CN113929819B - 壳聚糖聚丙烯酰胺复合多孔水凝胶、金属离子检测试剂及其制备方法和应用 - Google Patents

壳聚糖聚丙烯酰胺复合多孔水凝胶、金属离子检测试剂及其制备方法和应用 Download PDF

Info

Publication number
CN113929819B
CN113929819B CN202111333589.3A CN202111333589A CN113929819B CN 113929819 B CN113929819 B CN 113929819B CN 202111333589 A CN202111333589 A CN 202111333589A CN 113929819 B CN113929819 B CN 113929819B
Authority
CN
China
Prior art keywords
chitosan
hydrogel
composite porous
metal ion
porous hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111333589.3A
Other languages
English (en)
Other versions
CN113929819A (zh
Inventor
李双
高志贤
韩殿鹏
白家磊
彭媛
吴瑾
秦康
任舒悦
王瑜
周焕英
韩铁
蔺晓晓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Environmental Medicine and Operational Medicine Institute of Military Medicine Institute of Academy of Military Sciences
Original Assignee
Environmental Medicine and Operational Medicine Institute of Military Medicine Institute of Academy of Military Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Environmental Medicine and Operational Medicine Institute of Military Medicine Institute of Academy of Military Sciences filed Critical Environmental Medicine and Operational Medicine Institute of Military Medicine Institute of Academy of Military Sciences
Priority to CN202111333589.3A priority Critical patent/CN113929819B/zh
Priority to LU500961A priority patent/LU500961B1/en
Publication of CN113929819A publication Critical patent/CN113929819A/zh
Priority to US17/592,566 priority patent/US20230147119A1/en
Application granted granted Critical
Publication of CN113929819B publication Critical patent/CN113929819B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0095Mixtures of at least two compounding ingredients belonging to different one-dot groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/30Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by mixing gases into liquid compositions or plastisols, e.g. frothing with air
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/022Hydrogel, i.e. a gel containing an aqueous composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/02Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to polysaccharides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hydrology & Water Resources (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及污水处理及污染物快速检测技术领域,具体讲,涉及一种壳聚糖聚丙烯酰胺复合多孔水凝胶、其制备方法和应用及金属离子检测试剂和方法。本发明的壳聚糖聚丙烯酰胺复合多孔水凝胶以聚丙烯酰胺为多孔骨架,多孔骨架上连接有壳聚糖,壳聚糖聚丙烯酰胺复合多孔水凝胶的透光率可达84%。本发明还提出一种金属离子检测试剂,采用上述壳聚糖聚丙烯酰胺复合多孔水凝胶吸附显色剂后得到,显色剂为遇金属离子变色的阴离子染料。本发明的壳聚糖聚丙烯酰胺复合多孔水凝胶兼顾力学性能和吸附性能。

Description

壳聚糖聚丙烯酰胺复合多孔水凝胶、金属离子检测试剂及其 制备方法和应用
技术领域
本发明涉及污水处理及污染物快速检测技术领域,具体讲,涉及一种壳聚糖聚丙烯酰胺复合多孔水凝胶、金属离子检测试剂及其制备方法和应用。
背景技术
污染废水的人为排放,含有但不限于大多行业普遍使用的染料及金属离子,对全球水资源的安全和全体人类的健康构成了严重威胁。为缓解日益严峻的水资源问题,迄今为止已经发展了许多水处理技术,包括吸附、絮凝、光降解、膜过滤、电化学处理等。其中,吸附法具有适用性广泛、操作简单、低二次污染性、成本相对较低等优点。
吸附法的技术要点在于吸附剂的发展。各种吸附剂,如天然材料、农业废物、工业副产品、生物质和纳米材料,已被广泛应用于废水净化。粉末状材料具有较高的吸附能力,但易于团聚,分离困难不利于污染废水的工业处理。水凝胶是一种由渗入大量水的三维聚合物网络组成的吸附能力极强的材料,由于其成本低、可回收、易于制造等问题,近年来得到了广泛的研究。然而,大多水凝胶受到其机械性能差、吸附能力低或扩散动力学缓慢的限制。已经大量尝试通过机械泡沫合成多孔水凝胶,分别为冷冻法、致孔剂法、相分离法、模板法等方法。但大多制备方法无法兼顾力学性能和孔隙率。
鉴于此,特提出本发明。
发明内容
本发明的首要发明目的在于提供一种壳聚糖聚丙烯酰胺复合多孔水凝胶。
本发明的第二发明目的在于提供一种金属离子检测试剂。
本发明的第三发明目的在于提供壳聚糖聚丙烯酰胺复合多孔水凝胶的制备方法。
本发明的第四发明目的在于提供一种金属离子检测方法。
本发明的第五发明目的在于提供一种壳聚糖聚丙烯酰胺复合多孔水凝胶的应用。
为了完成本发明的发明目的,采用的技术方案为:
本发明提出一种壳聚糖聚丙烯酰胺复合多孔水凝胶,所述壳聚糖聚丙烯酰胺复合多孔水凝胶以聚丙烯酰胺为多孔骨架,所述多孔骨架上连接有壳聚糖,所述壳聚糖聚丙烯酰胺复合多孔水凝胶在波长范围400~650nm条件下,透光率为50~84%;所述壳聚糖聚丙烯酰胺复合多孔水凝胶的孔隙率为60~85%,平均孔径为10~100μm;优选的,所述壳聚糖聚丙烯酰胺复合多孔水凝胶的孔隙率为60~70%;平均孔径为40~60μm。
本发明提出一种金属离子检测试剂,采用上述的壳聚糖聚丙烯酰胺复合多孔水凝胶吸附显色剂后得到,所述显色剂为遇金属离子变色的阴离子染料。
本发明提出上述壳聚糖聚丙烯酰胺复合多孔水凝胶的制备方法,至少包括以下步骤:
S1、制备得到壳聚糖溶胶;优选的,所述壳聚糖溶胶的浓度为5~15g/L,更优选为10g/L;
S2、在所述壳聚糖溶胶中加入丙烯酰胺、交联剂和发泡剂,混合搅拌5~15分钟;搅拌速率为500~600rpm;
S3、加入引发剂后继续搅拌1.5~3分钟;搅拌速率为600~750rpm;
S4、固化、洗涤、冷冻干燥后,得到所述聚糖聚丙烯酰胺复合多孔水凝胶。
本发明提出一种金属离子检测试剂检测金属离子的方法,至少包括以下步骤:
S1、取待测溶液滴加在所述金属离子检测试剂的表面;所述金属离子检测试剂与待测溶液的体积比为5~15:1;优选为9:1;
S2、15~25℃反应10~30分钟,用酶标仪读取水凝胶的吸光度;
S3、比较在显色剂紫外吸收峰处的吸光度值与显色剂与金属离子结合后紫外吸收峰处的吸光度值之间的比值,对数据进行分析。
本发明提出上述壳聚糖聚丙烯酰胺复合多孔水凝胶在吸附污染物中的应用;优选的,所述污染物选自阴离子染料。
本发明提出上述壳聚糖聚丙烯酰胺复合多孔水凝胶在吸附阴离子染料后检测金属离子中的应用;优选的,所述金属离子包括金离子、银离子、铜离子、铝离子、铁离子和铅离子。
本发明至少具有以下有益的效果:
本发明以壳聚糖作为吸附剂,聚丙烯酰胺水凝胶为多孔骨架,将吸附剂和互联孔引入为多孔骨架,制备力学性能良好的多孔复合水凝胶,聚丙烯酰胺多孔骨架提供了整体的机械强度,壳聚糖作为吸附剂,从而获得了一种能够兼顾了力学性能和吸附能力的透明的复合多孔水凝胶。
本发明透明的复合多孔水凝胶吸附染料类污染物后,获得了一种金属离子检测试剂,可用于金属离子的半定量检测,检测限为0.05~0.06μg/L,实现了已吸附染料类污染物的二次利用,对环境的保护具有重要意义。
附图说明
图1为壳聚糖聚丙烯酰胺多孔水凝胶的电镜照片;
图2为纯聚丙烯酰胺水凝胶的电镜照片;
图3为纯聚丙烯酰胺水凝胶的吸附动力学曲线;
图4为壳聚糖聚丙烯酰胺多孔水凝胶的吸附动力学曲线;
图5为壳聚糖聚丙烯酰胺多孔水凝胶在不同pH值下对二甲酚橙的吸附量;
图6为壳聚糖聚丙烯酰胺多孔水凝胶在不同pH值下的zeta电位;
图7为金属离子检测试剂检测Fe3+紫外可见光谱图;
图8为金属离子检测试剂检测Fe3+的浓度与水凝胶吸光度变化比率;
图9为金属离子检测试剂检测Al3+紫外可见光谱图;
图10为金属离子检测试剂检测Al3+的浓度与水凝胶吸光度变化比率;
图11为厚度为0.5625cm的壳聚糖聚丙烯酰胺多孔水凝胶的透光度检测结果。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也包括复数形式,此外,还应当理解的是,当在本说明中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例的第一方面提出一种壳聚糖聚丙烯酰胺复合多孔水凝胶,以聚丙烯酰胺为多孔骨架,多孔骨架上连接有壳聚糖,本发明实施例的壳聚糖聚丙烯酰胺复合多孔水凝胶在厚度为0.5625cm时,在波长范围400~650nm条件下,透光率为50~84%;壳聚糖聚丙烯酰胺复合多孔水凝胶的孔隙率为60~85%,平均孔径为10~100μm。本发明实施例的壳聚糖聚丙烯酰胺复合多孔水凝胶以壳聚糖与丙烯酰胺、交联剂和发泡剂为原料,通过原位聚合法制备得到,具体包括:通过采用壳聚糖溶胶与丙烯酰胺、交联剂和发泡剂通过原位聚合法形成含有液体微滴的混合溶液,再经固化、洗涤、冷冻干燥的步骤制备得到。其结构形态为:用SEM观察,聚丙烯酰胺水凝胶呈现相互交联的网状结构,多孔型壳聚糖聚丙烯酰胺多孔水凝胶呈现相互交联的网络结构并存在几十微米到几百微米的孔。
作为本发明实施例的一种改进,所采用的壳聚糖的脱乙酰度≥95%,粘度100~200mpa.s。
本发明实施例以壳聚糖作为吸附剂,聚丙烯酰胺水凝胶为多孔骨架,将吸附剂和互联孔引入为多孔骨架,制备力学性能良好的多孔复合水凝胶,聚丙烯酰胺多孔骨架提供了整体的机械强度,壳聚糖作为吸附剂,从而获得了一种能够兼顾了力学性能和吸附能力的透明的复合多孔水凝胶。本发明实施例的壳聚糖聚丙烯酰胺多孔水凝胶具有共价交联的中性和化学惰性PAAM网络,在各种pH上表现出令人满意的吸附能力,显示出在强酸条件下的废水处理的巨大潜力。本发明在实验中惊喜的发现,采用壳聚糖和聚丙烯酰胺同时制备多孔水凝胶的机械强度,显著高于单独采用聚丙烯酰胺制备的水凝胶,即本发明的复合水凝胶在增加吸附性能的同时,不仅没有影响基质材料的力学性能,反而进一步增加其力学性能。
作为本发明实施例的一种改进,交联剂可选自双甲基丙烯酰胺。发泡剂可选自十二烷基硫酸钠(SDS),发泡剂SDS可产生气泡,同时可以降低气液界面的表面张力,稳定气泡。固化采用的引发剂为四甲基乙二胺和过硫酸铵。
本发明实施例的第二方面提出一种金属离子检测试剂,采用上述壳聚糖聚丙烯酰胺复合多孔水凝胶吸附显色剂后得到,显色剂为遇金属离子变色的阴离子染料。金属包括重金属和轻金属,重金属是指密度大于4.5的金属,包括金、银、铜、铁和铅等。重金属污染与其他有机化合物污染不同,许多有机化合物可以通过自然界本身物理化学生物的净化,使其危害程度降低或解除,而重金属具有富集性,很难在环境中自行降解。重金属在人体内能与蛋白质及各种酶发生强烈反应,也可能在人体内许多器官有所富集,对人体造成极大危害。过量的铁会损伤细胞的基本组成成分,导致其他微量元素失衡等危害。轻金属为相对密度小于5的金属,轻金属中的铝在体内过量积累会对儿童造成智力低下,对中年人造成记忆力减退,对老年人造成老年痴呆等危害。目前常用的金属离子检测方法有络合滴定法/电化学分析法/原子光谱法等。已有的方法大多需要精密度仪器,操作复杂,成本高等缺点,因此开发一种现场、快速、可视化金属离子检测试剂极为重要的。
利用本发明实施例壳聚糖聚丙烯酰胺复合多孔水凝胶的透明性,通过吸附阴离子染料后,使金属离子检测试剂不但拥有水凝胶的坚韧的机械性能,还获得了染料遇金属离子变色的特性。因此可将已吸附染料的壳聚糖聚丙烯酰胺复合多孔水凝胶应用于金属离子的检测中,实现快速可视化检测重金属。检测限为0.05~0.06μg/L,具体的,Fe3+检测限为0.05μg/L,Al3+检测限为0.06μg/L,实现了已吸附染料类污染物的二次利用,对环境的保护具有重要意义。
作为本发明实施例的一种改进,壳聚糖聚丙烯酰胺复合多孔水凝胶与显色剂的体积比6:4~6,优选6:5,显色剂的浓度为100mg/L。如果显色剂的浓度过高,则显色剂颜色过深,影响检出限;如果显色剂的浓度过低,则检测灵敏度不够。
作为本发明实施例的一种改进,显色剂可选自二甲酚橙,二甲酚橙为一种阴离子型染料,与金属离子结合后可由黄色变为蓝紫色。
优选的,吸附的条件为15~25℃下吸附18~36小时,优选室温下吸附24小时。
更进一步优选的,壳聚糖聚丙烯酰胺复合多孔水凝胶的厚度为0.2~1cm,优选0.4~0.6cm,最优选0.5625cm。如果厚度过大,在检测的过程中,溶液的扩散时间会延长,会延长检测时间。壳聚糖聚丙烯酰胺复合多孔水凝胶的面积为0.2~0.5cm2。如在制备过程中将其转移至96孔板中,则制备得到的壳聚糖聚丙烯酰胺复合多孔水凝胶的底面积为0.32cm2,高度为0.5625cm。
本发明实施例的第三方面提出壳聚糖聚丙烯酰胺复合多孔水凝胶的制备方法,至少包括以下步骤:
S1、制备得到壳聚糖溶胶;
S2、在壳聚糖溶胶中加入丙烯酰胺、交联剂和发泡剂,混合搅拌5~15分钟;搅拌速率为500~600rpm,优选600rpm;
S3、加入引发剂后继续搅拌1.5~3分钟;搅拌速率为600~750rpm;搅拌速率如果过慢,水凝胶不均匀,存在部分水凝胶呈淡黄色浑浊状且较脆;由于溶液粘度较高,更高的搅拌速度难以达到;
S4、固化、洗涤、冷冻干燥后,得到聚糖聚丙烯酰胺复合多孔水凝胶。
本发明实施例的制备过程中,通过搅拌发泡过程将液体微滴引入水凝胶前驱体,并加入发泡剂以稳定气泡,从而制备得到兼顾力学性能和孔隙率的多孔材料。
作为本发明实施例的一种改进,壳聚糖溶胶的浓度为5~15g/L,优选为10g/L。如果浓度过大,壳聚糖不易溶解,且成本增加,如果浓度过小则所制备得到的复合水凝胶对污染物的吸附力不足。壳聚糖溶胶含有体积百分比浓度为2%的冰醋酸。
作为本发明实施例的一种改进,丙烯酰胺与壳聚糖的质量比为5~10:1,优选为8:1。壳聚糖作为吸附剂,因此,如果壳聚糖的添加量过小,对污染物的吸附力不足,如果壳聚糖的添加量过大,去除率随壳聚糖添加量的提高而略有提升,但幅度较小。同时,如果丙烯酰胺的添加量过大,则交联密度过高,复合水凝胶的脆性增加;如果丙烯酰胺的添加量过小,则单位体积内交联点密度过低,大大降低交联效率。
作为本发明实施例的一种改进,交联剂与丙烯酰胺的质量比为0.02~0.05:4,优选为0.03:4;如果交联剂添加过多,则交联速度加快,交联点迅速饱和,因此复合水凝胶的脆性上升;如果交联剂添加过小,则交联速度减慢,生产效率降低。
作为本发明实施例的一种改进,发泡剂与丙烯酰胺的质量比为0.005~0.02:4,优选为0.01:4;发泡剂的主要功能是使气泡稳定。如果发泡剂添加过少,则稳定效果不好,如果发泡剂添加过多,不易溶解且增加成本。
作为本发明实施例的一种改进,四甲基乙二胺与丙烯酰胺的体积质量比为0.3mL:4g;更优选的,过硫酸铵溶液与丙烯酰胺的体积质量比为0.5mL:4g,过硫酸铵溶液的质量百分比为5wt%。如果引发剂添加过少,则固化速度很慢,不利于提高制备效率。如果交联剂添加过多,则固化速度过快,导致孔隙变大,水凝胶脆性增加,得到的水凝胶易碎,来不及分装等步骤,也不便于制备。
作为本发明实施例的一种改进,固化的条件为35~45℃烘干3~5小时,优选条件为:40℃烘干4小时。如果固化温度过低,则水凝胶凝固时间过长,气泡逃逸,如果固化温度过高,则水凝胶发生变色。
作为本发明实施例的一种改进,洗涤的条件为:超纯水中浸泡18~36小时,优选24小时。
本发明实施例的第四方面提出一种采用上述金属离子检测试剂的金属离子检测方法,至少包括以下步骤:
S1、取待测溶液滴加在金属离子检测试剂的表面;金属离子检测试剂与待测溶液的体积比为5~15:1;优选为9:1;
S2、15~25℃反应10~30分钟,用酶标仪读取水凝胶的吸光度;
S3、比较在显色剂紫外吸收峰处的吸光度值与显色剂与金属离子结合后紫外吸收峰处的吸光度值之间的比值,对数据进行分析。
其中,二甲酚橙在酸性条件下的紫外吸收峰为430mn,铁离子与显色剂结合后的紫外吸收峰为570nm,铝离子与显色剂结合后的紫外吸收峰为550nm。
本发明实施例将已吸附染料类污染物的水凝胶应用于金属离子铁、铝的半定量检测,实现了已吸附染料类污染物的二次利用,对环境的保护具有重要意义。
本发明实施例的第五方面提出壳聚糖聚丙烯酰胺复合多孔水凝胶的应用。具体包括在吸附污染物中的应用,以及在吸附阴离子染料后检测金属离子中的应用。
作为本发明实施例的一种改进,根据壳聚糖聚丙烯酰胺复合多孔水凝胶表面带有正电荷,所吸附的污染物为阴离子型污染物,因此污染物可选自阴离子染料。
下面通过具体实施方式对本申请的实施例做进一步的说明,具体实施例方式所采用的材料为:丙烯酰胺(AAm,99.0%),N,N’-亚甲基双丙烯酰胺(MBAA,99%),十二烷基硫酸钠(SDS,92.5%-100.5%),四甲基乙二胺(TEMED,99%)购自阿拉丁工业有限公司(上海,中国),壳聚糖(CS),过硫酸铵(APS,99%),冰醋酸,醋酸钠,二甲酚橙(XO)购自麦克林工业有限公司(上海,中国)所有化学品均为分析试剂级,无需进一步纯化。所有实验均采用去离子水。
实施例1:壳聚糖聚丙烯酰胺多孔水凝胶的制备
1、将0.5g壳聚糖、1mL冰醋酸与50mL去离子水混合在250mL烧杯中,60℃、500rmp搅拌30分钟形成均匀透明的壳聚糖溶胶。
2、将4g丙烯酰胺、0.03g双甲基丙烯酰胺和0.1g SDS混合搅拌10分钟。
3、加入SDS,600rmp搅拌产生大量的气泡,浆液体积明显膨胀。
4、加入0.3mL四甲基乙二胺和5mL过硫酸铵溶液(5wt%),搅拌混合物2分钟,搅拌速率保持在750rpm。
5、将溶液转移至96孔板中,用保鲜膜密封后在40℃烘箱中保存4小时以完全固化。
6、将完全固化的水凝胶于超纯水中浸泡24小时,除去未交联的丙烯酰胺与壳聚糖单体以及SDS。
7、将水凝胶放入冷冻干燥机进行冷冻干燥,获得壳聚糖聚丙烯酰胺多孔水凝胶。得到的圆柱状壳聚糖聚丙烯酰胺复合多孔水凝胶的底面积为0.32cm2,高度为0.5625cm。
为了进行比较,同时合成了纯聚丙烯酰胺(PAAM)水凝胶,步骤为:
1、在250mL烧杯中将4g丙烯酰胺溶解于50mL去离子水中形成均匀溶液;
2、将0.03g双甲基丙烯酰胺加入溶液中并搅拌形成均匀透明溶液;
3、加入5mL过硫酸铵溶液(5wt%)和0.3mL四甲基乙二胺,搅拌混合物2分钟,搅拌速率保持在750rpm;
4、将溶液转移至96孔板中,用保鲜膜密封后在40℃烘箱中保存4小时以完全固化;
5、将完全固化的水凝胶于超纯水中浸泡24小时,除去未交联的丙烯酰胺单体;
6、将水凝胶放入冷冻干燥机进行冷冻干燥,获得壳聚糖聚丙烯酰胺多孔水凝胶。
对壳聚糖聚丙烯酰胺多孔水凝胶、纯聚丙烯酰胺(PAAM)水凝胶进行表征。
1、结构表征;
用SEM对水凝胶进行表征,得到电镜照片如图1和图2所示,其中图1为壳聚糖聚丙烯酰胺多孔水凝胶的电镜照片,图2为纯聚丙烯酰胺水凝胶的电镜照片。如图1和图2所示,纯聚丙烯酰胺水凝胶呈现相互交联的网状结构,壳聚糖聚丙烯酰胺多孔水凝胶壳聚糖聚丙烯酰胺多孔水凝胶呈现相互交联的网络结构并存在几十微米到几百微米的孔。
2、批量吸附实验
采用传统的瓶点法进行了批量吸附实验,探讨了多孔型壳聚糖聚丙烯酰胺多孔水凝胶的吸附性能。所有实验均在20mL的玻璃小瓶中进行,每个玻璃小瓶中含有20mL的染料溶液和0.02g干水凝胶。在吸附过程中,样品在常温下保存。用紫外分光光度剂分析了溶液的初始浓度及最终浓度。所有实验均进行三次,当偏差大于5%时进行额外试验。使用公式计算每克吸附剂的染料吸收量:Qe=(C0-Ce)×V/m
吸附效率公式:E%=(C0-Ce)/C0×100%
其中,C0和Ce(mg/L)为初始和测量染料浓度,V(mL)为溶液的体积,m为干燥吸附剂的重量。
实施例1壳聚糖聚丙烯酰胺多孔水凝胶的吸附效率为81.8%。
3、动力学研究
XO的吸附动力学实验在初始浓度为100mg/L,然后在室温下保存。在预定的时间间隔内,取样重复的小瓶以测量XO的剩余浓度。得到实验结果如图3和图4所示。图3为纯聚丙烯酰胺水凝胶的吸附动力学曲线,图4为壳聚糖聚丙烯酰胺多孔水凝胶的吸附动力学曲线。
由图3和图4可知,壳聚糖聚丙烯酰胺多孔水凝胶壳聚糖聚丙烯酰胺多孔水凝胶(~12小时)的平衡时间远远短于纯聚丙烯酰胺水凝胶(~24小时)。并且壳聚糖聚丙烯酰胺多孔水凝胶的二甲酚橙吸附量(513mg/g)远远高于纯聚丙烯酰胺水凝胶的二甲酚橙吸附量(277mg/g)。
4、机械性能
最大压缩应变和压缩应力的检测方法为:在压缩实验中,将直径20mm、高度10mm的圆柱形样品置于机械测试机(仪器,日本-岛津-EZ LX型),以5mm/s的加载速度,100N荷载进行压缩实验。
拉伸的测量方法为:在拉伸试验中,样品被切割成长方体形状(长度35mm,宽20mm,厚度5mm)。样品的两端被夹紧,加载在机械测试机器(仪器,日本-岛津-EZ LX型)上,并以5mm/s的加载速度,100N荷载进行拉伸。
得到实验结果如表1所示。
表1
5、透光率检测
使用酶标仪测定水凝胶在350nm~650nm处的吸光度值A,根据公式T%=1/10A得到。实验结果如图11所示。
6、孔隙率、平均孔径检测
采用BET比表面及孔径微孔分析仪测定水凝胶的孔径分布。
用公式Vp/V*100%计算得出,V为水凝胶的体积,Vp为水凝胶的N2吸附量。
实施例2:壳聚糖聚丙烯酰胺多孔水凝胶的制备方法的筛选
筛选实验1:按照实施例1方法制备,区别仅在于加入四甲基乙二胺后的转速不同,具体条件和结果如表2所示:
表2
筛选实验2:按照实施例1方法制备,区别仅在于壳聚糖(CS)添加量不同,具体条件和结果如表3所示:
表3
由表2可知,壳聚糖添加量在0.5g以上时,虽然去除率随壳聚糖添加量的提高而略有提升,但幅度较小,因此选用0.5g添加量。
筛选实验3:按照实施例1方法制备,区别仅在于过硫酸铵与四甲基乙二胺添加量不同,具体条件和结果如表4所示:
表4
由表3可知,选择0.25g过硫酸铵、300μL四甲基乙二胺,固化时间较为适宜。
筛选实验4:按照实施例1方法制备,区别仅在于固化温度不同,具体条件和结果如表5所示:
表5
温度过低水凝胶凝固时间过长,气泡逃逸,温度过高水凝胶发生变色,因此选用40℃。
实施例3
在pH 3-6范围内,研究了pH对吸附的影响。每次试验,将实施例1制备的0.02g壳聚糖聚丙烯酰胺多孔水凝胶放入规定pH值的20mL XO溶液(300mg/L/)中,在吸附达到平衡(24小时)后分析溶液的最终XO浓度。实验结果如图5和图6所示。
废水的pH值变化很大,往往对吸附过程有显著影响。如图5所示,平衡状态下多孔型壳聚糖聚丙烯酰胺多孔水凝胶的吸附能力随着pH从3增加到6而单调降低,最大值为559.05mg/g。这种依赖性是合理的,因为XO分子的主干带负电荷,而多孔型壳聚糖聚丙烯酰胺多孔水凝胶的表面带正电荷,zeta电位测试如图6所示。当溶液pH从3增加到6时,多孔型壳聚糖聚丙烯酰胺多孔水凝胶的zeta电位从16.5mV降低到1.57mV,表明正电荷在多孔型壳聚糖聚丙烯酰胺多孔水凝胶表面占主导地位。总的来说,多孔型壳聚糖聚丙烯酰胺多孔水凝胶具有共价交联的中性和化学惰性PAAM网络,适于处理强酸性废水。
实施例4:铁/铝离子的检测
1、制备金属离子检测试剂:采用实施例1制备的壳聚糖聚丙烯酰胺复合多孔水凝胶吸附二甲酚橙,吸附的条件为室温下吸附24小时,二甲酚橙浓度50mg/L,体积150μL;
2、金属离子的检测:
2.1、分别配置不同浓度的铁/铝标准溶液;
2.2、分别取不同浓度的铁/铝标准溶液滴加在金属离子检测试剂的表面,铁/铝标准溶液的体积为20μL;
2.2、常温保存二十分钟,用酶标仪读取水凝胶的吸光度;
2.3、采用比色分析,分别比较水凝胶在430nm处的吸光度值与550nm(铝)、570nm(铁)处的吸光度值之间的比值,并对数据进一步分析。
实验结果:
(1)Fe3+的检测的实验结果如图7和图8所示:
图8为Fe3+浓度与溶液吸光度变化比率(A430/A570)情况。图8中数据表明,随着Fe3 +浓度的不断升高,比值不断升高,并且在Fe3+浓度为0~10μg/L时,430nm处的吸光度值与570nm处的吸光度值的比值与Fe3+浓度呈线性关系。
检测限为0.05μg/L。
(2)Al3+的检测的实验结果如图9和图10所示:
图10为Al3+浓度与溶液吸光度变化比率(A430/A570)情况。图10中数据表明,随着Al3+浓度的不断升高,比值不断升高,并且在Al3+浓度为0~12μg/L时,430nm处的吸光度值与570nm处的吸光度值的比值与Al3+浓度呈线性关系。
检测限为0.06μg/L。
实施例5:金属离子检测试剂的筛选
筛选实验5:按照实施例4方法制备,区别仅在于加入二甲酚橙的体积不同。制备得到金属离子检测试剂后加入铝标准溶液(2μg/L)20μL,并检测吸光度。具体条件和结果如表6所示:
表6
二甲酚橙(μL) 60 90 120 150 170
A550/A430 0.3421 0.3611 0.3681 0.4459 0.4369
本申请虽然以较佳实施例公开如上,但并不是用来限定权利要求,任何本领域技术人员在不脱离本申请构思的前提下,都可以做出若干可能的变动和修改,因此本申请的保护范围应当以本申请权利要求所界定的范围为准。

Claims (7)

1.一种金属离子检测试剂,其特征在于,所述金属离子检测试剂采用壳聚糖聚丙烯酰胺复合多孔水凝胶吸附显色剂后得到,所述显色剂为遇金属离子变色的阴离子染料;
所述壳聚糖聚丙烯酰胺复合多孔水凝胶的制备方法至少包括以下步骤:
S1、制备得到壳聚糖溶胶;所述壳聚糖溶胶的浓度为5~15g/L;
S2、在所述壳聚糖溶胶中加入丙烯酰胺、交联剂和发泡剂,混合搅拌5~15分钟;搅拌速率为500~600rpm;所述发泡剂为SDS;该过程通过搅拌发泡过程将液体微滴引入水凝胶前驱体,并加入发泡剂以稳定气泡;
丙烯酰胺与壳聚糖的质量比为5~10:1;
所述发泡剂与丙烯酰胺的质量比为0.005~0.02:4;
所述交联剂与丙烯酰胺的质量比为0.02~0.05:4;
所述交联剂为双甲基丙烯酰胺单体;
S3、加入引发剂后继续搅拌1.5~3分钟;搅拌速率为600~750rpm;引发剂为四甲基乙二胺和过硫酸铵;
S4、固化、洗涤、冷冻干燥后,得到所述壳聚糖聚丙烯酰胺复合多孔水凝胶;固化的条件为35~45℃烘干3~5小时;
所述壳聚糖聚丙烯酰胺复合多孔水凝胶以聚丙烯酰胺为多孔骨架,所述多孔骨架上连接有壳聚糖,所述壳聚糖聚丙烯酰胺复合多孔水凝胶在波长范围400~650nm条件下,透光率为50~84%;所述壳聚糖聚丙烯酰胺复合多孔水凝胶的孔隙率为60~85%,平均孔径为10~100μm;所述壳聚糖聚丙烯酰胺复合多孔水凝胶的最大压缩应变80~93%,最大压缩应力280~350kpa;最大拉伸应变为5.5~6.4,最大拉伸应力为105~125kpa;壳聚糖聚丙烯酰胺复合多孔水凝胶的厚度为0.2-1cm;所述壳聚糖聚丙烯酰胺复合多孔水凝胶与显色剂的体积比6:4~6,显色剂的浓度为100mg/L;
吸附的条件为15~25℃下吸附18~36小时。
2.如权利要求1所述的金属离子检测试剂,其特征在于,所述壳聚糖聚丙烯酰胺复合多孔水凝胶与显色剂的体积比为6:5;所述显色剂选自二甲酚橙;壳聚糖聚丙烯酰胺复合多孔水凝胶的厚度为0.1~0.8cm。
3.如权利要求1所述的金属离子检测试剂,其特征在于,所述壳聚糖聚丙烯酰胺复合多孔水凝胶的孔隙率为60-70%;平均孔径为40-60μm。
4.根据权利要求3所述的金属离子检测试剂,其特征在于,
四甲基乙二胺与丙烯酰胺的体积质量比为0.3mL:4g;
过硫酸铵溶液与丙烯酰胺的体积质量比为0.5mL:4g,过硫酸铵溶液的质量百分比为5wt%。
5.根据权利要求1所述的金属离子检测试剂,其特征在于,所述洗涤的条件为:超纯水中超滤18~36小时。
6.一种采用权利要求1-5任一项所述金属离子检测试剂检测金属离子的方法,其特征在于,至少包括以下步骤:
S1、取待测溶液滴加在所述金属离子检测试剂的表面;所述金属离子检测试剂与待测溶液的体积比为5~15:1;
S2、15~25℃反应10~30分钟,用酶标仪读取水凝胶的吸光度;
S3、比较在显色剂紫外吸收峰处的吸光度值与显色剂与金属离子结合后紫外吸收峰处的吸光度值之间的比值,对数据进行分析。
7.根据权利要求6所述的方法,其特征在于,所述金属离子包括金离子、银离子、铜离子、铝离子、铁离子和铅离子。
CN202111333589.3A 2021-11-11 2021-11-11 壳聚糖聚丙烯酰胺复合多孔水凝胶、金属离子检测试剂及其制备方法和应用 Active CN113929819B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202111333589.3A CN113929819B (zh) 2021-11-11 2021-11-11 壳聚糖聚丙烯酰胺复合多孔水凝胶、金属离子检测试剂及其制备方法和应用
LU500961A LU500961B1 (en) 2021-11-11 2021-12-03 Chitosan polyacrylamide composite porous hydrogel and preparation method and application thereof and metal ion detection reagent
US17/592,566 US20230147119A1 (en) 2021-11-11 2022-02-04 Chitosan-polyacrylamide composite porous hydrogel, preparation and use thereof, and metal ion-detecting reagent and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111333589.3A CN113929819B (zh) 2021-11-11 2021-11-11 壳聚糖聚丙烯酰胺复合多孔水凝胶、金属离子检测试剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113929819A CN113929819A (zh) 2022-01-14
CN113929819B true CN113929819B (zh) 2024-01-09

Family

ID=79286290

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111333589.3A Active CN113929819B (zh) 2021-11-11 2021-11-11 壳聚糖聚丙烯酰胺复合多孔水凝胶、金属离子检测试剂及其制备方法和应用

Country Status (3)

Country Link
US (1) US20230147119A1 (zh)
CN (1) CN113929819B (zh)
LU (1) LU500961B1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114716692B (zh) * 2022-03-14 2023-12-19 青岛大学 一种梯度聚电解质水凝胶的制备方法和应用
CN117510855B (zh) * 2023-11-09 2024-04-23 广州雷斯曼新材料科技有限公司 一种高纯度二甲基硅油及其制备方法与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999026670A1 (en) * 1997-11-25 1999-06-03 Kimberly-Clark Worldwide, Inc. Absorbent foam
US5948829A (en) * 1997-11-25 1999-09-07 Kimberly-Clark Worldwide, Inc. Process for preparing an absorbent foam
WO2003089506A1 (en) * 2002-04-22 2003-10-30 Purdue Research Foundation Hydrogels having enhanced elasticity and mechanical strength properties
WO2011034327A2 (ko) * 2009-09-15 2011-03-24 한밭대학교 산학협력단 키토산을 함유하는 수처리용 흡착제 및 이의 제조방법
JP2014070288A (ja) * 2012-09-27 2014-04-21 Kao Corp 薄葉紙
WO2015046473A1 (ja) * 2013-09-27 2015-04-02 株式会社カネカ アルカリ水溶液を用いた多孔質セルロースビーズの製造方法、リガンド固定化用担体および吸着体
CN109749095A (zh) * 2018-12-19 2019-05-14 武汉理工大学 一种壳聚糖衍生物自愈水凝胶及其制备方法和应用
CN110294858A (zh) * 2019-06-25 2019-10-01 常州大学 一种可顺序检测阴离子、金属阳离子以及染料分子的水凝胶传感膜及其制备方法
CN110591002A (zh) * 2019-07-11 2019-12-20 郑州轻工业学院 一种多功能壳聚糖复合水凝胶及其制备方法和用途

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154416A (ja) * 2003-10-31 2005-06-16 Fuji Photo Film Co Ltd 核酸の分離精製方法、核酸分離精製カートリッジ、及び核酸分離精製キット
TW200517128A (en) * 2003-11-17 2005-06-01 China Testile Inst Micro-particles of hydrogel containing polysaccharide or its derivatives composition and method for preparing the same
CN107050502B (zh) * 2016-12-20 2018-11-27 欣乐加生物科技有限公司 一种超吸水性高分子水凝胶干胶海绵及其制备方法和用途

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999026670A1 (en) * 1997-11-25 1999-06-03 Kimberly-Clark Worldwide, Inc. Absorbent foam
US5948829A (en) * 1997-11-25 1999-09-07 Kimberly-Clark Worldwide, Inc. Process for preparing an absorbent foam
WO2003089506A1 (en) * 2002-04-22 2003-10-30 Purdue Research Foundation Hydrogels having enhanced elasticity and mechanical strength properties
WO2011034327A2 (ko) * 2009-09-15 2011-03-24 한밭대학교 산학협력단 키토산을 함유하는 수처리용 흡착제 및 이의 제조방법
JP2014070288A (ja) * 2012-09-27 2014-04-21 Kao Corp 薄葉紙
WO2015046473A1 (ja) * 2013-09-27 2015-04-02 株式会社カネカ アルカリ水溶液を用いた多孔質セルロースビーズの製造方法、リガンド固定化用担体および吸着体
CN109749095A (zh) * 2018-12-19 2019-05-14 武汉理工大学 一种壳聚糖衍生物自愈水凝胶及其制备方法和应用
CN110294858A (zh) * 2019-06-25 2019-10-01 常州大学 一种可顺序检测阴离子、金属阳离子以及染料分子的水凝胶传感膜及其制备方法
CN110591002A (zh) * 2019-07-11 2019-12-20 郑州轻工业学院 一种多功能壳聚糖复合水凝胶及其制备方法和用途

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Interference of EDTA in the treatment of metal plating wastewater by biosorption;Izquierdo, M;JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY;第88卷(第4期);606-614 *
季申.中药和天然药物有害残留物检测技术.上海科学技术出版社,2017,(第1版),149-150. *
戴桦根.基础化学.中国纺织出版社,2005,(第1版),153-155. *
蚕蛹壳聚糖复合止血材料的制备及凝血性能初探;陈超;单其艳;杨铭;蓝广芊;吴大洋;;丝绸(第06期);26-30 *

Also Published As

Publication number Publication date
US20230147119A1 (en) 2023-05-11
LU500961B1 (en) 2022-06-03
CN113929819A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
CN113929819B (zh) 壳聚糖聚丙烯酰胺复合多孔水凝胶、金属离子检测试剂及其制备方法和应用
Daraei et al. Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu (II) removal from water
Lee et al. Equilibrium and kinetic studies of copper (II) ion uptake by chitosan-tripolyphosphate chelating resin
Annadurai et al. Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis
Chiou et al. Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads
Duran et al. Poly (vinyl pyridine-poly ethylene glycol methacrylate-ethylene glycol dimethacrylate) beads for heavy metal removal
Bayramoglu et al. Synthesis of Cr (VI)-imprinted poly (4-vinyl pyridine-co-hydroxyethyl methacrylate) particles: its adsorption propensity to Cr (VI)
CN109174023B (zh) 一种纳米纤维素交联石墨烯/壳聚糖气凝胶及其制备方法、应用
Denizli et al. Metal-complexing ligand methacryloylamidocysteine containing polymer beads for Cd (II) removal
CN108579709B (zh) 一种用于海水提铀的多孔结构弹性复合材料及其制备方法
Jiang et al. Effect of solvent/monomer feed ratio on the structure and adsorption properties of Cu2+-imprinted microporous polymer particles
CN111171199A (zh) 用于清除水体中全氟污染物的吸附树脂及其制备和应用
CN112547022B (zh) 一种负载活性炭的壳聚糖柔性复合薄膜材料及其制备方法与应用
Karadağ et al. Application of highly swollen novel biosorbent hydrogels in uptake of uranyl ions from aqueous solutions
Zhang et al. Tough poly (L-DOPA)-containing double network hydrogel beads with high capacity of dye adsorption
Zhao et al. Preparation of microgel/sodium alginate composite granular hydrogels and their Cu 2+ adsorption properties
US20030101521A1 (en) Method of adsorbing dye in aqueous solution by chemical cross-linked chitosan beads
CN113388154A (zh) 一种生物可降解且具有吸附功能的亲水疏油泡沫
Say et al. Preparation of poly (hydroxyethyl methacrylate-co-methacrylamidohistidine) beads and its design as a affinity adsorbent for Cu (II) removal from aqueous solutions
CN113351181A (zh) 一种多吸附且具有油水分离功能的生物可降解泡沫
Li et al. Sustainably closed loop recycling of hierarchically porous polymer microbeads for efficient removal of cationic dyes
Lin et al. A multifunctional polyacrylamide/chitosan hydrogel for dyes adsorption and metal ions detection in water
CN111036179A (zh) 复合水凝胶及制备方法
Lin et al. A pH-sensitive xylan-based superabsorbent hydrogel for the removal of methylene blue from water
CN112973651B (zh) 一种循环再生水处理吸附材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant