JP6481823B2 - 電力管理システム及び電力管理方法 - Google Patents

電力管理システム及び電力管理方法 Download PDF

Info

Publication number
JP6481823B2
JP6481823B2 JP2015092940A JP2015092940A JP6481823B2 JP 6481823 B2 JP6481823 B2 JP 6481823B2 JP 2015092940 A JP2015092940 A JP 2015092940A JP 2015092940 A JP2015092940 A JP 2015092940A JP 6481823 B2 JP6481823 B2 JP 6481823B2
Authority
JP
Japan
Prior art keywords
storage battery
power
output
value
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015092940A
Other languages
English (en)
Other versions
JP2016213919A (ja
Inventor
貴之 杉本
貴之 杉本
沼田 茂生
茂生 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2015092940A priority Critical patent/JP6481823B2/ja
Publication of JP2016213919A publication Critical patent/JP2016213919A/ja
Application granted granted Critical
Publication of JP6481823B2 publication Critical patent/JP6481823B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、電力管理システム及び電力管理方法に関する。
東日本大震災以来、電力需要が伸びる夏期及び冬期の電力逼迫により、需要家側では積極的なピーク電力の削減がより求められている。また、分散型電源に対する固定買取制度の開始や環境負荷低減の観点から太陽光発電の導入機運が高まっている。このような背景から、電力ピークが発生する時間帯に太陽光発電を用いてピーク電力を削減することが期待されている。しかしながら、太陽光発電や風力発電等の自然エネルギーにより発電する電源(以下、「自然エネルギー電源」という。)は、天候次第で大きく出力が変動する。このため、建物において電力ピークが発生している時間帯において、自然エネルギーを得ることができない場合、発電できずピークカットできない場合がある。また、自然エネルギー電源が電力系統に大量に導入されると、負荷周波数制御(LFC:Load Frequency Control)の周波数帯域の調整不足により、電力系統の電力品質に影響を及ぼすことが懸念されている。
上記問題の対策として、建物内に設置された蓄電池を用いてマイクログリッドを構築し、負荷周波数制御の周波数帯域を含む比較的長周期の負荷変動に対して蓄電池の出力を追従させる負荷変動補償制御を行うことが提案されている(特許文献1)。負荷変動補償制御により、負荷電力と自然エネルギー電源の発電電力との需給バランスが崩れた場合に、蓄電池から充放電されるため、電力会社からの買電電力を抑制すると同時に自然エネルギーの発電電力の変動における電力系統への影響を緩和することができる。上記負荷変動補償制御は、以下に列挙する2つの特徴を備え、昨今のエネルギー供給問題の対策技術として有効である。
・負荷電力の減少時には蓄電池が充電するため、少ない蓄電池容量でピーク電力の削減が可能。
・負荷周波数制御の周波数帯域の変動を蓄電池が補償するため、電力系統における自然エネルギー電源の大量導入に対応可能。
特開2005−160286号公報
しかしながら、負荷減少時の充電量が多いと蓄電池の蓄電池残量(SOC:State Of Charge)が満充電状態になり、蓄電池の充電が停止される。そのため、負荷周波数制御の周波数帯域の変動を蓄電池が補償できない場合がある。
本発明は、このような事情に鑑みてなされたもので、その目的は、ピーク電力の削減と負荷周波数制御とを両立することが可能である電力管理システム及び電力管理方法を提供することである。
本発明の一態様は、買電電力と蓄電池の出力する電力との合計値の長周期変動の成分をフィルタリングする第1バンドパスフィルタと、前記合計値の短周期変動の成分をフィルタリングする第2バンドパスフィルタと、所定の時間内において前記蓄電池の残量の推移が上限値未満となるように前記蓄電池の出力する電力に対応させて前記蓄電池に対する充電量の最大値を決定する決定部と、前記長周期変動の成分と前記短周期変動の成分との成分合計値及び前記充電量の最大値に基づいて前記蓄電池の出力する電力を決定する蓄電池制御部と、を備える電力管理システムである。
また、本発明の一態様は、上述の電力管理システムであって、前記決定部は、負荷電力の過去実績データの前記長周期変動の成分と前記過去実績データの短周期変動の成分との前記成分合計値に基づいて、前記充電量の最大値を変化させたときの前記蓄電池の残量の推移を計算し、計算した前記蓄電池の残量の推移が上限値未満となり、且つ最大となる前記充電量の最大値を選択することで、前記蓄電池の充電量の最大値を決定する。
また、本発明の一態様は、上述の電力管理システムであって、負荷電力の過去実績データに基づいて、前記蓄電池の補償周波数帯域を決定する蓄電池補償帯域決定部をさらに有し、前記第1バンドパスフィルタは、前記補償周波数帯域に基づいて、前記買電電力と前記蓄電池の出力する電力との合計値の長周期変動の成分をフィルタリングする。
また、本発明の一態様は、買電電力と蓄電池の出力する電力との合計値の長周期変動の成分をフィルタリングする第1のステップと、前記合計値の短周期変動の成分をフィルタリングする第2のステップと、所定の時間内において前記蓄電池の残量の推移が上限値未満となるように前記蓄電池に対する充電量の最大値を決定する第3のステップと、前記長周期変動の成分と前記短周期変動の成分との成分合計値及び前記充電量の最大値に基づいて前記蓄電池の出力する電力を決定する第4のステップと、含む電力管理方法である。
以上説明したように、本発明によれば、ピーク電力の削減と負荷周波数制御とを両立することが可能である電力管理システム及び電力管理方法を提供することができる。
本実施形態における電力管理システム1の構成を示すブロック図である。 本実施形態における負荷電力取得部40が取得した制御対象日の負荷電力データの一例を示す図である。 本実施形態における低域遮断周波数の決定方法を説明する図である。 本実施形態における蓄電池出力の決定方法を説明する図である。 本実施形態における出力上限値及び出力下限値と蓄電池残量SOCの上限設定値及び下限設定値との関係を示す図である。 本実施形態における蓄電池制御(蓄電池出力指令値計算部31の構成)を説明するブロック図である。 本実施形態における実際の制御対象日の負荷電力データの一例を示す図である。 本実施形態の電力管理システム1のシミュレーション結果を示した図である。 従来の電力管理システムのシミュレーション結果を示した図である。 従来の電力管理システムの概略構成を示す図である。
本実施形態の電力管理システム1は、需要家の負荷電力の減少時において、蓄電池の充電量を抑制しつつ、電力ピークの削減と負荷周波数制御(LFC:Load Frequency Control)を両立する。負荷周波数制御とは、自然エネルギー電源の発電電力を調整することにより、電力系統の周波数を規定値に維持する制御である。電力管理システム1は、様々な周波数成分を有する負荷電力の変動を、短周期の負荷変動補償用のバンドパスフィルタと長周期の負荷変動補償用のバンドパスフィルタとの各々に通すことで、各補償帯域の変動を抽出し、抽出した各補償帯域の変動に基づいて蓄電池の出力を決定する。
図1は、本実施形態の電力管理システム1の構成を示すブロック図である。図1において、電力管理システム1は、システム演算部10、過去実績データDB(データベース)11、リアルタイムコントローラ12及び定置用蓄電池部13を有する。
システム演算部10は、気象情報取得部20、気象類似日負荷電力データ取得部21、蓄電池補償帯域決定部22、出力初期値決定部23及び最大充電量決定部24を有する。
リアルタイムコントローラ12は、格納部30及び蓄電池出力指令値計算部31を有する。
また、上記気象情報取得部20、気象類似日負荷電力データ取得部21及び過去実績データDB11を負荷電力取得部40として構成することもできる。また、蓄電池補償帯域決定部22及び出力初期値決定部23を制御パラメータ決定部41として構成することもできる。また、最大充電量決定部24を充電量決定部42として構成することもできる。格納部30、蓄電池出力指令値計算部31及び定置用蓄電池部13を蓄電池制御部43として構成することもできる。
負荷電力取得部40は、制御対象日の前日、又は前日よりも前の日に翌日(制御対象日)の気象情報と類似した気象情報に対応付けられて記録されている負荷電力の過去実績データ(平日、土日・祝日に対応)を取得する(1日1回)。より具体的には、過去実績データDB11は、外部に設けられたシステムから、負荷電力の履歴、天気、温度、湿度等を含む気象情報を日付に対応づけて記憶する。
気象情報取得部20は、インターネット2を介して天気、温度、湿度等を含む気象情報を外部に接続された気象情報提供サーバ等から取得する。気象類似日負荷電力データ取得部21は、気象情報取得部20によって取得した気象情報に類似する気象情報が対応づけられた負荷電力のデータを、負荷電力の過去実績データとして過去実績データDB11から取得する。気象情報が類似するか否かの判定は、例えば、天気(天候)が同じであり、お互いの温度と湿度とが、それぞれ所定の範囲内にあれば類似すると判定する。すなわち、天気が同じであっても、お互いの温度と湿度との少なくともいずれかが、所定の範囲外である場合には、類似しないと判定する。また、制御対象日における気温の推移予想グラフと過去の気象情報における気温の推移グラフの相関関係、制御対象日における湿度の推移予想グラフと過去の気象情報における湿度の推移グラフの相関関係によって類似を判断してもよい。なお、本実施形態において、負荷電力取得部40は、制御対象日の気象情報に類似する気象情報が対応づけられた負荷電力のデータを過去実績データDB11から取得することで、制御対象日の負荷電力データを予測したが、これに限定されない。例えば、負荷電力取得部40は、ニュートラルネットワークやカルマンフィルタ等、既存の技術を用いて制御対象日の負荷電力データを予測してもよい。なお、負荷電力データ取得部21は、例として、図2に示す負荷電力データを制御対象日の負荷電力データとして取得したとする。
制御パラメータ決定部41は、負荷電力データ取得部21が取得した負荷電力データ(過去実績データ)を用いて、実効蓄電池容量でピーク電力削減量が最大となる補償帯域及び出力初期値を決定する。ここで、補償帯域とは、蓄電池で補償すべき負荷変動の周波数帯域である。補償帯域を決定する目的は、様々な周波数成分で構成されている負荷変動において、与えられた蓄電池容量で最大限のピーク電力削減量を得るためには、蓄電池で補償すべき負荷変動の周波数帯域を決定する必要があるためである。なお、ピーク電力削減量とは、負荷電力がピークとなる時間帯において、そのピークの負荷電力を削減する削減量である。出力初期値とは、負荷の変動による電力量を補償する負荷変動補償の開始時刻における蓄電池から出力される出力の初期値である。
蓄電池補償帯域決定部22は、負荷電力取得部40が取得した負荷電力データ(過去実績データ)を用いて、高域遮断周波数及び低域遮断周波数を決定する。すなわち、蓄電池補償帯域決定部22は、時刻の経過と負荷電力との関係を表す負荷電力プロファイルのうち、ある時刻の範囲における負荷電力プロファイルから、又は、過去の類似する電力プロファイルや、シミュレーション結果などを解析することで、その負荷電力プロファイルに対応する最適な蓄電池の補償周波数帯域を求める。ここで、例えば、使用する負荷電力データは、業務時間帯のデータである。業務時間帯とは、負荷に電力を供給するために蓄電池を放電する時間帯である。
以下に、本実施形態の蓄電池補償帯域決定部22の高域遮断周波数及び低域遮断周波数を決定する方法の一例を説明する。
まず、蓄電池補償帯域決定部22は、負荷電力に含まれる周波数成分を特定するため、負荷電力の過去実績データから、(1)式の離散フーリエ変換の公式を用いて、負荷電力の各周波数fにおける実数部R(f)、及び虚数部I(f)を計算する。x(t)は負荷電力、fは周波数、X(f)は周波数fにおける負荷電力、kは1からサンプル数Nまでの数を表す。
Figure 0006481823
次に、蓄電池補償帯域決定部22は、(2)式に基づき、負荷電力の各周波数の振幅|X(f)|[kW]を求める。kは、1からN/2までの数である。
Figure 0006481823
次に、蓄電池補償帯域決定部22は、(3)式に基づき、実数部R(f)及び虚数部I(f)を用いて、位相差φ(f)[rad]を求める。
Figure 0006481823
なお、基本周波数fは、(3)式に基づき、負荷電力のサンプリング間隔Δt、及びサンプル数Nから求められる。また、ナイキスト周波数fは、(4)式及び(5)式に基づき求められる。
Figure 0006481823
Figure 0006481823
次に、図3を用いて、低域遮断周波数の決定方法を説明する。図3は、(2)式で求めた各周波数の振幅|X(fk)|の正弦波の時間積分による蓄電池容量の算出方法を示すグラフである。
図3において、縦軸は電力を表し、横軸は時間を表す。電力のグラフは、(2)式より求めた各周波数fに対する振幅|X(f)|を示し、正弦波の半周期分において、(3)式より求めた位相差φ(f)を考慮して、蓄電池の充電期間における放電電力と放電期間における放電電力を示している。すなわち、図3における0〜φ(f)における電力は充電電力を示し、φ(f)〜1/2fにおける電力は放電電力を示す。
ここで、負荷変動補償に必要な蓄電池容量は、放電量から充電量を引いた値、すなわち、図3の斜線部分で示した放電量から充電量を引いた値によって算出することができる。周波数fにおける蓄電池容量は、以下に示す(6)式に基づき求められる。
Figure 0006481823
蓄電池補償帯域決定部22は、離散フーリエ変換で求めた振幅|X(f)|、周波数f、及び位相差φ(f)を用いて、図3に示す半周期分において蓄電池の充電量及び放電量を算出する。
また、位相差φ(f)を0[rad]として考えると、(6)式においてcosφ(f)=1となり、すなわち、周波数fにおける蓄電池容量は、半周期において放電電力量に基づく値となる。一方、位相差φ(f)が0[rad]でない値の場合を考慮すると、半周期分において、放電量に加えて充電量を考慮した電力量が計算される。位相差φ(f)を考慮することにより、放電量のみを考慮した蓄電池容量に対して充電量を考慮するため、より小さい蓄電池容量を算出することになり、負荷変動補償に適切な蓄電池容量の決定をすることができる。
蓄電池補償帯域決定部22は、(7)式に示すように、各成分の周波数fにおける蓄電池容量を低域遮断周波数から高域遮断周波数まで積算することにより、蓄電池容量W(放電量−充電量)を計算する。
Figure 0006481823
このように、蓄電池補償帯域決定部22は、蓄電池容量Wついて、低域遮断周波数から高域遮断周波数まで積算することにより、低域遮断周波数と負荷変動補償に必要な蓄電池容量との関係を求めることができる。蓄電池補償帯域決定部22は、(7)式に示す関係から、実効蓄電池容量で最も補償帯域を広くとれる低域遮断周波数を、2点の線形補間で求めることができる。すなわち、蓄電池補償帯域決定部22は、(7)式において求めた低域遮断周波数と負荷変動補償に必要な蓄電池容量との関係において、実効蓄電池容量において最も補償帯域を広くとれる低域遮断周波数を求め、求めた補償帯域の低域遮断周波数の高域側及び低域側の2点の周波数の線形補間によって低域遮断周波数を決定する。なお、高域遮断周波数は、短周期の速い変動を補償してもピーク電力削減効果が小さいことから固定値とする。
出力初期値決定部23は、蓄電池出力指令値計算部31から出力される蓄電池出力指令値(後述する)の初期値である出力初期値を算出する。例えば、出力初期値決定部23は、定置用蓄電池部13から出力される出力初期値を離散フーリエ変換し、蓄電池補償帯域決定部22によって算出された高域遮断周波数を上限値、低域遮断周波数を下限値として、逆離散フーリエ変換することで、蓄電池補償帯域決定部22が高域遮断周波数及び低域遮断周波数を設定した際に予想される蓄電池出力を求め、出力初期値を決定する。出力初期値決定部23は、決定した出力初期値、高域遮断周波数及び低域遮断周波数を制御パラメータとして最大充電量決定部24に出力する。このように、制御パラメータ決定部41は、蓄電池補償帯域決定部22における上述のような補償帯域を決定する処理、及び出力初期値決定部23における上述のような出力初期値を決定する処理を例えば1日に1回実行する。なお、制御パラメータ決定部41は、例として、図2に示す負荷電力データから、高域遮断周波数を1mHz、低域遮断周波数を0.045mHz、出力初期値を79.7kWに決定した。上記高域遮断周波数1mHz、低域遮断周波数0.045mHz、出力初期値79.7kWの決定に際し、蓄電池は、定格出力90kW、定格容量163kWhと仮定し、蓄電池残量(SOC:State Of Charge)の使用範囲を30%から95%と設定し、実効蓄電池容量を106kWhとした。
最大充電量決定部24は、制御パラメータ決定部41から供給された制御パラメータ(出力初期値、高域遮断周波数及び低域遮断周波数)及び負荷電力取得部40が取得した負荷電力データに基づいて、蓄電池の出力値(以下、「蓄電池出力」という。)を算出する。そして、最大充電量決定部24は、算出した蓄電池出力を時間積分することにより蓄電池の使用容量の推移、すなわち蓄電池の蓄電池残量SOCの推移を計算する。最大充電量決定部24は、蓄電池残量SOCの推移に基づいて、蓄電池の充電量の最大値(以下、「充電量最大値」)を決定する。上記充電量最大値は、蓄電池の運転時間帯において、蓄電池の使用容量の推移が0、すなわち蓄電池残量SOCが使用範囲の上限値に達しないときの蓄電池の充電量の最大値である。
以下に、本実施形態における最大充電量決定部24の充電量最大値の決定方法について説明する。
まず、最大充電量決定部24は、制御パラメータ及び負荷電力データに基づいて、蓄電池出力を計算する。図4は、本実施形態における蓄電池出力の決定方法を説明する図である。最大充電量決定部24は、ピークカット用バンドパスフィルタ50、第1出力リミッタ51、LFC用バンドパスフィルタ52、加算器53及び第2出力リミッタ54を備える。
図4に示すように、最大充電量決定部24は、ピークカット用バンドパスフィルタ50とLFC用バンドパスフィルタ52との2つのバンドパフィルタを用いる。
各バンドパスフィルタは、ローパスフィルタとハイパスフィルタによって構成することができる。ここで、ローパスフィルタの入力をx(n)、ローパスフィルタの出力(ハイパスフィルタの入力)をy(n)、ハイパスフィルタの出力をz(n)として、y(n)は、x(n)を入力とし、高域遮断周波数によって定められたx(n)の高域周波数を遮断するローパスフィルタの出力である。また、z(n)は、y(n)を入力とし、低域遮断周波数によって定められたx(n)の低域周波数を遮断するハイパスフィルタの出力である。各バンドパスフィルタは、一例として以下に示す式で表される。
Figure 0006481823
は、中間出力値(kW)である。yn−1は、yの1ステップ前の中間出力値(kW)である。yは、以下に示す式で表すことができる。
Figure 0006481823
ここで、xn−1は、バンドパスフィルタに入力するxの1ステップ前の負荷電力(kW)である。Tは、制御周期であり、例えば1sである。ωは、高域遮断角周波数である。ωは、低域遮断角周波数である。ω及びωは、以下で示す式で表すことができる。
Figure 0006481823
Figure 0006481823
は、高域遮断周波数である。fは、低域遮断周波数である。本実施形態において、ピークカット用バンドパスフィルタ50の高域遮断周波数をfLp、低域遮断周波数をfHpとする。LFC用バンドパスフィルタ52の高域遮断周波数をfLL、低域遮断周波数をfHLとする。
次に、本実施形態における蓄電池出力の決定方法の流れについて説明する。
最大充電量決定部24は、負荷電力取得部40が取得した負荷電力(x)をピークカット用バンドパスフィルタ50とLFC用バンドパスフィルタ52とに供給する。
ピークカット用バンドパスフィルタ50は、負荷電力データの長周期変動の成分を抽出する。ピークカット用バンドパスフィルタ50は、制御パラメータ決定部41で決定した高域遮断周波数と低域遮断周波数とをそれぞれ高域遮断周波数fLp、低域遮断周波数fHpとして式(8)を用いて蓄電池出力zを第1の蓄電池出力zn1として求める。ピークカット用バンドパスフィルタ50は、求めた第1の蓄電池出力zn1を第1出力リミッタ51に出力する。なお、制御パラメータ決定部41で決定した出力初期値をピークカット用バンドパスフィルタ50の出力初期値Zとする。
第1出力リミッタ51は、第1の蓄電池出力zn1において、蓄電池の充電量最大値を所定の値に設定し、設定した充電量最大値において出力可能な蓄電池出力を第2の蓄電池出力zn2として算出する。例えば、第1出力リミッタ51は、第1の蓄電池出力zn1と充電量最大値との組み合わせに対応する蓄電池出力をテーブルから参照することで決定する。上記テーブルには、第1の蓄電池出力zn1、充電量最大値及び蓄電池出力が過去の実績に基づいて予め対応付けられている。
LFC用バンドパスフィルタ52は、負荷電力データの短周期変動の成分を抽出する。例えば、LFC用バンドパスフィルタ52では、自身で用いられる低域遮断周波数fHLとしてピークカット用バンドパスフィルタの高域遮断周波数fLpを用いる。高域遮断周波数fLLは、予め設定される。なお、短周期とは、数分から十数分程度の周期であるため、一例として、高域遮断周波数fLLを10mHzとし、低域遮断周波数fHLを1mHzとする。LFC用バンドパスフィルタ52は、高域遮断周波数fLL、低域遮断周波数fHLそれぞれを式(8)に代入することで蓄電池出力zを第3の蓄電池出力zn3として求める。また、ピークカット用バンドパスフィルタ50は、求めた第3の蓄電池出力zn3を加算器53に出力する。なお、LFC用バンドパスフィルタ52の出力初期値は、0に固定されている。なお、LFC用バンドパスフィルタ52の出力側に第1出力リミッタ51に相当する出力リミッタがないのは、太陽光発電等の自然エネルギーの変動を蓄電池で最大限補償させるために、負荷周波数制御の周波数帯域の変動を蓄電池の定格出力(第2出力リミッタ54)で補償させるためである。また、短周期変動を蓄電池で補償しても、その補償による蓄電池の蓄電池容量への影響が小さいため、ピークカット用バンドパスフィルタ50のみに第1出力リミッタ51を設けている。
加算器53は、第2の蓄電池出力zn2と第3の蓄電池出力zn3とを加算し、第2出力リミッタ54に出力する。
第2出力リミッタ54は、第2の蓄電池出力zn2と第3の蓄電池出力zn3との加算値の振幅を出力範囲の上限値及び下限値により制限する。この出力上限値及び出力下限値は、蓄電池残量SOCの上限設定値及び下限設定値から設定される。図5は、出力上限値及び出力下限値と蓄電池残量SOCの上限設定値及び下限設定値との関係を示す図である。第2出力リミッタ54は、第2の蓄電池出力zn2と第3の蓄電池出力zn3との加算値を、上限設定値と下限設置値とにより制限された蓄電池出力とする。
最大充電量決定部24は、第1出力リミッタ51の充電量最大値を所定の値毎に変化させながら、上記蓄電池出力の決定方法に基づいて、充電量最大値毎に蓄電池出力を決定する。例えば、最大充電量決定部24は、充電量最大値を−10kW〜−90kW(定格出力)まで−10kW刻みで変化させた場合の蓄電池出力を決定する。最大充電量決定部24は、決定した蓄電池出力を時間積分することで蓄電池残量SOCの推移を充電量最大値毎に求める。最大充電量決定部24は、蓄電池残量SOCの推移が上限値(第2出力リミッタ54の設定上限値95%)に達しない範囲で最も大きくなる充電量最大値を選択する。最大充電量決定部24は、決定した充電量最大値を格納部30に出力する。
格納部30は、高域遮断周波数、低域遮断周波数及び最大充電量決定部24が決定した充電量最大値を格納する。
次に、蓄電池制御部43が行う蓄電池制御処理について説明する。蓄電池制御部43は、例えば、蓄電池制御処理を制御周期1秒として実行する。蓄電池制御部43は、所定の蓄電池制御のアルゴリズムに従って、リアルタイム制御で、様々な周波数成分を持つ負荷電力の変動(買電電力と蓄電池出力との合計)をピークカット用バンドパスフィルタ50とLFC用バンドパスフィルタ52とのそれぞれに通すことで、各補償帯域の変動を抽出して加算し、蓄電池出力値を求める。なお、第1出力リミッタ51の充電量最大値は、格納部30に格納された充電量最大値、すなわち最大充電量決定部24で決定した充電量最大値である。
図6は、本実施形態における蓄電池制御(蓄電池出力指令値計算部31の構成)を説明するブロック図である。蓄電池出力指令値計算部31は、加算器60、ピークカット用バンドパスフィルタ50、第1出力リミッタ51、LFC用バンドパスフィルタ52、加算器53及び第2出力リミッタ54を備える。
加算器60は、買電電力と蓄電池出力とを加算する。ピークカット用バンドパスフィルタ50は、低域遮断周波数fHpと高域遮断周波数fLpと出力初期値Zとに従って、加算器60から供給される買電電力と蓄電池出力との合計値をフィルタリングする。第1出力リミッタ51は、ピークカット用バンドパスフィルタ50から供給される出力信号の振幅を最大充電量決定部24で決定した充電量最大値により制限する。第1出力リミッタ51は、制限された出力信号を加算器53に出力する。
LFC用バンドパスフィルタ52は、低域遮断周波数fHLと高域遮断周波数fLLと所定の出力初期値(例えば、0kW)とに従って、加算器60から供給される買電電力と蓄電池出力との合計値をフィルタリングする。LFC用バンドパスフィルタ52は、フィルタリングすることで決定した出力信号を加算器53に出力する。
加算器53は、第1出力リミッタとLFC用バンドパスフィルタ52とから供給された出力信号を加算し、第2出力リミッタ54に出力する。
第2出力リミッタ54は、蓄電池残量SOCの上限設定値及び下限設定値から設定される出力上限値及び出力下限値の範囲内の補償帯域の変動を抽出して蓄電池出力指令値を求め、蓄電池出力指令値を定置用蓄電池部13に出力する。
定置用蓄電池部13は、上記蓄電池出力指令値計算部31からの蓄電池出力指令値に従って、自身の内部に設けられた蓄電池の出力を制御する。
次に、本実施形態の電力管理システム1の効果について説明する。以下に、電力管理システム1のピーク電力削減量についてMATLAB/Simulink(マトラボ(マットラブ)/シミュリンク)(登録商標)を用いてシミュレーションを行った。なお、蓄電池は、定格出力が90kWであり、定格容量が163kWhとして、上記シミュレーションを行った。ただし、電池残量)の使用範囲を30%から95%と設定しているため、実効蓄電池容量は106kWhとなる。
また、シミュレーションとして、気象情報取得部20は、過去の負荷データから翌日の気象情報と類似した負荷電力として図2に示す負荷電力データを取得したと仮定する。
蓄電池補償帯域決定部22は、図2に示す負荷電力データから、高域遮断周波数を1mHz、低域遮断周波数を0.045mHzに決定した。また、出力初期値決定部23は、蓄電池補償帯域決定部22が決定した高域遮断周波数及び低域遮断周波数に基づいて出力初期値を79.7kWに決定した。
最大充電量決定部24は、図2に示す負荷電力データに基づいて、充電量最大値を−10kW〜−90kW(定格出力)まで−10kW刻みで変化させた場合の蓄電池出力を取得した。そして、最大充電量決定部24は、蓄電池出力を積分することで算出される蓄電池残量SOCの推移が第2出力リミッタ54の設定上限値95%に達しない範囲で最も大きくなる充電量最大値を−20kWに決定する。
蓄電池制御部43は、図7に示す負荷電力データを制御対象日の負荷電力データとして、ピークカット用バンドパスフィルタ50とLFC用バンドパスフィルタ52とのそれぞれに通して、各補償帯域の変動を抽出して加算し、蓄電池出力値を解いた。
図8は、シミュレーションにおいて、制御パラメータ決定部41で決定した制御パラメータと最大充電量決定部24が決定した充電量最大値(−20kW)とを用いて、蓄電池制御処理を行った結果を示す。図8(a)は1秒刻みの電力(kW)と電力量(kWh)を示す。図8(b)は、30分平均毎の負荷電力と買電電力との推移を示す図である。上記のシミュレーションの結果、本実施形態における電力管理システム1では、図8(a)に示すように蓄電池の使用容量が90.8kWhと計算され、図8(b)に示すように、ピーク電力削減量が40.5kWと計算された。図8に示すように、蓄電池の運転時間帯(7時30分から16時30分)において蓄電池が停止している時間帯がないため、ピーク電力の削減を達成し、且つ蓄電池が負荷周波数制御の周波数帯域の変動に対応できている。
図9は、従来の電力管理システムのシミュレーション結果を示す図である。図10は、従来の電力管理システムの概略構成図を示す図である。従来の電力管理システムは、電力管理システム1と比較して、短周期の負荷変動補償用のバンドパスフィルタと長周期の負荷変動補償用のバンドパスフィルタとの区別がなく、1つのバンドパスフィルタが用いられている。また、従来の電力管理システムは、充電量最大値を決定する第1出力リミッタ51が用いられていない。
図9(a)は1秒刻みの電力(kW)と電力量(kWh)を示す。図9(b)は、30分平均毎の負荷電力と買電電力との推移を示す図である。なお、シミュレーションには、図7に示す負荷電力データをリアルタイムの負荷電力として用いた。上記のシミュレーションの結果、従来の電力管理システムでは、図9(a)に示すように蓄電池の使用容量91.4kWhと計算され、ピーク電力削減量が42.4kWと計算された。図9に示すように、従来の電力管理システムは、ピーク電力の削減が可能であるが、蓄電池の運転時間帯(7時30分から16時30分)において蓄電池が停止している時間帯があり、蓄電池が負荷周波数制御の周波数帯の変動に対応できていないことがわかる。
図8及び図9に示すシミュレーションの結果より、本実施形態における電力管理システム1は、蓄電池の充電量を抑制しつつ、蓄電池によるピークカットと負荷周波数制御との機能を両立し、自然エネルギーを最大限活用することができる。
上述したように、本実施形態の電力管理システム1は、買電電力と蓄電池の出力との合計値の長周期変動の成分をフィルタリングするピークカット用バンドパスフィルタ50と、その合計値の短周期変動の成分をフィルタリングするLFC用バンドパスフィルタ52と、長周期変動の成分と短周期変動の成分との合計値に基づいて蓄電池の出力を決定する蓄電池制御部43と、所定の時間内において蓄電池の残量の推移が上限値未満となるように蓄電池の充電量の最大値を設定する最大充電量決定部と、を備える。これにより、蓄電池の運転時間帯において蓄電池が停止することなく、ピーク電力を削減できる。したがって、電力管理システム1は、時間帯ピーク電力の削減と負荷周波数制御とを両立することが可能である。
上述した実施形態における電力管理システム1をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
以上、この発明の実施形態を図面を参照して詳述してきたが、具体的な構成は上述の実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
1 電力管理システム
10 システム演算部
11 過去実績データDB
12 リアルタイムコントローラ
13 定置用蓄電池部
21 気象類似日負荷電力データ取得部
22 蓄電池補償帯域決定部
23 出力初期値決定部
24 最大充電量決定部
30 格納部
31 蓄電池出力指令値計算部
40 負荷電力取得部
41 制御パラメータ決定部
42 充電量決定部
43 蓄電池制御部

Claims (4)

  1. 買電電力と蓄電池の出力する電力との合計値の長周期変動の成分をフィルタリングする第1バンドパスフィルタと、
    前記合計値の短周期変動の成分をフィルタリングする第2バンドパスフィルタと、
    定の時間内において前記蓄電池の残量の推移が上限値未満となるように前記蓄電池に対する充電量の最大値を決定する決定部と、
    前記長周期変動の成分と前記短周期変動の成分との成分合計値及び前記充電量の最大値に基づいて前記蓄電池の出力する電力を制御する蓄電池制御部と、
    を備える電力管理システム。
  2. 前記決定部は、負荷電力の過去実績データの前記長周期変動の成分と前記過去実績データの前記短周期変動の成分との前記成分合計値に基づいて、前記充電量の最大値を変化させたときの前記蓄電池の残量の推移を計算し、計算した前記蓄電池の残量の推移が上限値未満となり、且つ最大となる前記充電量の最大値を選択することで、前記蓄電池の充電量の最大値を決定する請求項1に記載の電力管理システム。
  3. 負荷電力の過去実績データに基づいて、前記蓄電池の補償周波数帯域を決定する蓄電池補償帯域決定部をさらに有し、
    前記第1バンドパスフィルタは、前記補償周波数帯域に基づいて、前記買電電力と前記蓄電池の出力する電力との合計値の長周期変動の成分をフィルタリングする請求項1又は請求項2に記載の電力管理システム。
  4. 買電電力と蓄電池の出力する電力との合計値の長周期変動の成分をフィルタリングする第1のステップと、
    前記合計値の短周期変動の成分をフィルタリングする第2のステップと、
    所定の時間内において前記蓄電池の残量の推移が上限値未満となるように前記蓄電池に対する充電量の最大値を決定する第3のステップと、
    前記長周期変動の成分と前記短周期変動の成分との成分合計値及び前記充電量の最大値に基づいて前記蓄電池の出力する電力を制御する第4のステップと、
    含む電力管理方法。
JP2015092940A 2015-04-30 2015-04-30 電力管理システム及び電力管理方法 Active JP6481823B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015092940A JP6481823B2 (ja) 2015-04-30 2015-04-30 電力管理システム及び電力管理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015092940A JP6481823B2 (ja) 2015-04-30 2015-04-30 電力管理システム及び電力管理方法

Publications (2)

Publication Number Publication Date
JP2016213919A JP2016213919A (ja) 2016-12-15
JP6481823B2 true JP6481823B2 (ja) 2019-03-13

Family

ID=57552017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015092940A Active JP6481823B2 (ja) 2015-04-30 2015-04-30 電力管理システム及び電力管理方法

Country Status (1)

Country Link
JP (1) JP6481823B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022180799A1 (ja) * 2021-02-26 2022-09-01 三菱電機株式会社 指令装置、充放電制御システム、電力制御システム、中央指令装置、整定値管理装置、蓄電池、充放電制御方法およびプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5626563B2 (ja) * 2010-05-31 2014-11-19 清水建設株式会社 電力システム
JP6011845B2 (ja) * 2012-05-28 2016-10-19 清水建設株式会社 分散型電源の自立運転システム
JP6032486B2 (ja) * 2013-03-14 2016-11-30 清水建設株式会社 電力管理システム、電力管理方法

Also Published As

Publication number Publication date
JP2016213919A (ja) 2016-12-15

Similar Documents

Publication Publication Date Title
JP4715624B2 (ja) 電力安定化システム、電力安定化制御プログラム、電力安定化制御方法
US9158300B2 (en) Method for designing a control apparatus and control apparatus
JP5977151B2 (ja) 制御方法、制御プログラム、および制御装置
JP2017028861A (ja) 電力管理システム及び電力管理方法
CN110460075B (zh) 一种用于平抑电网峰谷差的混合储能出力控制方法及系统
JP6548570B2 (ja) 電力供給システム、電力供給システム用の制御装置およびプログラム
JP6032486B2 (ja) 電力管理システム、電力管理方法
CN109449957B (zh) 一种一次调频的优化方法、系统及终端设备
JP6338009B1 (ja) 電力貯蔵装置を用いた電力安定化システム及び制御装置
JP6372690B2 (ja) 電力管理システム及び電力管理方法
JP6481823B2 (ja) 電力管理システム及び電力管理方法
JP2016059135A (ja) 電力管理システム及び電力管理方法
JP6404747B2 (ja) 電力平準化システムにおける電力伝達関数の設計方法と、電力平準化システムにおける蓄電池容量の算出方法
Zhang et al. Research on power fluctuation strategy of hybrid energy storage to suppress wind-photovoltaic hybrid power system
US20200274363A1 (en) Storage-batteries supervisory control system, charge/discharge control system, control device, and terminal device
JP6181201B2 (ja) 蓄電池制御装置
JP6555505B2 (ja) 電力管理システム、電力管理方法
CN109103904A (zh) 一种频率稳定判定方法、装置、电子设备
JP6555504B2 (ja) 電力管理システム、電力管理方法
JP6544554B2 (ja) 電力管理システム、電力管理方法
JP6524515B2 (ja) 電力管理システム及び電力管理方法
Aho et al. Power quality support for industrial load using hybrid svc
JP2016059136A (ja) 電力管理システム及び電力管理方法
Jibran et al. A demand response framework to overcome network overloading in power distribution networks
KR101500037B1 (ko) 저역필터를 이용하는 풍력발전설비 출력 예측 오차 분배 및 에너지 저장 장치 설비 용량 산정 장치 및 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180920

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190129

R150 Certificate of patent or registration of utility model

Ref document number: 6481823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150