだけでなく、リガンドによる吸着量も維持・改善することにある。
1.第1の態様(多孔質セルロースビーズの改善)の場合
本発明者らは、第1の態様(多孔質セルロースビーズの改善)について前記課題に基づき鋭意検討を行った結果、下記発明(1)のようにすると上記課題が解決することを見出し、第1態様(多孔質セルロースビーズの改善)に関する発明を完成させるに至った。好ましくは下記発明(2)以降であってもよい。
(1)a)低温のアルカリ水溶液とセルロースとを混合して作製したセルロース微分散液に、b)水を加えてセルローススラリーとした後、d)凝固溶媒に接触させることを特徴とする、多孔質セルロースビーズの製造方法。
(2)前記b)工程の後、c)セルローススラリーを昇温し、その後、前記d)工程を行う前記(1)記載の多孔質セルロースビーズの製造方法。
(3)前記セルロース微分散液のアルカリ濃度が8wt%以上10wt%以下である、前記(1)または(2)記載の多孔質セルロースビーズの製造方法。
(4)セルローススラリーのアルカリ濃度が5wt%以上である、前記(1)〜(3)のいずれかに記載の多孔質セルロースビーズの製造方法。
(5)セルローススラリーを作製する温度が4℃以上20℃以下である、前記(1)〜(4)のいずれかに記載のセルロース多孔質ビーズの製造方法。
(6)前記セルローススラリーを分散媒である非水溶性液体に液―液分散し液滴を作製した後、該液―液分散液を凝固溶媒に接触させることを特徴とする、前記(1)〜(5)のいずれかに記載の多孔質セルロースビーズの製造方法。
(7)前記セルローススラリーのセルロースの濃度が1〜7wt%であることを特徴とする、前記(1)〜(6)のいずれかに記載のセルロースビーズの製造方法。
(8)前記セルロースが再生セルロース、結晶性セルロース、微結晶性セルロース、または酢酸セルロースであることを特徴とする、前記(1)〜(7)のいずれかに記載の多孔質セルロースビーズの製造方法。
(9)前記セルロースの重合度が1000以下であることを特徴とする、前記(8)に記載の多孔質セルロースビーズの製造方法。
(10)前記非水溶性液体がジクロロベンゼン、ヘキサン、酢酸エチル、炭素数6〜12の直鎖状飽和脂肪酸、炭素数16〜24の不飽和脂肪酸、融点が100℃以下の動植物油脂類、水素添加動植物油、動植物油脂類やその水素添加物の高融点画分を分別精製した分別油、飽和脂肪酸トリグリセリド類、食用ワックス類、微細藻類由来油脂類、微生物油脂類、中鎖脂肪酸トリグリセリド類、または不飽和脂肪酸トリグリセリド類であることを特徴とする、前記(1)〜(9)のいずれかに記載の多孔質セルロースビーズの製造方法。
(11)前記凝固溶媒がアルコール類またはグリコール類を含有することを特徴とする、前記(1)〜(9)のいずれかに記載の多孔質セルロースビーズの製造方法。
(12)前記アルコール類がイソブタノール、2−ブタノール、sec−ブタノール、2−メチル−2−プロパノール(すなわちtert−ブタノール)、1−プロパノール、2−プロパノール、エタノール、メタノールからなる群より選択される1種以上であることを特徴とする、前記(11)に記載の多孔質セルロースビーズの製造方法。
(13)前記グリコール類がグリセロール、エチレングリコール、プロピレングリコールからなる群より選択される1種以上であることを特徴とする、前記(11)に記載の多孔質セルロースビーズの製造方法。
(14)排除限界分子量が1.0×106〜1.0×1011であることを特徴とする前記(1)〜(13)のいずれかに記載の製造方法で得られた多孔質セルロースビーズ。
(15)メジアン粒子径が50μmから100μmであることを特徴とする前記(14)に記載の多孔質セルロースビーズ。
2.第2の態様(リガンド固定化用担体の改善)の場合
また本発明者らは、前記第2態様の課題を解決するために鋭意検討を重ねた結果、特定の強度向上手段が、担体の強度のみならず、意外なことにリガンドによる吸着量をも維持・改善することを知見した。具体的には、多糖類多孔質ビーズを収縮処理すると、圧縮強度が向上し、それによって圧密化や圧損を防止できるだけでなく、リガンドを固定化した場合の吸着量も維持・改善されること、好ましくは改善されることを見出し、第2態様(リガンド固定化様担体の改善)に関する発明も完成した。
すなわち、第2態様(リガンド固定化様担体の改善)に関する発明は、以下の通りである。
(16)多糖類多孔質ビーズを下記式によって定まる収縮率で10%以上収縮させ、架橋することによって得られるリガンド固定化用担体。
収縮率(%)=(1−V2/V1)×100
(式中、V1は収縮前の多糖類多孔質ビーズのゲル体積を示し、V2は収縮後の多糖類多孔質ビーズのゲル体積を示す。)
(17)多糖類多孔質ビーズを水溶性有機溶媒、およびアルカリ水と接触させる架橋工程を経て製造される前記(16)に記載のリガンド固定化用担体。
(18)前記収縮工程で架橋剤を共存させ、収縮させつつ架橋することによって製造される、或いは
前記収縮工程後、得られた収縮ビーズを架橋する架橋工程を実施することよって製造される前記(17)に記載のリガンド固定化用担体。
(19)前記架橋工程によって得られるビーズに対して、該ビーズを架橋剤およびアルカリ水と接触させる追加架橋工程を1回以上実施する前記(18)に記載のリガンド固定化用担体。
(20)前記多糖類がセルロースまたはアガロースである前記(16)〜(19)のいずれかに記載のリガンド固定化用担体。
(21)前記水溶性有機溶媒が、アルコール溶媒、スルホキシド溶媒、アミド溶媒、ケトン溶媒、およびエーテル溶媒から選択される少なくとも1種である前記(17)〜(20)のいずれかに記載のリガンド固定化用担体。
(22)追加架橋工程でアルコール溶媒を用いない前記(19)〜(21)のいずれかに記載のリガンド固定化用担体。
(23)前記(16)〜(22)のいずれかに記載の担体にリガンドを固定化した吸着体。
(24)前記リガンドがアフィニティリガンドである前記(23)に記載の吸着体。
(25)前記アフィニティリガンドが、プロテインA、プロテインG、またはプロテインLである前記(24)に記載の吸着体。
(26)アフィニティクロマトグラフィーによる抗体の精製方法であって、前記(24)又は(25)に記載の吸着体に、供給原料を接触させて抗体を吸着させ、吸着体に吸着した抗体を適宜洗浄する段階、吸着体から抗体を遊離させる溶出液を添加し、溶出液から抗体を回収する段階を含んでなる方法。
なお本明細書で並列列挙される具体例は、特に断りが無い限り、1種以上を適宜組み合わせて使用できる。
1.第1の態様(多孔質セルロースビーズの改善)の場合
第1態様に関する本発明の製造方法によれば、溶液温度、水酸化ナトリウム濃度を変更することにより、セルロースビーズの粒子径、内部構造を変化させることが可能であり、様々な物質の吸着体として利用可能な多孔質セルロースビーズを提供することが可能となる。
2.第2の態様(リガンド固定化用担体の改善)の場合
第2態様に関する本発明では、多糖類多孔質ビーズを架橋するだけでなく、所定量以上収縮させているため、圧縮強度を向上できる。このようにして圧縮強度を向上させた多糖類多孔質ビーズを担体としてリガンドを固定させると、強度のみならず、吸着量も維持・改善、好ましくは改善できる。
図1は、第1態様に関する実施例1により得られた本発明(第1態様)のセルロースビーズのSEM写真である。 図2は、第1態様に関する比較例1により得られたセルロースのSEM写真である。 図3は、第1態様に関する実施例1から実施例4より得られたセルロースビーズの粒子径分布である。 図4は、第1態様に関する実施例1から実施例4より得られたセルロースビーズのKav値である。 図5は第2態様に関する図であり、収縮架橋工程における収縮率と収縮架橋したビーズの20%圧縮応力との関係を示すグラフである。
以下、多孔質セルロースビーズの改善(第1の態様)、リガンド固定化用担体の改善(第2態様)の順に本発明を説明する。
1.多孔質セルロースビーズの改善(第1の態様)
(1)セルロース微分散液
本発明(第1の態様)の製造方法では、セルロースをまず、アルカリ水溶液と混合して低温のセルロース微分散液にする。低温に保持することが、優れた多孔質セルロースビーズの製造に貢献する。この微分散液調製工程では、例えば、アルカリ濃度10wt%以下、7.5wt%以上(好ましくは、8wt%以上、特に9〜8wt%)、温度−5〜10℃程度(好ましくは0℃〜4℃)のアルカリ水溶液に微分散させる。或いはアルカリ水溶液と混合して、混合液(微分散液)のアルカリ濃度及び温度を、例えば、前記範囲にする。アルカリ水溶液には水酸化ナトリウム水溶液、水酸化カリウム水溶液が挙げられる。
セルロース微分散液におけるセルロースの濃度は、例えば、5.5wt%以上であり、8wt%以上であってもよい。またセルロース濃度の上限は、例えば、20wt%以下、好ましくは10wt%以下である。
前記セルロースとしては、種々のセルロースが使用でき、例えば、再生セルロース、結晶性セルロース、微結晶性セルロース、酢酸セルロースのいずれであってもよい。
またセルロースの重合度は、例えば、1000以下、好ましくは500以下、さらに好ましくは300以下である。重合度の下限は、例えば、10以上、好ましくは100以上、さらに好ましくは200以上である。
また前記セルロースのメジアン粒子径は、例えば、10μm以上、好ましくは20μm以上、45μm以上であり、その上限は、例えば、500μm以下、さらに好ましくは300μm以下、より好ましくは200μm以下である。
(2)セルローススラリー
アルカリ水溶液にセルロースを微分散させた後、水を添加し、スラリー温度を上昇させることが好ましい。この昇温工程は必須ではなく、温度を変更することなく水を添加してセルローススラリーを調製してもよいが、いずれにしても水添加して微分散液をスラリーにすると、優れた多孔質セルロースビーズが製造される。
セルローススラリーのアルカリ濃度は、例えば、3wt%以上であり、5wt%以上、9wt%以下が好ましく、更に好ましくは5wt%以上、8wt%以下(特に7wt%以下)である。本発明において、アルカリ濃度を低くするほどビーズ粒子径を小さくすることが出来るが、アルカリ濃度が5wt%以下(特に3wt%未満)になるとセルロースが微分散しなくなる。
セルローススラリーのセルロースの濃度は、例えば、1wt%以上、好ましくは2wt%以上であり、その上限は、例えば、7wt%以下、好ましくは5.4wt%以下である。
セルローススラリーにおいて、微分散液から存在する水の量(初期水量)と、添加される水の量(加水量)との質量比は、例えば、95:5〜30:70、好ましくは90:10〜40:60である。
またセルローススラリー温度は、高くするほどビーズの粒子径を小さくすることが可能であり、高くするほどビーズの細孔径を大きくすることが可能である。具体的温度範囲として、セルローススラリーの温度は4℃以上25℃以下が好ましく、更に好ましくは4℃以上20℃以下である。セルローススラリーの温度が上限以上となるとセルロースが微分散しなくなる。
微分散液を昇温してスラリーにする場合、スラリーと微分散液の温度差は、例えば、1℃以上、好ましくは5℃以上、さらに好ましくは10℃以上であり、その上限は、例えば、30℃以下、好ましくは25℃以下、さらに好ましくは20℃以下である。
(3)液滴作製工程
上記の様にして得られるセルローススラリーは、その後、凝固液に接触させることで多孔質セルロースビーズにすることが可能であるが、必要に応じて、凝固液に接触させる前にセルローススラリーをセルロースを含有する液滴(水相)を他の液(油相)に分散した液滴を調製してもよい。液滴を形成してからセルロースを凝固することによって、多孔質セルロースビーズの特性がさらに改善される。この液滴作製工程では、セルロース多孔質ビーズを形成させるために、非水溶性を示す液体にセルローススラリーを分散させ、非水溶性液体中にセルロース液滴を形成させる。
前記非水溶性液体としては、ジクロロベンゼンなどのハロゲン化炭化水素類、ヘキサンなどの脂肪族炭化水素類、酢酸エチルなどのエステル類(特に酢酸エステル類)、炭素数6〜12の直鎖状飽和脂肪酸、炭素数16〜24の不飽和脂肪酸、融点が100℃以下の動植物油脂類、水素添加動植物油、動植物油脂類やその水素添加物の高融点画分を分別精製した分別油、飽和脂肪酸トリグリセリド類、食用ワックス類、微細藻類由来油脂類、微生物油脂類、中鎖脂肪酸トリグリセリド類、不飽和脂肪酸トリグリセリド類などが挙げられる。これら非水溶性液体は、単独で又は2種以上組み合わせて使用できる。好ましい非水溶性液体は、ハロゲン化炭化水素類、脂肪族炭化水素類、エステル類など、特にハロゲン化炭化水素類である。
非水溶性液体の量は、セルローススラリーの液滴相を分散可能である限り特に限定されないが、例えば、セルローススラリー100質量部に対して、50質量部以上、好ましくは100質量部以上、より好ましくは200質量部以上であり、その上限は、例えば、5000質量部以下、好ましくは2000質量部以下、より好ましくは1000質量部以下である。
前記液滴作製時には、必要に応じて、界面活性剤を使用してもよい。界面活性剤を使用することによって、セルローススラリーの液滴相を安定して形成できる。界面活性剤としては、ノニオン系界面活性剤が好ましく、特にソルビタンラウレート、ソルビタンステアレート、ソルビタンオレエート、ソルビタントリオレエートなどのソルビタン脂肪酸エステルが例示できる。これら界面活性剤は、単独で用いてもよく、2種以上を組み合わせてもよい。界面活性剤の量は特に限定されず、例えば、セルロース100質量部に対して、10質量部以上、好ましくは30質量部以上、さらに好ましくは50質量部以上であり、その上限は、例えば、1000質量部以下、好ましくは300質量部以下、より好ましくは200質量部以下である。
前記界面活性剤は、例えば、これを非水溶性液体に加えて混合液にした後、この混合液をセルローススラリーと接触させてもよい。
セルローススラリーの分散方法は特に限定しないが、例えば攪拌翼を用いた攪拌やホモジナイザーを用いた攪拌により、非水溶性液体にセルロース液滴を均一に分散させることが可能である。さらに静止型ミキサーも用いることができる。この際の攪拌強度を強くすると、セルロース液滴が小さくなるため、得られるセルロースビーズの粒径は小さくなる。
液滴作製時の温度は、例えば、前記セルローススラリーの温度範囲と同じ範囲で設定できる。この温度範囲を維持する限り、セルローススラリーから液滴作製時には降温してもよく昇温してもよいが、セルローススラリーと液滴作製時の温度差(液滴作製時温度−セルローススラリー温度)は、通常、−5℃以上、好ましくは−3℃以上、より好ましくは−1℃以上であり、その上限は、例えば、5℃以下、好ましくは3℃以下、より好ましくは1℃以下であり、最も好ましい温度差は0℃である。
液滴作製時の温度を前記範囲に調整するには、非水溶性液体(必要により、界面活性剤を含有していてもよい)の温度を、セルローススラリーと混合する前に予め調整しておくことが望ましい。この場合、セルローススラリーと非水溶性液体の温度差(非水溶性液体の温度−セルローススラリー温度)は、通常、−5℃以上、好ましくは−3℃以上、より好ましくは−1℃以上であり、その上限は、例えば、5℃以下、好ましくは3℃以下、より好ましくは1℃以下であり、最も好ましい温度差は0℃である。
(4)凝固工程
このようにして形成させたセルローススラリー又はセルロース液滴分散液体を、セルローススラリーとは混和可能であるがセルロース凝固性を示す液体、すなわち凝固溶媒に接触させる。分散液とセルロース凝固性液体の混合中に、セルロース液滴とセルロース凝固性液体が接触し、セルロースビーズが形成される。その後、形成されたセルロースビーズを回収する。
この凝固工程でのセルローススラリー又はその液滴分散液体と凝固溶媒との混合は、前記液滴作製時と同様の攪拌状態で実施することが推奨される。またこの混合(凝固)時の温度は、セルローススラリー又はその液滴分散液体の温度と同等であるのが好ましく、セルローススラリー又はその液滴分散液体の温度に対して、例えば、±10℃以内、好ましくは±5℃以内、より好ましくは±2℃以内である。
前記凝固溶媒としては、例えば、アルコール類、グリコール類などが使用できる。前記アルコール類としては、例えば、イソブタノール、2−ブタノール、sec−ブタノール、2−メチル−2−プロパノール(すなわちtert−ブタノール)、1−プロパノール、2−プロパノール、エタノール、メタノールなどが使用でき、これらは単独で用いても2種以上を組み合わせてもよい。
また前記グリコール類としては、グリセロール、エチレングリコール、プロピレングリコールなどが例示でき、これらは単独で用いても2種以上を組み合わせてもよい。
(5)単離工程
本第一態様の発明により得られるセルロースビーズは多孔質ビーズであり、その孔の大きさ、粒子径は、上述したとおり、セルローススラリー温度、アルカリ濃度を変えることで制御することが可能である。
得られた多孔質ビーズは、前記凝固液から濾過、遠心分離などの適当な方法で固液分離し、必要に応じて乾燥することによって単離できる。この単離操作においては、多孔質セルロースビーズを適当な溶媒(水;アルコールなどの水溶性溶媒など)で洗浄してもよい。
この様にして得られる多孔質ビーズのメジアン粒径は、例えば、50μm以上、好ましくは70μm以上であり、その上限は、例えば、100μm以下、95μm以下である。
また前記多孔質セルロースビーズの排除限界分子量は、例えば、1.0×106以上、好ましくは2.3×106以上、より好ましくは1.0×107以上であり、その上限は、例えば、1.0×1011以下、好ましくは8.0×1010以下である。
(6)その他
以上のようにして得られる多孔質セルロースビーズは、様々な物質の吸着体として利用できる。またリガンドを固定化するための担体としても利用できる。担体として使用する場合、多孔質セルロースビーズは架橋されているのが好ましい。多孔質セルロースビーズの架橋方法としては、後述する第2の態様(収縮した後の架橋、または収縮しながらの架橋など)に係る発明をそのまま実施してもよく、公知の架橋方法を実施してもよい。
公知の架橋方法を実施する場合、架橋剤としては、エピクロロヒドリン、エピブロモヒドリン、ジクロロヒドリンなどのハロヒドリン;2官能性ビスエポキシド(ビスオキシラン);グリセロールポリグリシジルエーテルなどの多官能性ポリエポキシド(ポリオキシラン)を挙げることができる。なかでも、特開2008−279366号に示される方法を特に好適に用いることができる。この公報は、本願に参考文献として援用される。
なお多孔質セルロースビーズは、架橋前又は架橋後に分級してもよい。分級後の多孔質セルロースビーズの粒径の下限は、例えば、10μm、好ましく20μm、より好ましくは30μmであり、上限は、例えば、200μm、好ましくは150μm、より好ましくは125μmである。
さらに前記架橋担体には、適宜、リガンドを固定してもよい。リガンドの種類や固定化法は公知の範囲から適宜実施でき、また後述する第2の実施態様と同様にしてもよい。
2.リガンド固定化用担体の改善(第2態様)
次にリガンド固定化用担体の改善(第2態様)について説明する。
(1)多糖類多孔質ビーズ
第2態様の発明のリガンド固定化用担体は、多糖類多孔質ビーズを架橋することによって得られる架橋ビーズである。多糖類多孔質ビーズに使用される多糖類には、アガロース、セルロース、デキストリン、キトサン、キチン、及びこれらの誘導体が含まれる。好ましい多糖類はセルロース、アガロースであり、特に好ましくはセルロースである。
架橋する前の多糖類多孔質ビーズは、市販品でもよく、多糖類を用いた公知の製法によって得られるものでもよい。例えばセルロース多孔質ビーズは、セルロースを適当な溶液に溶解または分散させた後、造粒したり、凝固したりする方法によって入手可能である(例えば、特表2009−242770号公報、WO2996/025371号、米国特許第4634470号公報、米国特許第5410034号公報、WO2012/121258号)。勿論、上記第1態様の発明によって得られる架橋前の多孔質セルロースビーズを用いてもよい。
多糖類多孔質ビーズの排除限界分子量の下限は、例えば、1.0×105、好ましくは5.0×105、よりは好ましくは1.0×106であり、上限は、例えば、1.0×1012、好ましくは5.0×1011、より好ましくは1.0×1011である。上記の様な排除限界分子量の大きい多糖類多孔質ビーズを使用することにより、抗体などの分子量の大きな物質の分離にも適した吸着体が得られる。
前記排除限界分子量は、以下の様にして決定できる。すなわち多糖類多孔質ビーズをカラムに充填し(充填したビーズ容量をVtとする)に、ブルーデキストラン200の他、種々の分子量のマーカーを含む溶液を通液する。ブルーデキストラン200を通液して最初のピークが検出されるのに必要な液量(V0)と各マーカーを通液して最初のピークが検出されるのに必要な液量(VR)をそれぞれ求め、下記式(1)に基づいて各マーカーのゲル相分配係数(Kav)を求める。分配係数(Kav)を縦軸とし、分子量の自然対数を横軸とするグラフに各マーカーでの測定結果をプロットし、直線性を示す部分に基づいて下記式(2)を求める(式中、k及びbは定数である)。この式(2)において分配係数(Kav)が0になる時の分子量を排除限界分子量とする。
av=(VR−V0)/(Vt−V0) (1)
av=k×Ln(分子量)+b (2)
(2)収縮工程
そして本第2態様(リガンド固定化用担体の改善)に関する発明では前記多糖類多孔質ビーズを収縮させている点に特徴がある。収縮を利用することで圧縮強度を適切に高めることができる。
前記収縮の程度は、下記式によって定まる収縮率によって評価できる。
収縮率(%)=(1−V2/V1)×100
(式中、V1は収縮前の多糖類多孔質ビーズのゲル体積を示し、V2は収縮後の多糖類多孔質ビーズのゲル体積を示す。なお本発明では後述する様に、架橋剤の存在下でビーズを収縮させる場合がある。その様な場合には、前記V1は収縮架橋前の多糖類多孔質ビーズのゲル体積を示し、V2は収縮架橋後の多糖類多孔質ビーズのゲル体積を示す。)
本発明において前記収縮率の下限は、10%、好ましくは15%、より好ましくは20%であり、上限は60%、好ましくは50%である。収縮率を大きくするほど、担体の圧縮強度(圧縮応力)を高めることができる。
前記ゲル体積とは、ビーズが沈降した時の沈降部分の体積をいう。具体的には、収縮前又は収縮後のビーズ含有液(反応液)を洗浄し、RO水で置換することで調製したサンプルスラリーを使用して求める。サンプルスラリーの濃度は、そのサンプルスラリーのゲル体積濃度(ゲル体積/サンプルスラリー体積)が30〜70体積%となる程度の濃度とし、このサンプルスラリーを入れた50mL遠沈管を25℃にて小型振動器(SINFONIA TECHNOLOGY社製、VIBRATORY PACKER、VP-4D。または相当品)上に固定し、ビーズの沈降が止まるまで振動した後のビーズ部分の体積を遠沈管の目盛りから読み取ることで、サンプルスラリーにおけるゲル体積を決定できる。上記式中のゲル体積V1、V2は、いずれも収縮工程に用いたビーズ全量のゲル体積を表しており、反応液から一部を採取してサンプルスラリーを調製した場合には、サンプルスラリーのゲル体積と採取割合とからビーズ全量のゲル体積V1、V2を求める。
多糖類多孔質ビーズを所定量以上収縮させるには、多糖類多孔質ビーズを水溶性有機溶媒、アルカリおよび水と接触させることが推奨される。アルカリと接触させることで収縮が開始する。そして水溶性有機溶媒を存在させておくと、そうでない場合に比べて収縮率が著しく大きくなる。
第2態様で使用するこのような水溶性有機溶媒としては、例えば、メタノール、エタノール、プロパノールなどのアルコール溶媒;ジメチルスルホキシドなどのスルホキシド溶媒;ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドンなどのアミド溶媒;アセトンなどのケトン溶媒;ジオキサン、テトラヒドロフランなどのエーテル溶媒;エチレングリコール、ジエチレングリコールなどのグリコール溶媒などが挙げられる。
好ましい水溶性有機溶媒は、アルコール溶媒、スルホキシド溶媒、アミド溶媒、ケトン溶媒、エーテル溶媒であり、より好ましくはメタノール、エタノール、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、アセトン、ジオキサンであり、最も好ましくはエタノール、ジメチルスルホキシドである。これらは2種以上の混合溶媒として用いることもできる。
アルカリ水に用いるアルカリとしてはアルカリ金属含有化合物が好ましく、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物が使用できる。これらアルカリは単独で用いてもよく、適宜組み合わせて使用してもよい。好ましいアルカリは、水酸化ナトリウムである。なおアルカリ水は水溶液が好ましいが、分散液であってもよい。また通常はアルカリ水を予め調製してから反応液に加えるが、必要により、反応液中で調製してもよい。
(3)架橋
本発明では前記多糖類多孔質ビーズの収縮を、架橋と組み合わせている点にも特徴がある。収縮による圧縮強度の向上と架橋による圧縮強度の両方を利用して強度を向上させた多糖類多孔質ビーズを担体としてリガンドを固定させると、吸着量をも維持・改善できる。
具体的には、前記収縮工程において架橋剤を共存させ、収縮させつつ架橋することが好ましいが(すなわち前記収縮工程が架橋工程を兼ねた収縮架橋工程であるのが好ましいが)、前記収縮工程の後、得られた収縮ビーズを公知の架橋方法によって架橋してもよい。この収縮工程後の架橋でも、架橋剤を使用することができる。いずれにしても収縮工程に使用する多糖類多孔質ビーズの架橋度が低い(特に全く架橋されていない)ことが推奨される。収縮工程前の多糖類多孔質ビーズの架橋度が高くなるほど、収縮工程時に、多糖類多孔質ビーズが収縮し難くなり、所望の収縮率を達成し難くなる。
なお前記架橋剤としては、ジクロロヒドリンなどのハロヒドリン、またはエポキシ化合物が好ましく使用でき、エポキシ化合物としては、エピクロロヒドリン、エピブロモヒドリンなどのモノエポキシ化合物;ビスオキシラン、ジグリシジルエーテル類などのジエポキシ化合物;ポリオキシラン、ポリグリシジルエーテル類などのポリエポキシ化合物が例示できる。
(4)収縮単独工程、収縮架橋工程
前記収縮工程が架橋工程を兼ねない場合(収縮単独工程という)、この工程は、上述した様に、多糖類多孔質ビーズを水溶性有機溶媒、アルカリおよび水と接触させることで実施できる。また前記収縮工程が架橋工程を兼ねる場合(収縮架橋工程)、この工程は、多糖類多孔質ビーズを水溶性有機溶媒、架橋剤、およびアルカリ水と接触させることによって実施できる。これら多糖類多孔質ビーズ、水溶性有機溶媒、アルカリ水、及び必要により架橋剤を接触させる時の手順、量、温度などは適宜設定できる。収縮架橋工程では、好ましくは多糖類多孔質ビーズと架橋剤と水溶性有機溶媒とで分散液を調製し、そこにアルカリ水溶液を加える。アルカリ水溶液を加えて所定時間反応させた後、さらにアルカリ水溶液を1回以上追加してもよい。なおアルカリ水溶液を追加する場合、追加前の架橋反応を本収縮架橋反応という場合がある。
前記収縮単独工程における反応液中のスラリー濃度(多糖類多孔質ビーズ濃度)、及び前記収縮架橋工程における本収縮架橋反応(アルカリ水溶液を追加する前の反応)液中のスラリー濃度(多糖類多孔質ビーズ濃度)の下限は、例えば、10体積%、好ましくは20体積%、より好ましくは25体積%であり、上限は、例えば、70体積%、好ましくは60体積%、より好ましくは50体積%である。なおスラリー濃度とは、ゲル体積/総液量(体積)の意味である。
前記収縮単独工程における反応液中の水溶性有機溶媒比率、及び前記収縮架橋工程における本収縮架橋反応(アルカリ水溶液を追加する前の反応)液中の水溶性有機溶媒比率の下限は、例えば、0.30、好ましくは0.40、より好ましくは0.50であり、上限は、例えば、0.90、好ましくは0.80、より好ましくは0.65である。なお水溶性有機溶媒比率とは、有機溶媒体積/(有機溶媒体積+アルカリ水体積)の意味であり、この有機溶媒体積は多糖類多孔質ビーズのゲル化の為に使用される有機溶媒の体積も含む。例えば多糖類多孔質ビーズの水性ゲルの水を有機溶媒に置換した場合には、有機溶媒置換後のビーズの体積は、通常、有機溶媒の体積に等しい。
本収縮架橋反応液中の架橋剤濃度(架橋剤の体積/反応液の総液量(体積))の下限は、例えば、5体積%、好ましくは10体積%であり、上限は、例えば、50体積%、好ましくは40体積%、より好ましくは30体積%である。
前記収縮単独工程における反応液中のアルカリ濃度、及び前記収縮架橋工程における本収縮架橋反応液中のアルカリ濃度のそれぞれの下限は、例えば、0.1M、好ましくは0.3M、より好ましくは0.5Mであり、それぞれの上限は、例えば、2.0M、好ましくは1.5M、より好ましくは1.2Mである。なおアルカリ濃度を算出するに当たって、分母の体積は、有機溶媒体積とアルカリ水体積の合計を指す。
収縮架橋工程においてアルカリ水を加えて多糖類多孔質ビーズの架橋と収縮を進行させる時の温度の下限は、例えば、0℃、好ましくは20℃、さらに好ましくは30℃であり、上限は、例えば、80℃、好ましくは70℃、さらに好ましくは50℃である。収縮単独工程においても、上記温度範囲を適用できる。
(5)追加架橋工程
本発明では、前記収縮反応時の架橋(収縮架橋工程)又は収縮反応後の架橋で多糖類多孔質ビーズを架橋した後、得られた架橋ビーズをさらに架橋する追加架橋工程を実施してもよい。この追加架橋工程は1回でもよく、複数回繰り返してもよい。追加架橋工程を1回以上実施することによって架橋ビーズの圧縮強度をさらに高めることができる。
追加架橋工程では、水溶性有機溶媒を使用してももはや収縮現象が殆ど生じない場合がある。追加架橋工程は水溶性有機溶媒の使用が任意である以外は、前述の収縮架橋工程と同様に実施できる。従って用いる架橋剤、アルカリ水の具体例、手順、使用量も同様である。なお前述の収縮架橋工程における水溶性有機溶媒の使用量は、追加架橋工程では、好ましい範囲として読み替えて適用する。
追加架橋工程では、アルコール溶媒を用いないのが好ましい。この好ましい態様には、プロトン性有機溶媒を用いない態様、水溶性有機溶媒を用いない態様が含まれ、水溶性有機溶媒として非プロトン性水溶性有機溶媒を用いる態様も含まれる。アルコール溶媒を使用しない場合、アルコール溶媒を使用する場合に比べて、架橋反応が進行しやすく強度をより高めることができる。なお非プロトン性水溶性有機溶媒は、上述の水溶性有機溶媒の中から非プロトン性のものを単独でまたは組み合わせて使用できる。
(6)前架橋工程
さらに前記収縮工程(収縮架橋工程を含む)に先立って、本発明では、予備的に多糖類多孔質ビーズを架橋する前架橋工程を実施してもよい。前架橋工程は、その架橋の程度(架橋剤濃度など)が小さい点を除けば、前記追加架橋工程と同様の操作を実施できる。前架橋工程を実施することなく、前記収縮工程(収縮架橋工程を含む)を実施することが本発明では好ましい。
前記前架橋工程、収縮架橋工程、収縮工程後の架橋、及び追加架橋工程では、必要に応じて反応促進剤、例えば水素化ホウ素ナトリウムなどの還元剤や無機塩を使用しても良い。無機塩を用いると、架橋ビーズの圧縮応力をさらに高めることができる。無機塩としては、アルカリ金属またはアルカリ土類金属の塩酸塩、硫酸塩、リン酸塩及びホウ酸塩を挙げることができ、特に硫酸ナトリウムが好ましい。これら無機塩は単独で用いてもよく、2種以上を併用することもできる。また架橋終了後、必要に応じて養生処理をしてもよい。養生処理では、例えば、オートクレーブを用いた加圧・加熱処理が簡便である。
(7)架橋ビーズ(リガンド固定化用担体)
上記のようにして得られる架橋ビーズは、リガンド固定化用担体として使用できる。該架橋ビーズの20%圧縮応力の下限は、例えば、0.06MPa、好ましくは0.072MPa、より好ましくは0.092MPaであり、上限は、例えば、0.28MPa、好ましくは0.20MPaである。なお20%圧縮応力は、孔径5.00μmのフィルターの上のビーズ含有スラリーを、振動を与えてもそれ以上沈降しない程度にまで沈降した後、そこからさらに20%圧縮するのに必要な応力のことをいう。
また架橋ビーズは、圧密化が生じる線速度が高いほど望ましい。本発明の架橋ビーズでは、圧密化線速が、例えば、700cm/h以上、好ましくは1000cm/h以上、より好ましくは1500cm/h以上である。なお圧密化線速度は、架橋ビーズを充填したカラムに通水し、入口圧が上昇し続け通液不能となる時の線速をいう。
なお架橋ビーズは必要に応じて篩などで分級してもよい。分級後の架橋ビーズの粒径の下限は、例えば、10μm、好ましくは20μm、より好ましくは30μmであり、上限は、例えば、200μm、好ましくは150μm、より好ましくは125μmである。
(8)リガンド
前記架橋ビーズを担体とし、これにリガンドを固定させることで吸着体が得られる。本発明の架橋ビーズ担体は、その強度のわりに、リガンドによる吸着量を維持・改善させることができる。
前記リガンドは吸着対象と親和性を有するものが適宜使用でき、アフィニティリガンド、荷電基、疎水性基などが例示でき、これらは単独で導入してもよく、複数を適宜組み合わせて導入してもよい。これらリガンドは、公知の方法によって導入でき、得られる吸着体は、アフィニティクロマトグラフィー、イオン交換クロマトグラフィー、キレートクロマトグラフィー、疎水性相互作用クロマトグラフィーなどの各種クロマトグラフィー用のカラム充填剤として好適に用いることが出来る。また本発明の架橋ビーズ担体は、その細孔径の大きさから、抗体を目的物質とする分離精製に適しており、アフィニティリガンド、荷電基、疎水基などを導入した前記吸着体は、抗体精製に好ましく使用できる。
本発明において好ましいリガンドは、アフィニティリガンドである。アフィニティリガンドとしては、標的分子として抗体等に特異的に結合しうる特徴を有していれば特に限定されないが、ペプチド性、蛋白質性、または、合成化合物が好ましい。標的分子に対する特異性の視点からペプチド性または蛋白質性リガンドが更に好ましく、その内、抗体アフィニティリガンドがプロテインA、プロテインG、プロテインL、プロテインH、プロテインD、プロテインArp、プロテインFcγR、抗体結合性合成ペプチドリガンド及びそれら類縁物質であることが特に好ましい。なお本明細書においてリガンドとして使用するタンパク質は、それらの変異体も含む意味で使用する。天然物、遺伝子組み換え物等を制限なく使用することができ、一般に製造されている各種変異体を使用できる。抗体結合ドメイン及びその変異体を含むもの、融合蛋白質等であってもよい。例えば、抗体との結合性を改善するため、抗体結合性タンパク質が部位特異的に基材に固定化されるように配列を改変したもの(例えば、特許第4179517号公報、特開2008−214350号公報に記載のリジン残基の位置や数を制御したタンパク質など)を使用することもできる。
また、菌体抽出物もしくは培養上清より、イオン交換クロマトグラフィー、疎水性相互作用クロマトグラフィー、ゲルろ過クロマトグラフィー、ヒドロキシアパタイトクロマトグラフィー等の各種クロマトグラフィー及び膜分離技術を用いた分子量分画、分画沈殿法等の手法から選択される精製法を組合せ、および/または繰り返すことにより製造された、タンパク質を用いることもできる。好ましいアフィニティリガンドは、プロテインA、プロテインG、プロテインLおよびそれらの変異体であり、特にプロテインAである。プロテインAは、免疫グロブリン(IgG)等を特異的に吸着、溶出できるリガンドとして注目されている。プロテインAを固定化した吸着体は、リウマチ、血友病、拡張型心筋症の治療用吸着体として注目されている。また、抗体医薬精製の分野においては、IgG等の抗体の精製を大スケール、高速、及び低コストで行える吸着体が望まれている。
一般にプロテインAは、グラム陽性細菌スタフィロコッカス・アウレウス(Staphylococcus aureus)によって生産される細胞壁タンパク質の1種を指し、シグナル配列S、5つのIgG結合性ドメイン(Eドメイン、Dドメイン、Aドメイン、Bドメイン、Cドメイン)、および、細胞壁結合ドメインであるXM領域から構成されている(Hober S.他著、「J. Chromatogr. B」2007年、848巻、40−47頁)。IgGアフィニティー精製用リガンドとして用いられるプロテインAには、5つのIgG結合性ドメインのみからなるプロテイン(配列番号1)が汎用されている。本発明にいうプロテインAは、前記一般のプロテインAや前記E、D、A、B、Cドメインのみからなるプロテインの他、E、D、A、B、Cドメインのいずれか一つ以上のドメインを有するプロテインも含み、例えば、Cドメインを複数個(例えば、3〜8個。特に5個)を連続して有するもののみからなるプロテインであってもよい。
好ましいプロテインAには、アルカリ耐性をもつものや配向制御型のものが含まれる。本発明の担体は、架橋等の効果によってアルカリ耐性が強化されているため、リガンドのアルカリ耐性も強化しておくことで吸着体としてのアルカリ耐性も向上できる。アルカリ耐性を有するプロテインAには、前記プロテインAのアルカリ感受性残基(アスパラギン残基、グルタミン残基などのいずれか)を欠失させるか、該アルカリ感受性残基をアルカリ耐性残基(例えば、アスパラギン残基、グルタミン残基以外の天然アミノ酸残基。好ましくは、さらにシステイン残基を除いた天然アミノ酸残基。より好ましくはリジン残基、アスパラギン酸残基、ロイシン残基など)に置換したプロテイン(例えば、特表2002−527107号公報);プロテインAのBドメインの29位のグリシン残基をアラニン残基に置換したドメイン(Zドメイン)を有するプロテイン(例えば、特公平8−11069号公報);プロテインAのCドメインの29位のグリシン残基をグリシン残基以外の天然アミノ酸残基(例えば、アラニン残基、ロイシン残基、イソロイシン残基、フェニルアラニン残基、チロシン残基、トリプトファン残基、グルタミン残基、アルギニン残基、または、メチオニン残基。)に置換したプロテイン、及びこの29位を置換したCドメインのみを複数(特に5個)連結したプロテインなど(例えば、WO2010/110288号)が挙げられる。
配向制御型プロテインAには、プロテインAのC末端またはN末端にシステイン残基が付与(置換、付加など)されたプロテイン(例えば、特開2008−101023号公報);(A)プロテインAのリジン残基の1/2以上、好ましくは2/3以上、より好ましくは3/4以上、特に好ましくは全てが別のアミノ酸残基に置換されたプロテイン、(B)好ましくは前記(A)のプロテインにおいて別のアミノ酸がアルギニン、グルタミン、アスパラギン、アスパラギン酸、グルタミン酸、イソロイシン、ヒスチジン、グリシンであるプロテイン、(C)より好ましくは前記(A)または(B)のプロテインにおいて末端(特にC末端)に1個以上のリジン残基が付与(置換、付加など)されたプロテイン(例えば、WO2012/133349号)が挙げられる。 これらの改変を組み合わせ、アルカリ耐性をもつ配向制御型のプロテインAを使用しても良い。
アフィニティリガンドの導入量の下限は、架橋ビーズ1mLあたり、例えば、2mg、好ましくは4mg、さらに好ましくは10mgであり、上限は、架橋ビーズ1mLあたり、例えば、40mg、好ましくは30mg、さらに好ましくは20mgである。
なおアフィニティリガンドの導入量は、公知の方法により求めることができる。
アフィニティリガンドを架橋ビーズに固定化するには、例えば、臭化シアン法、トリクロロトリアジン法、エポキシ法、トレシルクロリド法等の様々な公知の固定化法を適宜採用できる。安全性、固定化反応の容易さ、比較的容易な方法で産生されたタンパク質やペプチドを固定化できる等の理由から、架橋ビーズにホルミル基を導入し、このホルミル基とアフィニティリガンドのアミノ基とを反応させる方法(例えばWO2010/064437号)が好ましい。
なお架橋ビーズへのホルミル基は、多糖類に含まれるα,β−ジオール単位中のC−C結合を切断することによって導入できる。またエピクロロヒドリンなどのエポキシ化合物を架橋剤として用いる場合には、エポキシ基を加水分解して得られるジオールを酸化開裂することによってもホルミル基を導入できる。前記ホルミル基量は、架橋ビーズ1mLあたり、下限は、例えば1μmol、好ましくは5μmol、さらに好ましくは10μmol、特に好ましくは20μmol、最も好ましくは30μmolであり、上限は、例えば500μmol、好ましくは250μmol、さらに好ましくは125μmol、特に好ましくは60μmol、最も好ましくは50μmolである。なおアフィニティリガンド導入後に残った活性基は、不活化処理される。
本発明によれば、圧縮化によって担体の強度が高められているため、アフィニティリガンドを固定した吸着体の吸着性能も維持・改善されている。アフィニティリガンドとしてプロテインAを用いた場合、吸着体の吸着特性は、例えば、ヒト免疫グロブリン(IgG)の5%動的吸着量(DBC)によって評価できる。滞留時間(レジデンスタイム。RT)3分で吸着処理を行う場合、5%DBCの下限は、吸着体1mLあたり、例えば、20mg、好ましくは30mg、より好ましくは40mgであり、上限は、例えば、100mg、好ましくは60mgである。
なお前記5%DBCは、吸着体を充填したカラムにpH7.4のリン酸塩緩衝液を通液した後、濃度1mg/mLのIgG水溶液を通液することによって測定できる。
前記吸着体は、種々の目標物質を精製するのに利用できる。必要により、カラムに充填して使用してもよい。一実施形態では、前記吸着体はクロマトグラフィーカラムに充填される。このカラムは、従来の液体クロマトグラフィー装置などを使用して、アフィニティクロマトグラフィーに使用できる。
また本発明は、混合物(供給原料)から抗体を精製する方法を提供する。この方法は、抗体が本発明で得られる吸着体に選択的に結合するような条件下で、抗体を含む混合物(供給原料)に接触(負荷)させる段階、および、場合により、1つ以上の条件(pH、塩強度など)を変更することによって調整された溶出液(好ましくは溶出緩衝液)を適用(通液)することによって、吸着体から抗体を溶出する段階を含むことができる。この溶出液から抗体を回収可能である。
前記溶出緩衝液は、より具体的には、抗体を含む混合物(負荷液)と接触させた時とは異なるpH、或いは、より高濃度の塩を使用することができる。この方法は、場合により1回以上の洗浄段階を含むことができる。この洗浄段階は、例えば、抗体が吸着体と結合した後であり、抗体を吸着体から溶出する前に行うことができる。本発明による抗体の吸着および溶出は、従来の市販品で推奨されているような標準的条件下で容易に実施でき、例えば、GEヘルスケア社のホームページ等を参照できる。
また上記精製方法は、他のクロマトグラフィーと組み合わせることで、抗体の精製純度を更に高めることができる。
本願は、2013年9月27日に出願された日本国特許出願第2013−202007号及び2013年10月8日に出願された日本国特許出願第2013−211453号に基づく優先権の利益に基づく優先権の利益を主張するものである。2013年9月27日に出願された日本国特許出願第2013−202007号及び2013年10月8日に出願された日本国特許出願第2013−211453号の明細書の全内容が、本願に参考のため援用される。
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
1.多孔質セルロースビーズの改善(第1の態様)に関する実施例
(実施例1)
粉末状のセルロース(旭化成ケミカルズ社製局方セルロースPH−F20JP)8.65gを112gの水に分散させ、4℃で保持した。そこに34.5wt%水酸化ナトリウム(ナカライテスク株式会社製)水溶液35gを添加し撹拌し、セルロース微分散液を得た。20分撹拌した後、水を16g添加し、水酸化ナトリウム濃度を7.0wt%、セルロース濃度を5.0wt%とし、15℃まで昇温し、セルローススラリーを得た。ソルビタンモノオレエートを9.2g含有した15℃の1,2−ジクロロベンゼン890gに得られたセルローススラリーを分散させ、セルロース液滴分散液を形成した。セルロース液滴分散液は内径85 mmの円筒型容器に入れ、撹拌には翼径45mmの2段タービン翼を用い、その翼間隔は75mmとした。600rpmで分散液を10分撹拌し、メタノールを150ml添加し、ビーズ状のセルロースを得た。なおこのビーズ形成時の温度は、セルロース液滴分散液の形成時の温度と同じにした。得られたビーズの粒子径はレーザ回折/散乱式粒子径分布測定装置(堀場社製LA−950)を用いてメジアン粒径を求めたところ90.2μmを示した。得られたセルロースビーズはメタノールで洗浄した後、水で洗浄した。回収したセルロースビーズの一部を2−メチル−2−プロパノールで置換し、凍結乾燥後、走査型電子顕微鏡(日立製作所S−800、以下SEMと称する)にて解析した。その結果、セルロースビーズは図1に示したような多孔質ビーズであることが確認された。
得られた残りのセルロースビーズを櫛目開き38μmと櫛目開き90μmメッシュを用いて篩分けし、38μmから90μmの範囲のビーズを集め、後述の方法で架橋反応を行った。得られた架橋セルロースビーズについて、後述の方法でカラム充填および測定を行うことによりゲル分配係数(Kav)を算出した。マーカー分子量12400のKav値は0.723、マーカー分子量67000のKav値は0.646、マーカー分子量115000のKav値は0.595、マーカー分子量440000のKav値は0.525を示した。各Kav値から排除限界分子量を計算したところ、6.0×1010を示した。
(実施例2)
セルローススラリー温度を10℃まで上昇させることと1,2−ジクロロベンゼン温度を10℃とする以外は実施例1と同様の方法、条件により多孔質セルロースビーズを得た。その結果、得られたビーズの粒子メジアン径は91.4μmを示した。実施例1と同様の方法で架橋反応を行い、Kavを算出した。マーカー分子量12400のKav値は0.562、マーカー分子量67000のKav値は0.429、マーカー分子量115000のKav値は0.377、マーカー分子量440000のKav値は0.307、マーカー分子量660000のKav値は0.261を示した。各Kav値から排除限界分子量を計算したところ、2.4×107を示した。
(実施例3)
セルローススラリー温度を20℃まで上昇させることと1,2−ジクロロベンゼン温度を20℃とする以外は実施例1と同様の方法、条件により多孔質セルロースビーズを得た。その結果、得られたビーズの粒子メジアン径は80.3μmを示した。実施例1と同様の方法で架橋反応を行い、Kavを算出した。マーカー分子量12400のKav値は0.645、マーカー分子量67000のKav値は0.528、マーカー分子量115000のKav値は0.487、マーカー分子量440000のKav値は0.400、マーカー分子量660000のKav値は0.374を示した。各Kav値から排除限界分子量を計算したところ、1.5×108を示した。
(実施例4)
セルローススラリー温度と1,2−ジクロロベンゼン温度を4℃とする以外は実施例1と同様の方法、条件により多孔質セルロースビーズを得た。その結果、得られたビーズの粒子メジアン径は96.3μmを示した。実施例1と同様の方法で架橋反応を行い、Kavを算出した。マーカー分子量67000のKav値は0.377、マーカー分子量115000のKav値は0.335、マーカー分子量440000のKav値は0.179、マーカー分子量660000のKav値は0.146を示した。各Kav値から排除限界分子量を計算したところ、2.4×106を示した。
図3に実施例1から実施例4の粒子径分布を示したが、ビーズ形成温度が高くなるほどビーズ径は小さくなる。ビーズ形成温度を制御することで簡易に粒子径を制御することができた。また、図4に実施例1から実施例4のKav値を示したが、ビーズ形成温度によりKav値、排除限界分子量を制御することができた。Kav値はマーカータンパク質のビーズ内への拡散挙動を示しており、Kav値が大きいほどビーズ内にタンパク質が拡散しやすい。タンパク質拡散挙動はビーズ細孔径を反映しており、Kav値が大きいほど細孔径が大きいことを示している。よって、実施例1から実施例4はビーズ形成温度によりビーズ細孔径が制御できることを示している。
(実施例5)
粉末状のセルロース8.65gを60gの水に分散させ、4℃で保持した。そこに31.9wt%水酸化ナトリウム水溶液27gを添加し撹拌した。20分撹拌した後、水を77g添加し、水酸化ナトリウム濃度を5.0wt%、セルロース濃度5.0wt%とする以外は実施例4と同様の方法、条件により多孔質セルロースビーズを得た。その結果、得られたビーズの粒子メジアン径は83.0μmを示した。
(比較例1)
粉末状のセルロース8.65gを128gの水に分散させ、15℃で保持し、そこに34.5wt%水酸化ナトリウム水溶液35gを添加し、水酸化ナトリウム濃度を7wt%とする以外は実施例1と同じ方法、条件によりセルロースを得た。その結果、得られたセルロースは図2に示したようにビーズ状にはならなかった。
(比較例2)
粉末状のセルロース8.65gを112gの水に分散させ、4℃で保持し、そこに30.3wt%水酸化ナトリウム水溶液51gを添加し、水酸化ナトリウム濃度を9wt%、セルロース濃度を5.0wt%とした。ソルビタンモノオレエートを9.2g含有した1,2−ジクロロベンゼン890g、4℃に得られたセルローススラリーを分散させ、セルロース液滴分散液を形成した。セルロース液滴分散液は内径85 mmの円筒型容器に入れ、撹拌には翼径45mmの2段タービン翼を用い、その翼間隔は75mmとした。600rpmで分散液を10分撹拌し、メタノールを150ml添加し、ビーズ状のセルロースを得た。この方法は国際公開WO2012−1212158号と同条件である。その結果、得られたビーズの粒子メジアン径は111.0μmを示し、実施例1と同様の方法で架橋反応を行い、Kavを算出した。マーカー分子量12400のKav値は0.518、マーカー分子量67000のKav値は0.356、マーカー分子量115000のKav値は0.311、マーカー分子量440000のKav値は0.152を示した。各Kav値から排除限界分子量を計算したところ、2.1×106を示した。得られたビーズのKav値、排除限界分子量は実施例1から実施例4の条件で得られたビーズのKav値、排除限界分子量よりも小さくなった。
(第1態様の評価方法)
<セルロースビーズの架橋>
各実施例にて得られた多孔質セルロースビーズ40mLを反応容器に移し、2N NaOH水溶液(ナカライテスク社製と蒸留水で調製)を24.4mL加え、40℃に調整した。ここに水素化ホウ素ナトリウム24.4mg、架橋剤としてグリセロールポリグリシジルエーテルを含有するデナコールEX−314(ナガセケムテックス社製)を6.0mL投入し、40℃で5時間攪拌した。反応終了後、吸引濾過をしながら、ビーズの20倍体積量以上の蒸留水で洗浄し、架橋セルロースビーズを得た。
<ゲル分配係数(Kav)の測定>
(1)カラム充填
上記多孔質セルロースビーズをRO水に分散させ、1時間脱気した。脱気した多孔質セルロースビーズまたは吸着体を、線速105cm/hでカラム(GEヘルスケア・ジャパン社製Tricorn 10/300)に充填した。その後、pH7.5の溶出液(129mL)を線速26cm/hでカラムに通液した。
(2)マーカー添加
マーカーとして以下のものを用いた。
・Blue Dextran 2000(Pharmacia FIne Chemicals社製)
・Cytochrome C(Wako社製),分子量12400
・Bovine Serum Albumin(Wako社製),分子量67000
・IgG ヒト由来(SIGMA社製),分子量115000
・フェリチン(SIGMA社製),分子量440000
・Thyroglobulin(SIGMA社製),分子量660000
前記溶出液を線速26cm/hでカラムに通液しながら、上記マーカーをpH7.5のバッファーにて5mg/mLに薄めたものを、各々12μLずつ注入した。なお、マーカーの濃度は都度微調整した。
(3)測定
測定器として、DGU−20A3、SCL−10A、SPD−10A、LC−10AD、SIL−20AC、CTO−10AC(それぞれSHIMADZU社製)を用い、測定ソフトウェアとして、LCSolutionを用いた。液量測定には50mLメスシリンダーを用いた。
マーカー注入と同時にUVモニターおよび液量の測定を開始し、
1)ブルーデキストランの最初のピークに対応する液量をV0(mL)とした。
2)各マーカーのピークに対応する液量をVR(mL)とした。
3)カラム内の多孔質セルロースビーズまたは吸着体のトータルボリュームをVt(mL)とした。
4) 算出
各マーカーの分配係数(Kav)を次式で算出した。
av=(VR−V0)/(Vt−V0
5)最大細孔径の算出
各マーカーのKavと分子量の対数をプロットし、直線性を示す部分から下記式の傾きと切片を求めた。
av=k×Ln(分子量)+b
次いで、求めた傾きと切片からKavが0の時の分子量、つまり排除限界分子量を求めた。
2.リガンド固定化用担体の改善(第2態様)に関する実施例
次にリガンド固定化用担体の改善(第2態様)に関する実施例を示す。第2態様に関する下記実施例において用いた又は得られたセルロース多孔質ビーズ、架橋ビーズ(以下、これらを総称して試料ビーズという場合がある)、及び架橋ビーズにリガンドを結合した吸着体の物性を以下のようにして決定した。
I:排除限界分子量
(1)カラム充填処理
試料ビーズをRO水(逆浸透膜精製水)で調製)に分散し、1時間脱気した。脱気した試料ビーズを、線速105cm/hでカラム(GEヘルスケア・ジャパン社製Tricorn 10/300)に充填した。その後、pH7.5の溶出液(129mL)を線速26cm/hでカラムに通液した。
(2)使用マーカー
・Blue Dextran 2000(Pharmacia FIne Chemicals社製)
・Thyroglobulin(SIGMA社製),MW660,000
・フェリチン(SIGMA社製),MW440,000
・IgG ヒト由来(SIGMA社製),MW115,000
・Bovine Serum Albumin(Wako社製),MW67,000
・Cytochrome C(Wako社製),MW12,400
・Bacitracin (Wako社製),MW1,400
(3)使用測定機器とソフトウェア
機器名:DGU−20A3、SCL−10A、SPD−10A、LC−10AD、SIL−20AC、CTO−10AC(いずれも島津製作所製)。
ソフトウェア名:LCSolution
(4)測定
前記溶出液を線速26cm/hでカラムに通液しながら、上記マーカーをpH7.5のバッファーにて5mg/mLに薄めたものを、各々12μLずつ注入した。なお、マーカーの濃度は都度微調整した。マーカー注入と同時にUVモニターおよび液量の測定を開始した。
a)ブルーデキストランの最初のピークに対応する液量をV0(mL)とした。
b)各マーカーのピークに対応する液量をVR(mL)とした。
c)カラム内の試料ビーズのトータルボリュームをVt(mL)とした。
(5)計算
各マーカーのゲル相分配係数(Kav)を次式で算出した。
av=(VR−V0)/(Vt−V0
各マーカーのKavと分子量の対数をプロットし、直線性を示す部分から下記式の傾きと切片を求めた。
av=k×Ln(分子量)+b 次いで、求めた傾きと切片からKavが0の時の分子量を求め、それを排除限界分子量とした。
II:収縮架橋反応時収縮率
収縮架橋反応前後のセルロース多孔質ビーズの全量を用いて、下記方法により、ゲル体積の総和を算出し、多糖類多孔質ビーズの収縮架橋前の多糖類多孔質ビーズのゲル体積V1、収縮架橋後の多糖類多孔質ビーズのゲル体積V2を求めた。
(ゲル体積測定法)
収縮架橋反応前または収縮架橋反応後の反応液を洗浄し、RO水で置換することでサンプルスラリーを調製した(ゲル体積濃度約30〜70体積%)。このスラリーを50mL遠沈管に加え、これを小型振動器 (SINFONIA TECHNOLOGY社製、VIBRATORY PACKER、VP-4D)上に固定し、上記ビーズ体積の変化がなくなるまで温度25℃で振動を与えた。その後、遠沈管の目盛りから上記ゲル体積V1、V2を測定し、上述の算出式に基づき、収縮率を求めた。
III:5%動的吸着量
(1)溶液調製
下記A〜E液及び中和液を調製し、使用前に脱泡した。
A液:シグマ社製「Phosphate buffered saline」とRO水(逆浸透膜精製水)で調製)を用いてpH7.4のPBS緩衝液を調製した。
B液:酢酸、酢酸ナトリウム、およびRO水を用いてpH3.5の35mM酢酸ナトリウム水溶液を調製した。
C液:酢酸とRO水を用いて1M酢酸水溶液を調製した。
D液:バクスター社製ガンマガード(ポリクロナール抗体)と前記A液を用いて濃度1mg/mLのIgG水溶液を調製した。
E液:尿素とRO水で6M尿素水溶液を調製した。 中和液:トリス(ヒドロキシメチル)アミノメタンとRO水で2Mのトリス(ヒドロキシメチル)アミノメタンを調製した。
(2)充填、準備
カラムクロマトグラフィー用装置として、AKTAexplorer100(GEヘルスケア社製)を用い、直径0.5cm、高さ15cmのカラムに、吸着体試料(架橋ビーズにリガンドを結合したもの)を3mL入れ、線速230cm/hで0.2MのNaCl水溶液(RO水使用)を15分通液して充填した。フラクションコレクターに15mlの採取用チューブをセットし、溶出液の採取用チューブについては、あらかじめ中和液を入れておいた。
(3)IgG精製
前記カラムにA液を15mL通液し、次いでD液を150mL通液した。次いで、A液を21mL通液後、B液を12mL通液してIgGを溶出させた。次にC液を6mL、E液を6mL、A液を15mL通液した。なお各液の流速は1mL/分とし、吸着体との接触時間が3分となるようにした。
(4)動的吸着量
IgGが5%破過するまでに吸着体に吸着したIgG量と吸着体体積からIgGの動的吸着量(5%DBC)を求めた。
IV:20%圧縮応力
(1)試料調製
試料ビーズに純水を加えてスラリー(濃度約50体積%)を調製した。このスラリーの攪拌による均質化と、それに続く30分以上の減圧による脱泡とからなる均質・脱泡操作を3回繰り返して実施し、脱泡スラリーを得た。この操作とは別に、処理対象を純水に変えて、前記均質・脱法操作を90分以上実施し、脱泡水を得た。
(2)ビーズ充填シリンジ調製
5mLのHANKE SASS WOLF社製ルアロック付ディスポーザブルシリンジ(商標名:NORM−JECT)の先端にディスポーザブルフィルター(孔径5.00μm、親水性)を取り付けた。シリンジのピストンを外し、シリンジ後端側から脱泡水を約3mL投入し、この脱泡水が0mLの標線を下回らないうちに、脱泡スラリーを投入した。ディスポーザブルフィルターの2次側にアスピレーターを接続し、液面がビーズ面を下まわらない様に注意しながら、前記脱泡スラリーを吸引した。ビーズ面の約0.5mL上まで液面が下がったところで吸引を停止した。以降の作業は、液面がビーズ面を下回らないよう、前記脱泡水を適宜追加しながら実施した。振動を与えながら前記脱泡スラリーを追加またはビーズを除去し、ビーズ面を3mLの標線に合わせ、振動を与えてもビーズ面が低下しないことを確認した。ビーズが舞わないようゆっくり脱泡水を溢れるまで追加し、気泡が入らないように注意しながらピストンを挿入した(ビーズ充填シリンジ)。
(3)測定
レオテック社のFUDOH RHEO METERに10Kのロードセルを取り付け、変位速度のダイヤルを2cm/MINに合わせ、前記ビーズ充填シリンジをセットし、ピストンの変位を開始した。変位と応力との関係を記録し、下記式に基づき、20%圧縮応力を求めた。
20%圧縮応力=充填ビーズが20%圧縮された時の応力―ピストンがビーズ面に達する直前の応力
V:圧密化線速
(1)カラム充填処理
試料ビーズ89.5mLをRO水に分散し、線速300cm/hでカラム(MILLIPORE社製、内径2.2cm)に充填した。
(2)測定
AKTApilot (GEヘルスケア社製)にカラムを装填し、流速5mL/分(線速度79cm/hr)でRO水を通液した。以降、5mL/分ずつ流速を上げていき、カラム入口圧が上昇し続け通液不能となった時(本試験では2MPaを超えた時)の線速度を圧密化線速とした。
製造例1
粉末状のセルロース(旭化成ケミカルズ社製局方セルロース「PH−F20JP」)8.65gを112gの水に分散させ、4℃で保持した。そこに34.5wt%水酸化ナトリウム水溶液35gを添加し撹拌した。20分撹拌した後、水を16g添加し、水酸化ナトリウム濃度を7.0wt%とし、15℃まで昇温した。ソルビタンモノオレエートを9.2g含有する1,2−ジクロロベンゼン890gの溶液の温度を15℃に保ち、この溶液に前記で得られたセルロース微分散液を分散させた。翼径45mm、翼間隔75mmの2段タービン翼を備えた内径85mmの円筒型容器(以下、第1容器という)に前記分散液を入れ、速度600rpmで10分間撹拌し、ついでメタノールを150ml添加し、ビーズ状のセルロースを得た。得られたセルロースビーズをメタノールで洗浄した後、水で洗浄した。得られたセルロースビーズを櫛目開き38μmと櫛目開き90μmのメッシュを用いて篩分けし、38μm〜90μmのセルロース粒子を取得した。
得られたセルロース多孔質ビーズを2−メチル−2−プロパノールで置換し、凍結乾燥後、走査型電子顕微鏡(日立製作所S−800、以下SEMと称する)で観察し、多孔質ビーズであることを確認した。得られたビーズのゲル分配係数(Kav)より排除限界分子量を計算したところ、6.0×1010であった。
実施例6
(1)収縮架橋工程
製造例1で得られたセルロース多孔質ビーズ(水洗浄品)のゲル100mLをガラスフィルターの上に載せ、エタノールでリパルプした後、このエタノールを吸引除去する溶媒置換操作を4回実施した。エタノール量は、溶媒置換操作1回目〜3回目:233mL、溶媒置換操作4回目:167mLとした。溶媒置換操作後、翼径39mmのパドル翼を備えた内径85mmの円筒型容器(以下、第2容器という)に移し、同じ溶媒を加えて全体が149mLになる様に容量を調整した後、40℃に加温した。さらにエピクロロヒドリンを80mL加え、回転数200rpmで30分撹拌した。次いで17MのNaOH水溶液10mLと水86mLからなる混合液を添加し、回転数350rpmで1時間30分撹拌することでセルロース多孔質ビーズを収縮架橋させた(この反応を収縮架橋本反応という)。収縮架橋本反応液中のエピクロロヒドリン濃度は24.6体積%であり、有機溶媒比率(エタノール比率)は0.61であり、NaOH濃度は0.70Mであり、セルロース多孔質ビーズ濃度(スラリー濃度)は30.8体積%であった。17MのNaOH水溶液を9.6mL加えて回転数350rpmで1.5時間撹拌する追加処理を3回実施した後、濾過し、濾過物を20%エタノール水で洗浄し、ついで水で洗浄することによって途中架橋ビーズを得た。この収縮架橋工程による収縮率を求め、下記表1に示した。
(2)追加架橋工程
得られた途中架橋ビーズ全量に水を加えて全体の容量を117mLに調整し、収縮架橋工程で用いた第2容器に移した後、温度40℃に加温した。硫酸ナトリウムを38g加え、回転数150rpmで10分間撹拌した後、エピクロロヒドリン33mLを加え、回転数250rpmで10分間撹拌した。次いで17MのNaOH水溶液を21mL加えて回転数300rpmで2.5時間撹拌し、最後に17MのNaOH水溶液5.1mLを追加してさらに2.5時間撹拌した。反応物を濾過し、濾過物を水洗することによって架橋ビーズを得た。得られた架橋ビーズ全量を、ガラス製三角フラスコに入れ、RO水で希釈して全量を200mLとした後、開口部にアルミニウム箔2枚を重ねて蓋をし、オートクレーブを用いて127℃で60分間加熱し、残存するエポキシ基をグリセリル基に変換した。室温まで放冷後、グラスフィルター上で200mLのRO水で洗浄した。オートクレーブ後のビーズを櫛目開き38μmと櫛目開き90μmのメッシュを用いて篩分けし、38μm〜90μmの架橋ビーズを取得した。
(3)プロテインA調製工程
WO2012/133349号を参照して、配向制御型プロテインAとして、WO2012/133349号記載の改変Cドメイン5連結体を調製した。
(4)リガンド固定化工程
追加架橋工程で得られた架橋ビーズ3.5mLを遠沈管に入れ、RO水を加えて、全量を6mLとした。これを25℃にてミックスローター(アズワン社製 ミックスローターMR−3)上に取り付けた後、撹拌した。次に過ヨウ素酸ナトリウムをRO水に溶解して、11.16mg/mLの過ヨウ素酸ナトリウム水溶液を2.0mL加え、25℃で1時間撹拌した。反応後、グラスフィルター(シバタ社製 11GP100)上で、濾液の電気伝導度が1μS/cm以下となるまでRO水で洗浄し、ホルミル基含有架橋ビーズを得た。洗浄濾液の電気伝導度は、導電率計(EUTECH INSTRUMENTS社製、ECTester10 Pure+)で測定した。
得られたホルミル基含有架橋多孔質セルロースビーズ3.5mLをグラスフィルター(シバタ社製 11GP100)上で、pH12の0.6Mクエン酸バッファー(RO水使用)で置換した。pH12の0.6Mクエン酸バッファーを用い、置換後のホルミル基含有架橋多孔質セルロースビーズを遠沈管に入れ、総体積量7.5mLとなるように液量を調整した。ここにプロテインA調製工程で得られた配向制御型プロテインAが入った水溶液(プロテインAの濃度が53.8mg/mL)を0.98g加えた後、6℃にて23時間、ミックスローター(アズワン社製 ミックスローターMR−3)を用い、攪拌させながら反応した。
その後、反応液を回収(反応液1)し、pH8の0.1Mクエン酸ナトリウム水溶液(RO水使用)で置換して、6℃で4時間ミックスローター(アズワン社製 ミックスローターMR−3)を用いて、攪拌した。引き続き、5.5質量%濃度のジメチルアミンボラン水溶液(RO水使用)を1.93mL加えて、6℃で1時間攪拌した後、反応温度を25℃に上昇し、25℃で18時間、ミックスローター(アズワン社製 ミックスローターMR−3)を用いて攪拌しながら反応した。反応後、反応液を回収した(反応液2)。反応液1及び2の278nm付近の吸収極大のUV吸光度を測定し、仕込んだリガンド量から差し引くことで、プロテインA固定化量を算出した。結果を表1に示す。
反応後のビーズをグラスフィルター(シバタ製 11GP100)上で、ビーズの3倍体積量のRO水で洗浄した。次いで、3倍体積量の0.1Nクエン酸水溶液(RO水使用)を加え、当該ビーズに0.1Nクエン酸水溶液(RO水使用)を加えて全量を30mL以上とし、遠沈管に入れ、25℃で30分間攪拌しながら、酸洗浄を行った。
酸洗浄後、ビーズをグラスフィルター(シバタ製11GP100)上で、ビーズの3倍体積量のRO水で洗浄し、次いで、3倍体積量の0.05M濃度の水酸化ナトリウムと1M濃度の硫酸ナトリウムを含む水溶液(RO水使用)を加えた。次に、当該ビーズに、0.05M濃度の水酸化ナトリウムと1M濃度の硫酸ナトリウムを含む水溶液を加えて全量を30mL以上とし、遠沈管に入れ、室温で30分間攪拌しながら、アルカリ洗浄を行った。
アルカリ洗浄後、ビーズをグラスフィルター(シバタ製 11GP100)上で、ビーズの20倍体積量のRO水で洗浄した。次に、ビーズの3倍量の0.1Nクエン酸ナトリウム水溶液(RO水使用)を加え、濾液が中性になっていることを確認した後、RO水を用いて、洗浄濾液の電導度が1μS/cm以下になるまで洗浄し、目的とする配向制御型プロテインAを固定化した吸着体を得た。洗浄濾液の電導度は導電率計(EUTECH INSTRUMENTS社製、ECTester10 Pure+)で測定した。
上記のようにして得られた架橋ビーズ(追加架橋工程後)の圧密化線速と20%圧縮応力、および吸着体の5%動的吸着量(接触時間3分)を測定した。架橋ビーズの圧密化線速は、1658cm/hrであった。残りの結果を表1に示す。
実施例7〜8
収縮架橋工程で使用したエタノールを表1に示す各有機溶媒に変更し、収縮架橋工程における有機溶媒比率、エピクロロヒドリン濃度、NaOH濃度、スラリー濃度(セルロース多孔質ビーズ濃度)を表1に示す値に変更する以外は実施例6と同様にした。結果を表1に示す。
実施例9〜10、比較例3
(1)収縮架橋工程
製造例1で得られたセルロース多孔質ビーズ(水洗浄品)のゲル15mLをガラスフィルターの上に載せ、表2に示す特定の溶媒15mLでリパルプした後、この特定溶媒を吸引除去する溶媒置換操作を3回実施した。溶媒置換操作後、ゲル全量を遠沈管に入れ、同じ特定溶媒を加えて全体が17.5mLになる様に容量を調整し、さらにエピクロロヒドリンを8.7mL加えて一晩撹拌した。次いで水10.3mLと17MのNaOH水溶液2.1mLを添加し、温度40℃で1時間30分撹拌することでセルロース多孔質ビーズを収縮架橋させた(収縮架橋本反応)。収縮架橋本反応液中のエピクロロヒドリン濃度、有機溶媒比率、NaOH濃度、セルロース多孔質ビーズ濃度(スラリー濃度)を下記表2に示した。17MのNaOH水溶液を1.05mL加えて1.5時間撹拌し、ついで17MのNaOH水溶液を1.05mL加えて2時間撹拌する追加処理を実施した後、濾過し、濾過物を20%の特定溶媒水溶液で洗浄し、ついで水で洗浄することによって途中架橋ビーズを得た。この収縮架橋工程による収縮率を求め、下記表2に示した。
(2)追加架橋工程
得られた途中架橋ビーズ全量を遠沈管に入れ、水を加えて全体の容量を17.5mLに調整し、温度40℃に加温した。硫酸ナトリウム5.67g、エピクロロヒドリン4.95mL、17MのNaOH水溶液3.14mL加えて温度40℃で2.5時間撹拌し、最後に17MのNaOH水溶液0.76mLを追加してさらに2.5時間撹拌した。反応物を濾過し、濾過物を水洗することによって架橋ビーズを得た。得られた架橋ビーズ全量を、ガラス製三角フラスコに入れ、RO水で希釈して全量を50mLとした後、開口部にアルミニウム箔2枚を重ねて蓋をし、オートクレーブを用いて127℃で60分間加熱した。室温まで放冷後、グラスフィルター上で50mLのRO水で洗浄し、残存するエポキシ基をグリセリル基に変換した。オートクレーブ後のビーズを櫛目開き38μmと櫛目開き90μmのメッシュを用いて篩分けし、38μm〜90μmの吸着体を取得した。
(3)プロテインA調製工程
WO2011/118699号の実施例を参照して、改変型プロテインAとして、WO2011/118699号記載のアルカリ耐性を有する改変Cドメイン5連結体を調製した。
(4)リガンド固定化工程
追加架橋工程で得られた架橋多孔質セルロースビーズ5mLを遠沈管に入れ、RO水を加えて、全量を7.5mLとした。これを25℃にてミックスローター(アズワン社製 ミックスローターMR−3)上に取り付けた後、撹拌した。次に過ヨウ素酸ナトリウムをRO水に溶解して、12.84mg/mLの過ヨウ素酸ナトリウム水溶液を2.5mL加え、25℃で1時間撹拌した。反応後、グラスフィルター(シバタ社製 11GP100)上で、濾液の電気伝導度が1μS/cm以下となるまでRO水で洗浄し、ホルミル基含有架橋多孔質セルロースビーズを得た。洗浄濾液の電気伝導度は、導電率計(EUTECH INSTRUMENTS社製、ECTester10 Pure+)で測定した。
得られたホルミル基含有架橋多孔質セルロースビーズ5mLをグラスフィルター(シバタ社製 11GP100)上で、0.25Mクエン酸バッファー(クエン酸三ナトリウム二水和物とRO水を用いて調整)で置換した。0.25Mクエン酸バッファーを用い、置換後のホルミル基含有架橋多孔質セルロースビーズを遠沈管に入れ、総体積量7.5mLとなるように液量を調整した。ここにプロテインA調製工程で得られたアルカリ耐性型プロテインAが入った水溶液(プロテインAの濃度が70.3mg/mL)を2.13g加え、0.08Nの水酸化ナトリウム水溶液でpHを12に調整した後、6℃にて23時間、ミックスローター(アズワン社製 ミックスローターMR−3)を用い、攪拌させながら反応した。
その後、反応液のpHが5になるまで2.4Mクエン酸水溶液(クエン酸一水和物とRO水を用いて調整)を加え、6℃で4時間ミックスローター(アズワン社製 ミックスローターMR−3)を用いて、攪拌した。引き続き、5.5重量%濃度のジメチルアミンボラン水溶液(RO水を使用)を1.13mL加えて、6℃で1時間攪拌した後、反応温度を25℃に上昇し、25℃で18時間攪拌しながら反応した。反応後、反応液を回収し、278nm付近の吸収極大のUV吸光度を測定し、仕込んだリガンド量から差し引くことで、プロテインA固定化量を算出した。
以下の工程は実施例6のリガンド固定化工程と全く同じ操作を繰り返すことで、反応後のビーズを洗浄(酸洗浄、アルカリ洗浄、中性化)し、目的とするアルカリ耐性型プロテインAを固定化した吸着体を得た。
上記のようにして得られた架橋ビーズ(追加架橋工程後)の20%圧縮応力と、吸着体1mL当たりのプロテインA固定化量と吸着体の5%動的吸着量(接触時間3分)を測定した。結果を表2に示す。
実施例11〜17
収縮架橋工程で使用する溶媒を表3に示すものに変更する以外は、実施例9〜10と同様に実施した。結果を表3に示す。また収縮率と20%圧縮応力の関係を図5に示す。
比較例4
(1)架橋工程1回目
製造例1で得られたセルロース多孔質ビーズ(水洗浄品)のゲル20mLをガラスフィルターの上に乗せ、RO水でリパルプした後、RO水を吸引除去した。このビース全量を遠沈管に入れ、2MのNaOH水溶液を12.2mL加え混合した。さらにグリセロールポリグリシジルエーテル(ナガセケムテックス社製デナコールEX314)6.6mLと硫酸ナトリウム7.6gを加えて、温度40℃で5時間撹拌することでセルロース多孔質ビーズを架橋させた。その後、濾過し、濾過物を水で洗浄することによって途中架橋ビーズを得た。
(2)架橋工程2回目
得られた途中架橋ビース全量を遠沈管に入れ、2MのNaOH水溶液を12.2mL加え混合した。さらにグリセロールポリグリシジルエーテル6.6mLと硫酸ナトリウム7.6gを加えて、温度40℃で5時間撹拌後、濾過し、濾過物を水で洗浄することによって架橋ビーズを得た。得られた架橋ビーズ全量を、ガラス製三角フラスコに入れ、RO水で希釈して全量を50mLとした後、開口部にアルミニウム箔2枚を重ねて蓋をし、オートクレーブを用いて127℃で60分間加熱した。室温まで放冷後、グラスフィルター上で50mLのRO水で洗浄し、残存するエポキシ基をグリセリル基に変換した。オートクレーブ後のビーズを櫛目開き38μmと櫛目開き90μmのメッシュを用いて篩分けし、38μmから90μmの架橋ビーズを取得した。架橋後の収縮率は0%であった。
以下、実施例9〜10と同様に(4)リガンド固定化工程を実施し、目的とするアルカリ耐性型プロテインAを固定化した吸着体を得た。
上記のようにして得られた架橋ビーズ(架橋工程2回目後)の20%圧縮応力と、吸着体1mL当たりのプロテインA固定化量と吸着体の5%動的吸着量(接触時間3分)を測定した。20%圧縮応力は0.084MPa、固定化量は14.8mg/mL−gel、5%動的吸着量(DBC)は22.0mg/mL−gelであった。
第1の態様に関する多孔質セルロースビーズは、様々な置換基を付加させることで様々な物質の吸着体として利用できる。また第2の態様に関するリガンド固定化用担体は、リガンドを固定させることで吸着体にすることができる。

Claims (15)

  1. a)アルカリ水溶液とセルロースとを混合して−5℃〜10℃のセルロース微分散液を作製し
    b)セルロース微分散液に水を加えてセルローススラリーとした後、
    c)セルローススラリーを昇温し、
    d)昇温したセルローススラリーを凝固溶媒に接触させ
    セルロース微分散液とセルローススラリーの温度差が1℃以上、30℃以下であることを特徴とする、多孔質セルロースビーズの製造方法。
  2. 凝固時の温度が、セルローススラリーまたはセルローススラリーの液滴分散液体の温度に対して、±10℃以内である請求項1に記載の多孔質セルロースビーズの製造方法。
  3. セルロース微分散液のアルカリ濃度が8wt%以上10wt%以下である、請求項1または2に記載の多孔質セルロースビーズの製造方法。
  4. セルローススラリーのアルカリ濃度が5wt%以上である、請求項1〜3のいずれか一項に記載の多孔質セルロースビーズの製造方法。
  5. セルローススラリーを作製する温度が4℃以上20℃以下である、請求項1〜4のいずれか一項に記載の多孔質セルロースビーズの製造方法。
  6. 前記セルローススラリーを分散媒である非水溶性液体に液―液分散し液滴を作製した後、該液―液分散液を凝固溶媒に接触させる、請求項1〜5のいずれか一項に記載の多孔質セルロースビーズの製造方法。
  7. 前記セルローススラリーのセルロースの濃度が1〜7wt%である、請求項1〜6のいずれか一項に記載の多孔質セルロースビーズの製造方法。
  8. 前記セルロースが再生セルロース、結晶性セルロース、微結晶性セルロース、または酢酸セルロースである、請求項1〜7のいずれか一項に記載の多孔質セルロースビーズの製造方法。
  9. 前記セルロースの重合度が1000以下である、請求項8に記載の多孔質セルロースビーズの製造方法。
  10. 前記非水溶性液体がジクロロベンゼン、ヘキサン、酢酸エチル、炭素数6〜12の直鎖状飽和脂肪酸、炭素数16〜24の不飽和脂肪酸、融点が100℃以下の動植物油脂類、水素添加動植物油、動植物油脂類やその水素添加物の高融点画分を分別精製した分別油、飽和脂肪酸トリグリセリド類、食用ワックス類、微細藻類由来油脂類、微生物油脂類、中鎖脂肪酸トリグリセリド類、または不飽和脂肪酸トリグリセリド類である、請求項〜9のいずれか一項に記載の多孔質セルロースビーズの製造方法。
  11. 前記凝固溶媒がアルコール類またはグリコール類を含有する、請求項1〜9のいずれか一項に記載の多孔質セルロースビーズの製造方法。
  12. 前記アルコール類がイソブタノール、2−ブタノール、sec−ブタノール、2−メチル−2−プロパノール、1−プロパノール、2−プロパノール、エタノール、及びメタノールからなる群より選択される1種以上である、請求項11に記載の多孔質セルロースビーズの製造方法。
  13. 前記グリコール類がグリセロール、エチレングリコール、及びプロピレングリコールからなる群より選択される1種以上である、請求項11に記載の多孔質セルロースビーズの製造方法。
  14. 排除限界分子量が1.0×106〜1.0×1011である請求項1〜13のいずれか一項に記載の多孔質セルロースビーズの製造方法
  15. メジアン粒子径が50μmから100μmである請求項14に記載の多孔質セルロースビーズの製造方法
JP2015539401A 2013-09-27 2014-09-26 アルカリ水溶液を用いた多孔質セルロースビーズの製造方法 Active JP6491600B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013202007 2013-09-27
JP2013202007 2013-09-27
JP2013211453 2013-10-08
JP2013211453 2013-10-08
PCT/JP2014/075740 WO2015046473A1 (ja) 2013-09-27 2014-09-26 アルカリ水溶液を用いた多孔質セルロースビーズの製造方法、リガンド固定化用担体および吸着体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018198615A Division JP2019048987A (ja) 2013-09-27 2018-10-22 リガンド固定化用担体、吸着体、及びリガンド固定化用担体の製造方法

Publications (2)

Publication Number Publication Date
JPWO2015046473A1 JPWO2015046473A1 (ja) 2017-03-09
JP6491600B2 true JP6491600B2 (ja) 2019-03-27

Family

ID=52743598

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015539401A Active JP6491600B2 (ja) 2013-09-27 2014-09-26 アルカリ水溶液を用いた多孔質セルロースビーズの製造方法
JP2018198615A Pending JP2019048987A (ja) 2013-09-27 2018-10-22 リガンド固定化用担体、吸着体、及びリガンド固定化用担体の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018198615A Pending JP2019048987A (ja) 2013-09-27 2018-10-22 リガンド固定化用担体、吸着体、及びリガンド固定化用担体の製造方法

Country Status (4)

Country Link
US (2) US10221211B2 (ja)
EP (2) EP3459631A1 (ja)
JP (2) JP6491600B2 (ja)
WO (1) WO2015046473A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159334A1 (ja) * 2015-04-03 2016-10-06 株式会社ダイセル 多孔質セルロース媒体の製造方法
JP6834132B2 (ja) * 2016-01-15 2021-02-24 昭和電工マテリアルズ株式会社 分離材及びカラム
WO2017191845A1 (ja) * 2016-05-04 2017-11-09 アイセップ株式会社 植物組織の分解を促進する植物組織処理方法、その主剤、その植物組織処理方法で抽出した原料組成物、および植物組織の嵩低減方法
CN109071613A (zh) 2016-05-11 2018-12-21 通用电气医疗集团生物工艺研发股份公司 分离基质
US10703774B2 (en) 2016-09-30 2020-07-07 Ge Healthcare Bioprocess R&D Ab Separation method
US11753438B2 (en) 2016-05-11 2023-09-12 Cytiva Bioprocess R&D Ab Method of cleaning and/or sanitizing a separation matrix
JP7106187B2 (ja) 2016-05-11 2022-07-26 サイティバ・バイオプロセス・アールアンドディ・アクチボラグ 分離マトリックスを保存する方法
GB2569585A (en) * 2017-12-20 2019-06-26 Ge Healthcare Bio Sciences Ab A method for preparation of a separation matrix
US11806421B2 (en) 2018-06-29 2023-11-07 Jgc Catalysts And Chemicals Ltd. Porous-cellulose particles and production method thereof, and cosmetic
JP7265331B2 (ja) * 2018-09-28 2023-04-26 日揮触媒化成株式会社 多孔質セルロース粒子および化粧料
JPWO2021020507A1 (ja) 2019-08-01 2021-02-04
CN110354819B (zh) * 2019-08-15 2022-05-03 广州大学 一种植物纤维素吸附海绵、其制备方法及其应用
JP2022088343A (ja) * 2020-12-02 2022-06-14 花王株式会社 セルロース粒子及びその製造方法
JP2023037724A (ja) * 2021-09-06 2023-03-16 Jnc株式会社 多孔質粒子とその製造方法、およびこれを用いたクロマトグラフィー用充填剤
CN113929819B (zh) * 2021-11-11 2024-01-09 军事科学院军事医学研究院环境医学与作业医学研究所 壳聚糖聚丙烯酰胺复合多孔水凝胶、金属离子检测试剂及其制备方法和应用
CN116099462B (zh) * 2022-12-26 2023-11-14 杭州纽龙生物科技有限公司 一种琼脂糖-纤维素纳米复合多孔凝胶微球、制备方法及应用

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE374748B (ja) * 1969-02-07 1975-03-17 Pharmacia Fine Chemicals Ab
JPS60139873A (ja) 1983-12-26 1985-07-24 旭化成株式会社 繊維材料の改質方法
SE8505922D0 (sv) 1985-12-13 1985-12-13 Kabigen Ab Construction of an igg binding protein to facilitate downstream processing using protein engineering
JPH06102730B2 (ja) 1988-04-28 1994-12-14 鐘淵化学工業株式会社 分離材用バイモーダル粒子
US5502082A (en) * 1991-12-20 1996-03-26 Alliedsignal Inc. Low density materials having good compression strength and articles formed therefrom
ATE168040T1 (de) * 1991-12-20 1998-07-15 Allied Signal Inc Materialien mit niedriger dichte und hoher spezifischer oberflaeche und daraus geformte artikel zur verwendung in der metallrueckgewinnung
JP2646463B2 (ja) * 1992-01-08 1997-08-27 鐘紡株式会社 架橋多孔性イオン交換セルロース微粒子の製造方法
US5410034A (en) 1994-02-24 1995-04-25 The United States Of America As Represented By The Secretary Of Agriculture Alkaline method for dissolving cellulose
DE19522181C2 (de) * 1995-06-19 1999-06-24 Fraunhofer Ges Forschung Verfahren zur Herstellung von sphärischen Mikropartikeln auf Celluloseacetat- bzw. Cellulose-Basis
SE9503925D0 (sv) 1995-11-07 1995-11-07 Pharmacia Biotech Ab Separationsmedium för IgG
SE9601368D0 (sv) 1996-04-11 1996-04-11 Pharmacia Biotech Ab Process for the production of a porous cross-linked polysaccharide gel
DE69835275T2 (de) 1997-01-07 2007-07-19 Kaneka Corp. Absorbens zum reinigen von körperflüssigkeiten
JP4021980B2 (ja) 1997-11-25 2007-12-12 株式会社カネカ セルロース系粒子体及びその製造方法
GB9823071D0 (en) 1998-10-21 1998-12-16 Affibody Technology Ab A method
DE10102334C2 (de) 2001-01-19 2003-12-04 Thueringisches Inst Textil Verfahren zur Herstellung von regulären, monodispersen Celluloseperlen und ihre Verwendung
EP1792635B1 (en) 2004-08-30 2014-05-21 Kaneka Corporation Granulocyte adsorbent
JP4179517B2 (ja) 2006-02-21 2008-11-12 プロテノバ株式会社 イムノグロブリン親和性リガンド
WO2007097361A1 (ja) 2006-02-21 2007-08-30 Protenova Co., Ltd. イムノグロブリン親和性リガンド
US20080241536A1 (en) 2007-03-29 2008-10-02 Weyerhaeuser Co. Method for processing cellulose in ionic liquids and fibers therefrom
JP2008279366A (ja) 2007-05-10 2008-11-20 Kaneka Corp 多孔質担体、およびそれを用いた精製用吸着体、およびそれらの製造方法、およびそれらを用いた精製方法
JP5504596B2 (ja) 2007-08-31 2014-05-28 Jnc株式会社 多孔性セルロースゲル、その製造方法及びその用途
WO2010064437A1 (ja) 2008-12-03 2010-06-10 株式会社カネカ ホルミル基含有多孔質担体、それを用いた吸着体、およびそれらの製造方法
EP2412809B1 (en) 2009-03-24 2017-08-09 Kaneka Corporation Protein having affinity for immunoglobulin, and immunoglobulin-binding affinity ligand
CN102844432A (zh) 2010-03-24 2012-12-26 株式会社钟化 特异性结合免疫球蛋白的蛋白质以及免疫球蛋白结合性亲和配体
CA2828369A1 (en) * 2011-03-08 2012-09-13 Kaneka Corporation Method for producing porous cellulose beads
WO2012133349A1 (ja) 2011-03-25 2012-10-04 株式会社カネカ アフィニティー分離マトリックス用タンパク質
EP2894171A4 (en) 2012-09-10 2016-05-25 Kaneka Corp ADSORPTION

Also Published As

Publication number Publication date
WO2015046473A1 (ja) 2015-04-02
US20190256555A1 (en) 2019-08-22
JPWO2015046473A1 (ja) 2017-03-09
EP3050902A4 (en) 2017-02-15
EP3050902B1 (en) 2018-11-21
EP3050902A1 (en) 2016-08-03
US10221211B2 (en) 2019-03-05
US10457705B2 (en) 2019-10-29
US20160244483A1 (en) 2016-08-25
EP3459631A1 (en) 2019-03-27
JP2019048987A (ja) 2019-03-28

Similar Documents

Publication Publication Date Title
JP6491600B2 (ja) アルカリ水溶液を用いた多孔質セルロースビーズの製造方法
JP6506554B2 (ja) 吸着体、及びそれを用いた精製方法
WO2012033223A1 (ja) 多孔質粒子の製造方法、多孔質粒子、吸着体、およびタンパク質の精製方法
JP5122958B2 (ja) クロマトグラフィーマトリックスの製造方法
US20180056271A1 (en) Method for producing porous cellulose beads, and adsorbent using same
JP7068316B2 (ja) 巨大分子の精製のための高分子メッシュの利用
JP2022184990A (ja) バイオセパレーションのための複合材料
JP5623357B2 (ja) 多孔質担体、およびそれを用いた精製用吸着体、およびそれらを用いた精製方法
JP2008279366A (ja) 多孔質担体、およびそれを用いた精製用吸着体、およびそれらの製造方法、およびそれらを用いた精製方法
JP6440320B2 (ja) 多孔質セルロースビーズの製造方法およびそれを用いた吸着体
JP5883068B2 (ja) 多孔質担体、およびそれを用いた精製用吸着体、およびそれらの製造方法、およびそれらを用いた精製方法
JP6442409B2 (ja) 多孔質セルロースビーズの製造方法
JP6517145B2 (ja) 多孔質セルロースビーズの製造方法及びそれを用いた吸着体
JP7344232B2 (ja) バイオセパレーションのための複合材料
WO2018186222A1 (ja) 多孔質セルロースビーズおよび吸着体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181022

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190301

R150 Certificate of patent or registration of utility model

Ref document number: 6491600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250