JP6487808B2 - 熱可塑性ポリエステル樹脂組成物 - Google Patents

熱可塑性ポリエステル樹脂組成物 Download PDF

Info

Publication number
JP6487808B2
JP6487808B2 JP2015167672A JP2015167672A JP6487808B2 JP 6487808 B2 JP6487808 B2 JP 6487808B2 JP 2015167672 A JP2015167672 A JP 2015167672A JP 2015167672 A JP2015167672 A JP 2015167672A JP 6487808 B2 JP6487808 B2 JP 6487808B2
Authority
JP
Japan
Prior art keywords
mass
parts
polyester resin
thermoplastic polyester
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015167672A
Other languages
English (en)
Other versions
JP2016056355A (ja
Inventor
山中 康史
康史 山中
哲朗 延安
哲朗 延安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Engineering Plastics Corp
Original Assignee
Mitsubishi Engineering Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Engineering Plastics Corp filed Critical Mitsubishi Engineering Plastics Corp
Publication of JP2016056355A publication Critical patent/JP2016056355A/ja
Application granted granted Critical
Publication of JP6487808B2 publication Critical patent/JP6487808B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、熱可塑性ポリエステル樹脂組成物に関し、詳しくは、耐衝撃性に優れ、かつ、アルカリ性環境下で優れた耐性(以下、「耐アルカリ性」と略称する。)と優れた耐ヒートショック性を示し、さらにはレーザー溶着性にも優れる熱可塑性ポリエステル樹脂組成物及びレーザー溶着体に関する。
ポリブチレンテレフタレート樹脂やポリエチレンテレフタレート樹脂に代表される熱可塑性ポリエステル樹脂は、加工の容易さ、機械的物性、耐熱性その他物理的、化学的特性に優れているため、自動車用部品、電気電子機器用部品、建築資材部品、その他精密機器用部品等の分野に幅広く使用されている。しかしながら、ポリブチレンテレフタレート樹脂やポリエチレンテレフタレート樹脂等の熱可塑性ポリエステル樹脂は、アルカリ性環境下において環境応力割れすることが問題となっている。
従来、自動車分野においてコネクター、ディストリビューター部品、イグニッションコイル部品等エンジン周りの部品、各種コントロールユニット、各種センサー、電気電子機器部品としてはコネクター類、スイッチ部品、リレー部品、コイル部品、建築資材部品としてはサニタリー部品、コンクリート埋め込みボルト等の広範な分野において、ポリブチレンテレフタレート樹脂やポリエチレンテレフタレート樹脂等のポリエステル樹脂が使用されている。
このような分野、特に自動車用の車載部品向けにおいては、耐湿熱性(耐加水分解性)が要求されていた。この要求に対しては、カルボキシル末端基量の少ないポリブチレンテレフタレート樹脂を用いたり、カルボキシル末端基と特定の化合物とを反応させてカルボキシル末端基をキャップしたりすることにより、耐加水分解性を向上させることができる。
しかし、上記のような耐加水分解性を向上したポリエステル樹脂あるいは樹脂組成物においても、アルカリ溶液に対する長期耐久性が不十分であり、使用環境や使用用途が限られている。例えば、樹脂成形品の用途によっては、融雪剤、トイレ用洗浄剤、浴室用洗浄剤、漂白剤、セメント等の薬剤との接触下で使用される場合がある。特にガラス繊維強化品ではアルカリによる強度低下が著しく、アルカリ性環境下における劣化が問題視されている。ポリブチレンテレフタレート樹脂製の部品にあってはアルカリ性の物質の作用によって、特に薄肉部分や歪みが残っている部位はクラックが発生したり、最終的には破壊したりする恐れがある。
また最近では、生産性効率化のため溶着加工を行う例が増加してきており、中でも電子部品への影響が少ないレーザー溶着が多用されてきている。
しかしながらポリカーボネート樹脂やポリスチレン系樹脂等に比べて、ポリエステル樹脂はレーザー透過性が比較的低く、また成形品に反りが出やすいことなどから、溶着強度が不十分な場合が多かった。
成形品に反りが生じる場合は、溶着時に反りを矯正するように押し付け力を加える方法も採られるが、成形品の形状によっては効率的に押し付け力を加えることが難しい場合も多く、また溶着後に押し付け力を取り除いた溶着体には残留応力が残るため、高い溶着強度が得にくい問題がある。
さらに、レーザー溶着では、通常、レーザー光透過性の部材とレーザー光吸収性の相手側の部材とを面接触させ、透過率の高い上記レーザー透過性の成形体側からレーザー光を照射することにより一体化させる方法が採用される。しかし、この方法では、レーザー光透過性の樹脂材料とレーザー光吸収性の樹脂材料との2種を用いる必要があることに加え、異種材料を用いるために部材の色調が異なってしまうといったデメリットがある。それゆえ、近年では、1種類の樹脂材料のみでレーザー溶着が可能な樹脂材料が強く求められている。
特許文献1には、(A)熱可塑性ポリエステル樹脂、(B)耐衝撃性付与剤1〜25質量%、(C)シリコーン系化合物及び/又はフッ素系化合物0.1〜15質量%、(D)無機充填材1〜50質量%及び(E)エポキシ化合物、イソシアネート化合物及びカルボン酸二無水物等の多官能性化合物0.1〜10質量%を含む熱可塑性ポリエステル樹脂組成物が、耐アルカリ性に優れていることが開示されている。しかし、このような樹脂組成物では、アルカリ環境下でのウエルド部のクラックや割れはある程度改善されるものの、シリコーン系化合物やフッ素系化合物の染み出しに伴う成形性や外観特性、さらには耐アルカリ性が低下する怖れがある。
また、特許文献2には、少なくともポリブチレンテレフタレート系共重合体を含むポリブチレンテレフタレート系樹脂(A)と、ポリオレフィン変性ポリシロキサン(B)と、充填材(C)とで構成されたポリブチレンテレフタレート系樹脂組成物が、耐アルカリ性に優れていることが開示されている。実施例において開示されているものは、ポリブチレンテレフタレート系共重合体が50%〜100%であり、さらにポリオレフィン変性ポリシロキサンの融点が85℃であるため耐熱性ならびに成形性がやや劣る等の問題を有している。
さらに、特許文献3及び4には、熱可塑性ポリエステル樹脂(A成分)95〜10質量%、ポリアミド樹脂(B成分)4〜50質量%、及び、α−オレフィンとα,β−不飽和グリシジルエステルとからなるオレフィン系共重合体(C成分)1〜40質量%とからなる樹脂組成物100質量部に対し、強化充填材(D成分)0〜150質量部が配合されてなることを特徴とするポリエステル樹脂組成物が耐アルカリ性の改善されることが示されている。しかし、まだ耐アルカリ性が不十分であり、また耐ヒートショック性が不十分であった。
また、特許文献5には、ポリエステル樹脂のレーザー溶着性を向上させるために、熱可塑性ポリエステル樹脂にレーザー光吸収性染料を使用する方法が提案されているが、レーザー光吸収性染料を配合する必要があるため、得られる成形品を所望の色調に調整できなかったり、コスト高となったり、耐熱変色・耐候性・耐光性変色が著しく悪化したり、接触する他樹脂へ染料が移行するといった問題があった。
最近の、製品の軽量化及び高性能化の流れの中で、樹脂製部品も一層の薄肉化、小型化が図られ、さらに生産性効率化のため溶着加工も可能な樹脂材料が求められている。そして、これら樹脂製部品は薄肉化、小型化されても、長期間に亘って十分な特性を発揮することが必要である。このため、薄肉部分や歪みが残っている部位でもクラックが発生せず、溶着性も良好な、耐アルカリ性、耐ヒートショック性及びレーザー溶着性に優れるポリエステル樹脂組成物、及び成形品が希求されているのが現状である。
国際公開WO00/078867号 特開2006−291100号公報 特開2002−128999号公報 特開2006−206921号公報 特開2013−155277号公報
本発明者らの検討によれば、上記特許文献3及び4に記載の熱可塑性ポリエステル樹脂組成物は、耐アルカリ性が不十分であり、また耐ヒートショック性も不十分であることが分かった。特に近年は、耐アルカリ性や耐ヒートショック性へのスペックは非常に高いレベルのものが要求されるようになってきている。例えば、耐アルカリ性試験では、その詳細は後述するが、インサート成形品を10質量%濃度NaOH水溶液に浸漬させた際の、クラック発生までの時間が300時間以上、また、耐ヒートショック試験(−40℃×30分→130℃×30分のヒートサイクルによるウエルドラインでの割れ発生のサイクル数)では200サイクル以上というような、極めて厳しい基準をクリアすることも求められつつある。
本発明は、上記従来技術の問題点を解決し、上記のような高度の耐アルカリ性と耐ヒートショック性を同時に改良し、さらにレーザー溶着性にも優れた熱可塑性ポリエステル樹脂組成物及びレーザー溶着体を提供することを目的とする。
本発明者らは、上記課題を解決するため鋭意検討を重ねてきた結果、(1)α−オレフィンと不飽和グリシジル化合物とアクリル酸ブチルの共重合体、(2)ポリオルガノシロキサン系ゴム成分及びアクリル系ゴム成分を含有するコア層上に芳香族ビニル系重合体を含有するコア/シェル型エラストマー及び(3)ポリオルガノシロキサン系ゴム成分及びアクリル系ゴム成分を含有するコア層上にグリシジル変性したアクリル酸エステル系重合体を含有するコア/シェル型エラストマーを併せて含有することにより上記課題が解決すること、また、ポリアミド樹脂とエポキシ化合物との併用によりその耐アルカリ性改良の相乗効果がさらに一層高まり、また同時に耐ヒートショック性も大きく改善されることを見出し、本発明を完成させた。
本発明は、以下の通りである。
[1](A)熱可塑性ポリエステル樹脂100質量部に対し、(B)ポリアミド樹脂10〜80質量部、(C−1)α−オレフィンと不飽和グリシジル化合物とアクリル酸ブチルの共重合体1〜15質量部、(C−2)ポリオルガノシロキサン系ゴム成分及びアクリル系ゴム成分を含有するコア層上に芳香族ビニル系重合体を含有するコア/シェル型エラストマー1〜20質量部、(C−3)ポリオルガノシロキサン系ゴム成分及びアクリル系ゴム成分を含有するコア層上にグリシジル変性したアクリル酸エステル系重合体を含有するコア/シェル型エラストマー1〜10質量部、(D)エポキシ化合物1〜15質量部、(E)強化充填材30〜100質量部及び(F)離型剤0.1〜3質量部を含有することを特徴とする熱可塑性ポリエステル樹脂組成物。
[2](C−1)成分と(C−3)成分の含有量の質量比(C−1)/(C−3)が、3.5/1〜1/1である上記[1]に記載の熱可塑性ポリエステル樹脂組成物。
[3](C−2)成分と(C−3)成分の含有量の質量比(C−2)/(C−3)が、5/1〜1.2/1である上記[1]又は[2]に記載の熱可塑性ポリエステル樹脂組成物。
[4](C−1)成分、(C−2)成分及び(C−3)成分の合計含有量が、(A)熱可塑性ポリエステル樹脂100質量部に対し、10〜40質量部である上記[1]〜[3]のいずれかに記載の熱可塑性ポリエステル樹脂組成物。
[5](C−1)α−オレフィンと不飽和グリシジル化合物とアクリル酸ブチルの共重合体の各構成単位の含有量が、α−オレフィン:50〜94.5質量%、不飽和グリシジル化合物:0.5〜20質量%、アクリル酸ブチル:5〜49.5質量%である上記[1]〜[4]のいずれかに記載の熱可塑性ポリエステル樹脂組成物。
[6](C−2)及び/又は(C−3)のコア/シェル型エラストマー中のポリオルガノシロキサン系ゴム成分の含有量が2〜30質量%である上記[1]〜[5]のいずれかに記載の熱可塑性ポリエステル樹脂組成物。
[7](C−2)及び/又は(C−3)のコア/シェル型エラストマーの平均粒子径が50〜400nmである上記[1]〜[6]のいずれかに記載の熱可塑性ポリエステル樹脂組成物。
[8](E)強化充填材が少なくともノボラック型エポキシ樹脂及びビスフェノールA型エポキシ樹脂で処理されている上記[1]〜[7]のいずれかに記載の熱可塑性ポリエステル樹脂組成物。
[9](F)離型剤が、ポリエチレンワックスである上記[1]〜[8]のいずれかに記載の熱可塑性ポリエステル樹脂組成物。
[10](D)エポキシ化合物が、ビスフェノールA型エポキシ化合物である上記[1]〜[9]のいずれかに記載の熱可塑性ポリエステル樹脂組成物。
[11]レーザー溶着に用いられる上記[1]〜[10]のいずれかに記載の熱可塑性ポリエステル樹脂組成物。
[12]上記[11]に記載の熱可塑性ポリエステル樹脂組成物を成形してなる成形体の端部同士を突き合わせて溶着されたレーザー溶着体。
本発明の熱可塑性ポリエステル樹脂組成物は、耐アルカリ性と耐ヒートショック性の両者が著しく改善され、極めて高度の耐アルカリ性と耐ヒートショック性を達成することができ、また、レーザー溶着性及び耐衝撃性にも優れている。
したがって、本発明の熱可塑性ポリエステル樹脂組成物は、車両用分野(特に、自動車分野)、電気電子分野、建築資材分野等の広範囲の分野に適用が可能になる。特にコネクター、ディストリビューター部品、イグニッションコイル部品、コントロールユニット部品、センサー部品等の車載用部品の成形品として、優れた耐アルカリ性、耐ヒートショック性、レーザー溶着性及び耐衝撃性を有している。
実施例における耐ヒートショック性評価のために用いた直方体形状の鉄製インサート物の模式図である。 インサート物が支持ピンで支えられた金型キャビティーの断面説明図である。 支持ピン跡に2つのウエルドラインが発生しているインサート成形品の模式図である。 実施例における突き合わせレーザー溶着の方法を示す概念図である。
以下において、本発明の内容について詳細に説明する。尚、本明細書において「〜」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
[発明の概要]
本発明の熱可塑性ポリエステル樹脂組成物は、(A)熱可塑性ポリエステル樹脂100質量部に対し、(B)ポリアミド樹脂10〜80質量部、(C−1)α−オレフィンと不飽和グリシジル化合物とアクリル酸ブチルの共重合体1〜15質量部、(C−2)ポリオルガノシロキサン系ゴム成分及びアクリル系ゴム成分を含有するコア層上に芳香族ビニル系重合体を含有するコア/シェル型エラストマー1〜20質量部、(C−3)ポリオルガノシロキサン系ゴム成分及びアクリル系ゴム成分を含有するコア層上にグリシジル変性したアクリル酸エステル系重合体を含有するコア/シェル型エラストマー1〜10質量部、(D)エポキシ化合物1〜15質量部、(E)強化充填材30〜100質量部及び(F)離型剤0.1〜3質量部を含有することを特徴とする。
[(A)熱可塑性ポリエステル樹脂]
本発明の熱可塑性ポリエステル樹脂組成物の主成分である(A)熱可塑性ポリエステル樹脂とは、ジカルボン酸化合物とジヒドロキシ化合物の重縮合、オキシカルボン酸化合物の重縮合あるいはこれらの化合物の重縮合等によって得られるポリエステルであり、ホモポリエステル、コポリエステルの何れであってもよい。
(A)熱可塑性ポリエステル樹脂を構成するジカルボン酸化合物としては、芳香族ジカルボン酸又はそのエステル形成性誘導体が好ましく使用される。
芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、オルトフタル酸、1,5−ナフタレンジカルボン酸、2,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、ビフェニル−2,2’−ジカルボン酸、ビフェニル−3,3’−ジカルボン酸、ビフェニル−4,4’−ジカルボン酸、ジフェニルエーテル−4,4’−ジカルボン酸、ジフェニルメタン−4,4’−ジカルボン酸、ジフェニルスルフォン−4,4’−ジカルボン酸、ジフェニルイソプロピリデン−4,4’−ジカルボン酸、1,2−ビス(フェノキシ)エタン−4,4’−ジカルボン酸、アントラセン−2,5−ジカルボン酸、アントラセン−2,6−ジカルボン酸、p−ターフェニレン−4,4’−ジカルボン酸、ピリジン−2,5−ジカルボン酸等が挙げられ、テレフタル酸が好ましく使用できる。
これらの芳香族ジカルボン酸は2種以上を混合して使用しても良い。これらは周知のように、遊離酸以外にジメチルエステル等のエステル形成性誘導体として重縮合反応に用いることができる。
なお、少量であればこれらの芳香族ジカルボン酸と共にアジピン酸、アゼライン酸、ドデカンジオン酸、セバシン酸等の脂肪族ジカルボン酸や、1,2−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸及び1,4−シクロヘキサンジカルボン酸等の脂環式ジカルボン酸を1種以上混合して使用することができる。
(A)熱可塑性ポリエステル樹脂を構成するジヒドロキシ化合物としては、エチレングリコール、プロピレングリコール、ブタンジオール、へキシレングリコール、ネオペンチルグリコール、2−メチルプロパン−1,3−ジオール、ジエチレングリコール、トリエチレングリコール等の脂肪族ジオール、シクロヘキサン−1,4−ジメタノール等の脂環式ジオール等、及びそれらの混合物等が挙げられる。なお、少量であれば、分子量400〜6,000の長鎖ジオール、すなわち、ポリエチレングリコール、ポリ−1,3−プロピレングリコール、ポリテトラメチレングリコール等を1種以上共重合せしめてもよい。
また、ハイドロキノン、レゾルシン、ナフタレンジオール、ジヒドロキシジフェニルエーテル、2,2−ビス(4−ヒドロキシフェニル)プロパン等の芳香族ジオールも用いることができる。
また、上記のような二官能性モノマー以外に、分岐構造を導入するためトリメリット酸、トリメシン酸、ピロメリット酸、ペンタエリスリトール、トリメチロールプロパン等の三官能性モノマーや分子量調節のため脂肪酸等の単官能性化合物を少量併用することもできる。
(A)熱可塑性ポリエステル樹脂としては、通常は主としてジカルボン酸とジオールとの重縮合からなるもの、即ち樹脂全体の50質量%、好ましくは70質量%以上がこの重縮合物からなるものを用いる。ジカルボン酸としては芳香族カルボン酸が好ましく、ジオールとしては脂肪族ジオールが好ましい。
なかでも好ましいのは、酸成分の95モル%以上がテレフタル酸であり、アルコール成分の95質量%以上が脂肪族ジオールであるポリアルキレンテレフタレートである。その代表的なものはポリブチレンテレフタレート及びポリエチレンテレフタレートである。これらはホモポリエステルに近いもの、即ち樹脂全体の95質量%以上が、テレフタル酸成分及び1,4−ブタンジオール又はエチレングリコール成分からなるものが好ましい。
本発明の(A)熱可塑性ポリエステル樹脂は、その50質量%以上がポリブチレンテレフタレート樹脂であることが好ましく70質量%以上がより好ましく、80質量%以上がさらに好ましく、(A)熱可塑性ポリエステル樹脂成分の全てがポリブチレンテレフタレート樹脂であることが特に好ましい。
また、ポリブチレンテレフタレート樹脂は、共重合により変性したポリブチレンテレフタレートコポリマーであってもよいが、その具体的な好ましいコポリマーとしては、ポリアルキレングリコール類(特にはポリテトラメチレングリコール)を共重合したポリエステルエーテル樹脂や、ダイマー酸共重合ポリブチレンテレフタレート樹脂、イソフタル酸共重合ポリブチレンテレフタレート樹脂が挙げられる。
ポリブチレンテレフタレートコポリマーとして、ポリテトラメチレングリコールを共重合したポリエステルエーテル樹脂を用いる場合は、共重合体中のテトラメチレングリコール成分の割合は3〜40質量%であることが好ましく、5〜30質量%がより好ましく、10〜25質量%がさらに好ましい。このような共重合割合とすることにより、レーザー溶着性と耐熱性とのバランスに優れる傾向となり好ましい。
ポリブチレンテレフタレートコポリマーとして、ダイマー酸共重合ポリブチレンテレフタレート樹脂を用いる場合は、全カルボン酸成分に占めるダイマー酸成分の割合は、カルボン酸基として0.5〜30モル%であることが好ましく、1〜20モル%がより好ましく、3〜15モル%がさらに好ましい。このような共重合割合とすることにより、レーザー溶着性、長期耐熱性及び靭性のバランスに優れる傾向となり好ましい。
ポリブチレンテレフタレートコポリマーとして、イソフタル酸共重合ポリブチレンテレフタレート樹脂を用いる場合は、全カルボン酸成分に占めるイソフタル酸成分の割合は、カルボン酸基として1〜30モル%であることが好ましく、1〜20モル%がより好ましく、3〜15モル%がさらに好ましい。このような共重合割合とすることにより、レーザー溶着性、耐熱性、射出成形性及び靭性のバランスに優れる傾向となり好ましい。
ポリブチレンテレフタレートコポリマーの中でも、ポリテトラメチレングリコールを共重合したポリエステルエーテル樹脂、イソフタル酸共重合ポリブチレンテレフタレート樹脂が好ましい。
そして、これらコポリマーの好ましい含有量は、(A)熱可塑性ポリエステル樹脂の総量100質量%中に、5〜50質量%、更には10〜40質量%、特には15〜30質量%である。
(A)熱可塑性ポリエステル樹脂の固有粘度は、0.5〜2dl/gであることが好ましく、成形性及び機械的特性の点からして、0.6〜1.5dl/gの範囲の固有粘度を有するものがより好ましい。固有粘度が0.5dl/gより低いものを用いると、得られる樹脂組成物の成形体が機械強度の低いものとなりやすい。また2dl/gより高いものでは、樹脂組成物の流動性が悪くなり成形性が悪化する場合がある。なお、(A)熱可塑性ポリエステル樹脂の固有粘度は、テトラクロロエタンとフェノールとの1:1(質量比)の混合溶媒中、30℃で測定する値である。
(A)熱可塑性ポリエステル樹脂の末端カルボキシル基含有量は適宜選択して決定すればよいが、50eq/ton以下であることが好ましく、40eq/ton以下であることがより好ましく、30eq/ton以下であることがさらに好ましい。50eq/ton以下とすることにより、本発明における樹脂組成物の溶融成形時にガスが発生しにくくなる。末端カルボキシル基含有量の下限値は特に定めるものではないが、熱可塑性ポリエステル樹脂の製造の生産性を考慮し、通常、5eq/ton、好ましくは10eq/tonである。
(A)熱可塑性ポリエステル樹脂の末端カルボキシル基含有量は、ベンジルアルコール25mLにポリアルキレンテレフタレート0.5gを溶解し、水酸化ナトリウムの0.01モル/Lベンジルアルコール溶液を用いて滴定により測定して得られる値をいう。末端カルボキシル基含有量を調整する方法としては、重合時の原料仕込み比、重合温度、減圧方法などの重合条件を調節する方法や、末端封鎖剤を反応させる方法等、従来公知の任意の方法により行えばよい。
[(B)ポリアミド樹脂]
本発明における(B)ポリアミド樹脂とは、ラクタム類の開環重合体、ジアミノカルボン酸の重縮合によって得られる重合体、アミン類と二塩基酸類又はこれらと同等な化合物との重縮合によって得られる重合体類を意味する。
ラクタム類としては、プロピオラクタム、α−ピロリドン、ε−カプロラクタム、エナントラクタム、ω−ラウロラクタム、シクロドデカラクタム等が挙げられ、ジアミノカルボン酸としては、アミノカプロン酸、7−アミノヘプタン酸、11−アミノウンデカン酸、9−アミノノナン酸等が挙げられる。アミン類としては、ヘキサメチレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン等が挙げられ、二塩基酸類としてはテレフタル酸、イソフタル酸、アジピン酸、セバシン酸、ドデカン二塩基酸、グルタール酸等が挙げられる。
より具体的には、ポリアミド4、ポリアミド6、ポリアミド7、ポリアミド8、ポリアミド11、ポリアミド12、ポリアミド6・6、ポリアミド6・9、ポリアミド6・10、ポリアミド6・11、ポリアミド6・12、ポリアミド6T、ポリアミド6/6・6、ポリアミド6/6T、ポリアミド6/6I、ポリアミド6I/6T、メタキシリレンジアミンとアジピン酸との重縮合物(ポリアミドMXD6)、メタキシリレンジアミンとパラキシリレンジアミンからなる混合ジアミンとアジピン酸との重縮合物(ポリアミドMP6)等が挙げられる。上記ポリアミド樹脂は、単独でも2種以上の混合物であってもよい。この中では、(A)熱可塑性ポリエステル樹脂の融点と(B)ポリアミド樹脂との融点にあまり差がないものが好ましく、ポリブチレンテレフタレート樹脂の場合には、ポリアミド6、ポリアミド6/6・6共重合あるいはポリアミド66、ポリアミドMXD6が好ましく、さらにはポリアミド6やポリアミド6・6等の脂肪族ポリアミドが好ましく、最も好ましくはポリアミド6である。
(B)ポリアミド樹脂は、特定範囲の重合度、すなわち特定範囲の粘度を有するものが好ましい。すなわち、ISO307規格に準拠して、温度23℃、96質量%硫酸中、ポリアミド樹脂濃度1質量%で測定した粘度数が70〜200ml/gのものが好ましい。粘度数を70ml/g以上とすることにより、機械的性質が向上し、逆に200ml/g以下とすることにより、成形性が向上する傾向にあり好ましい。粘度数のより好ましい範囲は90〜150ml/gであり、特に好ましい範囲は、100〜130ml/gである。
(B)ポリアミド樹脂の末端カルボキシル基含有量は適宜選択して決定すればよいが、好ましくは35μeq/g以上、より好ましくは40μeq/g以上、さらに好ましくは45μeq/g以上、特に好ましくは50μeq/g以上である。上限は、通常140μeq/g、好ましくは130μeq/g、より好ましくは120μeq/gである。また、末端アミノ基含有量は、好ましくは10μeq/g以上、より好ましくは15μeq/g以上、さらに好ましくは20μeq/g以上であり、その上限は、通常100μeq/g、好ましくは80μeq/g、より好ましくは70μeq/gである。このような末端基含有量とすることにより、耐アルカリ性、耐ヒートショック性が向上しやすい傾向となり、好ましい。
(B)ポリアミド樹脂の末端カルボキシル基含有量は、ポリアミド樹脂をベンジルアルコールに溶解して0.01N苛性ソーダで滴定することにより測定できる。また、末端アミノ基は、ポリアミド樹脂をフェノールに溶解して0.01N塩酸で滴定することにより測定可能である。末端カルボキシル基含有量、末端アミノ基量を調整する方法としては、重合時の原料仕込み比、重合温度、減圧方法などの重合条件を調節する方法や、末端封鎖剤を反応させる方法等、従来公知の任意の方法により行えばよい。
(B)ポリアミド樹脂は、(A)熱可塑性ポリエステル樹脂100質量部に対して、10〜80質量部の範囲で、好ましくは14〜65質量部、より好ましくは18〜60質量部、特に好ましくは20〜50質量部の範囲で含有する。10質量部未満であると本発明の目的とする耐アルカリ性、レーザー溶着性の改良効果が得られず、80質量部を超えると、(B)ポリアミド樹脂が十分分散しないので、耐熱性の低下を生じたり、且つ機械的性質が低下しやすくなり、また、レーザー溶着性も低下するため好ましくない。
本発明の熱可塑性ポリエステル樹脂組成物は、前記した通り、(C−1)α−オレフィンと不飽和グリシジル化合物とアクリル酸ブチルの共重合体、(C−2)ポリオルガノシロキサン系ゴム成分及びアクリル系ゴム成分を含有するコア層上に芳香族ビニル系重合体を含有するコア/シェル型エラストマー、(C−3)ポリオルガノシロキサン系ゴム成分及びアクリル系ゴム成分を含有するコア層上にグリシジル変性したアクリル酸エステル系重合体を含有するコア/シェル型エラストマーを含有する。
[(C−1)α−オレフィンと不飽和グリシジル化合物とアクリル酸ブチルの共重合体]
(C−1)α−オレフィンと不飽和グリシジル化合物とアクリル酸ブチルの共重合体は、α−オレフィンと不飽和グリシジル化合物とアクリル酸ブチルの三元共重合体のみならず、α−オレフィンと不飽和グリシジル化合物とアクリル酸ブチルと他の単量体とからなる四元系以上の多元共重合体であってもよい。
(C−1)共重合体におけるα−オレフィンとしては、エチレン、プロピレン、1−ブテン、1−ペンテン等の炭素数2〜8程度のα−オレフィンを例示できるが、特にエチレンが好ましい。
また、不飽和グリシジル化合物としては、(メタ)アクリル酸グリシジル又は不飽和グリシジルエーテル、例えばビニルグリシジルエーテル、アリルグリシジルエーテル、2−メチルアリルグリシジルエーテル等が好ましく、特に(メタ)アクリル酸グリシジル、すなわちアクリル酸グリシジル又はメタクリル酸グリシジルが好ましい。
また、上記四元系以上の多元共重合体の成分となり得る他の単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸オクチル、アクリル酸−2−エチルヘキシル、メタアクリル酸メチル、メタアクリル酸エチル、メタアクリル酸プロピル、メタアクリル酸ブチル、メタアクリル酸オクチル、メタアクリル酸2−エチルヘキシル、マレイン酸ジメチル、マレイン酸ジエチル等の(メタ)アクリル酸エステル類、酢酸ビニル、プロピオン酸ビニルのようなビニルエステル類、アクリロニトリル、スチレン、一酸化炭素、無水マレイン酸等を例示することができる。
(C−1)α−オレフィンと不飽和グリシジル化合物とアクリル酸ブチルの共重合体において、各構成単位の好ましい含有量は、(C−1)成分全体の質量を100質量%としたときに、α−オレフィンが50〜94.5質量%、より好ましくは52〜85質量%、さらに好ましくは55〜75質量%であり、不飽和グリシジル化合物が0.5〜20質量%、より好ましくは1〜18質量%、さらに好ましくは2〜15質量%であり、特に好ましくは3〜10質量%であり、アクリル酸ブチルが5〜49.5質量%、より好ましくは7〜45質量%、さらに好ましくは10〜40質量%であり、特に好ましくは15〜35質量%であり、上記以外のその他の単量体が0〜49.5質量%、より好ましくは0.5〜40質量%、さらに好ましくは1〜35質量%の範囲で共重合されているものが好ましい。
不飽和グリシジル化合物の含有量が少なすぎると、熱可塑性ポリエステル樹脂組成物の耐熱性が損なわれる恐れがあり、一方、その量が多くなりすぎると、樹脂粘度が急激に上昇して成形が困難となったり、また組成物中にゲルが発生する等の問題を起こすことがある。また、アクリル酸ブチルを上記範囲で共重合させたものを使用することにより、熱可塑性ポリエステル樹脂組成物に良好な柔軟性を付与することが容易となる。
(C−1)α−オレフィンと不飽和グリシジル化合物とアクリル酸ブチルの共重合体は、ランダム共重合体であってもグラフト共重合体であってもよいが、ランダム共重合体を使用するのが好ましい。このようなランダム共重合体は、例えば、高温、高圧下のラジカル共重合によって得ることができる。
(C−1)α−オレフィンと不飽和グリシジル化合物とアクリル酸ブチルの共重合体は、メルトフローレート(JIS K7210−1999に準拠、190℃、2.16kg荷重で測定)が、0.01〜1000g/10min、さらには0.1〜200g/10min、特に1〜70g/10minのものを使用するのが好ましい。
(C−1)α−オレフィンと不飽和グリシジル化合物とアクリル酸ブチルの共重合体の含有量は、(A)熱可塑性ポリエステル樹脂100質量部に対して、1〜15質量部の範囲であり、好ましくは2〜13質量部、中でも3〜10質量部の範囲である。1質量部未満であると本発明の目的とする耐アルカリ性の改良効果が得られず、15質量部を超えると耐熱性の低下を生じ且つ剛性等の機械的性質を阻害する。
[(C−2)ポリオルガノシロキサン系ゴム成分及びアクリル系ゴム成分を含有するコア層上に芳香族ビニル系重合体を含有するコア/シェル型エラストマー]
本発明で(C−2)成分として用いるコア/シェル型エラストマーは、ポリオルガノシロキサン系ゴム成分及びアクリル系ゴム成分を含有するコア層上に、芳香族ビニル系重合体を含有するコア/シェル型のエラストマーである。
(C−2)コア/シェル型エラストマーのゴム層は、少なくともポリオルガノシロキサン系ゴム成分及びアクリル系ゴム成分を含有していることが必要である。
ポリオルガノシロキサン系ゴム成分としては、オルガノシロキサン単量体を重合させて製造されるもので、オルガノシロキサンとしては、3員環以上の環状オルガノシロキサンが用いられ、3〜6員環のものが好ましく用いられる。例えばヘキサメチルトリシクロシロキサン、オクタメチルシクロシロキサン、デカメチルペンタシクロシロキサン、ドデカメチルヘキサシクロシロキサン、トリメチルトリフェニルシロキサン、テトラメチルフェニルシクロテトラシロキサン、オクタフェニルシクロテトラシロキサン等が用いられる。
また、ポリオルガノシロキサンゴムの調製に用いられる架橋剤としては、3官能性又は4官能性のもの、即ち、トリアルコキシアルキルあるいはアリ−ルシラン又はテトラアルコキシシランが用いられ、このような架橋剤の具体例としてトリメトキシメチルシラン、トリエトキシフェニルシラン、テトラメトキシシラン、テトラエトキシシラン、テトラn−プロポキシシラン、テトラブトキシシラン等を例示できる。架橋剤としては、テトラアルコキシシランが好ましく、テトラエトキシシランが特に好ましく用いられる。
アクリル系ゴム成分としては、ブチルアクリレートのような(メタ)アクリル酸アルキルエステルと少量のブチレンジアクリレートのような架橋性モノマーを重合させて得られるものが好ましい。上記(メタ)アクリル酸エステルとしては、ブチルアクリレートの他に、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2−エチルヘキシルアクリレート等、メタアクリル酸のメチル、エチル、プロピル、ブチル、オクチル、2−エチルヘキシル、ラウリル、ステアリル等のエステルが挙げられる。また、架橋性モノマーとしては、ブチレンジアクリレートの他に、ブチレンジメタクリレート、エチレングリコールジアクリレート、エチレングリコールジメタアクリレート、ブチレングリコールジアクリレート、ブチレングリコールジメタアクリレート、オリゴエチレングリコールジアクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパンジメタアクリレート、トリメチロールプロパントリメタアクリレートのようなビニル化合物、アリルアクリレート、アリルメタクリレート、ジアリルマレート、ジアリルフマレート、ジアリルイタニレート、モノアリルマレート、モノアリルフマレート、トリアリルシアヌレートのようなアリル化合物が挙げられる。
上記ゴム成分は、共役ジエン化合物を含有することも可能であり、例えばブタジエン、イソプレン、ペンタジエン、2,3−ジメチルブタジエン等が挙げられる。共役ジエン化合物の共重合量は、10質量%以下程度の少量であることが好ましい。
コア層は、上記ポリオルガノシロキサン系ゴム成分及びアクリル系ゴム成分の混合物であってもよく、又これらを共重合及び/又はグラフト重合させた複合系ゴムを用いることができ、共重合及び/又はグラフト重合等の化学結合によりポリオルガノシロキサン系ゴム成分とアクリル系ゴム成分とが一体になった複合ゴム、すなわちシリコーンアクリル複合ゴムであることも好ましい。
ポリオルガノシロキサン系ゴム成分とアクリル系ゴム成分の質量比率は、ポリオルガノシロキサン系ゴム成分/アクリル系ゴム成分で、99/1〜1/99であることが、耐アルカリ性、耐ヒートショック性及び耐衝撃性の向上効果の点から好ましい。アルカリ環境下では、アクリルゴム成分中のエステル基がアルカリにより加水分解を受ける場合があるので、アクリル系ゴム成分が多すぎると、ゴム成分としての機能が低下する。従って、ポリオルガノシロキサン系ゴム成分とアクリル系ゴム成分の質量比率は、95/5〜15/85であることがより好ましく、さらに好ましくは90/10〜30/70である。
(C−2)コア/シェル型エラストマーのシェル層は、少なくとも芳香族ビニル系重合体を含有していることが必要である。
芳香族ビニル化合物としては、例えばスチレン、α−メチルスチレン、メチルスチレン、ビニルキシレン、モノクロロスチレン、ジクロロスチレン、モノブロモスチレン、ジブロモスチレン、フルオロスチレン、p−ターシャリーブチルスチレン、エチルスチレン、ビニルナフタレン等が挙げられる。中でも、安価で重合における取り扱いが容易な点でスチレンが好ましい。
芳香族ビニル系重合体は、単独重合体でも共重合体であってもよい。
共重合体としては、シアン化ビニル単量体、メタクリル酸エステル系単量体及びアクリル酸エステル単量体の中から選ばれた少なくとも1種の単量体を共重合させて得られるものが好ましい。シアン化ビニル単量体としてはアクリロニトリル、メタクリロニトリル等、メタクリル酸エステル系単量体としてはメタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソプロピル、メタクリル酸第三ブチル等、アクリル酸エステル単量体としてはメチルアクリレ−ト、エチルアクリレ−ト、ブチルアクリレ−ト等を好ましく例示できる。
また芳香族ビニル系重合体は、上記以外の他の共重合性単量体も共重合することも可能である。例えば、グリシジル基含有ビニル系単量体等も共重合することができ、その例としては、グリシジルメタクリレ−ト、グリシジルアクリレ−ト、ビニルグリシジルエ−テル、アリルグリシジルエ−テル、ヒドロキシアルキル(メタ)アクリレ−トのグリシジルエ−テル、ポリアルキレングリコ−ル(メタ)アクリレ−トのグリシジルエ−テル、グリシジルイタコネ−ト等を例示できる。グリシジル基含有ビニル系単量体の共重合量は、30質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下程度の少量であることが特に好ましい。
(C−2)コア/シェル型エラストマーのシェル層としては、上記した中でも、スチレン系単量体にシアン化ビニル単量体を共重合した共重合体が好ましく、スチレン−アクリロニトリル系共重合体が特に好ましい。
(C−2)コア/シェル型エラストマーのコア層とシェル層は、通常グラフト結合によって結合されていることが好ましい。このグラフト共重合化は、必要な場合には、ゴム層の重合時にシェル層と反応するグラフト交差剤を添加し、ゴム層に反応基を与えた後、シェル層を形成させることによって得られる。グラフト交差剤は、ビニル結合を有した化合物であり、アクリル系ゴム成分においては、上述の架橋モノマーを兼用可能であるが、ポリオルガノシロキサン系ゴム成分では、ビニル結合を有したオルガノシロキサンあるいは、チオールを有したオルガノシロキサンが用いられ、好ましくはビニル結合を有したオルガノシロキサンである(メタ)アクリロイルオキシアルキルシロキサン、ビニルシロキサンが使用される。
(メタ)アクリロイルオキシアルキルシロキサンの中ではメタクリロイルオキシアルキルシロキサンが好ましく、この具体例としてβ−メタクリロイルオキシエチルジメトキシメチルシラン、γ−メタクリロイルオキシプロピルメトキシジメチルシラン、γ−メタクリロイルオキシプロピルジメトキシメチルシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルエトキシジエトキシシラン、γ−メタクリロイルオキシプロピルジエトキシメチルシラン、δ−メタクリロイルオキシブチルジエトキシメチルシラン等が挙げられる。
ビニルシロキサンとしてはビニルメチルジメトキシシラン、ビニルトリメトキシシラン等が挙げられる。チオールを有したオルガノシロキサンであるメルカプトシロキサンとしてはγ−メルカプトプロピルジメトキシメチルシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルジエトキシエチルシラン等を挙げることができる。
また、(C−2)コア/シェル型エラストマー中のポリオルガノシロキサン系ゴム成分の含有量は、2〜30質量%であることが好ましく、3〜25質量%であることがより好ましい。ポリオルガノシロキサン系ゴム成分の含有量を上記範囲とすることにより、耐アルカリ性、耐衝撃性が良好となる傾向にあり好ましい。
また、(C−2)コア/シェル型エラストマーは、その平均粒子径が50〜400nmであることが好ましい。平均粒子径を上記範囲とすることにより、耐衝撃性、耐アルカリ性、耐ヒートショック性、耐湿熱性、成形性が良好となる傾向にあり好ましい。さらに好ましい平均粒子径の範囲は80〜350nmであり、特に好ましくは100〜300nmである。この範囲で最も安定な耐衝撃性、耐アルカリ性、耐ヒートショック性の発現が期待できる。また、その平均二次粒子径は、600〜3000μmであることが好ましく、700〜2000μmがより好ましく、800〜1700μmがさらに好ましく、900〜1500μmが特に好ましい。このような平均二次粒子径とすることにより、溶融混練時に、フィード配管やホッパーにエラストマーの微粉が残存しにくく、安定的にフィードすることができ好ましい。
なお、(C−2)コア/シェル型エラストマーの平均粒子径とは、樹脂組成物のモルフォロジー観察結果について、エラストマー分散相の200個以上の最大径を測定し、それらを算術平均して求められる値をいう。また、平均二次粒子径とは、(C−2)コア/シェル型エラストマー原料を顕微鏡等で観察し、200個以上の二次粒子について最大径を測定し、それらを算術平均して求められる値をいう。
コア/シェル型エラストマーを製造する方法は、公知であり、例えば特開平5−5055号公報、特開平5−25377号公報、特開2000−290482号公報、特開2001−261945号公報等に開示されている。本発明においても、公知の方法が採用できる。重合プロセスとしては、塊状重合、溶液重合、懸濁重合あるいは乳化重合のいずれの方法でも重合可能であるが、乳化重合で行うのが最も容易であり、好ましい方法である。
上記したような平均粒子径を有するコア/シェル型エラストマーは、上述したポリオルガノシロキサン系ゴム成分とアクリル系ゴム成分を含有する複合ゴムラテックス存在下で、芳香族ビニル単量体を含む単量体を一段又は多段で乳化グラフト重合することにより得ることができる。
(C−2)コア/シェル型エラストマーの含有量は、(A)熱可塑性ポリエステル樹脂100質量部に対して、1〜20質量部の範囲であり、好ましくは3〜17質量部、より好ましくは5〜15質量部の範囲で含有する。1質量部未満であると本発明の目的とする耐アルカリ性と耐ヒートショク性の改良効果が得られず、20質量部を超えると耐熱性の低下を生じ且つ剛性等の機械的性質を阻害する。
[(C−3)ポリオルガノシロキサン系ゴム成分及びアクリル系ゴム成分を含有するコア層上にグリシジル変性したアクリル酸エステル系重合体を含有するコア/シェル型エラストマー]
本発明で(C−3)成分として用いるコア/シェル型エラストマーは、(C−3)ポリオルガノシロキサン系ゴム成分及びアクリル系ゴム成分を含有するコア層上にグリシジル変性したアクリル酸エステル系重合体を含有するコア/シェル型エラストマーである。
(C−3)コア/シェル型エラストマーのゴム層は、少なくともポリオルガノシロキサン系ゴム成分及びアクリル系ゴム成分を含有していることが必要であり、上記した(C−2)コア/シェル型エラストマーのゴム層のポリオルガノシロキサン系ゴム成分及びアクリル系ゴム成分と同様のものが、この(C−3)コア/シェル型エラストマーのゴム層としても用いられる。
(C−3)コア/シェル型エラストマーのシェル層は、少なくともグリシジル変性したアクリル酸エステル系重合体を含有していることが必要である。
アクリル酸エステル系重合体としては、アクリル酸エステルまたはメタアクリル酸エステルの単独重合体または共重合体である。
アクリル酸エステルまたはメタアクリル酸エステルとしては、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2−エチルヘキシルアクリレート等、メタアクリル酸のメチル、エチル、プロピル、ブチル、オクチル、2−エチルヘキシル、ラウリル、ステアリル等のエステルが挙げられる。これらは単独で又は共重合される。
また、シアン化ビニル化合物または芳香族ビニル化合物等のビニル単量体を共重合させて得られるものも可能である。シアン化ビニル化合物としてはアクリロニトリル、メタクリロニトリル等を、芳香族ビニル化合物としては、スチレン、α−メチルスチレン、メチルスチレン等を好ましく例示できる。
また、少量の架橋性モノマーを重合させて得られるものも好ましい。架橋性モノマーとしては、ブチレンジアクリレート、ブチレンジメタクリレート、エチレングリコールジアクリレート、エチレングリコールジメタアクリレート、ブチレングリコールジアクリレート、ブチレングリコールジメタアクリレート、オリゴエチレングリコールジアクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパンジメタアクリレート、トリメチロールプロパントリメタアクリレートのようなビニル化合物、アリルアクリレート、アリルメタクリレート、ジアリルマレート、ジアリルフマレート、ジアリルイタニレート、モノアリルマレート、モノアリルフマレート、トリアリルシアヌレートのようなアリル化合物が挙げられる。
そして、(C−3)コア/シェル型エラストマーのシェル層は、グリシジル変性していることが必要である。グリシジル変性はグリシジル基含有ビニル系単量体を共重合またはグラフト共重合して行う。グリシジル基含有ビニル系単量体としては、グリシジルメタクリレ−ト、グリシジルアクリレ−ト、ビニルグリシジルエ−テル、アリルグリシジルエ−テル、ヒドロキシアルキル(メタ)アクリレ−トのグリシジルエ−テル、ポリアルキレングリコ−ル(メタ)アクリレ−トのグリシジルエ−テル、グリシジルイタコネ−ト等を例示できる。
グリシジル基含有ビニル系単量体の共重合量は、30質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下程度の少量であることが特に好ましい。
(C−3)コア/シェル型エラストマーのコア層とシェル層は、通常グラフト結合によって結合されていることが好ましい。コア/シェル型エラストマーを製造する方法は、前述のとおり公知であり、(C−3)コア/シェル型エラストマーも公知の方法で製造できる。
(C−3)コア/シェル型エラストマーの含有量は、(A)熱可塑性ポリエステル樹脂100質量部に対して、1〜10質量部の範囲であり、好ましくは1.5〜7質量部、より好ましくは2〜5質量部の範囲である。1質量部未満であると本発明の目的とする耐アルカリ性と耐ヒートショク性の改良効果が得られず、10質量部を超えると耐熱性の低下を生じ且つ剛性等の機械的性質を阻害する。
上記した(C−1)成分、(C−2)成分、(C−3)成分の含有量は、(C−1)成分と(C−3)成分の含有量の質量比(C−1)/(C−3)が、3.5/1〜1/1であることが、耐アルカリ性と耐ヒートショック性のバランスの点で好ましい。より好ましくは、(C−1)/(C−3)が3/1〜1/1である。
また、(C−2)成分と(C−3)成分の含有量の質量比(C−2)/(C−3)が、5/1〜1.2/1であることが、耐アルカリ性と耐ヒートショック性のバランスの点で好ましい。より好ましくは、(C−2)/(C−3)が4/1〜2/1である。
さらに、(C−1)成分、(C−2)成分及び(C−3)成分の合計含有量は、(A)熱可塑性ポリエステル樹脂100質量部に対し、10〜40質量部であることが好ましい。10質量部未満であると耐アルカリ性と耐ヒートショク性の改良効果が得られにくくなりやすく、40質量部を超えると耐熱性の低下を生じ且つ剛性等の機械的性質を阻害しやすくなるので好ましくない。(C−1)成分、(C−2)成分及び(C−3)成分の合計含有量は、より好ましくは13〜35質量部、さらに好ましくは15〜30質量部である。
[(D)エポキシ化合物]
本発明において使用される(D)エポキシ化合物は、ポリエステル樹脂が水蒸気等により加水分解を受け、分子量低下を起こすと同時に機械的強度等が低下することを抑制するためのもので、これを含有することにより、(B)ポリアミド樹脂と(C−1)〜(C−3)のエラストマーの相乗効果が促進され、耐アルカリ性と耐ヒートショック性を、一層向上させることができる。
(D)エポキシ化合物としては、一分子中に一個以上のエポキシ基を有するものであればよく、通常はアルコール、フェノール類又はカルボン酸等とエピクロロヒドリンとの反応物であるグリシジル化合物や、オレフィン性二重結合をエポキシ化した化合物を用いればよい。
(D)エポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、レゾルシン型エポキシ化合物、ノボラック型エポキシ化合物、脂環式エポキシ化合物、グリシジルエーテル類、グリシジルエステル類、エポキシ化ブタジエン重合体等が挙げられる。
ビスフェノールA型エポキシ化合物としては、ビスフェノールA−ジグリシジルエーテル、水添ビスフェノールA−ジグリシジルエーテル等が、ビスフェノールF型エポキシ化合物としては、ビスフェノールF−ジグリシジルエーテル、水添ビスフェノールF−ジグリシジルエーテル等、レゾルシン型エポキシ化合物としてはレゾルシンジグリシジルエーテル等が例示できる。
また、ノボラック型エポキシ化合物としては、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等を例示できる。
脂環式エポキシ化合物の例としては、ビニルシクロヘキセンジオキシド、ジシクロペンタジエンオキシド、3,4−エポキシシクロヘキシル−3,4−シクロヘキシルカルボキシレート、ビス(3,4−エポキシシクロヘキシルメチル)アジペート、ビニルシクロヘキセンジエポキシド、3,4−エポキシシクロヘキシルグリシジルエーテル等が挙げられる。
グリシジルエーテル類の具体例としては、メチルグリシジルエーテル、ブチルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、デシルグリシジルエーテル、ステアリルグリシジルエーテル、フェニルグリシジルエーテル、ブチルフェニルグリシジルエーテル、アリルグリシジルエーテル等のモノグリシジルエーテル;ネオペンチルグリコールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル等のジグリシジルエーテル類が挙げられる。またグリシジルエステル類としては、安息香酸グリシジルエステル、ソルビン酸グリシジルエステル等のモノグリシジルエステル類;アジピン酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、オルトフタル酸ジグリシジルエステル等のジグリシジルエステル類等が挙げられる。
エポキシ化ブタジエン重合体としては、エポキシ化ポリブタジエン、エポキシ化スチレン−ブタジエン系共重合体、エポキシ化水素化スチレン−ブタジエン系共重合体等を例示できる。
また(D)エポキシ化合物は、グリシジル基含有化合物を一方の成分とする共重合体であってもよい。例えばα,β−不飽和酸のグリシジルエステルと、α−オレフィン、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステルからなる群より選ばれる一種または二種以上のモノマーとの共重合体が挙げられる。
また、(D)エポキシ化合物としては、エポキシ当量100〜10000g/eq、質量平均分子量8000以下のエポキシ化合物が好ましい。エポキシ当量が100g/eq未満のものは、エポキシ基の量が多すぎるため樹脂組成物の粘度が高くなり、逆にエポキシ当量が10000g/eqを超えるものは、エポキシ基の量が少なくなるため、熱可塑性ポリエステル樹脂組成物の耐アルカリ性、耐ヒートショック性を向上させる効果が十分に発現しにくい傾向にある。エポキシ当量は、より好ましくは300〜7000g/eqであり、さらに好ましくは500〜6000g/eqである。また、質量平均分子量が8000を超えるものは、熱可塑性ポリエステル樹脂との相溶性が低下し、成形品の機械的強度が低下する傾向にある。質量平均分子量は、より好ましくは7000以下であり、さらに好ましくは6000以下である。
(D)エポキシ化合物としては、ビスフェノールAやノボラックとエピクロロヒドリンとの反応から得られる、ビスフェノールA型エポキシ化合物やノボラック型エポキシ化合物が好ましい。中でも、ビスフェノールA型エポキシ化合物が、ポリアミド樹脂との反応性がよいためポリアミド樹脂が分散しやすく耐アルカリ性が向上しやすい傾向にあり好ましく、また、耐加水分解性の点からも特に好ましい。
(D)エポキシ化合物の含有量は(A)熱可塑性ポリエステル樹脂100質量部に対し1〜15質量部であり、3質量部以上が好ましく、4質量部以上がより好ましく、4.5質量部以上がさらに好ましい。また、13質量部以下が好ましく、10質量部以下がより好ましく、特には8質量部以下が好ましい。(D)エポキシ化合物の含有量が1質量部未満では、ポリアミド樹脂の分散不良による耐アルカリ性の低下や耐加水分解性の低下が発生し、また、レーザー溶着性も低下する。15質量部より多いと架橋化が進行し成形時の流動性が悪くなる。
さらに、(A)熱可塑性ポリエステル樹脂の末端COOH基に対する(D)エポキシ化合物のエポキシ基の当量比(エポキシ基/COOH基)は、0.2〜2.7の範囲にあることが好ましい。当量比が0.2を下回ると耐加水分解性が悪くなりやすく、2.7を上回ると成形性が不安定となりやすい。エポキシ基/COOH基は、より好ましくは0.3以上であり、2.5以下である。
(E)強化充填材
本発明の熱可塑性ポリエステル樹脂組成物は、(E)強化充填材を、(A)熱可塑性ポリエステル樹脂100質量部に対し、30〜100質量部の範囲で含有する。(E)強化充填材の含有量は、40質量部以上が好ましく、50質量部以上がより好ましく、また90質量部以下が好ましく、80質量部以下がより好ましい。
本発明において、強化充填材とは、樹脂成分に含有させて強度及び剛性を向上させるものをいい、繊維状、板状、粒状、無定形等いずれの形態ものであってもよい。
(E)強化充填材の形態が繊維状である場合、無機質、有機質のいずれであってもよい。例えば、ガラス繊維、カーボン繊維、シリカ・アルミナ繊維、ジルコニア繊維、ホウ素繊維、窒化ホウ素繊維、窒化ケイ素チタン酸カリウム繊維、金属繊維、ワラストナイト等の無機繊維、フッ素樹脂繊維、アラミド繊維等の有機繊維が含まれる。(E)強化充填材が繊維状の場合、好ましいのは無機質の繊維であり、その中でも特に好ましいのはガラス繊維である。(E)強化充填材は1種でも2種類の混合物であってもよい。
(E)強化充填材の形態が繊維状である場合、その平均繊維径や平均繊維長並びに断面形状は特に制限されないが、平均繊維径は例えば1〜100μmの範囲で選ぶのが好ましく、平均繊維長は例えば0.1〜20mmの範囲で選ぶのが好ましい。平均繊維径はさらに好ましくは1〜50μm、より好ましくは5〜20μm程度である。また平均繊維長は、好ましくは0.12〜10mm程度である。また、繊維断面が長円形、楕円形、繭形等の扁平形状である場合は、扁平率(長径/短径の比)が1.4〜10が好ましく、2〜6がより好ましく、2.5〜5がさらに好ましい。このような異形断面のガラス繊維を用いることにより、成形品の反り、収縮率の異方性等の寸法安定性が改善されやすいので好ましい。
上記した繊維状強化充填材以外に、板状、粒状又は無定形の他の強化充填材を含有することもできる。板状無機充填材は、異方性及びソリを低減させる機能を発揮するものであり、ガラスフレーク、タルク、マイカ、雲母、カオリン、金属箔等が挙げられる。板状無機充填材の中で好ましいのは、ガラスフレークである。
粒状又は無定形の他の無機充填材としては、セラミックビーズ、アスベスト、クレー、ゼオライト、チタン酸カリウム、硫酸バリウム、酸化チタン、酸化ケイ素、酸化アルミニウム、水酸化マグネシウム等が挙げられる。
なお、(E)強化充填材と樹脂成分との界面の密着性を向上させるために、(E)強化充填材の表面を集束剤等の表面処理剤によって処理するのが好ましい。表面処理剤として、エポキシ樹脂、アクリル樹脂、ウレタン樹脂や、イソシアネート系化合物、シラン系化合物、チタネート系化合物等の官能性化合物が挙げられる。
本発明においては、表面処理のために、エポキシ樹脂を用いることが好ましい。エポキシ樹脂としては、フェノールノボラック型、クレゾールノボラック型等のノボラック型エポキシ樹脂や、ビスフェノールA型のエポキシ樹脂が好ましい。中でも、ノボラック型エポキシ樹脂とビスフェノール型エポキシ樹脂を併用することが好ましく、フェノールノボラック型エポキシ樹脂とビスフェノールA型エポキシ樹脂を併用することが、耐アルカリ性、耐加水分解性及び機械的特性の点から好ましい。
官能性化合物としては、アミノシラン系、エポキシシラン系、アリルシラン系、ビニルシラン系等のシランカップリング剤が好ましく、中でも、アミノシラン系化合物が好ましい。
アミノシラン系化合物としては、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシランが好ましく、中でも、γ−アミノプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシランが好ましい。
本発明においては、所謂集束剤としてノボラック型エポキシ樹脂及びビスフェノール型エポキシ樹脂とを用い、加えてカップリング剤としてアミノシラン系化合物で表面処理された強化充填材を用いることが、耐アルカリ性及び耐加水分解性の点から、特に好ましい。表面処理剤をこのような構成とすることにより、アミノシラン系化合物の無機官能基は(E)強化充填材表面と、アミノシランの有機官能基はエポキシ樹脂のグリシジル基とそれぞれ反応性に富み、また、エポキシ樹脂のグリシジル基は、(A)熱可塑性ポリエステル樹脂や(B)ポリアミド樹脂とそれぞれ適度に反応することにより、(E)強化充填材とエポキシ樹脂との界面密着力が向上し、また、(B)ポリアミド樹脂の分散性も向上しやすくなる。この結果、本発明の樹脂組成物の耐アルカリ性、耐加水分解性、機械的特性が向上しやすい傾向になると考えられる。
また、本発明の趣旨を逸脱しない範囲内で、ウレタン樹脂、アクリル樹脂、帯電防止剤、潤滑剤及び撥水剤等を表面処理剤中に含めることもでき、これらその他の成分を含める場合は、ウレタン樹脂を用いることが好ましい。
(E)強化充填材は、従来公知の方法により表面処理することができ、例えば、上記表面処理剤によって予め表面処理してもよく、本発明の熱可塑性ポリエステル樹脂組成物を調製する際に、未処理の(E)強化充填材とは別に表面処理剤を添加して表面処理してもよい。
(E)強化充填材に対する表面処理剤の付着量は、0.01〜5質量%が好ましく、0.05〜2質量%がさらに好ましい。0.01質量%以上とすることにより、機械的強度がより効果的に改善される傾向にあり、5質量%以下とすることにより、必要十分な効果が得られ、また、樹脂組成物の製造が容易になる傾向となり好ましい。
[(F)離型剤]
本発明の熱可塑性ポリエステル樹脂組成物は、(A)熱可塑性ポリエステル樹脂100質量部に対し、(F)離型剤を0.1〜3質量部の範囲で含有する。離型剤としては、ポリエステル樹脂に通常使用される既知の離型剤が利用可能であるが、中でも、耐アルカリ性が良好な点で、ポリオレフィン系化合物、脂肪酸エステル系化合物及びシリコーン系化合物から選ばれる1種以上の離型剤が好ましく、特に、ポリオレフィン系化合物が好ましい。
ポリオレフィン系化合物としては、パラフィンワックス及びポリエチレンワックスから選ばれる化合物が挙げられ、中でも、質量平均分子量が、700〜10,000、更には900〜8,000のものが好ましい。
脂肪酸エステル系化合物としては、飽和又は不飽和の脂肪族1価又は2価のカルボン酸エステル類、グリセリン脂肪酸エステル類、ソルビタン脂肪酸エステル類等の脂肪酸エステル類やその部分鹸化物等が挙げられる。中でも、炭素数11〜28、好ましくは炭素数17〜21の脂肪酸とアルコールで構成されるモノ又はジ脂肪酸エステルが好ましい。
脂肪族カルボン酸としては、パルミチン酸、ステアリン酸、カプロン酸、カプリン酸、ラウリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、メリシン酸、テトラリアコンタン酸、モンタン酸、アジピン酸、アゼライン酸等が挙げられる。また、脂肪族カルボン酸は、脂環式のカルボン酸であってもよい。
アルコールとしては、飽和又は不飽和の1価又は多価アルコールを挙げることができる。これらのアルコールは、フッ素原子、アリール基などの置換基を有していてもよい。これらの中では、炭素数30以下の1価又は多価の飽和アルコールが好ましく、炭素数30以下の脂肪族飽和1価アルコール又は多価アルコールが更に好ましい。ここで脂肪族とは、脂環式化合物も含有する。
かかるアルコールの具体例としては、オクタノール、デカノール、ドデカノール、ステアリルアルコール、ベヘニルアルコール、エチレングリコール、ジエチレングリコール、グリセリン、ペンタエリスリトール、2,2−ジヒドロキシペルフルオロプロパノール、ネオペンチレングリコール、ジトリメチロールプロパン、ジペンタエリスリトール等が挙げられる。
なお、上記のエステル化合物は、不純物として脂肪族カルボン酸及び/又はアルコールを含有していてもよく、複数の化合物の混合物であってもよい。
脂肪酸エステル系化合物の具体例としては、グリセリンモノステアレート、グリセリンモノベヘネート、グリセリンジベヘネート、グリセリン−12−ヒドロキシモノステアレート、ソルビタンモノベヘネート、ぺンタエリスリトールモノステアレート、ペンタエリストールジステアレート、ステアリルステアレート、エチレングリコールモンタン酸エステル等が挙げられる。
また、シリコーン系化合物としては、ポリエステル樹脂との相溶性等の点から、変性されている化合物が好ましい。変性シリコーンオイルとしては、ポリシロキサンの側鎖に有機基を導入したシリコーンオイル、ポリシロキサンの両末端及び/又は片末端に有機基を導入したシリコーンオイル等が挙げられる。導入される有機基としては、エポキシ基、アミノ基、カルボキシル基、カルビノール基、メタクリル基、メルカプト基、フェノール基等が挙げられ、好ましくはエポキシ基が挙げられる。変性シリコーンオイルとしては、ポリシロキサンの側鎖にエポキシ基を導入したシリコーンオイルが特に好ましい。
(F)離型剤の含有量は、前記したように、(A)熱可塑性ポリエステル樹脂100質量部に対して、0.1〜3質量部であるが、0.2〜2.5質量部であることが好ましい。0.1質量部未満であると、溶融成形時の離型不良により表面性が低下し、一方、3質量部を超えると、樹脂組成物の練り込み作業性が低下し、また成形体表面に曇りが見られる。離型剤の含有量は、更に好ましくは0.5〜2質量部である。
[安定剤]
本発明の熱可塑性ポリエステル樹脂組成物は、安定剤を含有することが、熱安定性改良や、機械的強度、透明性や色相の悪化を防止する効果を有するという点で好ましい。安定剤としては、イオウ系安定剤およびフェノール系安定剤が好ましい。
イオウ系安定剤としては、従来公知の任意のイオウ原子含有化合物を用いることが出来、中でもチオエーテル類が好ましい。具体的には例えば、ジドデシルチオジプロピオネート、ジテトラデシルチオジプロピオネート、ジオクタデシルチオジプロピオネート、ペンタエリスリトールテトラキス(3−ドデシルチオプロピオネート)、チオビス(N−フェニル−β−ナフチルアミン)、2−メルカプトベンゾチアゾール、2−メルカプトベンゾイミダゾール、テトラメチルチウラムモノサルファイド、テトラメチルチウラムジサルファイド、ニッケルジブチルジチオカルバメート、ニッケルイソプロピルキサンテート、トリラウリルトリチオホスファイトが挙げられる。これらの中でも、ペンタエリスリトールテトラキス(3−ドデシルチオプロピオネート)が好ましい。
フェノール系安定剤としては、例えば、ペンタエリスリトールテトラキス(3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート)、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、チオジエチレンビス(3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート)、ペンタエリスリトールテトラキス(3−(3,5−ジ−ネオペンチル−4−ヒドロキシフェニル)プロピオネート)等が挙げられる。これらの中でも、ペンタエリスリト−ルテトラキス(3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート)、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネートが好ましい。
安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
安定剤の含有量は、(A)熱可塑性ポリエステル樹脂100質量部に対し、好ましくは0.001〜2質量部である。安定剤の含有量が0.001質量部未満であると、樹脂組成物の熱安定性や相溶性の改良が期待しにくく、成形時の分子量の低下や色相悪化が起こりやすく、2質量部を超えると、過剰量となりシルバーの発生や、色相悪化が更に起こりやすくなる傾向がある。安定剤の含有量は、より好ましくは0.01〜1.5質量部であり、更に好ましくは、0.1〜1質量部である。
[難燃剤]
本発明の熱可塑性ポリエステル樹脂組成物は、難燃性を付与するために難燃剤を含有することができる。難燃剤としては、有機ハロゲン化合物、アンチモン化合物、リン化合物、窒素化合物、その他有機、無機化合物等が挙げられる。有機ハロゲン化合物の具体例としては、臭素化ポリカーボネート、臭素化エポキシ樹脂、臭素化フェノキシ樹脂、臭素化ポリフェニレンエーテル樹脂、臭素化ポリスチレン樹脂、臭素化ビスフェノールA、ペンタブロモベンジルポリアクリレート等が挙げられる。
アンチモン化合物としては三酸化アンチモン、五酸化アンチモン、アンチモン酸ナトリウム等が挙げられる。リン化合物の難燃剤としては、リン酸エステル、ポリリン酸、ポリリン酸メラミン、ポリリン酸アンモニウム、ホスフィン酸金属塩、赤リン等が挙げられる。また、窒素系難燃剤としては、シアヌル酸メラミン、ホスファゼン等を挙げることができる。上記以外の有機難燃剤、無機難燃剤としては、水酸化アルミニウム、水酸化マグネシウム、ケイ素化合物、ホウ素化合物等の無機化合物が挙げられる。
[レーザー光吸収性染料]
本発明の熱可塑性ポリエステル樹脂組成物は、本発明の効果を著しく損なわない範囲で、ニグロシン、アニリンブラック、フタロシアニン、ナフタロシアニン、ポルフィリン、ペリレン、クオテリレン、アゾ染料、アントラキノン、スクエア酸誘導体、インモニウム染料等のレーザー光吸収性染料を配合してもよいが、本発明の熱可塑性ポリエステル樹脂組成物は、レーザー溶着性を向上させるために通常必要とされる上記のレーザー光吸収性染料を配合しなくとも、上記(A)〜(E)成分を組み合わせて用いることにより、優れたレーザー溶着性を達成することが可能である。
レーザー光吸収性染料を使用する場合の含有量は、(A)熱可塑性ポリエステル樹脂100質量部に対し、通常0.005〜3質量部、好ましくは0.01〜1.5質量部、より好ましくは0.05〜1質量部、さらに好ましくは0.1〜0.5質量部である。
[その他成分]
本発明の熱可塑性ポリエステル樹脂組成物には、必要に応じて本発明の効果を阻害しない範囲内で、従来から知られている各種樹脂添加剤を含有することもできる。各種樹脂添加剤としては、酸化防止剤、紫外線吸収剤、耐候安定剤、滑剤、染顔料等の着色剤、触媒失活剤、帯電防止剤、発泡剤、可塑剤、前記(C−1)〜(C−3)以外の耐衝撃改良剤、結晶核剤、結晶化促進剤等が挙げられる。
本発明の熱可塑性ポリエステル樹脂組成物には、必要に応じて本発明の効果を阻害しない範囲内で、他の熱可塑性樹脂や熱硬化性樹脂等を含有することができる。他の熱可塑性樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル系樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリフェニレンオキサイド樹脂、ポリフェニレンサルファイド樹脂、液晶ポリエステル樹脂等が挙げられ、熱硬化性樹脂としては、フェノール樹脂、メラミン樹脂、シリコーン樹脂、エポキシ樹脂等が挙げられる。これらは、1種でも2種類以上であってもよい。
本発明の熱可塑性ポリエステル樹脂組成物を製造する方法は、特定の方法に限定されるものではないが、溶融・混練法によるのが好ましい。溶融・混練方法は、熱可塑性樹脂について通常採用されている方法によることができる。
溶融・混練方法としては、例えば、(A)熱可塑性ポリエステル樹脂、(B)ポリアミド樹脂、(C−1)共重合体、(C−2)コア/シェル型エラストマー、(C−3)コア/シェル型エラストマー、(D)エポキシ化合物、(E)強化充填材及び(F)離型剤をヘンシェルミキサー、リボンブレンダー、V型ブレンダー、タンブラー等により均一に混合した後、一軸又は多軸混練押出機、ロール、バンバリーミキサー、ラボプラストミル(ブラベンダー)等で溶融・混練する方法が挙げられる。要すれば(E)強化充填材を混錬押出機のサイドフィーダーより供給することにより、強化充填材の折損を抑制し、分散させることが可能になり好ましい。溶融・混練する際の温度と混練時間は、樹脂成分を構成する成分の種類、成分の割合、溶融・混練機の種類等により選ぶことができるが、溶融・混練する際の温度は200〜300℃の範囲が好ましい。300℃を超えると、(A)熱可塑性ポリエステル樹脂、(B)ポリアミド樹脂、(C−1)共重合体、(C−2)コア/シェル型エラストマー、(C−3)コア/シェル型エラストマー等の熱劣化が問題となり、成形品の物性が低下したり、外観が悪化したりすることがある。
本発明の熱可塑性ポリエステル樹脂組成物から、目的の成形品を製造する方法は、特に限定されるものではなく、熱可塑性樹脂について従来から採用されている成形法、すなわち射出成形法、インサート成形法、中空成形法、押出成形法、圧縮成形法等によることができ、中でも射出成形法が好ましい。製造できる成形品としては、例えば、各種保存容器、電気電子部品、オフィスオートメート(OA)機器部品、家電機器部品、機械機構部品、建築資材部品、その他精密機器用部品、自動車機構部品、サニタリー部品等に適用できる。特に、食品用容器、薬品用容器、油脂製品容器、車両中空部品(各種タンク、インテークマニホールド部品等)、モーター部品、各種センサー部品、コネクター部品、スイッチ部品、ブレーカー部品、リレー部品、コイル部品、トランス部品、ランプ部品等に好適に用いることができる。中でも、自動車エンジン周りの車載部品用成形品、例えば、各種センサー、コネクター、ディストリビューター部品、イグニッションコイル部品並びにそのケースや筺体等の車載部品用の樹脂材料として好適である。
[レーザー溶着]
本発明の熱可塑性ポリエステル樹脂組成物は、レーザー光の透過深さが大きく、そのため大きい溶融深さを確保することができるので、通常の重ね合わせ溶着は勿論、レーザー光吸収性染料なしでは今まで出来なかったレーザー溶着用成形体の端部同士の突き合わせ溶着でも、十分高い溶着強度を達成することができる。また、成形体が、成形時のヒケや反りにより接合用部に仮に隙間が生じた場合にも、隙間が0.1mm以上、好ましくは0.2mm以上、さらには0.5mm以上、特には1mm以上もある場合であっても、レーザー溶着が可能である。
照射するレーザー光の種類は、近赤外レーザー光であれば任意であり、YAG(イットリウム・アルミニウム・ガーネット結晶)レーザー(波長1,064nm)、LD(レーザーダイオード)レーザー(波長808nm、840nm、940nm)等を好ましく用いることができる。
そして、特に、本発明の熱可塑性ポリエステル樹脂組成物を成形した成形品は、耐アルカリ性試験では、インサート成形品を10質量%NaOH水溶液浸漬させた際のクラック発生までの時間が300時間以上、また、耐ヒートショック試験(−40℃×30分→130℃×30分のヒートサイクルによるウエルドラインでの割れ発生のサイクル数)では140サイクル以上、好ましくは200サイクル以上、より好ましくは250サイクル以上、さらに好ましくは300サイクル以上というような、極めて高い耐アルカリ性と耐ヒートショック性を達成することができるので、特に車載用の部品に要求される特性に対して優れた特性を有する。
以下、本発明を実施例及び比較例に基づいてさらに詳細に説明するが、本発明は以下の記載例に限定して解釈されるものではない。
実施例及び比較例で使用した原料成分は、下記の表1のとおりである。
〔実施例1〜6及び比較例1〜6〕
<熱可塑性ポリエステル樹脂組成物の製造>
表1に記載のガラス繊維以外の各成分を、下記の表2、3に示される割合(全て質量部)にて、ブレンドし、これを30mmのベントタイプ二軸押出機(日本製鋼所社製、二軸押出機TEX30α)を使用して、ガラス繊維はサイドフィーダーより供給し、バレル温度270℃にて溶融混練し、ストランドに押し出した後、ストランドカッターによりペレット化し、ポリブチレンテレフタレート樹脂組成物のペレットを得た。
[測定評価方法]
実施例及び比較例における各種の物性・性能の測定評価は以下の方法により実施した。
(a)シャルピー衝撃強度(単位:kJ/m):
得られたペレットを120℃で6時間乾燥後、日精樹脂工業社製射出成形機(型式NEX80−9E)を使用して、シリンダー温度250℃、金型温度80℃の条件で、シャルピー衝撃強度測定用ISO試験片を成形し、ISO179に準拠して、ノッチ付シャルピー衝撃強度を測定した。
(b)耐ヒートショック試験:
得られたペレットを120℃で6時間乾燥後、日精樹脂工業社製TH60 R5VSE縦型射出成形機を用いて、シリンダー温度250℃、金型温度80℃で、図1に示す直方体形状の鉄(SUS)のインサート物1(縦16mm×横33mm×厚さ3mm)を、図2に示すように、支持ピン2にて金型キャビティー4内に仕込んでインサートした(インサート鉄片3)。インサート成形により、図3に示すインサート成形品(縦18mm×横35mm×厚さ5mm)を作製した。このインサート成形品の樹脂部の肉厚は1mmである。インサート成形品には支持ピン跡5に2つのウエルドライン6が発生する。このインサート成形品を用いて、入江製作所社製DTS−30型熱衝撃試験装置により、ヒートショック試験を行った。
ヒートショック試験の条件は、−40℃で30分→130℃で30分のサイクルで、ヒートショック試験にかけ、5個の成形品の計10ヶ所のウエルドラインにおける割れが発生するサイクル数の平均値で表示した。
(c)耐アルカリ性評価:
上記(b)耐ヒートショック性試験と同様の方法で得られたインサート成形品を、室温で、10質量%濃度のNaOH水溶液に浸漬した。浸漬後、定期的に目視でクラック発生の有無を確認し、クラックが発生するまでの時間(hr)を測定した。この時間が長いほど、耐アルカリ性に優れている。
(d)レーザー溶着性評価:
得られたペレットを120℃で6時間乾燥後、射出成形機(日精樹脂工業社製、型式:NEX80−9E)を用い、シリンダー温度255℃、金型温度80℃の条件で、1.5mm厚のASTM4号ダンベル片を製造した。
得られた2mm厚のASTM4号ダンベル片2つ(成形品#1及び成形品#2)を使用し、図4に示すように、成形品#1と成形品#2の反ゲート側の端部同士を突き合わせ、さらに、厚み10mmのガラスプレートで突き合わせ部を挟み、突き合わせ部にレーザー光を照射して溶着した。溶着された成形品#1と成形品#2の溶着部の反対側をそれぞれ掴み、引っ張り方向に荷重をかけて剪断破壊する荷重(単位:N)を求めた。なお、引張試験機としては、インストロン社製「5544」を使用し、引張速度は5mm/分で行った。
レーザー溶着は、ファインディバイス社製レーザー装置(レーザー140W ファイバーコア径0.6mm)を用い、レーザー波長:940nm、レーザースキャン速度:10mm/秒、レーザー出力:140W、加圧:0.4MPa、レーザーヘッドとガラスプレート間の距離:79.7mmの条件で行った。溶着部サイズは、2×6mmであった。
以上の評価結果を以下の表2及び表3に示す。
表2、3の結果から、実施例1〜6の熱可塑性ポリエステル樹脂組成物は、耐アルカリ性、耐ヒートショック性、レーザー溶着性及び耐衝撃性の全てに優れることがわかる。
一方、(C−1)共重合体、(C−2)エラストマーのかわりにその他のエラストマーを使用した比較例1〜4は、耐アルカリ性、耐ヒートショック性のいずれか又は両方が悪く、耐アルカリ性と耐ヒートショック性の両立が不可能であることがわかる。
また、ポリアミド樹脂を含有しない比較例5は、耐ヒートショック性、耐アルカリ性が著しく劣り、レーザー溶着強度も0ニュートンであった。さらに、ポリアミド樹脂に加えガラス繊維も含有しない比較例6は、シャルピー衝撃強度、レーザー溶着強度が低下することがわかる。
本発明の熱可塑性ポリエステル樹脂組成物は、極めて高度の耐アルカリ性と耐ヒートショック性を達成することができ、また、レーザー溶着性及び耐衝撃性にも優れるので、自動車分野、特に自動車電装部品、センサー部品、エンジン周りの自動車用部品製造用に極めて有用な材料である。さらに電気電子部品、建築資材部品、サニタリー部品、機械部品等の広範囲な分野に有用である。
1.インサート鉄片
2.支持ピン
3.金型内にインサートされたインサート鉄片
4.キャビティー
5.支持ピン跡
6.ウエルドライン

Claims (12)

  1. (A)熱可塑性ポリエステル樹脂100質量部に対し、(B)ポリアミド樹脂10〜80質量部、(C−1)α−オレフィンと不飽和グリシジル化合物とアクリル酸ブチルの共重合体1〜15質量部、(C−2)ポリオルガノシロキサン系ゴム成分及びアクリル系ゴム成分を含有するコア層上に芳香族ビニル系重合体を含有するコア/シェル型エラストマー1〜20質量部、(C−3)ポリオルガノシロキサン系ゴム成分及びアクリル系ゴム成分を含有するコア層上にグリシジル変性したアクリル酸エステル系重合体を含有するコア/シェル型エラストマー1〜10質量部、(D)エポキシ化合物1〜15質量部、(E)強化充填材30〜100質量部及び(F)離型剤0.1〜3質量部を含有することを特徴とする熱可塑性ポリエステル樹脂組成物。
  2. (C−1)成分と(C−3)成分の含有量の質量比(C−1)/(C−3)が、3.5/1〜1/1である請求項1に記載の熱可塑性ポリエステル樹脂組成物。
  3. (C−2)成分と(C−3)成分の含有量の質量比(C−2)/(C−3)が、5/1〜1.2/1である請求項1又は2に記載の熱可塑性ポリエステル樹脂組成物。
  4. (C−1)成分、(C−2)成分及び(C−3)成分の合計含有量が、(A)熱可塑性ポリエステル樹脂100質量部に対し、10〜40質量部である請求項1〜3のいずれか1項に記載の熱可塑性ポリエステル樹脂組成物。
  5. (C−1)α−オレフィンと不飽和グリシジル化合物とアクリル酸ブチルの共重合体の各構成単位の含有量が、α−オレフィン:50〜94.5質量%、不飽和グリシジル化合物:0.5〜20質量%、アクリル酸ブチル:5〜49.5質量%である請求項1〜4のいずれか1項に記載の熱可塑性ポリエステル樹脂組成物。
  6. (C−2)及び/又は(C−3)のコア/シェル型エラストマー中のポリオルガノシロキサン系ゴム成分の含有量が2〜30質量%である請求項1〜5のいずれか1項に記載の熱可塑性ポリエステル樹脂組成物。
  7. (C−2)及び/又は(C−3)のコア/シェル型エラストマーの平均粒子径が50〜400nmである請求項1〜6のいずれか1項に記載の熱可塑性ポリエステル樹脂組成物。
  8. (E)強化充填材が少なくともノボラック型エポキシ樹脂及びビスフェノール型エポキシ樹脂で処理されている請求項1〜7のいずれか1項に記載の熱可塑性ポリエステル樹脂組成物。
  9. (F)離型剤が、ポリエチレンワックスである請求項1〜8のいずれか1項に記載の熱可塑性ポリエステル樹脂組成物。
  10. (D)エポキシ化合物が、ビスフェノールA型エポキシ化合物である請求項1〜9のいずれか1項に記載の熱可塑性ポリエステル樹脂組成物。
  11. レーザー溶着に用いられる請求項1〜10のいずれか1項に記載の熱可塑性ポリエステル樹脂組成物。
  12. 請求項11に記載の熱可塑性ポリエステル樹脂組成物を成形してなる成形体の端部同士を突き合わせて溶着されたレーザー溶着体。
JP2015167672A 2014-09-11 2015-08-27 熱可塑性ポリエステル樹脂組成物 Active JP6487808B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014185138 2014-09-11
JP2014185138 2014-09-11

Publications (2)

Publication Number Publication Date
JP2016056355A JP2016056355A (ja) 2016-04-21
JP6487808B2 true JP6487808B2 (ja) 2019-03-20

Family

ID=55757726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015167672A Active JP6487808B2 (ja) 2014-09-11 2015-08-27 熱可塑性ポリエステル樹脂組成物

Country Status (1)

Country Link
JP (1) JP6487808B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019059830A (ja) * 2017-09-26 2019-04-18 富士ゼロックス株式会社 樹脂組成物および樹脂成形体
MX2021001374A (es) 2018-08-09 2021-09-14 Toray Industries Composición de resina de poliéster termoplástico y artículo moldeado de la misma.
EP3851553A4 (en) 2018-09-11 2021-11-03 Mitsubishi Engineering-Plastics Corporation METAL-COATED MOLDED ARTICLES OF RESIN AND METHOD FOR THEIR MANUFACTURING
JP7259273B2 (ja) * 2018-11-09 2023-04-18 東レ株式会社 ポリブチレンテレフタレート樹脂組成物およびそれからなる高電圧部品
CN115058065B (zh) * 2022-06-30 2023-07-11 万华化学集团股份有限公司 具有光氧降解剂缓释效果的改性填料及制备方法和降解速率可控的pbat地膜

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4942200A (en) * 1987-05-21 1990-07-17 E. I. Du Pont De Nemours And Company Polyamide-polyarylate composition containing elastomeric modifier and epoxy-functional copolymer
JPH064754B2 (ja) * 1987-06-03 1994-01-19 宇部興産株式会社 樹脂組成物
JP2867092B2 (ja) * 1992-04-09 1999-03-08 三菱レイヨン株式会社 ウエルド強度及び耐熱安定性に優れた高流動性熱可塑性樹脂組成物
JP2002212400A (ja) * 2001-01-17 2002-07-31 Dainippon Ink & Chem Inc 熱可塑性樹脂組成物およびこれを用いた自動車用成形品
EP1994095A2 (en) * 2006-02-01 2008-11-26 E.I. Du Pont De Nemours And Company Articles comprising polyester and ethylene copolymer
JP5199056B2 (ja) * 2008-12-22 2013-05-15 三菱エンジニアリングプラスチックス株式会社 熱可塑性ポリエステル樹脂組成物およびその車両用成形品
WO2013047708A1 (ja) * 2011-09-30 2013-04-04 ウィンテックポリマー株式会社 ポリブチレンテレフタレート樹脂組成物及び溶着体

Also Published As

Publication number Publication date
JP2016056355A (ja) 2016-04-21

Similar Documents

Publication Publication Date Title
JP5199056B2 (ja) 熱可塑性ポリエステル樹脂組成物およびその車両用成形品
JP6487808B2 (ja) 熱可塑性ポリエステル樹脂組成物
JP6326332B2 (ja) 熱可塑性ポリエステル樹脂組成物
WO2017038409A1 (ja) レーザーダイレクトストラクチャリング用ポリエステル系樹脂組成物
WO2019069839A1 (ja) 金属樹脂複合体、樹脂組成物および金属樹脂複合体の製造方法
WO2020022208A1 (ja) ポリブチレンテレフタレート樹脂組成物
US11958973B2 (en) Resin composition, kit, method for manufacturing resin composition, method for manufacturing formed article, and formed article
JP2009030030A (ja) ポリフェニレンスルフィド樹脂組成物およびそれからなる成形品
JP5034773B2 (ja) レーザー光を用いて溶着させる工程を含む複合成形品の製造方法及び複合成形品
JP6438271B2 (ja) 熱可塑性ポリエステル樹脂組成物
JP2017048377A (ja) レーザーダイレクトストラクチャリング用ポリエステル系樹脂組成物
JP6383245B2 (ja) 熱可塑性ポリエステル樹脂組成物
JP2017048376A (ja) レーザーダイレクトストラクチャリング用ポリエステル系樹脂組成物
JP2006206921A (ja) ポリエステル樹脂組成物よりなる自動車用部品
JP2005248170A (ja) ポリフェニレンスルフィド樹脂組成物
CN112513181B (zh) 热塑性聚酯树脂组合物及其成型品
JP7484099B2 (ja) ポリブチレンテレフタレート樹脂組成物及びその製造方法、並びに、金属樹脂複合体
JP2006104222A (ja) ポリフェニレンスルフィド樹脂組成物
JP7439400B2 (ja) ポリブチレンテレフタレート樹脂組成物及びその製造方法、並びに、二色成形体
JP7174602B2 (ja) ポリエステル樹脂組成物
JP7447408B2 (ja) レーザー溶着用ポリブチレンテレフタレート樹脂組成物
WO2022030507A1 (ja) 熱可塑性ポリエステル樹脂組成物
JP6231239B1 (ja) ポリブチレンテレフタレート系樹脂組成物及び成形品
JPH0948876A (ja) 熱可塑性樹脂組成物
JP2002128999A (ja) ポリエステル樹脂組成物およびこの樹脂組成物よりなる自動車用部品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190222

R150 Certificate of patent or registration of utility model

Ref document number: 6487808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350