CN113351181A - 一种多吸附且具有油水分离功能的生物可降解泡沫 - Google Patents

一种多吸附且具有油水分离功能的生物可降解泡沫 Download PDF

Info

Publication number
CN113351181A
CN113351181A CN202110658170.9A CN202110658170A CN113351181A CN 113351181 A CN113351181 A CN 113351181A CN 202110658170 A CN202110658170 A CN 202110658170A CN 113351181 A CN113351181 A CN 113351181A
Authority
CN
China
Prior art keywords
cationic
solution
foam
pbat
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110658170.9A
Other languages
English (en)
Other versions
CN113351181B (zh
Inventor
张殿奇
张振秀
邱丽雁
张昕
孙晨曦
田翔远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202110658170.9A priority Critical patent/CN113351181B/zh
Publication of CN113351181A publication Critical patent/CN113351181A/zh
Application granted granted Critical
Publication of CN113351181B publication Critical patent/CN113351181B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0202Separation of non-miscible liquids by ab- or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明提供一种多吸附且具有油水分离功能的生物可降解泡沫,以铁柱撑阳离子型层状硅酸盐粘土为吸附剂,将吸附剂掺杂到添加了糖的PBAT相分离液中,得到铁柱撑阳离子型硅酸盐粘土掺杂的PBAT开孔泡沫,之后在其表面涂覆PAM/SiO2亲水涂层,得到超亲水开孔泡沫。此泡沫材料亲水疏油、质轻,能去除水中的亚甲基蓝和铜离子等阳离子型水体污染物,此泡沫由于铁离子的存在,具备光降解反应,使得其在吸附后还能光降解,具有较好的循环吸附功能,可以反复使用,同时此泡沫可生物降解,当丧失吸附能力后易于降解,且不污染环境,具有广阔的使用价值。

Description

一种多吸附且具有油水分离功能的生物可降解泡沫
技术领域
本发明属于高分子材料领域,具体涉及一种可以吸附染料、吸附重金属离子,且具有油水分离功能的生物可降解泡沫。
技术背景
工业化发展在给我们的生活带来便利的同时,也给环境带来了严重的危害,其中以水污染最为明显,而废水中的有毒有害物质又以染料,重金属离子最为常见。含染料、重金属离子和油类的水污染物由于其多数有毒、不可生物降解,肆意排放会危害动植物,还会通过生物蓄积对人体健康产生威胁。现如今,已有许多方法来去除水中的污染物。
专利CN108855233A公开了一种能光降解染料微流控制备载铜纳米二氧化钛壳聚糖复合微球的方法。CN110743514A公开一种染料吸附剂PVA/ZSM-5凝胶珠的制备方法。专利CN108905972A提供了一种重金属离子吸附剂及其制备方法和应用。将水溶性铁盐和碳材料在水中混合,得到混合溶液;在氮气保护下,将硼氢化钠水溶液滴加到上述混合溶液中进行还原反应,得到掺杂零价铁的改性碳材料;再用空气将掺杂零价铁的改性碳材料进行氧化,得到重金属离子吸附剂。专利CN109289812A公开了一种基于木质纤维的纸基吸附剂的制备方法,专利CN107570127A报道了一种石墨烯基油水分离泡沫材料及其制备方法和应用,得到的石墨烯基油水分离泡沫材料能够选择性吸附、富集水面浮油,对油品和有机污染物的回收效率高。
在这些专利中,专利CN108855233A中的非磁性粉末类吸附剂难回收,专利CN110743514A中的凝胶类吸附剂强度低、易破损,专利CN107570127A中的密胺泡沫、聚乙烯醇泡沫、聚氨酯泡沫和金属泡沫在使用后不可生物降解。因此同时具备能吸附水中的染料和重金属离子且能亲水疏油的生物可降解泡沫有很大的应用前景。
发明内容
本发明针对现有染料吸附材料不好回收,功能单一且不可生物降解的问题,提供一种多吸附且具有油水分离功能的生物可降解泡沫。
本发明以生物可降解材料PBAT为骨架材料,通过将铁柱撑阳离子型层状硅酸盐粘土掺杂到PBAT泡沫中赋予其去除废水中阳离子型污染物的能力,然后将聚丙烯酰胺(PAM)/二氧化硅溶胶(SiO2)涂覆在铁柱撑阳离子型层状硅酸盐粘土掺杂的PBAT开孔泡沫表面来提高泡沫的亲水性,使得最终的改性泡沫可以亲水疏油,用于油水分离,可以去除水中的亚甲基蓝(MB)和铜离子(Cu2+),此泡沫由于有铁离子的掺杂,有光降解反应的存在,具有较好的循环吸附功能。
本发明的目的通过以下技术方案实现:
一种多吸附且具有油水分离功能的生物可降解泡沫,其特征在于,此生物可降解泡沫是表面改性的铁柱撑阳离子型层状硅酸盐粘土掺杂的PBAT开孔泡沫,超亲水且疏油,能吸附水中亚甲基蓝染料和铜离子等阳离子型水体污染物,使用后通过光降解反应进行循环吸附;其制备过程如下:
(1)铁柱撑阳离子型层状硅酸盐粘土的制备:首先,将九水合硝酸铁和碳酸钠分别在室温下溶于去离子水中,然后,缓慢地将碳酸钠溶液滴加到硝酸铁溶液中,搅拌2~4h后在室温下静置24-72h后得铁柱撑液;然后,取阳离子型层状硅酸盐粘土分散到去离子水中溶胀12h,在80℃水浴搅拌下,将铁柱撑液缓慢倒入阳离子型层状硅酸盐粘土的分散液中持续搅拌12~24小时,之后通过离心、洗涤、干燥、研磨,过筛,得到需要的铁柱撑阳离子型层状硅酸盐粘土;
(2)铁柱撑阳离子型层状硅酸盐粘土掺杂的PBAT开孔泡沫的制备:先将PBAT完全溶解于良溶剂中,在快速搅拌的过程中缓慢滴加不良溶剂,待溶液由透明转为乳白色发生相分离时,加入铁柱撑阳离子型层状硅酸盐粘土,搅拌均匀后加入糖填满相分离液,室温静置12~24h,再用无水乙醇置换2~3次,待溶剂挥发完全后,用50~70℃的水多次浸泡,洗去泡沫内部的糖,即得铁柱撑阳离子型层状硅酸盐粘土掺杂的PBAT开孔泡沫;
(3)铁柱撑阳离子型层状硅酸盐粘土掺杂的PBAT开孔泡沫的表面处理:选取PAM/SiO2复合溶液为处理液,将疏水吸油的泡沫变成超亲水泡沫;分别配置制等质量分数的PAM和SiO2溶液,然后混合搅拌1h后,将铁柱撑阳离子型层状硅酸盐粘土掺杂的PBAT开孔泡沫浸泡在PAM/SiO2混合溶液中24h,最后将涂覆有PAM/SiO2的泡沫在60℃下干燥,由此制得超亲水型铁柱撑阳离子型层状硅酸盐粘土掺杂的PBAT开孔泡沫。
其中,所述步骤(1)中九水合硝酸铁和碳酸钠的摩尔比为Na+:Fe3+=1:1,;阳离子型层状硅酸盐粘土可以为膨润土(或蒙脱土)、累托石、蛭石中的任一种,配成质量分数为1~2%的阳离子型层状硅酸盐粘土分散液;保证Fe3+:粘土=10mmol/g。
其中,所述步骤(1)中碳酸钠溶液滴加到硝酸铁溶液中的速度为0.5-2mL/min。
其中,所述步骤(2)中PBAT溶液的质量浓度为8%~15%;所述良溶剂为甲苯、二甲苯、二氯甲烷、三氯甲烷中的任一种;所述不良溶剂为正己烷、甲醇,正丁醇、无水乙醇中的一种或几种。
其中,所述步骤(2)中铁柱撑阳离子型层状硅酸盐粘土与PBAT的质量配比为1:9–1:1。
其中,所述步骤(3)中PAM的质量份数为0.5%~1%;Si O2溶液的质量分数0.5%~1%,然后将两者等体积混合。
其中,所述步骤(3)中改性后的铁柱撑阳离子型层状硅酸盐粘土掺杂的PBAT开孔泡沫的接触角为0°~5°。
对于所得到的PAM/SiO2涂覆的铁柱撑阳离子型层状硅酸盐粘土掺杂的PBAT开孔泡沫的测试手段如下:
静态吸附实验:分别配置不同浓度(10,20,30,40,50mg/l)的MB和Cu2+溶液,保证吸附剂的质量和溶液体积比为1:1,统一取10mL吸附剂和10mL待吸液进行吸附实验的研究。通过紫外可见分光光度计测量残留液的吸光度,并通过标准溶液测定的曲线计算其浓度,再计算吸附量。
循环使用实验:避光条件下进行染料的吸附实验,将吸附完MB的PBAT泡沫加入到稀释的H2O2溶液中,在太阳光下照射6h来降解MB;将载有Cu2+的PBAT泡沫加入到HCl/HNO3洗脱液中,然后在室温下搅拌3h来析出Cu2+。解吸后,将PBAT泡沫洗涤并于50℃真空干燥以供循环使用。
接触角实验:在室温条件下,以水作为测试液滴,利用光学接触角测量仪测定改性处理前后PLA开孔泡沫的接触角,测量时水滴的体积大小约为5.0μL,每个测试表面上取3个不同的位置作测试点,最后取这三个结果的均值为最终接触角。
与现有技术相比,本发明具有以下优点:
(1)以PAM/SiO2涂覆的铁柱撑阳离子型层状硅酸盐粘土掺杂的PBAT开孔泡沫作为吸附材料,将吸附剂粘土与PBAT开孔泡沫原位结合,有效的实现了粉体材料的固定化,可以解决单独使用粉体材料存在的不好回收的问题。
(2)PAM/SiO2涂覆的铁柱撑阳离子型层状硅酸盐粘土掺杂的PBAT开孔泡沫可以完全生物降解。
(3)PAM/SiO2涂覆的铁柱撑阳离子型层状硅酸盐粘土掺杂的PBAT开孔泡沫可去除阳离子染料MB和重金属离子Cu2+
(4)PAM/SiO2涂覆的铁柱撑阳离子型层状硅酸盐粘土掺杂的PBAT开孔泡沫能循环使用,在吸附循环反应中对阳离子污染物进行光降解。
(5)PAM/SiO2涂覆的铁柱撑阳离子型层状硅酸盐粘土掺杂的PBAT开孔泡沫具有超亲水性,可用于油水分离。
附图说明
图1是实施例1中PAM/SiO2涂覆的铁柱撑膨润土掺杂的PBAT开孔泡沫的扫描电子显微镜图片;
图2是实施例1中PAM/SiO2涂覆前后铁柱撑膨润土掺杂的PBAT开孔泡沫的接触角;
图3是实施例1中在40℃水中MB和Cu2+的初始浓度对PAM/SiO2涂覆铁柱撑膨润土掺杂的PBAT开孔泡沫吸附量的影响;
图4是实施例1中温度对PAM/SiO2涂覆铁柱撑膨润土掺杂的PBAT开孔泡沫吸附MB和Cu2+的影响;
图5是实施例1中pH值对PAM/SiO2涂覆铁柱撑膨润土掺杂的PBAT开孔泡沫吸附MB的影响;
图6是实施例1中pH值对PAM/SiO2涂覆铁柱撑膨润土掺杂的PBAT开孔泡沫吸附Cu2+的影响;
图7是实施例1中吸附时间对PAM/SiO2涂覆铁柱撑膨润土掺杂的PBAT开孔泡沫吸附MB和Cu2+的影响;
图8是实施例1中PAM/SiO2涂覆铁柱撑膨润土掺杂的PBAT开孔泡沫对MB和Cu2+的循环吸附能力;
图9是实施例3中PAM/SiO2涂覆铁柱撑膨润土掺杂的PBAT开孔泡沫的扫描电子显微镜图片;
图10是实施例4中PAM/SiO2涂覆铁柱撑累托石掺杂的PBAT开孔泡沫的扫描电子显微镜图片。
具体实施方式
下面结合实施例对本发明作进一步说明。
实施例1:
(1)铁柱撑膨润土的制备:将16.16g九水合硝酸铁和2.12g碳酸钠分别溶于100mL的去离子水,然后在80℃水浴搅拌下,以1mL/min的速度缓慢地将碳酸钠溶液滴加到硝酸铁溶液中,搅拌2小时后置于室温,静置72h后得铁柱撑液;配置质量分数为2%的膨润土去离子水分散液400mL,让膨润土在去离子水中溶胀12h;待铁柱撑液和溶胀后膨润土分散液都制备好后,在80℃水浴搅拌下,将铁柱撑液缓慢倒入膨润土的分散液中持续搅拌24小时,再将铁柱撑产物置于离心机中离心,弃去上层清液,底层物质继续用去离子水洗涤,如此反复洗涤至上清液显中性。最后将洗涤后的铁柱撑产物放到烘箱中烘干,研磨过筛,得到需要的铁柱撑膨润土。
(2)50wt%铁柱撑膨润土掺杂的PBAT开孔泡沫的制备:先将0.822g PBAT完全溶解于5mL三氯甲烷中,再在快速搅拌的过程中缓慢滴加4mL正己烷,待溶液由透明转为乳白色发生相分离时,加入0.411g铁柱撑膨润土,搅拌均匀后加入糖来填满相分离液,室温静置12h,再用无水乙醇置换三次,待溶剂挥发完全后,用60℃的水多次浸泡,洗去泡沫内部的糖,即得到50wt%铁柱撑膨润土掺杂的PBAT开孔泡沫。
(3)铁柱撑膨润土掺杂的PBAT开孔泡沫的表面处理:选取PAM/SiO2复合溶液为处理液,改变泡沫表面的疏水性。称取0.2g PAM溶于19.8g去离子水中,均匀搅拌1h后得到溶液,再配制质量分数为1%的SiO2溶液。将铁柱撑膨润土掺杂的PBAT开孔泡沫浸泡在等体积混合的PAM/SiO2混合溶液中24h,最后将涂覆完全的泡沫在60℃下干燥4h,由此制得PAM/SiO2涂覆的铁柱撑膨润土掺杂的PBAT开孔泡沫。测试了PAM/SiO2涂覆前后铁柱撑膨润土掺杂的PBAT开孔泡沫的接触角,见图2;
之后系统研究了此泡沫对水中亚甲基蓝(MB)和铜离子(Cu2+)的吸附性能。
在40℃水中MB(pH=5)和Cu2+(pH=5.85)初始浓度对PAM/SiO2涂覆铁柱撑膨润土掺杂的PBAT开孔泡沫吸附量的影响,见图3;
温度对PAM/SiO2涂覆铁柱撑膨润土掺杂的PBAT开孔泡沫吸附MB(pH=5)和Cu2+(pH=5.85)的影响,见图4;
pH值对PAM/SiO2涂覆铁柱撑膨润土掺杂的PBAT开孔泡沫吸附MB的影响,见图5;
pH值对PAM/SiO2涂覆铁柱撑膨润土掺杂的PBAT开孔泡沫吸附Cu2+的影响,见图6;
吸附时间对PAM/SiO2涂覆铁柱撑膨润土掺杂的PBAT开孔泡沫吸附MB(pH=5)和Cu2 +(pH=5.85)的影响,见图7;
PAM/SiO2涂覆铁柱撑膨润土掺杂的PBAT开孔泡沫对MB和Cu2+的循环吸附能力,见图8。
实施例2:
(1)铁柱撑膨润土的制备:同实施例1步骤(1)。
(2)30wt%铁柱撑膨润土掺杂的PBAT开孔泡沫的制备:先将0.822g PBAT完全溶解于5mL三氯甲烷中,再在快速搅拌的过程中缓慢滴加4mL正己烷,待溶液由透明转为乳白色发生相分离时,加入0.246g铁柱撑膨润土,搅拌均匀后加入糖来填满相分离液,室温静置12h,再用无水乙醇置换三次,待溶剂挥发完全后,用60℃的水多次浸泡,洗去泡沫内部的糖,即得到30wt%铁柱撑膨润土掺杂的PBAT开孔泡沫。
(3)铁柱撑膨润土掺杂的PBAT开孔泡沫的表面处理:同实施例1步骤(3)。
实施例3:
(1)铁柱撑膨润土的制备:同实施例1步骤(1)。
(2)10wt%铁柱撑膨润土掺杂的PBAT开孔泡沫的制备:先将0.822g PBAT完全溶解于5mL三氯甲烷中,再在快速搅拌的过程中缓慢滴加4mL正己烷,待溶液由透明转为乳白色发生相分离时,加入0.082g铁柱撑膨润土,搅拌均匀后加入糖来填满相分离液,室温静置12h,再用无水乙醇置换三次,待溶剂挥发完全后,用60℃的水多次浸泡,洗去泡沫内部的糖,即得到10wt%铁柱撑膨润土掺杂的PBAT开孔泡沫。
(3)铁柱撑膨润土掺杂的PBAT开孔泡沫的表面处理:同实施例1步骤(3)。
实施例4:
(1)铁柱撑累托石的制备:将16.16g九水合硝酸铁和2.12g碳酸钠分别溶于100mL的去离子水,然后在80℃水浴搅拌下,以1mL/min的速度将碳酸钠溶液滴加到硝酸铁溶液中,搅拌2小时后置于室温,静置3天后得铁柱撑液。配置质量分数为2%的累托石去离子水分散液400mL,让累托石在去离子水中溶胀12h。待铁柱撑液和累托石分散液都制备好后,在80℃水浴搅拌下,将铁柱撑液缓慢倒入累托石的分散液中持续搅拌24小时,再将铁柱撑产物置于离心机中离心,弃去上层清液,底层物质继续用去离子水洗涤,如此反复洗涤至上清液显中性。最后将洗涤后的铁柱撑产物烘干,研磨过筛,得到需要的铁柱撑累托石。
(2)50wt%铁柱撑累托石掺杂的PBAT开孔泡沫的制备:同实施例1步骤(2)。
(3)铁柱撑累托石掺杂的PBAT开孔泡沫的表面处理:同实施例1步骤(3)。
表1实施例1-实施例4的吸附能力
Figure BDA0003114039120000071
表2实施例1的循环吸附能力
Figure BDA0003114039120000072

Claims (7)

1.一种多吸附且具有油水分离功能的生物可降解泡沫,其特征在于,此生物可降解泡沫是表面改性的铁柱撑阳离子型层状硅酸盐粘土掺杂的PBAT开孔泡沫,超亲水且疏油,能吸附水中亚甲基蓝和铜离子等阳离子型水体污染物,使用后通过光降解反应进行循环吸附;其制备过程如下:
(1)铁柱撑阳离子型层状硅酸盐粘土的制备:首先,将九水合硝酸铁和碳酸钠分别在室温下溶于去离子水中,然后,缓慢地将碳酸钠溶液滴加到硝酸铁溶液中,搅拌2~4h后静置24-72h后得铁柱撑液;然后,取阳离子型层状硅酸盐粘土分散到去离子水中溶胀12h,在80℃水浴搅拌下,将铁柱撑液缓慢倒入阳离子型层状硅酸盐粘土的分散液中持续搅拌12~24小时,之后通过离心、洗涤、干燥、研磨,过筛,得到铁柱撑阳离子型层状硅酸盐粘土;
(2)铁柱撑阳离子型层状硅酸盐粘土掺杂的PBAT开孔泡沫的制备:先将PBAT完全溶解于良溶剂中,在快速搅拌的过程中缓慢滴加不良溶剂,待溶液由透明转为乳白色发生相分离时,加入铁柱撑阳离子型层状硅酸盐粘土,搅拌均匀后加入糖填满相分离液,室温静置12~24h,再用无水乙醇置换2~3次,待溶剂挥发完全后,用40~70℃的水多次浸泡,洗去泡沫内部的糖,即得铁柱撑阳离子型层状硅酸盐粘土掺杂的PBAT开孔泡沫;
(3)铁柱撑阳离子型层状硅酸盐粘土掺杂的PBAT开孔泡沫的表面处理:选取PAM/SiO2复合溶液为处理液,将疏水吸油的泡沫变成超亲水泡沫;分别配置制等质量分数的PAM和SiO2溶液,然后混合搅拌1h后,将铁柱撑阳离子型层状硅酸盐粘土掺杂的PBAT开孔泡沫浸泡在PAM/SiO2混合溶液中24h,最后将涂覆有PAM/SiO2的泡沫在60℃下干燥,由此制得超亲水的铁柱撑阳离子型层状硅酸盐粘土掺杂的PBAT开孔泡沫。
2.根据权利要求书1所述的一种多吸附且具有油水分离功能的生物可降解泡沫,其特征在于,所述步骤(1)中九水合硝酸铁和碳酸钠的摩尔比为Na+:Fe3+=1:1;阳离子型层状硅酸盐粘土可以为膨润土(或蒙脱土)、累托石、蛭石中的任一种,配成质量分数为1~2%的阳离子型层状硅酸盐粘土分散液;保证Fe3+:粘土=10mmol/g。
3.根据权利要求书1所述的一种多吸附且具有油水分离功能的生物可降解泡沫,其特征在于,所述步骤(1)中碳酸钠溶液滴加到硝酸铁溶液中的速度为0.5-2ml/min。
4.根据权利要求书1所述的一种多吸附且具有油水分离功能的生物可降解泡沫,其特征在于,所述步骤(2)中PBAT溶液的质量浓度为8%~15%;所述良溶剂为甲苯、二甲苯、二氯甲烷、三氯甲烷中的任一种;所述不良溶剂为正己烷、甲醇,正丁醇、无水乙醇中的一种或几种。
5.根据权利要求书1所述的一种多吸附且具有油水分离功能的生物可降解泡沫,其特征在于,所述步骤(2)中铁柱撑阳离子型层状硅酸盐粘土与PBAT的质量比为1:9–1:1。
6.根据权利要求书1所述的一种多吸附且具有油水分离功能的生物可降解泡沫,其特征在于,所述步骤(3)中PAM的质量份数为0.5%~1%;Si O2溶液的质量分数0.5%~1%,然后将两者等体积混合得到PAM/SiO2混合溶液。
7.根据权利要求书1所述的一种多吸附且具有油水分离功能的生物可降解泡沫,其特征在于,所述步骤(3)中涂覆有PAM/SiO2的铁柱撑阳离子型层状硅酸盐粘土掺杂的PBAT开孔泡沫的接触角为0°~5°。
CN202110658170.9A 2021-06-15 2021-06-15 一种多吸附且具有油水分离功能的生物可降解泡沫 Active CN113351181B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110658170.9A CN113351181B (zh) 2021-06-15 2021-06-15 一种多吸附且具有油水分离功能的生物可降解泡沫

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110658170.9A CN113351181B (zh) 2021-06-15 2021-06-15 一种多吸附且具有油水分离功能的生物可降解泡沫

Publications (2)

Publication Number Publication Date
CN113351181A true CN113351181A (zh) 2021-09-07
CN113351181B CN113351181B (zh) 2023-08-11

Family

ID=77534080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110658170.9A Active CN113351181B (zh) 2021-06-15 2021-06-15 一种多吸附且具有油水分离功能的生物可降解泡沫

Country Status (1)

Country Link
CN (1) CN113351181B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114345306A (zh) * 2021-12-10 2022-04-15 吉林省电力科学研究院有限公司 一种亲水型带正电乳液分离材料的制备方法
CN115084420A (zh) * 2022-07-19 2022-09-20 中科南京绿色制造产业创新研究院 一种铁柱撑蒙脱土电极保护材料及其制备方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101456966A (zh) * 2009-01-08 2009-06-17 上海交通大学 生物降解高分子复合发泡材料的制备方法
CN102173857A (zh) * 2010-12-20 2011-09-07 中钢集团洛阳耐火材料研究院有限公司 一种莫来石网孔泡沫陶瓷过滤器的制备方法
WO2011110711A1 (es) * 2010-03-08 2011-09-15 Consejo Superior De Investigaciones Científicas (Csic) Procedimiento de obtención de materiales con comportamiento superparamagnético
CN103100309A (zh) * 2013-01-28 2013-05-15 西北农林科技大学 用于水溶液中重金属离子Cr(VI)去除的多孔不锈钢基铁氧化物膜的制备方法
CN106987100A (zh) * 2017-03-17 2017-07-28 天津理工大学 一种聚(对苯二甲酸丁二醇‑co‑己二酸丁二醇)酯基复合材料的制备方法
CN110240218A (zh) * 2019-07-20 2019-09-17 福建师范大学 一种免加外金属盐合成3D骨架@MOFs水处理器件的制备方法
CN110813252A (zh) * 2019-11-08 2020-02-21 湖北中烟工业有限责任公司 多孔矿物粘土负载聚丙烯酰胺的液相吸附材料及其应用
CN112812515A (zh) * 2020-12-31 2021-05-18 浙江工业大学 一种可降解发泡材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101456966A (zh) * 2009-01-08 2009-06-17 上海交通大学 生物降解高分子复合发泡材料的制备方法
WO2011110711A1 (es) * 2010-03-08 2011-09-15 Consejo Superior De Investigaciones Científicas (Csic) Procedimiento de obtención de materiales con comportamiento superparamagnético
CN102173857A (zh) * 2010-12-20 2011-09-07 中钢集团洛阳耐火材料研究院有限公司 一种莫来石网孔泡沫陶瓷过滤器的制备方法
CN103100309A (zh) * 2013-01-28 2013-05-15 西北农林科技大学 用于水溶液中重金属离子Cr(VI)去除的多孔不锈钢基铁氧化物膜的制备方法
CN106987100A (zh) * 2017-03-17 2017-07-28 天津理工大学 一种聚(对苯二甲酸丁二醇‑co‑己二酸丁二醇)酯基复合材料的制备方法
CN110240218A (zh) * 2019-07-20 2019-09-17 福建师范大学 一种免加外金属盐合成3D骨架@MOFs水处理器件的制备方法
CN110813252A (zh) * 2019-11-08 2020-02-21 湖北中烟工业有限责任公司 多孔矿物粘土负载聚丙烯酰胺的液相吸附材料及其应用
CN112812515A (zh) * 2020-12-31 2021-05-18 浙江工业大学 一种可降解发泡材料及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
J.B.OLIVATO ET AL.: "Sepiolite as a promising nanoclay for nano-biocomposites based on starch and biodegradable polyester", 《MATERIALS SCIENCE AND ENGINEERING C》, vol. 70, pages 296 - 302, XP029780711, DOI: 10.1016/j.msec.2016.08.077 *
J.NICOLAS CABRERA ET AL.: "Membranes based on polyacrylamide coatings on metallic meshes prepared by a two-steps redox polymerization. Performance for oil-water separation and biofouling effects", 《SEPARATION AND PURIFICATION TECHNOLOGY》, vol. 247, pages 116966 *
KIKKU FUKUSHIMA ET AL.: "Biocompatibility of organically modified nanocomposites based on PBAT", 《JOURNAL OF POLYMER RESEARCH》, vol. 20, pages 302 *
NEETISH KUMAR MAURYA ET AL.: "Studies on behavior of suspension of silica nanoparticle in aqueous polyacrylamide solution for application in enhanced oil recovery", 《PETROLEUM SCIENCE AND TECHNOLOGY》, vol. 34, no. 5, pages 429 - 436 *
SYAHIDA FARHAN AZHA ET AL.: "Iron-modified composite adsorbent coating for azo dye removal and its regeneration by photo-Fenton process: Synthesis, characterization and adsorption mechanism interpretation", 《CHEMICAL ENGINEERING JOURNAL》, vol. 361, pages 31 - 40 *
赵悦等: "PBAT/PLA复合材料的微孔发泡性能", 《塑料》, vol. 48, no. 4, pages 44 - 48 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114345306A (zh) * 2021-12-10 2022-04-15 吉林省电力科学研究院有限公司 一种亲水型带正电乳液分离材料的制备方法
CN114345306B (zh) * 2021-12-10 2023-08-08 吉林省电力科学研究院有限公司 一种亲水型带正电乳液分离材料的制备方法
CN115084420A (zh) * 2022-07-19 2022-09-20 中科南京绿色制造产业创新研究院 一种铁柱撑蒙脱土电极保护材料及其制备方法与应用

Also Published As

Publication number Publication date
CN113351181B (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
Li et al. An environment-friendly and multi-functional absorbent from chitosan for organic pollutants and heavy metal ion
Jawad et al. Tuning of fly ash loading into chitosan-ethylene glycol diglycidyl ether composite for enhanced removal of reactive red 120 dye: optimization using the Box–Behnken design
Li et al. One-step fabrication of chitosan-Fe (OH) 3 beads for efficient adsorption of anionic dyes
Jawad et al. Cross-linked chitosan-glyoxal/kaolin clay composite: parametric optimization for color removal and COD reduction of remazol brilliant blue R dye
Liu et al. Rapid synthesis of a silsesquioxane-based disulfide-linked polymer for selective removal of cationic dyes from aqueous solutions
Deng et al. Polyacrylonitrile-based fiber modified with thiosemicarbazide by microwave irradiation and its adsorption behavior for Cd (II) and Pb (II)
Xu et al. Amidoxime modified polymers of intrinsic microporosity/alginate composite hydrogel beads for efficient adsorption of cationic dyes from aqueous solution
Tan et al. Development of immobilized microcrystalline cellulose as an effective adsorbent for methylene blue dye removal
Pal et al. Efficient and rapid adsorption characteristics of templating modified guar gum and silica nanocomposite toward removal of toxic reactive blue and Congo red dyes
Li et al. Preparation of polyaniline/reduced graphene oxide nanocomposite and its application in adsorption of aqueous Hg (II)
Annadurai et al. Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis
Liu et al. Preparation and characterization of ammonium-functionalized silica nanoparticle as a new adsorbent to remove methyl orange from aqueous solution
Dinu et al. Dual ionic cross-linked alginate/clinoptilolite composite microbeads with improved stability and enhanced sorption properties for methylene blue
Chen et al. Effective removal of methyl orange and rhodamine B from aqueous solution using furfural industrial processing waste: Furfural residue as an eco-friendly biosorbent
CN113351181A (zh) 一种多吸附且具有油水分离功能的生物可降解泡沫
Ren et al. Effective removal of dyes from aqueous solutions by a gelatin hydrogel
Liu et al. Adsorption of Reactive Blue 19 from aqueous solution by chitin nanofiber-/nanowhisker-based hydrogels
Jin et al. Functionalized polyurethane sponge based on dopamine derivative for facile and instantaneous clean-up of cationic dyes in a large scale
Liu et al. Fast and efficient phosphate removal on lanthanum-chitosan composite synthesized by controlling the amount of cross-linking agent
Mallakpour et al. Polyurethane sponge modified by alginate and activated carbon with abilities of oil absorption, and selective cationic and anionic dyes clean-up
Li et al. Key role of pore size in Cr (VI) removal by the composites of 3-dimentional mesoporous silica nanospheres wrapped with polyaniline
Gao et al. Removal of chromium (VI) and orange II from aqueous solution using magnetic polyetherimide/sugarcane bagasse
CN107262061A (zh) 一种基于石墨烯的重金属离子吸附材料及其制备方法
Zhao et al. Eco-friendly floatable foam hydrogel for the adsorption of heavy metal ions and use of the generated waste for the catalytic reduction of organic dyes
Li et al. A novel and simple pathway to synthesis of porous polyurea absorbent and its tests on dye adsorption and desorption

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant