JP6490979B2 - 水処理方法 - Google Patents

水処理方法 Download PDF

Info

Publication number
JP6490979B2
JP6490979B2 JP2015029247A JP2015029247A JP6490979B2 JP 6490979 B2 JP6490979 B2 JP 6490979B2 JP 2015029247 A JP2015029247 A JP 2015029247A JP 2015029247 A JP2015029247 A JP 2015029247A JP 6490979 B2 JP6490979 B2 JP 6490979B2
Authority
JP
Japan
Prior art keywords
oil
ozone
wastewater
treated
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015029247A
Other languages
English (en)
Other versions
JP2016150316A (ja
Inventor
英司 粟井
英司 粟井
和茂 川村
和茂 川村
武田 大
大 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP2015029247A priority Critical patent/JP6490979B2/ja
Publication of JP2016150316A publication Critical patent/JP2016150316A/ja
Application granted granted Critical
Publication of JP6490979B2 publication Critical patent/JP6490979B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、少なくとも油分を含む被処理排水を処理する水処理方法に関する。
油、浮遊物質(SS)は排出規制物質であり、これらを排水(被処理排水)から除去するために、数多く除去設備が設置されており、現在でも排水処理としてのコスト削減に向けた研究開発が行われている。
また、水資源の確保の観点から排水の再利用に向けた検討が進む中、脱塩を含む処理システム全体の中で油、SSの除去は前段処理として後段への影響が大きいことから注目されている。例えば石油精製工場や汚染土壌の浄化、随伴水の処理などが対象となる。
特に、海洋海底や陸上において原油やメタンガス等を採取する際に同伴して取り出される多量の「随伴水」は、「規制物質の投棄・排出の禁止、通報義務、その手続き等について規定するための国際条約とその議定書(正式名称は1973年の船舶による汚染の防止のための国際条約に関する1978年の議定書(海洋汚染防止条約もしくはマルポール73/78条約と呼ばれる))」に規定されている、油分などの物質が含まれているため、簡便で安価に処理することが求められている。さらに規制強化の動きがあり、
随伴水の処理コストが原油の生産価格を押し上げることが懸念されている。また、近年では再利用、高度処理が注目されている。
随伴水の処理では、一般的に随伴水に含まれる油分の含有状態に応じて異なる方法で処理することが行われている。具体的に説明すると、随伴水に含まれる油分は、目視確認できる程度に大きいサイズで液中や液上層に分散したり浮上したりしている状態(フリーオイル)、容易には目視確認できないサイズで液中に分散している状態(乳化オイル又はエマルジョンオイル)、水に溶解している状態(溶解オイル)の3つの含有状態に分類することができる。
これらのうち、フリーオイルは、比重差や相溶性の差を利用して物理的に分離する層分離法で概ね除去することができる。層分離法には、例えばAPI(American Petroleum Institute)オイルセパレータや、シェル社の技術で波型平行坂の採用によりオイルを効率よく重力分離できるCPI(Corrugated Plate Interceptor)セパレータなどを挙げることができる。しかしながら、乳化オイルと溶解オイルは、層分離法で除去することができない。
溶解オイルの場合は、酸化剤を添加することで分解除去することができるが、添加する酸化剤量が多くなる上、反応時間も長くなる。そのため、吸着法を単独あるいは他の処理法と併用して使用することが提案されている。この方法は、活性炭や無機素材を使って随伴水中の溶存有機物を吸着して脱着するものである。
また、乳化オイルの場合は、溶解オイルと同様に酸化剤の添加で分解除去することができるが、不溶状態で分離していることから、分解に要する酸化剤の量は溶解オイルより大幅に多くなる上、反応に長時間を必要とし、完全に分解できないこともある。そこで、凝集法や乳化オイル破壊法が提案されている。
凝集法は、凝固剤や凝集剤を被処理排水に添加して、遠心分離機等で油分と水分とを分離する方法であり、乳化オイル破壊法は油性の被処理排水に乳化破壊剤を添加して油分を分離する方法である。さらに、これら凝集法や乳化オイル破壊法に加えて、上記した吸着法が併用されることもある。
しかしながら、上述したような酸化剤や凝集剤を使用する従来の方法は、処理系内にシックナーや脱水器などの濾過操作の機器を設けることが必要であり、かつ随伴水等の被処理排水の処理量が膨大になると特に薬剤の使用量やそれに伴う廃棄物の発生量が多くなって処理費用が嵩むことが問題になっていた。
また、随伴水には、上述した油分の他、硫化物、浮遊物質(SS)、有害金属類、菌体微生物類が含まれている場合が考えられる。これら複数の処理対象物質を含む膨大な水量の随伴水を処理するためには、従来は複雑な処理システムが必要となる上、複数の薬剤の準備と大量の廃棄物の取り扱いが必要となり、設備費用や運転費用の増加が避けられなかった。
また、脱塩して灌水利用、河川放流などを目的とした排水処理方法がある。この方法では、油分、SSの除去に続いて逆浸透膜(RO)による脱塩を行うが、この逆浸透膜のファウリングが課題であり、膜洗浄、膜交換の頻度が高まり安定的な運転が継続できず、高価な薬剤を使用せざるを得ないという課題がある。さらに、膜以外でも、吸着材、イオン交換樹脂、膜フィルター、ファイバーフィルターを油分、SSの除去に続いて行う場合にはファウリングによる運転弊害が起こることが知られている。
このような問題を解消すべく、特許文献1に記載の技術が知られている。この技術は大量に取り出される随伴水を、薬剤の使用やそれに伴う廃棄物の発生によるコスト増を抑えながら簡便に処理する方法である。
この処理方法は、原油または天然ガスの産出に伴って取り出され、処理対象物質として少なくとも油分を含む随伴水の処理方法であり、オゾン含有ガスからなるマイクロナノバブルを随伴水に導入して乳化オイルを凝集させる凝集工程と、凝集した乳化オイルをスカムとして浮上分離させて浄化水を得る浮上分離工程とからなる処理方法であり、薬剤の使用やそれに伴う廃棄物の発生を抑えながら大量の随伴水を簡便に処理することが可能となる。
また、オゾン処理することによって、乳化オイルの処理だけでなく、随伴水に油分に加えて含まれ得る硫化物、浮遊物(SS)、有害金属類、菌体微生物類等を処理することができる。
なお、マイクロナノバブルとは、マイクロスケールのバブル径を有するいわゆるマイクロバブルおよびナノスケールのバブル径を有するいわゆるナノバブルのうちのいずれか一方、またはそれら両方を含むバブルのことを言うものとする。
特開2013−180213号公報
ところで、上述のオゾン含有ガスからなるマイクロナノバブルを被処理排水としての随伴水に導入して乳化オイルを凝集させる場合に、オゾンにより油分等を酸化分解して除去する場合に比較して、オゾンの使用量が少ないものとなる。
また、オゾンガスを用いる処理法は薬剤使用量が少なく廃棄物処理量も少ないことから、2次汚染の可能性が少ない、簡便で安価な方法として注目されている。
オゾン含有ガスのマイクロナノバブルを用いる方法では、オゾンによる乳化オイルの炭酸ガス等への酸化分解ではなく、乳化オイルの凝集を目的としているので、上述のようにオゾンの使用量を抑えることが可能である。しかし、オゾンガスは工業的には電気を用いた無声放電手段によって製造されることから、オゾン製造のための消費電力量が大きく、電力設備の拡張が必要となるなどから消費電力コストへの影響が大きい。そのため、オゾン含有ガスのマイクロナノバブルを用いる水処理においても、オゾン製造費用の削減が必須となっている。
また、排水中に含まれる油分や浮遊物質(SS)は排水処理上流の設備の状況によって濃度(含有量)、性状が変動し、排水の量も変動する。特に随伴水では、自然環境にある地層から排出されるものであり、排水量、排水中に含まれる油分や浮遊物質量の変動が大きいことが知られている。また、油ガスの掘削における生産量の増加を目的とした各種設備の変更や、各種設定の変更が行われた場合には、排水量、油量(乳化オイル量)、浮遊物質量がさらに大きく変動することになる。
このような変動に対して的確に対応するためには、例えば、排水量の増加や、排水に含まれる油分濃度の増加による排水処理の負荷の増大に対応する必要がある。この場合に、負荷の増大に対応して必要なオゾンの量が増大する可能性がある。
上述の排水に関する変動により、オゾンの使用量が増大する可能性がある場合に、オゾンの使用量の変動に対応可能なようにオゾンの生産量にある程度の余裕が必要となる。すなわち、オゾンの使用量の増大を想定して、オゾンの生産設備の生産能力を現状のオゾンの使用量より大きくしておく必要がある。
この場合に、オゾンの生産設備とそれに見合う電源設備が必要となり、設備コストが増加してしまう。また、例えば、排水が海底油ガス田の随伴水の場合に、リグ上や船舶上にオゾンの生産設備を設ける場合があるが、この場合に、設備の設置スペースに限界があり、オゾンの生産量の増加が難しい。
本発明は、前記事情に鑑みて為されたものであり、オゾン含有ガスを用いた油分を含む被処理排水の水処理に際し、オゾン生産量の設備制約があるなか当該被処理排水の水量、当該油分の濃度等の処理負荷に変動があっても、負荷の変動に比較的容易に対応可能な水処理方法を提供することを目的とする。
前記課題を解決するために、本発明の水処理方法は、少なくとも油分を含む被処理排水に、凝集剤を添加することなく、オゾンを含むガスを導入して前記油分を反応凝集させることにより、凝集した前記油分を浮上分離させる水処理方法において、
前記油分を前記オゾンにより反応凝集させる際に、前記被処理排水に酸を添加し、前記被処理排水のpHを、前記酸の添加前のpHからpH3.5までの範囲内でpHが下がるように調整することを特徴とする。
本発明者は、油分を含む被処理排水に、オゾンを含むガスを導入して油分を反応凝集させることにより、凝集した油分を浮上分離させる水処理方法において、酸の添加によりpHを低下させてオゾンを導入することで油分の除去率を向上させることを見出した。酸の添加による油分の除去率の向上を図れることから、例えば、油分の除去において、導入するオゾン量を増加することなく酸を添加することや、導入するオゾン量を低下させるとともに酸を添加することにより、油分の十分な除去が可能となる可能性がある。
オゾンを使用する場合に、オゾンの使用現場やその近傍にオゾン発生設備を設けてオゾンの使用分をその場で発生させるのが一般的であり、オゾンの使用量に対応した規模のオゾン発生設備を作成する必要がある。したがって、オゾンの使用量が多い場合に、それに対応してオゾン発生設備の規模が大きくなるとともに、オゾン発生設備での電気の使用量が多くなる。
上述のように酸を添加してpHを下げることにより、オゾンの使用量を増やすことなく、油分の除去率の向上を図れることから、オゾン発生設備の運転条件(オゾン量)とpHの調整によって油分除去性能を制御できる。導入するオゾン量の制御と添加する酸の量の制御を組み合わせることにより、処理設備(オゾン発生設備を含む)の規模と、処理設備の運転コスト(電力や添加する酸等のコスト)を最適化することが可能である。また、被処理排水における油分の量が変動し、油分が多くなる場合に、導入するオゾン量を増やすのではなく、酸の添加や、添加量の増加で対応することも可能であり、オゾン発生設備の規模に制限がある場合であっても、酸の添加により油分の量の変動に対応可能となる。
したがって、海底の油ガス田等に対応するために、船上での処理を想定したオゾン発生設備のコンパクト化や、オゾン発生設備の電力コストを含む処理費の低廉化を図ることが可能となる。また、油分含有量の増加傾向が認められたら、オゾン量を増加させてスムーズに応答させつつ、酸を添加して徐々にpHを下げて、その後にオゾン量を下げる方向で調整しながらオゾン発生設備を運転することが可能である。この場合に、使用するオゾン量を増加した際に、オゾン発生設備におけるオゾン発生量の上限に近づくことになるが、pHを低下させた後に、オゾン使用量を減らすことで、再びオゾン発生量の上限に対してオゾン使用量に余裕が生じることなり、オゾン発生設備を増強しなくとも、さらなる油分濃度の増加に対応可能となる。なお、酸の添加によるpHの低下により、被処理排水のSSの除去において、SSの増加に対応可能となる。
酸を添加する方法は、各槽に被処理排水を供給する配管にラインミキサーを設けて添加することが好ましい。槽への直接添加は液槽内の混合が必ずしも良好であるとは言えず、強制的に混合すると油分の浮上に支障が起こることからあまり好ましくない。
特に好ましいのは、マイクロバブルを生成するために、専断ノズル、エジェクターやポンプのキャビテーションを利用して、多量のオゾン含有ガスをマイクロバブル化して凝集工程に供給する場合、マイクロバブル化するために循環される排水中に酸添加することである。これであれば、十分な循環により十分な混合が早くできpHがより早く均一化できるためである。さらに酸添加によって、局部的にpHが下がることから、オゾンの自己分解が抑制されて、オゾンの有効利用率が向上する効果がある。
また、本発明の水処理方法は、少なくとも油分を含む被処理排水に、凝集剤を添加することなく、オゾンを含むガスを導入して前記油分を反応凝集させることにより、凝集した前記油分を浮上分離させる水処理方法において、
前記油分を前記オゾンにより反応凝集させる際に、所定の酸添加条件が成立した場合に、前記被処理排水に酸を添加し、前記被処理排水のpHを、前記酸の添加前のpHからpH3.5までの範囲内でpHが下がるように調整することを特徴とする。
このような構成によれば、所定の酸添加条件が成立した場合に被処理排水に酸が添加されて被処理排水のpHが低下するようにpHが調整される。
この場合に、オゾンを用いた油分の凝集分離において、オゾン量を増加しなくても、pHを下げることにより油分の除去能力を向上できるとともに、SS濃度の低下を図ることができる。したがって、上述のように被処理排水の油分濃度やSS濃度の上昇や被処理排水の水量の増大等の処理負荷が増加する変動に対して、被処理排水に酸を添加することにより、処理後の被処理排水の油分濃度やSS濃度が高くなるのを防止することができる。
一般的に排水処理は物理処理や生物処理が多く行われており、pHとしては原水そのもの、もしくは中性付近で行われることが多い。pHを変動すれば、放流時に中性付近に再調整する必要があり、コストアップ要因となるからである。特に、排水量が膨大である場合には、例えばpHを低下させるための酸や、pHを中性付近に戻すアルカリのコストが大きく経済的でない。
そこで、本発明では、酸添加条件が成立した場合に、被処理排水に酸を添加し、酸添加条件が成立しなければ、酸を添加しない。これにより、通常時に、酸の添加による処理コストの増大を避け、例えば、油分濃度の増大等の変動があった場合に、当該変動に対応して水処理能力の増強を図ることが可能になる。なお、酸添加条件とは、基本的に水処理の際の負荷の状況、例えば、油分やSS等の処理対象となる物質の濃度や量に係わるものであるが、例えば、水処理設備において、油分を含む被処理排水に加えて廃酸を処理する場合に、廃酸が供給されることを酸添加条件として、廃塩酸等の廃酸を被処理排水に添加するものとしてもよい。
本発明の前記構成において、所定の前記酸添加条件が前記被処理排水の前記油分の含有量が所定値以上になる場合であることが好ましい。
このような構成によれば、被処理排水の状態が変動し、油分濃度(油分含有量)、特に乳化オイルの濃度(含有量)が所定値以上となった場合に、酸が添加される。この場合に、酸の添加により、油分およびSSの除去効率が向上し、処理すべき油分が増大しても、処理後の被処理排水における油分の増加を防止できる。また、通常時は、被処理排水に酸を添加しない運転としてコストの低減を図ることができる。この場合に、オゾンの供給量を増加できない状況でも、処理すべき油分の増加に対応することが可能であり、オゾンの生産に関係する設備の設備コストの低減を図ることが可能である。
また、例えば想定する油分濃度(油分含有量)の範囲の上限から5〜10%分を酸添加条件として、残りの90〜95%に相当するオゾン生産設備を設けることで設置する関連設備を小さくしてコストの低減を図ることができる。
本発明の前記構成において、所定の前記酸添加条件が前記被処理排水の前記油分の含有量が増加傾向となる場合であることが好ましい。
このような構成によれば上述の場合と同様に通常時には、酸アルカリの使用を控えることにより、コストの低減を図り、油分が増大する傾向の場合に、被処理排水に酸を添加して被処理排水のpHを下げることにより、処理後の被処理排水の油分の増加を防止することができる。
また、本発明の前記構成において、前記酸が塩酸であることが好ましい。
このような構成によれば、塩酸を添加することにより被処理排水のpHを下げた場合に、析出物の生成がほとんどなく、析出物による油分、SSの除去性能への悪影響がない。
硫酸を添加した場合、カルシウムとの反応によって難溶解性物質(たとえば石膏など)を生成して好ましくない。
また、本発明の前記構成において、前記被処理排水に浮遊物質(SS)が含まれ、当該浮遊物質の少なくも一部を除去することが好ましい。
このような構成によれば、被処理排水にSSが含まれるが、被処理排水の油分を上述のようにオゾンを用いて凝集分離する際に、SSを除去することが可能であり、被処理排水にSSが含まれれば、そのSSが除去される。
また、本発明の前記構成において、前記被処理排水が油ガス田から排出される随伴水であることが好ましい。
このような構成によれば、随伴水のように排出量が多くなる場合に、必要なオゾン発生量が多くなって設備コストや運転コストが高くなる場合に、使用オゾン量と酸の添加量とを調整することで設備コストや運転コストの最適化を図ることが可能となる。
また、酸添加条件が成立した場合にだけ酸を被処理排水に添加するのであれば、随伴水のように排出量が多くなる被処理排水においても、pHを低下させるための酸や、中性付近に戻すためのアルカリにかかるコストを低減することができる。
本発明によれば、被処理排水に酸が添加されてpHを低下させることより、オゾンを用いた油分の凝集分離の能力を高めて、油分の増大等の処理負荷の変動があっても処理後の被処理排水における油分濃度の増加を防止することができる。
本発明の実施の形態の水処理方法を説明するための工程図である。
以下、本発明の実施の形態について説明する。
図1に示すように本実施の形態の水処理方法では、海洋海底や陸上において原油や天然ガス等を採取する際に同伴して取り出される随伴水を処理する。なお、本実施の形態の水処理方法で処理される被処理排水は、随伴水に限られるものではなく、随伴水以外の油分を含む被処理排水から油分、特に乳化(エマルジョン)オイルを凝集分離するものとしてもよい。また、被処理排水から除去するのは、油分に限られるものではなく、硫化物、浮遊物(SS)、有害金属類、菌体微生物類等を油分とともに処理することができる。
図1に示すように、水処理方法は、原水としての随伴水から砂やフリーオイルなどを除去するために必要に応じて行う油分分離工程1と、油分分離工程1で処理した随伴水にオゾン含有ガスからなるマイクロナノバブルを導入して乳化オイルを凝集させる凝集工程2と、凝集した乳化オイルをスカムとして浮上分離させて浄化水を得る浮上分離工程3とからなる。浮上分離工程3で得た浄化水は、さらに必要に応じて油分等の含有物が高除去率まで取り除かれた後、海域に放流されるかもしくは井戸に圧入される。
原水としての随伴水は、世界中の油ガス田での油ガス生産によって随伴されるので、組成等の地域差が大きい。しかし、統計的に、随伴水のほとんどのpHは、6.0〜8.5の範囲に含まれ、pHが7〜8の場合が多いことが知られている。また、随伴水は地中注入液がなければ長期間にわたって地層に貯留されていることから、化学的に飽和、平衡の状態にあると推測される。この随伴水が地上に排出されると、地層と異なる圧力、温度、酸素等に曝されることになるが、pHが大きく変動することはない。しかしながら、pHを変動させると、飽和、平衡の状態にあったので、析出物、ガス放出などの変化が起こる可能性がある。特にpHを上昇させると、析出物が生成する可能性が高いと言える。
油分分離工程1では、比重差を利用した物理的分離方法等の油分分離手段により、随伴水に含まれる砂やフリーオイルなどを分離する。物理的分離方法の例としては、比重が水より小さいオイルなどは前述したAPIオイルセパレータ、CPIセパレータなどの層分離法を挙げることができる。また、オゾンを含まない空気などを用いて加圧浮上分離してもよい。
油分分離工程1は、オゾンを利用して処理を行う凝集工程2の前に行うことが好ましい。その理由は、フリーオイルが含まれていることにより生じる後段の負荷を効果的に低減することができるからである。具体的には、フリーオイルを除去することによって、後段の凝集工程2におけるオゾンの消費量を削減することができる。
油分分離工程1で処理された随伴水は、次に凝集工程2に送られる。随伴水が凝集工程2に送られる際に、随伴水の油分濃度が計測される。随伴水の油分濃度の計測は、随伴水を定期的にサンプリングして定期的に行うものとしても良いし、連続測定可能な油分計測装置を用いて随伴水の油分濃度を連続的に計測するものとしてもよい。また、後述のように凝集槽(オゾン反応槽)に供給される被処理排水である随伴水を、一定時間、例えば30〜120分間放置した後、被処理排水の下方液相中のフリーオイルを除いた油分濃度を測定するものとしてもよい。
また、凝集工程2では、油分濃度の計測に加えてpH測定が行われる。pHの計測は、連続的に行われるが、後述の酸の添加前のpHと、酸の添加後のpHを測定することが好ましい。例えば、凝集工程2に送られる前で、酸が添加される前の段階の被処理排水のpHと、凝集工程2で酸が添加された被処理排水のpHを計測する。
また、凝集工程2の上述の油分濃度の測定における油分濃度および濃度と被処理排水量から求めたオイル含有量が所定値以上となった場合に、随伴水に酸を添加する。ここで、油分濃度の所定値とは、例えば、平常運転時における油分濃度より高い濃度であり、それ以上油分濃度が上昇した場合に処理後の被処理排水の油分濃度が明らかに高くなるなどにより、例えば、凝集工程2における使用オゾン量を上昇させるなどの対応を必要とする油分濃度である。
水処理の平常運転時における被処理排水中の油分濃度、油分含有量は、各水処理施設により異なり、また、油ガスの産出状況等によって異なる。したがって、被処理排水に酸を添加するか否かの酸添加条件となる油分濃度の所定値も水処理施設によって異なるものである。また、酸添加条件は、油分濃度が所定値以上となることに限られるものではなく、例えば、油分濃度が増加する変動があった場合で、この際の増加割合が所定割合以上の場合としてもよい。例えば、油分濃度が10%等の所定割合増加したことに基づいて酸を添加するものとしてもよい。また、油分濃度が増加傾向となることを酸添加条件としてもよい。この場合に、増加傾向の継続時間や、単位時間当たりの増加割合が所定値以上となることを酸添加条件としてもよい。
また、随伴水の排水量に単位量当たりの油分濃度を乗算して得られる油分の含有量や、随伴水の排水量が所定値となる場合や、排水量が所定の増加割合となった場合に、酸添加条件が成立したものとしてもよい。また、随伴水のpHを測定し、pHが所定値以上となった場合に、酸添加条件が成立したものとしてもよい。
随伴水にアルカリを添加して、pHを例えば現状のアルカリ・酸添加前のpHより高くした場合に、pH以外を略同じ条件でオゾンを用いて油分を凝集させて分離した場合の除去率が悪化する。したがって、上述の凝集工程2おける随伴水のpHは、随伴水の酸添加前の現状のpH以下となっていることが好ましい。例えば、随伴水のpHが7〜8程度の場合に、pHを9以上に上げると、油分の除去率の低下を招くことになる。
また、pH以外の条件を略同じにして、酸の添加により随伴水のpHを低下させた場合に、明らかに油分の除去率の向上が認められた。但し、随伴水のpHを3.5より低くしても油分のさらなる除去率の向上は認められず、添加する酸の量の増加に対応するコスト増に見合った油分の除去率の向上は認められなかった。
以上のことから、酸添加による被処理排水のpH調整において、被処理排水のpHの範囲を現状のpH(3.5より高いpHで上限が9〜10程度)からpH3.5の範囲内とする。この範囲内において、pHが低いほど、油分の除去率の向上が認められる。
したがって、処理場所に廃塩酸があれば、それを酸添加条件として、最大限塩酸を添加してpHを下げ、それに見合ったオゾン量を添加して排水処理することが好適である。但し pHを下げた場合に、pHを中性付近に戻すのに必要となるアルカリのコストを考慮して、上述のようにpH3.5を下限とする。
一般的には、廃塩酸がない場合が多いのでその場合には経済性、運転性を加味して、オゾン量と塩酸消費量(pH)の最適化を図って運転することになる。一方で、排水量、濃度の変動が急に起こるような非定常的な状況では、まずは応答が早いオゾン量(例えば電圧調整による濃度、オゾン発生器への供給原料ガスのガス量)の調整で対応し、その後にpH調整してオゾン量とpH調整を排水処理費用、運転性の観点から最適化することが好ましい。
後述の実験結果からも明らかなように、被処理排水のpHを上げると、油分除去率が大幅低下し、SSは濃度増加しており、pHを被処理排水より高めることは、性能低下だけでなく、逆に濃度増加を招くことが分かった。また、pHは原水より下げれば除去性能が向上することが分かったが、pH3.5以下ではpH低下に多量の酸を用いるが、それに見合って除去性能が向上しないことが分かった。よって油分をオゾンで反応凝集させる随伴水のpHを、酸を添加してpH3.5から被処理排水pH(酸添加前のpH)の範囲に調整するものとした。pHを下げることで、除去性能が向上する理由は不明であるが、電荷バランスによって凝集性が高まり、結果として浮上分離し易くなったと考えられる。
但し、水処理時の酸の添加と水処理後のアルカリの添加には、コストがかかることからコスト的には、酸の添加を行わないことが好ましい。但し、例えば、油分濃度の増加に対応して、添加するオゾン量を増加させる必要が生じた場合に、オゾン量の増加に対応するコスト増と、酸添加によるコスト増と、オゾン量の増加に対応する除去率の増加と、酸添加によるpHの低下に対応する除去率の増加とを考慮して、オゾン量と酸の添加量(被処理排水のpH)を決定することが好ましい。
オゾン量の増加においては、オゾンの製造設備の増築や、それに見合う電源を確保するための電源設備の増築や、それらに伴うランニングコストの増加を考慮する必要がある。
被処理排水に添加する酸として、有機酸は、COD物質であり使用は適当でなく、無機酸を用いることが好適である。さらに、無機酸としては塩酸がよい。
塩酸であれば、排水に添加しても、析出物の生成がほとんどなく、析出物による油分、SSの除去性能への悪影響がなく、廃棄物の増加につながらないためである。
次いで、凝集工程2では、随伴水にオゾン含有ガスからなるマイクロナノバブルを導入して乳化オイルを凝集する処理が行われる。このような凝集処理を行う凝集手段には、例えばマイクロナノバブルを放散するノズルに連結した凝集槽を使用することができる。なお、凝集工程では、一般的な凝集剤を用いることがなく、オゾン含有ガスのマイクロナノバルブにより油分を凝集する。
前記凝集槽で随伴水とマイクロナノバブルとを気液接触させることにより乳化オイルの凝集および固化が安定的に生じ、後述するようにオイリーでないドライなスカムを浮上分離することが可能となる。このような顕著な効果が得られる理由についてはよく分からないが、随伴水に含まれる乳化オイルの油滴(オイル滴とも称する)表面がオゾンにより酸化されて生じる、二重結合の開裂や、カルボニル基などの生成によるものと推測している。
凝集工程2において、オゾン含有ガスからなるマイクロナノバブルを随伴水に気液接触させる際、接触時間は2〜60分の範囲内にあることが好ましい。この範囲内であれば、乳化オイルを構成する微細なオイル滴の表面の酸化と、それらオイル滴の凝集および固化とを十分に進行させて、後述する浮上分離を完結させることが可能となる。
ここで、マイクロナノバブルを随伴水に気液接触させる際の接触時間とは、槽内での上述したオイル滴の酸化や凝集等の反応に必要な時間であって、これはマイクロナノバブルに含まれるオゾンが随伴水に溶解して随伴水中のオイルと接触反応する接触時間のことを意味する。
随伴水の処理では、原水としての随伴水の油分濃度や油分含有量、ガス中のオゾン濃度、後述するマイクロナノバブルを含んだバブル含有水中のマイクロナノバブル濃度等の条件が、時間の経過とともに異なったり運転の影響を受けて変動したりすることがあるため、オゾン含有ガスからなるマイクロナノバブルの供給量を調整して対処することが考えられるとともに、酸添加によるpH調整によって油分の除去率やSS濃度の低下を図ることが考えられる。
ここで、オゾン含有ガスからなるマイクロナノバブルは、液中では合体や浮上が起こるので、マイクロナノバブルの槽内でのガス滞留時間は随伴水の槽内の液滞留時間に対して相対的に短時間である。さらに、マイクロナノバブルを槽内に吹き込む位置の深さが略同じであれば、供給量を変化させても前記接触時間は略同じとなる。そこで、本発明では、前記接触時間は凝集工程2における随伴水の液滞留時間と定義する。なお、随伴水の処理を凝集工程2のような連続処理ではなく回分処理で行う場合は、槽内の液の外部装置との間の循環の有無にかかわらず、ガスの導入時間を反応時間と考えてこれを接触時間と定義する。
乳化オイルの除去性能は、凝集槽における随伴水の液滞留時間、凝集槽に流入する随伴水の供給量とオゾン含有ガスの供給量との比、オゾン含有ガス中のオゾン濃度、マイクロナノバブルの気泡径の分布(ナノスケールからマイクロスケールまでの気泡径の分布)、凝集槽における液温度などによって決まるが、本実施の形態では、特に凝集槽に導入するオゾン含有ガス中のオゾン濃度(マイクロナノバブル中のオゾン濃度)を30g/m3N以上とする。
これはオゾン処理実験を行ったところ、オゾン濃度が30g/m3N未満と低い場合にはオゾン導入の効果がほとんどなく、単なるマイクロバブルによる浮上分離特性と同じである一方、オゾン濃度が30g/m3N以上ではオゾン効果が発現して、処理60分以内で油分の除去率80%以上を達成でき、かつ被処理排水中の油分濃度は10mg/L以下になることが分かったからである。
なお、マイクロナノバブルの気泡径の分布はマイクロバブル発生器によって概ね定まり比較的に広い分布を有し、中心的なサイズは一般に1nm〜50μm程度である。
また、本実施の形態では、マイクロナノバブル中のオゾン量をGO(g/h)、前記被処理排水中の油分量をGY(g/h)とすると、
GO/GY=0.05〜3.0、好ましくは、0.1〜2.5となるようにオゾン量を制御する。
これは、オゾン処理実験を行ったところ、さらに、オゾンの使用効率を高く維持し、排オゾンの後処理を無くす、もしくは大幅に削減するため、排オゾン濃度10ppm以下を考慮して、マイクロナノバブル中のオゾン量と被処理排水中の油分量との比率、オゾン(g/h)/油分(g/h)が0.05〜3.0、好ましくは0.1〜2.5の範囲でオゾン量が好適であることが分かったからである。
また、本実施の形態では、凝集槽(オゾン反応槽)に供給される被処理排水である随伴水を、一定時間、例えば30〜120分間放置した後、被処理排水の下方液相中の油分濃度を測定し、オゾンを含むマイクロナノバブル中のオゾン量を制御する。さらに、測定された油分濃度が予め設定された所定の油分濃度以上である場合に、酸添加条件が成立したものとして、上述のように酸を添加してpHを低下させる。
随伴水等の被処理排水の上述したような3種類の油分(フリーオイル、乳化オイル、溶解オイル)は、被処理排水を静置(放置)すると、静置時間ごとに概ね分離できる。静置時間30分以内ではごく容易に浮上分離できるもの(フリーオイル)、その後は浮上する油分は時間とともに減少するが、一部の油分(乳化オイルの一部)は静置時間30〜120分でも徐々に浮上する。静置時間120〜360分では容易に浮上せず、浮上する量が大幅に減少する。静置時間360〜1440分ではごくわずか浮上する油分もあるがその量は極めて少ない。
これらの結果から、被処理排水の油分で容易に除去できないものが処理対象となり、静置時間30分以上で浮上しない油分が除去の対象となる。
このように、被処理排水を一定時間(例えば30〜120分間)放置すると、被処理排水中に含まれる油分の一部が容易に浮上分離し、残りの油分は浮上せず被処理排水中に残存するので、浮上分離後の被処理排水の下方液相中の油分濃度を測定し、オゾンを含むマイクロナノバブル中のオゾン量を制御することによって、オゾンを最適な量で使用することができる。上述したように、本実施の形態では、凝集槽(オゾン反応槽)に供給される被処理排水である随伴水を、一定時間、例えば30〜120分間放置した後、被処理排水の下方液相中の油分濃度を測定し、オゾンを含むマイクロナノバブル中のオゾン量を制御する。さらに、測定された油分濃度(油分含有量)が所定値以上の場合に、酸添加条件が成立したものとして上述のように被処理排水に酸を添加する。
また、本実施の形態では、前記被処理排水中から乳化オイルをスカムとして浮上分離するに際し、被処理排水中の油分濃度および処理水量を測定して、その油分濃度と処理水量とから前記被処理排水中の油分量を求めて、導入するオゾン量を決定する。
そして、前記導入するオゾン量の制御は、オゾン濃度を一定制御し、オゾン発生器の消費電力が低下するよう、オゾン発生器への供給ガス量、電圧を制御する。
凝集槽における液温度は常温であるか、変動する場合であっても概ね数℃から60℃程度であって、この範囲では乳化オイルの凝集反応に対して特段の性能の差異はなく、加熱冷却を行う必要は特にない。しかしながら、氷点に近い温度や沸点に近い温度は避けるのが望ましいため、事前に温度調節することが必要となる場合がある。
このように、まず凝集槽の大きさを適切なサイズとするため液滞留時間を確定し、その上で随伴水の性状、採用するマイクロナノバブル発生器のタイプやそれに供給するガスの種類(空気か酸素か)、浄化水におけるCODの挙動、凝集槽から排出される排気ガス中のオゾン濃度等を考慮して、凝集槽に流入するオゾン含有ガスの供給量やそのオゾン濃度を適宜選定することになる。また、被処理排水中の主に油分濃度の変動に応じてオゾン量を調整するとともに、油分濃度や油分含有量の増加に対して、酸添加によるpHの低下を行う。
凝集工程2で処理された随伴水は、次に浮上分離工程3に送られる。この浮上分離工程3では、浮上分離手段として、例えば浮上分離槽を使用する。この浮上分離槽は、槽の底部から散気管などの散気手段を介して連続的にバブルを供給できるようになっており、上記した凝集工程2で凝集した乳化オイルがこのバブルに伴って浮上し、スカムとなる。
このスカムは、凝集した乳化オイルとバブルとからなるフォーミング層を形成して浮上分離槽の水面部分に浮遊するため、カキトリや上部液の抜き取りなどによって容易に水流と分離することができる。なお、カキトリは特に方式を問わないが、例えばスクレーパー式やスクープ式を採用することができる。
上記した浮上分離工程3の散気手段に導入するガスは、ブロアで昇圧された空気を用いてもよいし、酸素やオゾンを含むガスを用いてもよい。また、後述するように、上記散気手段からのバブルに代えて、あるいは散気手段からのバブルに加えて凝集工程2に導入するバブル含有水の一部を浮上分離槽に導入してもよい。このように、浮上分離槽にバブル含有水を導入することによって、凝集工程2の役割の一部を浮上分離工程3で担わせることができる。
浮上分離工程3の浮上分離槽には、排水によっては浮上させるためのバブルを新規に導入しなくてもよい。これは浮上分離槽に凝集工程2から流入する被処理排水にはバブルが残留しており静置することでオイルが浮上するためである。
以上説明した水処理方法により、乳化オイルをスカムとして除去できるとともに、乳化オイルをほとんど含まない浄化水を得ることができる。この浄化水は、必要に応じて油分を高除去率まで除去する高度除去工程で処理された後、海域に放流されるかもしくは井戸に圧入される。また、浄化水を灌漑用水として使用する場合は、逆浸透膜などによる脱塩処理が施される。
上記にて説明したオゾン含有ガスからなるマイクロナノバブルで随伴水を処理することにより得られるスカムは、比較的ベトツキの少ないいわゆるドライなスカムであることを特徴としている。そのため、従来のAPIオイルセパレータやCPIセパレータなどの層分離法を用いて回収したオイルや、一般的な浮上分離法で得られるスカムに比べて取り扱いが容易になる上、再離散が減って捕集効率が極めて高くなる。また、このドライスカムは水分の含有率が小さいので、後段の脱水コストを低減することができる上、燃料として取り扱う際の輸送や燃焼が容易となる。
本実施の形態の水処理方法では、凝集工程2に導入するオゾン含有ガスは、主にマイクロナノバブルの形態を有していることが好ましい。一方、浮上分離工程3に空気又は酸素もしくはオゾン含有ガスを導入する場合は、当該空気等はマイクロナノバブルおよびこれより大きなバブル径のバブルの形態を有しているのが好ましい。
すなわち、凝集工程2に導入するオゾン含有ガスは、そのほとんどがバブル径1nm〜1000μm、より好適にはバブル径1nm〜50μmの範囲内のマイクロナノバブルの形態を有しているのが好ましいのに対して、浮上分離工程3に上記凝集工程2とは別に準備した空気等を導入する場合にはその導入する空気等は、ミリメータースケールのバブル径を有するバブルの形態を有しているのが好ましい。この場合、浮上分離工程3においては、導入するガスのバブル(気泡)全体に占めるマイクロナノバブルの割合については特に限定がない。
このように、導入するバブルの好適な要件が凝集工程2と浮上分離工程3とで異なる理由は、油分の酸化処理や凝集処理の処理速度を高めるためには反応面積が広いマイクロナノバブルが有利である一方、浮上分離において処理能力を高めるには、1〜5mm程度のバブル径を有する気泡を含ませることによりバブルの浮上速度をより高めることができるからである。また、バブル径が大きい方が発生させる消費動力も小さくて済む。
なお、マイクロナノバブルにもミリメータースケールのバブルと同様にフリーオイルや浮遊物などの浮遊物質に付着する特性がある。また、マイクロナノバブルにはマイクロナノバブルと同時に又は別々に発生した1〜5mm程度の径を有する気泡や、マイクロナノバブル同士が融合してできた気泡に付着して浮遊物質等を速やかに浮上分離させるという特徴がある。
酸化効果および凝集効果を有するオゾンの有効利用のため、凝集工程2に導入するオゾン含有ガスからなるマイクロナノバブルの一部を分岐して浮上分離工程3に導入する場合、浮上分離工程3にはオゾン含有ガスからなるマイクロナノバブルと、空気からなるマイクロナノバブルおよび1〜5mm程度の径を有する気泡が導入されることが好ましい。これは、オゾンと空気を使い分け、オゾン濃度を高く保つのが効果的だからである。
上記説明では凝集工程2と浮上分離工程3とを別々の工程で処理する場合について説明したが、凝集工程2と浮上分離工程3とを単一の工程で処理してもよい。この場合に、凝集槽と、浮上分離槽として、同じ1つの槽を用いてもよい。
本発明ではマイクロナノバブルを発生させて随伴水と接触させる方式については特に限定はないが、マイクロナノバブルを高濃度に発生させて、随伴水中のマイクロナノバブル濃度を高濃度で随伴水と接触させることができるものが好ましい。
以上説明したように、本実施の形態の水処理方法は、随伴水に含まれる乳化オイルを効率的に除去することを主たる目的としている。随伴水に含まれる油分のうちの溶解オイルについては、オイルは容易にオゾンと反応することは無いので乳化オイルの凝集の直接的な支障はなく、基本的には安定な操業に支障をきたすことが少ないので余分にオゾンを添加するなどの意図的には分解除去を行わない。処理が必要な場合には、浮上分離工程3の後段で行う。このように、乳化オイルの油滴表面を酸化する段階までのオゾン作用にとどめることによって、従来のようなCO2まで酸化分解していた方法に比べてオゾン消費量を大幅に削減することができる。
また、オゾン処理におけるオゾン源は空気もしくは酸素であり、固体や液体の薬剤を使用しないため、薬剤の調達、輸送、保管等が不要となり、砂漠や海洋などの辺地なところが多い井戸であっても低コストで適用できる。さらに、薬剤に起因するスラッジ廃棄物が発生しないので環境に対する2次汚染の懸念がない。これは、膨大な量の随伴水を処理する際に特に効果的であるといえる。
さらに、本発明の処理方法では、オゾン処理することによって、乳化オイルの処理だけでなく、随伴水に油分に加えて含まれ得る硫化物、浮遊物(SS)、有害金属類、菌体微生物類等を処理することができる。具体的には、硫化物はオゾンによる酸化によって硫化イオンに分解して無害化される。有害金属類は、オゾンによる酸化によって金属酸化物となることで不溶化し、乳化オイルの凝集固化物や浮遊物とともにドライスカムとして回収される。菌体微生物類はオゾンの殺菌滅菌効果により死滅除去される。
これら硫化物等の処理は、乳化オイルの凝集および固化処理よりも緩慢な条件で進行させることができ、いずれの処理も気液接触時間等の処理条件に関して、乳化オイルの凝集および固化処理と同一の条件下において実験したところ、1時間以内で良好に処理できることを確認した。したがって、これら硫化物等の除去が必要となる場合においても、含有する硫化物等は油分に比べて相対的に低濃度であることから、オゾン供給量や気液接触時間等の処理条件は、乳化オイルの凝集および固化処理に基づいて決定すればよい。
随伴水の性状は油田やガス田の場所、産出物の種類、産出する時間帯等によって大きく異なると言われているが、本発明においては、随伴水の原水性状としての油分濃度およびpHや排水量などの処理状況を検出しながら、オゾンの供給量(即ち、オゾン含有ガス中のオゾン濃度やオゾン含有ガスの供給量)と、酸の添加量を適宜調整することで、効率的且つ速やかに随伴水の処理を制御することが可能になる。具体的には、油分濃度を検出し、この油分濃度に応じて使用するオゾン量や酸の添加および酸添加時の酸の量および酸添加後のpHを決定し、制御する。
なお、被処理排水の油分濃度に加えて、例えば処理後の浄化水のCOD、TOC、および油分濃度のうちの少なくとも1つを検出(連続モニターが好適)し、この検出値に基づいてオゾン濃度を制御したり、オゾン含有ガスの供給量を調整して気液接触時間を制御したり、酸の添加量を調整してpHを制御することで被処理排水を効率よく処理することが可能となる。
また、本実施の形態では、酸添加条件が成立した場合に酸を被処理排水に添加してpHを低下させるものとしたが、pHを下げることにより、油分やSSの除去率の向上を図れることから、特に酸添加条件を設定せずに、基本的に被処理排水に酸を添加して、オゾン含有ガスを導入するようにしてもよい。この場合に、後述の実施例に示すように、被処理排水に酸を添加することにより、オゾンの被処理排水への導入量が同じでも、油分やSSの処理効率の向上を図ることによる運転コストの低減や、オゾン発生設備の規模の増大の防止や、規模の縮小を図ることができる。ただし、上述のように酸の添加にもコストがかかることから、運転コストにおいては、pH調整用の酸やアルカリのコストとオゾン発生にかかる電力のコストとの兼ね合いで、例えば現状のオゾン発生設備を使用して最も運転コストが低下するように、オゾンの生成量と酸の添加量を決めることが好ましい。また、オゾン含有ガスを用いる水処理設備の設計の段階で酸を添加するものとして、オゾン発生設備の規模を決定するようにしてもよい。
以上、本実施の形態の水処理方法を説明したが、本発明はかかる具体例に限定されるものではなく、本発明の主旨から逸脱しない範囲内で種々の代替例や変形例を考えることができる。
次に、本発明の実施例(実験例)を説明する。
ガスボンベからの酸素ガス(流量0.8L/min)を用いてオゾン発生器(エコデザイン(株)製ED−OG−S1型)にてオゾン(濃度46g/m3N)を発生させて、そのガスを浮上分離槽の液とともにマイクロバブル製造器((株)アスプ製AS−K3型)に導きマイクロバブルを発生させた。そのマイクロバブルを含む液全量を模擬原水(液量25L、組成は下表に記載)の液深さ30cmのところに導入して処理試験を行った(バッチ処理)。
浮上したスカムはフォーミング層上部を液溜まり付き板状スクレーパーにて掻きとって分離除去した。サンプリングはガス導入後30分、60分に液槽中段下の深さの液をサンプルして分析を行った。
なお、模擬原水はNaCl 4wt%水に土壌5wt%相当を添加して48時間室温攪拌して、土壌を精密濾過した水溶液に、A重油とB重油の混合油を油分濃度が所定値になるように添加して、さらに浮遊物(シリカ粉:粒径5μ)を添加して6時間ポンプ循環撹拌して調製して保管した。さらに、試験前には1時間ポンプ循環撹拌したのち1時間静置して浮上した油を取り除いた水を模擬原水として処理試験に供した。
(模擬原水)
油分; 110 mg/L (A重油とB重油の混合油)
浮遊物(粒径5μ); 95 mg/L
NaCL 1wt%水
表1に実験結果を示す。
Figure 0006490979
この実験では、原水よりpHを高くしたpH9.5の処理データがpH無調整の原水(pH8.2)より油分除去率が大幅低下し、SSは濃度増加しており、pHを被処理排水より高めることは、性能低下だけでなく、逆にSSの濃度増加を招くことが分かった。
pHは原水より下げれば油分およびSSの除去性能が向上することが分かったが、pH3.5以下ではpH低下に多量の酸を用いるが、それに見合って除去性能が向上しないことが分かった。
1 油分分離工程
2 凝集工程
3 浮上分離工程

Claims (7)

  1. 少なくとも油分を含む被処理排水に、凝集剤を添加することなく、オゾンを含むガスを導入して前記油分を反応凝集させることにより、凝集した前記油分を浮上分離させる水処理方法において、
    前記油分を前記オゾンにより反応凝集させる際に、前記被処理排水に酸を添加し、前記被処理排水のpHを、pH6からpH3.5までの範囲内でpHが下がるように調整することを特徴とする水処理方法。
  2. 少なくとも油分を含む被処理排水に、凝集剤を添加することなく、オゾンを含むガスを導入して前記油分を反応凝集させることにより、凝集した前記油分を浮上分離させる水処理方法において、
    前記油分を前記オゾンにより反応凝集させる際に、所定の酸添加条件が成立した場合に、前記被処理排水に酸を添加し、前記被処理排水のpHを、pH6からpH3.5までの範囲内でpHが下がるように調整することを特徴とする水処理方法。
  3. 所定の前記酸添加条件が前記被処理排水の前記油分の含有量が所定値以上になる場合であることを特徴とする請求項2に記載の水処理方法。
  4. 所定の前記酸添加条件が前記被処理排水の前記油分の含有量が増加傾向となる場合であることを特徴とする請求項2に記載の水処理方法。
  5. 前記酸が塩酸であることを特徴とする請求項1乃至4のいずれか1項に記載の水処理方法。
  6. 前記被処理排水に浮遊物質が含まれ、当該浮遊物質の少なくも一部を除去することを特徴とする請求項1乃至5のいずれか1項に記載の水処理方法。
  7. 前記被処理排水が油ガス田から排出される随伴水であることを特徴とする請求項1乃至6のいずれか1項に記載の水処理方法。
JP2015029247A 2015-02-18 2015-02-18 水処理方法 Expired - Fee Related JP6490979B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015029247A JP6490979B2 (ja) 2015-02-18 2015-02-18 水処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015029247A JP6490979B2 (ja) 2015-02-18 2015-02-18 水処理方法

Publications (2)

Publication Number Publication Date
JP2016150316A JP2016150316A (ja) 2016-08-22
JP6490979B2 true JP6490979B2 (ja) 2019-03-27

Family

ID=56695000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015029247A Expired - Fee Related JP6490979B2 (ja) 2015-02-18 2015-02-18 水処理方法

Country Status (1)

Country Link
JP (1) JP6490979B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106542677A (zh) * 2017-02-14 2017-03-29 中冶华天南京工程技术有限公司 一种三元复合驱油田采出水处理工艺
CN114350412A (zh) * 2021-12-10 2022-04-15 未名合一生物环保有限公司通道分公司 一种生活垃圾热解气碳化处理系统及其工艺

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611362B2 (ja) * 1985-06-10 1994-02-16 三井石油化学工業株式会社 水中油型エマルジヨンの生成と破壊法
JP2001104971A (ja) * 1999-10-07 2001-04-17 Nec Corp 廃水処理方法および装置
US7481937B2 (en) * 2005-01-19 2009-01-27 Heavy Industry Technology Solutions, Llc Methods and systems for treating wastewater using ozone activated flotation
JP2012000581A (ja) * 2010-06-18 2012-01-05 Mitsuko Enterprise:Kk オゾン水生成装置及び排水処理システム
JP5826068B2 (ja) * 2012-02-29 2015-12-02 千代田化工建設株式会社 随伴水の処理方法及び処理装置
JP5865166B2 (ja) * 2012-04-19 2016-02-17 株式会社奥村組 油類及び/又は揮発性有機化合物含有水の浄化方法及び浄化装置

Also Published As

Publication number Publication date
JP2016150316A (ja) 2016-08-22

Similar Documents

Publication Publication Date Title
JP5826068B2 (ja) 随伴水の処理方法及び処理装置
CN100551846C (zh) 石油钻井污水连续处理工艺
Bande et al. Oil field effluent water treatment for safe disposal by electroflotation
US11377374B2 (en) System and process for treating water
CN110392670A (zh) 用于水净化的氯化辅助混凝方法
JP2008514398A (ja) 廃水浄化装置およびその方法
WO2015106154A1 (en) Method for recycling oilfield and other wastewater
JP2011005448A (ja) 河川水利用排煙脱硫システム及び腐植物質除去方法
JP5211852B2 (ja) 加圧浮上装置及び加圧浮上方法
Colic et al. The development and application of centrifugal flotation systems in wastewater treatment
CN105084614A (zh) 一种钻井废液处理方法
JP6490979B2 (ja) 水処理方法
Patni et al. Recycling and re-usage of oilfield produced water–A review
JP6490978B2 (ja) 水処理方法
US20140311990A1 (en) Turbulence inducing device and methods of use
JP2016168579A (ja) 水処理装置および水処理方法
JP2006088021A (ja) 水処理システム
CN103771615A (zh) 一种处理油田多种类型采出水的方法
CN108033601A (zh) 油田作业废水处理的方法
JP4365190B2 (ja) 水中へ薬剤の散布方法及び薬剤散布器
CN112479557A (zh) 一种稠油污泥处理方法
CN109937191A (zh) 用于处理来自油田和气田的产出水的方法和设备
JP4490795B2 (ja) 水の浄化処理方法
JP2016150315A (ja) 液体処理装置および液体処理方法
Ogunbiyi et al. Air flotation techniques for oily wastewater treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190228

R150 Certificate of patent or registration of utility model

Ref document number: 6490979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees