JP6466329B2 - イオンビーム試料調製装置及び方法 - Google Patents

イオンビーム試料調製装置及び方法 Download PDF

Info

Publication number
JP6466329B2
JP6466329B2 JP2015524432A JP2015524432A JP6466329B2 JP 6466329 B2 JP6466329 B2 JP 6466329B2 JP 2015524432 A JP2015524432 A JP 2015524432A JP 2015524432 A JP2015524432 A JP 2015524432A JP 6466329 B2 JP6466329 B2 JP 6466329B2
Authority
JP
Japan
Prior art keywords
sample
ion beam
images
image
changing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015524432A
Other languages
English (en)
Other versions
JP2015532709A (ja
Inventor
アンドリュー ハント,ジョン
アンドリュー ハント,ジョン
トーマス コイル,スティーヴン
トーマス コイル,スティーヴン
ハッセル−シアラー,マイケル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gatan Inc
Original Assignee
Gatan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gatan Inc filed Critical Gatan Inc
Publication of JP2015532709A publication Critical patent/JP2015532709A/ja
Application granted granted Critical
Publication of JP6466329B2 publication Critical patent/JP6466329B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • H01J37/3005Observing the objects or the point of impact on the object
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching for microworking, e.g. etching of gratings, trimming of electrical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0162Arrangements or apparatus for facilitating the optical investigation using microprocessors for control of a sequence of operations, e.g. test, powering, switching, processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8411Application to online plant, process monitoring
    • G01N2021/8416Application to online plant, process monitoring and process controlling, not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/18Vacuum control means
    • H01J2237/184Vacuum locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas
    • H01J2237/31745Etching microareas for preparing specimen to be viewed in microscopes or analyzed in microanalysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Drying Of Semiconductors (AREA)

Description

関連出願に対する相互参照
本出願は、既に出願済みの2012年7月27日付けで出願された米国仮特許出願第61/676,368号明細書の利益を主張するものである。米国仮特許出願第61/676,368号明細書は、引用により、本明細書に包含される。本出願は、既に出願済みの2013年7月24日付けで出願された米国特許出願第13/949,369号明細書の利益を主張するものである。米国特許出願第13/949,369号明細書は、引用により、本明細書に包含される。
本開示は、顕微鏡観察又は分光分析用の物質を調製するための1つ又は複数のイオンビームの使用法に関する。顕微鏡観察技術には、限定を伴うことなしに、光学顕微鏡法、走査電子顕微鏡法(Scanning Electron Microscopy:SEM)、透過電子顕微鏡法(Transmission Electron Microscopy:TEM)、走査透過電子顕微鏡法(Scanning Transmission Electron Microscopy:STEM)、及び反射電子顕微鏡法(Reflection Electron Microscopy:REM)が含まれる。分光分析法には、限定を伴うことなしに、X線微小分析、反射電子エネルギー損失分光法(Reflection Electron Energy−loss Spectroscopy:REELS)、電子後方散乱回折(Electron Back−Scattered Diffraction:EBSD)、X線光電子分光法(X−ray Photoelectron Spectroscopy:XPS)、及びオーガー電子分光法(Auger Electron Spectroscopy:AES)が含まれる。任意の顕微鏡法によって観察される対象の物質は、顕微鏡検査に適した試料を生成するための処理を必要とする場合がある。
透過電子顕微鏡法(TEM)は、多くの物質の詳細な微小構造を研究するための重要な技法である。原子レベル分解能のTEM用の試料の調製は、非常に要求が厳しく、非常に薄く(即ち、<50ナノメートルであり)、且つ、アーチファクトを伴わない最終的な試料を必要としている。通常、試料の調製には、試料物質の相対的に薄い(即ち、100〜200マイクロメートルの)円板を生成するべく、初期スライス化、セグメント化、及び機械的な薄化(thinning)が伴っている。次いで、後からのTEMによる研究のために、試料のイオンビームミリングを利用して試料内の対象領域を更に薄化し、スムージングし、且つ、露出させることにより、通常は50ナノメートルの厚さを有する試料を生成してもよい。
物質のイオンビームミリングにより、顕微鏡検査に十分に適した試料を生成することができる。イオンビーム照射装置により、イオンのビームを生成し、試料に向かって、加速させると共に導いてもよい。試料に対するイオンの衝突により、物質が、イオン衝突のエリアから離れるように、スパッタリングされることになる。更には、試料の表面が、イオンビームによって実質的に滑らかな状態に研磨され、これにより、試料の観察特性が更に改善されることになる。イオンビームの使用により、サンプル内の対象領域を露出させると共に研磨してもよく、これにより、適切な観察試料が調査対象の物質から製造される。
TEM分析用に意図された試料をミリングするために使用されるイオンビームシステムは、通常、境界面を露出させるか、又は電子にとって透明な領域を有する試料を生成する。これらのシステムの多くは、ビームが複数の方向から試料に衝突することになるように、回転する試料と、固定されたビームと、を有する。この結果、試料表面の不均一なトポロジーに起因して発生しうる特定領域が陰になる現象を補償することにより、試料の相対的に均一なミリングが得られる。イオンビームミリングに使用される代表的なシステムにおいては、イオンビーム自体の中心と試料の回転軸の交差によって規定される試料の領域内において、イオンビームにより、試料から物質が最も迅速に除去される。対象の特定領域が回転の中心に位置するように、試料をイオンビームシステム内において位置決めすることは、しばしば、困難である。イオンビーム試料調製プロセスにおいては、対象の特定領域に狙いを定めるべく試みる際に、ある程度の回数の試行錯誤が予想されよう。
イオンビームミリング法に関するユーザーにとっての重要な考慮事項には、試料の加工の際に所要されるユーザーの時間及び作業を低減及び極小化すること、処理及び分析のための試料ホルダへの取り付けの際などのように、デリケートな試料が直接的に取り扱われると共に損傷のリスクに晒されるステップの数を低減又は極小化すること、最終的な分析機器(撮像又は分光分析)内への試料の移送及び分析前の最終的な分析機器に対する調製済みの試料領域の座標のアライメントの際に所要されるユーザーの時間及び作業を低減又は極小化すること、試料の処理及び撮像において高品質と高い成功確率を保証すること、イオンミリング機器及び試料取付機器がそれぞれの試料について占有される時間を低減及び極小化すること、並びに、試料と観察に使用される対物又はプローブ形成レンズの間に必要とされる作業距離を低減することによってサンプルの取付及び最終的な分析において試料の高品質の顕微鏡観察を保証すること、が含まれる。
上述の点を考慮した場合に、本開示の実施形態が、多数の利点を提供し、且つ、従って、非常に望ましいことが明らかである。
米国特許第6,914,244号明細書は、本技術分野における先行技術である。米国特許第6,914,244号明細書においては、電子顕微鏡法の試料調製用のイオンビームミリングシステム及び方法が提供されており、これは、半導体、金属、合金、セラミック、及びその他の無機物質のTEM又はSEMによる分析用の調製のために有用である。一実施形態においては、透過電子顕微鏡法による分析用の試料の調製のために、試料処理チャンバと、少なくとも2つのイオンビーム生成器と、試料支持部又はホルダと、を含むシステム及びプロセスが提供されている。イオンビームマスク部材が試料の表面に固定され、且つ、試料がミリングされる。又、好ましくは、システムは、ミリング作業の進捗を観察するための能力をも含み、且つ、試料のミリングに伴う試料上の対象エリアの監視を許容する光学顕微鏡などの撮像装置を含んでもよい。
本開示は、イオンビーム試料調製装置と、開示されている装置を使用して後からの観察のために試料を調製する方法と、を対象としている。本開示の特徴は、イオンビーム内における試料の調節自在の多軸微小位置決めを可能にしており、これにより、調製されている試料内における対象領域の検出、特定、及び露出において多数の利点を提供する。本開示の更なる特徴は、デリケートな試料の取扱いの極小化、調製を経験している試料の診断のための観察の改善、及びイオンビーム試料調製プロセスの全体的な効率の改善において、利益を提供する。
本開示の一実施形態によるイオンビームを使用して試料を調製する方法は、前記試料の少なくとも一部分が真空チャンバ内において前記第1イオンビームによって調製されるように、所定の強度を有すると共に第1傾斜角度を有する第1イオンビームを前記試料に向かって導くステップと、前記試料の少なくとも一部分を照明するステップと、複数の回転角度を有すると共に前記第1イオンビームの一部分と実質的に交差する回転軸を有する回転ステージを使用して前記試料を回転させるステップと、前記試料の少なくとも一部分の実質的に合焦された画像をキャプチャするステップと、前記キャプチャされた画像から1つ又は複数の特徴をインスツルメントコントローラ内において抽出するステップと、前記第1イオンビームの傾斜角度を第2イオンビームに変更すること、前記第1イオンビームの強度を変更すること、及び前記回転ステージの回転角度を変更することからなる群からの少なくとも1つのステップを実行することにより、前記1つ又は複数の特徴の抽出に対して前記インスツルメントコントローラ内において応答するステップと、を有する。
関係する一実施形態においては、イオンビーム試料調製方法は、抽出される特徴の少なくとも1つが、前記キャプチャされた画像の一部分のサイズ、前記キャプチャされた画像の一部分における色、前記キャプチャされた画像の一部分における形状、前記キャプチャされた画像の一部分における強度、及び前記キャプチャされた画像内の光学干渉リングの一部分からなる群からのものであることを更に特徴としている。別の関係する実施形態においては、イオンビーム試料調製方法は、前記回転ステージを既定の位置に回転させるステップが、前記試料の少なくとも一部分の実質的に合焦された画像をキャプチャする前記ステップに先行することを更に特徴としている。別の関係する実施形態においては、イオンビーム試料調製方法は、既定の時点まで待機するステップが、前記試料の少なくとも一部分の実質的に合焦された画像をキャプチャする前記ステップに先行することを更に特徴としている。
関係する一実施形態においては、イオンビーム試料調製方法は、前記第1イオンビームの傾斜角度を第2傾斜角度に変更するステップと、前記第1イオンビームの強度を変更するステップと、前記回転ステージの回転角度を変更するステップと、からなる群からの少なくとも1つのステップを実行するための将来時点を前記インスツルメントコントローラ内において推定するステップを更に有する。別の関係する実施形態においては、イオンビーム試料調製方法は、前記キャプチャされた画像から抽出される前記特徴の1つ又は複数が停止条件を表していることを更に特徴としている。
本開示の別の実施形態によるイオンビームを使用して試料を調製する別の方法は、前記試料の少なくとも一部分が真空チャンバ内において前記第1イオンビームによって調製されるように、所定の強度を有すると共に第1傾斜角度を有する第1イオンビームを前記試料に向かって導くステップと、前記試料の少なくとも一部分を照明するステップと、複数の回転角度を有すると共に前記第1イオンビームの一部分と実質的に交差する回転軸を有する回転ステージを使用して前記試料を回転させるステップと、前記シーケンスのそれぞれの画像が実質的に合焦されている前記試料の複数の画像のシーケンスをキャプチャするステップと、前記複数の画像のキャプチャされたシーケンスから1つ又は複数の特徴をインスツルメントコントローラ内において抽出するステップと、前記第1イオンビームの傾斜角度を第2傾斜角度に変更すること、前記第1イオンビームの強度を変更すること、及び前記回転ステージの位置を変更することからなる群からの少なくとも1つのステップを実行することにより、前記キャプチャされた複数の画像のシーケンスからの前記1つ又は複数の特徴の抽出に対して前記インスツルメントコントローラ内において応答するステップと、を有するイオンビーム試料調製方法を有する。
関係する一実施形態においては、イオンビーム試料調製方法は、前記複数の画像のシーケンスから抽出される特徴のうちの少なくとも1つは、前記キャプチャされた画像の一部分のサイズの時間に対する変化、前記キャプチャされた画像の一部分における色の時間に対する変化、前記キャプチャされた画像の一部分における形状の時間に対する変化、前記キャプチャされた画像の一部分における強度の時間に対する変化、及び前記キャプチャされた画像の一部分における光学干渉リングの一部分の時間に対する変化からなる群からのものであることを更に特徴としている。
関係する一実施形態においては、イオンビーム試料調製方法は、それぞれの画像が、前記回転ステージが実質的に同一の回転角度において位置決めされた状態においてキャプチャされることを更に特徴としている。別の関係する実施形態においては、イオンビーム試料調製方法は、前記複数の画像のシーケンスがキャプチャされた順序と同一の順序において前記複数の画像のシーケンスを表示するステップを更に有する。別の関係する実施形態においては、イオンビーム試料調製方法は、前記1つ又は複数のキャプチャされた画像のそれぞれがキャプチャされる回転角度が異なってもよいことを更に特徴とする1つ又は複数のキャプチャされた画像をインスツルメントコントローラ内において処理するステップと、1つ又は複数のプログラム的に回転された画像を生成するステップであって、前記1つ又は複数のプログラム的に回転された画像のそれぞれが前記1つ又は複数のキャプチャされた画像に対応していることを更に特徴とすると共に前記1つ又は複数のプログラム的に回転された画像が実質的に同一の既定の回転角度においてキャプチャされたものとして見えることを更に特徴とするステップと、を更に有する。
関係する一実施形態においては、イオンビーム試料調製方法は、前記プログラム的に回転された画像のシーケンスを表示するステップを更に有する。別の関係する実施形態においては、イオンビーム試料調製方法は、前記プログラム的に回転された画像のシーケンスから1つ又は複数の特徴をインスツルメントコントローラ内において抽出するステップと、前記第1イオンビームの傾斜角度を第2傾斜角度に変更すること、前記第1イオンビームの強度を変更すること、及び前記回転ステージの位置を変更することからなる群からの少なくとも1つのステップを実行することにより、前記プログラム的に回転された画像のシーケンスからの前記1つ又は複数の特徴の抽出に対して前記インスツルメントコントローラ内において応答するステップと、を更に有する。別の関係する実施形態においては、イオンビーム試料調製方法は、前記1つ又は複数のプログラム的に回転された画像を保存するステップと、前記1つ又は複数のプログラム的に回転された画像を取得するステップと、前記1つ又は複数のプログラム的に回転された画像を表示するステップと、を更に有する。
本開示の別の実施形態によるイオンビームを使用して試料を調製する別の方法は、前記試料の少なくとも一部分が真空チャンバ内において前記第1イオンビームによって調製されるように、所定の強度を有すると共に第1傾斜角度を有する第1イオンビームを前記試料に向かって導くステップと、前記試料の少なくとも一部分を照明するステップと、複数の回転角度を有すると共に前記第1イオンビームの一部分と実質的に交差する回転軸を有する回転ステージを使用して前記試料を回転させるステップと、前記試料の少なくとも一部分の実質的に合焦された画像をキャプチャするステップと、前記実質的に合焦された画像がキャプチャされた前記回転ステージの回転角度をキャプチャするステップと、前記実質的に合焦された画像をインスツルメントコントローラ内において処理してプログラム的に回転された画像を生成するステップと、を有し、前記プログラム的に回転された画像は、前記実質的に合焦された画像がキャプチャされた前記回転角度とは異なってもよい見掛けの回転角度を有することを更に特徴としている。
関係する一実施形態においては、イオンビーム試料調製方法は、前記プログラム的に回転された画像の1つ又は複数を表示するステップを更に有する。別の関係する実施形態においては、イオンビーム試料調製方法は、前記プログラム的に回転された画像から1つ又は複数の特徴をインスツルメントコントローラ内において抽出するステップと、前記第1イオンビームの傾斜角度を第2傾斜角度に変更すること、前記第1イオンビームの強度を変更すること、及び前記回転ステージの位置を変更することからなる群からの少なくとも1つのステップを実行することにより、前記プログラム的に回転された画像からの前記1つ又は複数の特徴の抽出に対して前記インスツルメントコントローラ内において応答するステップと、を更に有する。
本発明のこれらの及びその他の特徴、態様、及び利点については、以下の説明、添付の請求項、及び添付の図面との関連において更に十分に理解することができよう。
図1は、本開示によるイオンビーム試料調製装置の概略断面図を示す。 図2は、本開示の別の実施形態によるイオンビーム試料調製装置の概略断面図を示す。 図3は、試料を保持する試料ホルダの斜視図を示す。 図4は、試料ホルダを保持する前の調節自在の位置決めステージに結合された回転ステージの斜視図を示す。 図5は、試料ホルダが保持位置にある調節自在の位置決めステージに結合された回転ステージの斜視図を示す。 図6は、位置決めステージカバーが回転ステージ上に配置されている図5の装置の斜視図を示す。 図7Aは、試料がイオンビームによって調製されている際の試料の観察を可能にする特徴を有する本開示の別の実施形態によるイオンビーム試料調製装置の概略断面図を示しており、シャッタ手段は、シャッタ閉鎖位置にあるものとして示されている。 図7Bは、シャッタ手段がシャッタ開放位置にある状態の図7Aの装置の概略断面図を示す。 図8Aは、回転ステージリフト手段を特徴とする本開示の別の実施形態によるイオンビーム試料調製装置の概略断面図を示す。図8Aの装置は、回転ステージリフト手段が上昇位置にあり、且つ、シャッタ手段は、シャッタ開放位置にある状態で示されている。 図8Bは、チャンバカバーが定位置にあると共に装填チャンバを生成する状態にある図8Aの装置を示す。 図8Cは、回転ステージリフト手段が処理位置にあると共にシャッタ手段がシャッタ閉鎖位置にある状態の図8Aの装置を示す。 図8Dは、回転ステージリフト手段が処理位置にあり、シャッタ手段がシャッタ開放位置にあり、且つ、真空ウィンドウを通じた真空チャンバの外部からの試料の観察の準備が整った状態にある図8Aの装置を示す。 図9は、装置のシステムと通信すると共にこれを制御しているインスツルメントコントローラを特徴とする本開示の別の実施形態によるイオンビーム試料調製装置の概略断面図を示す。 図10は、図9の装置内において動作する定期的に実行される観察及び制御プロセスの動作フローチャートを示す。 図11は、図9の装置内において動作する画像取得プロセスの動作フローチャートを示す。
本開示の実施形態は、薄く、研磨され、且つ、電子にとって透明である領域を試料から生成する能力を有するイオンビーム試料調製装置及び方法を提供する。具体的には、本開示は、試料内の対象領域を観察及び処理する能力を改善する多軸微小位置決めステージについて記述している。開示されている改善は、試料の取扱いの極小化、イオンビームの中心において試料内の対象領域を位置決めする能力の改善及びこれによる処理効率の改善、並びに、試料がイオンビーム内において調製されている際の診断用の撮像のために試料を位置決めする能力の改善という利益を有する。
まず、図1を参照すれば、本開示によるイオンビーム試料調製装置2の一実施形態が示されており、これは、試料6が調製される真空チャンバ10と、外部の雰囲気から真空チャンバ10を封止するチャンバカバー18と、真空チャンバ10をイオンビームミリングに適した真空レベルに設定するべく協働する真空ポンプ手段90及びポンピングマニホルド92と、中心イオンビーム軸を有するイオンビームを生成すると共に試料6に向かって導くイオンビーム照射手段20と、少なくとも2つの異なるイオンビーム強度を提供するように機能するイオンビーム強度制御手段24と、イオンビーム照射手段20の少なくとも2つの異なる傾斜角度を提供するように機能するイオンビーム傾斜制御手段26と、回転軸44及び回転ドライブ42を有する真空チャンバ10内に配設された回転ステージ40と、回転ステージ40に対して調節自在に結合された調節自在の位置決めステージ45であって、調節自在の位置決めステージ45は、試料ホルダ50を解放自在に保持するように構成された試料ホルダ保持手段49を有し、試料ホルダ50は、試料ホルダ保持部分51と、試料を保持しうる少なくとも1つの試料支持アーム52と、を有し、支持アーム52は、回転軸44と中心イオンビーム軸22の両方が、試料がイオンビーム内において調製されている間に、実質的に試料6の同一部分と交差すると共に、試料支持アーム52のいずれの部分も、試料がイオンビーム内において調製されている間に、回転軸44によって交差されないように、試料6を位置決めすることを更に特徴としている、調節自在の位置決めステージ45と、を有する。保持位置にある際に、試料ホルダ50は、イオンビームの少なくとも一部分が試料を調整してもよいように、試料6を既定の位置及び向きにおいて配置する。
図1の参照を継続すれば、イオンビームは、好ましくは、貴ガスイオンを有する。その他の好適な実施形態においては、非貴ガスイオンを使用してもよい。イオンビーム用に使用される貴ガス元素には、限定を伴うことなしに、アルゴン、キセノン、及びクリプトンが含まれよう。又、イオンビームは、イオンと中性物質の混合物を有してもよい。中心イオンビーム軸の試料に対する入射角度が変化しうるように、イオンビーム照射手段20の位置及び方向を変更してもよい。好適な実施形態においては、入射角度は、水平プラス又はマイナス10度の範囲を有してもよい。入射角度が大きいほど、試料から物質が相対的に迅速に除去され、入射角度が小さいほど、相対的に滑らかな表面が生成され、アーチファクトが少なくなる。イオンビーム強度制御手段24は、生成されるイオンのエネルギー、単位時間当たりに生成されるイオンの数、放出されるイオンビームの広がり、並びに、放出されるイオンビームの空間分布及び形状というイオンビームの特性のうちの1つ又は複数が制御されうるように、イオンビーム照射手段20を制御するべく機能する。
回転ステージ40は、中心イオンビーム軸22に対する既定の位置及び向きにおいて真空チャンバ10内に配設される。試料の調製の際に、回転ドライブ42は、回転軸44を中心として回転ステージ40の回転を制御してもよい。又、試料の調製の際には、イオンビーム強度制御手段24も、少なくとも2つの異なるビーム強度が試料調製の際に使用されうるように、イオンビームの強度を変化させてもよい。更には、試料の調製の際には、イオンビーム傾斜制御手段26も、少なくとも2つの異なる傾斜角度が試料調製の際に使用されうるように、イオンビームの傾斜角度を変化させてもよい。試料がイオンビーム内において調製された後に、チャンバカバー18を除去してもよく、次いで、試料ホルダを除去してもよく、且つ、調製済みの試料を顕微鏡内において観察してもよい。
回転ドライブ42は、360°のフル回転にわたって回転ステージ40を回転させるように、又は2つの個別の角度位置の間において交互に回転ステージ40をロックするように、構成されてもよい。更には、回転ドライブ42は、連続的な又は間欠的な回転のために構成されてもよい。回転ドライブ42は、回転ステージ40の回転位置及びその計測及び計測のシーケンスを計測して回転ステージ40の位置、速度、又は加速度を制御するように、更に構成されてもよい。
図2は、図1に示されているものに類似した一実施形態を示しており、これは、第1イオンビーム照射手段20aと、第2イオンビーム照射手段20bと、を有し、第1イオンビーム照射手段は、第1中心イオンビーム軸22aを有し、且つ、第2イオンビーム照射手段は、第2中心イオンビーム軸22bを有する。図2の実施形態は、第1イオンビーム照射手段20aから少なくとも2つの異なる強度を提供するように機能する第1イオンビーム強度制御手段24aと、イオンビーム照射手段20aの少なくとも2つの異なる傾斜角度を提供するように機能する第1ビーム傾斜制御手段26aと、第2イオンビーム照射手段20bから少なくとも2つの異なる強度を提供するように機能する第2イオンビーム強度制御手段24bと、イオンビーム照射手段20bの少なくとも2つの異なる傾斜角度を提供するように機能する第2イオンビーム傾斜制御手段26bと、を更に有する。
図2の装置は、第1イオンビーム照射手段20aと第2イオンビーム照射手段20bの両方によって調製されている試料6を示している。試料6は、第1試料表面9aと、第2試料表面9bと、を有するものとして図2に示されている。図2の実施形態は、第2イオンビーム照射手段20が第2試料表面9bを調製している間に、第1試料表面9aを調製する第1イオンビーム照射手段20aを示している。図2に示されている好適な実施形態は、複数のイオンビーム照射手段を有することにより、装置が一度に試料6の複数の面を調製することが可能であり、且つ、この結果、単一のイオンビーム照射手段と比べた場合に、速度及び効率の改善が得られることを明らかにしている。その他の好適な実施形態においては、複数のイオンビームによって試料の同一の面を調製してもよい。
次に図3を参照すれば、試料ホルダ50の斜視図が示されている。試料ホルダが試料調製のために真空チャンバ内において配設された際にその一部分が調節自在の位置決めステージ45の試料ホルダ保持手段によって解放自在に保持されてもよい試料ホルダ保持部分51と、試料6を支持及び位置決めするべく協働する第1試料支持アーム52a及び第2試料支持アーム52bと、を有する試料ホルダ50が示されている。図3の試料6は、試料表面9と、試料周辺エッジ8と、を有するものとして示されている。試料6がイオンビーム内において調製されている際に、ビームの一部分は、試料表面9に対して導かれることになり、これにより、イオンビームの動作を通じて試料6の研磨と薄化の両方が実現される。試料周辺エッジ8は、通常、試料表面9よりも小さな寸法を有する。調製の前に、試料6は、通常、薄い円板様の外観を有することになる。又、図3には、試料ホルダボア54も可視状態にあり、これは、全般的に中空の態様を有しており、この結果、試料6の底部表面から試料ホルダ保持部分51の全体を通じた下方への妨げられない視準線が許容されている。試料ホルダ50が保持位置にある際には、回転ステージの回転軸は、試料ホルダ50のいずれの部分とも交差することなしに、試料ホルダボア54を通過する。
次に、図4を参照すれば、調節自在の位置決めステージ45に結合された回転ステージ40の一部分のクローズアップ斜視図が示されている。イオンビーム試料調製装置2の動作の際に、回転ステージ40は、真空チャンバ10内において既定の場所に位置している。調節自在の位置決めステージ45は、回転ステージ40に対して運動自在に結合され、これにより、試料ホルダ保持手段49の位置の調節が可能になっている。図4の調節自在の位置決めステージ45は、第1調節軸46aに沿って調節自在の位置決めステージを運動させるように構成された第1位置調節手段48aと、第2調節軸46bに沿って調節自在の位置決めステージを運動させるように構成された第2位置調節手段48bと、試料が1つ又は複数のイオンビーム内において調製されている間に装置内において試料ホルダ50を解放自在に保持する試料ホルダ保持手段49と、を有する。
第1位置調節手段48aの調節により、調節自在の位置決めステージ45が第1調節軸46aに沿って回転ステージ40との関係において運動する。同様の方式により、第2位置調節手段48bの調節により、調節自在の位置決めステージ45が第2調節軸46bに沿って回転ステージ40との関係において運動する。第1及び第2位置調節手段は、これにより、第1及び第2調節軸に沿った試料ホルダ保持手段49の微小位置決めを実現する。試料ホルダが調節自在の位置決めステージ45内において保持された際に、第1及び第2位置調節手段48a及び48bを使用することにより、試料ホルダの位置と試料ホルダによって保持されうる任意の試料の位置を調節してもよい。
好適な実施形態においては、位置調節手段は、調節軸に沿った約0.5ミリメートルの運動の範囲を許容してもよく、且つ、調節軸に沿った25マイクロメートルレベルの小さな増分調節を反復的に実施することができる。その他の好適な実施形態においては、位置調節手段は、調節軸に沿った数ミリメートルの運動の範囲を許容してもよい。その他の好適な実施形態においては、位置調節手段により、調節軸に沿った10マイクロメートルレベルの小さな増分調節を反復的に実施することができる。限定を伴うことなしに、ラック及びピニオンの動作、微細ピッチの親ねじの動作、及びカム及びカム従動子の動作を含む調節を操作者の手で実施しうる調節自在の位置決め手段のいくつかの構造が可能である。更には、限定を伴うことなしに、圧電ステッパモーターの動作、ステッパモーターの動作、及びサーボモーターの動作を含む電気機械的な位置調節手段も、本開示の精神及び範囲に含まれる。
第1及び第2位置調節手段48a及び48bは、それぞれ、試料ホルダの設置前と試料ホルダの設置後の両方において調節してもよい。試料ホルダ50が調節自在の位置決めステージ45内において設置された際に、第1及び第2位置調節手段48a及び48bを使用して試料ホルダの位置を調節してもよい。
好適な実施形態においては、第1調節軸46aは、回転軸44に対して実質的に垂直になるように位置決めされており、且つ、第2調節軸46bは、回転軸44に対して実質的に垂直になるように位置決めされている。好適な実施形態においては、第1調節軸46a及び第2調節軸46bは、相互に実質的に垂直に位置決めされている。第1及び第2位置調節手段の累積的な結果は、試料6の異なるエリアが1つ又は複数のイオンビームによって調製されうるように、試料6が1つ又は複数のイオンビームの位置及び方向との関係において真空チャンバ内において運動できるようにするというものである。
図5は、試料ホルダ保持部分が試料ホルダ保持手段内において係合している斜視図を示している。好適な実施形態においては、試料ホルダ保持手段49は、摩擦嵌め又はスプリング弾発メカニズムを使用することにより、試料ホルダ50を解放自在に保持してもよい。試料ホルダ保持手段49の代替構造には、限定を伴うことなしに、ねじ山を有するクランプメカニズムが含まれる。試料ホルダ50が調節自在の位置決めステージ45内において保持された際に、第1位置調節手段48aに対して実施されるなんらかの調節により、第1調節軸46aの方向に沿って試料6が運動することになる。又、第2位置調節手段48bに対して実施されるなんらかの調節により、試料6が第2調節軸46bの方向に沿って運動することになる。図5は、試料ホルダ50が調節自在の位置決めステージ45上の保持位置にある間に、第1及び第2位置調節手段に対してアクセスしてもよく、且つ、これを調節してもよいことを示している。
図6は、調節自在の位置決めステージをカバーするように、且つ、これにより、試料が1つ又は複数のイオンビームによって調製されている際にスパッタリングされる破片から調節自在の位置決めステージを保護するように、位置決めステージカバー47が回転ステージ40上に配置されている図5の装置の斜視図を示している。位置決めステージカバー47は、試料ホルダ50が保持されている間に設置及び除去されてもよく、且つ、試料6を運動させたり又はその他の方法で試料を妨げたり又はこれに接触することなしに、取り外し及び再設置されてもよいことを更に特徴としている。
次に図7Aを参照すれば、本開示の別の実施形態によるイオンビーム試料調製装置の概略断面図が示されており、これは、試料がイオンビームによって調製されている際の試料の観察を可能にする特徴を有する。図7Aの装置は、真空チャンバカバー18を更に開示しており、これは、真空密の光学的に透明な真空ウィンドウ70と、真空ウィンドウ10と試料ホルダ50の間に配設されたシャッタ手段72であって、真空ウィンドウ70が真空チャンバ10の内部から実質的に封止されているシャッタ閉鎖位置と試料が1つ又は複数のイオンビームによって調製されている際に、真空チャンバ10の外部から、真空ウィンドウ70を通じて、且つ、試料6上への試料6の直接的な視準線観察が許容されているシャッタ開放位置の両方を有することを更に特徴とするシャッタ手段72と、1つ又は複数のイオンビームによって調製されている試料6の領域に向かって方向付けされた光軸76を有する試料観察手段71であって、1つ又は複数のイオンビームによって調製されている試料の領域の拡大されると共に実質的に合焦された視野を提供することを更に特徴とする試料観察手段71と、光を第1試料表面9aに向かって導くと共に光の少なくとも一部分が1つ又は複数のイオンビームによって調製される試料6の領域に入射する第1照明源60aと、光を第2試料表面9bに向かって導くと共に光の少なくとも一部分が1つ又は複数のイオンビームによって調製されている試料6の領域に入射する第2照明源60bと、を有する。
図7Aの装置においては、回転ステージ40及び調節自在の位置決めステージは、第1照明源60aからの光の少なくとも一部分が試料ホルダボアを通過すると共に試料が1つ又は複数のイオンビームによって調製されている領域内において第1試料表面9aに入射できるように、構成されている。好適な実施形態においては、第1及び第2照明源60a及び60bは、それぞれ、実質的にモノクロ光、広い色スペクトルを有する光、又はモノクロと広いスペクトルの両方の任意の組合せを放出する発光ダイオード(Light Emitting Diode:LED)を有する。好適な実施形態においては、試料観察手段71は、調製されている試料の領域を観察するべく、適切な焦点距離及び倍率を有する光学顕微鏡である。
図7Aを参照すれば、シャッタ手段72がシャッタ閉鎖位置にある際に、真空ウィンドウ70は、試料が1つ又は複数のイオンビームによって調製されている際に装置内において生成されうるスパッタリングされた物質によって汚れるか又は曇ることから保護されていることが理解できよう。図7Bに示されているように、試料観察手段71を使用して試料の進捗を観察することを操作者が所望している際には、シャッタ手段72をシャッタ開放位置に操作してもよい。試料の観察の後に、シャッタ手段72は、図7Aのシャッタ閉鎖位置に戻してもよく、これにより、真空ウィンドウ70上において堆積しうるスパッタリングされた物質の量が極小化される。
図1〜図7Bに示されている装置の使用法は、真空チャンバの外部において、試料を試料ホルダに取り付けてもよく、チャンバカバーが取り外された状態において、試料と試料ホルダの組合せを調節自在の位置決めステージの試料ホルダ保持手段内においてセットしてもよく、且つ、操作者が、第1及び第2位置調節手段を調節して試料を所定の位置に運動させてもよく、次いで、必要に応じて、位置決めステージカバーを調節自在の位置決めステージ上において配置してもよく、次いで、チャンバカバーを再設置してもよく、次いで、真空ポンプ手段を動作させてポンピングマニホルドを通じて真空チャンバを排気し、これにより、イオンビームミリングに適した真空レベルを得てもよく、次いで、イオンビーム照射手段を動作させて試料を調製してもよいというステップとの関連において進捗してもよい。装置の操作者は、試料の調製された部分の進捗及び場所について定期的にチェックしてもよい。装置が真空ウィンドウ、シャッタ、照明、及び試料観察手段を装備している場合には、シャッタを開放してもよく、且つ、操作者は、チャンバカバーの取外しを要することなしに、試料を直接的に観察してもよい。装置が真空ウィンドウなどを装備していない場合には、チャンバを開放して試料調製の進捗を検査することができる。試料の望ましい領域が調製されていないと操作者が判断した場合には、操作者は、第1又は第2位置調節手段を調節して望ましい試料領域を露出させると共に調製する必要があると判定することになる。必要に応じて、イオンビーム照射手段をターンオフしてもよく、真空チャンバを周辺雰囲気圧力に戻してもよく、チャンバカバーを取り外してもよく、必要に応じて、位置決めステージカバーを取り外してもよく、且つ、次いで、操作者は、第1及び第2位置調節手段を調節して試料の位置を調節してもよい。次いで、試料を真空チャンバに戻してもよく、且つ、必要に応じて、試料が望ましい状態で調製される時点まで、プロセスを反復してもよい。次いで、試料の対象領域の観察のために、顕微鏡に試料ホルダを装着してもよい。
次に、図8Aには、本開示の別の実施形態によるイオンビーム試料調製装置2の概略断面図が示されており、これは、回転ステージリフト手段80を特徴としている。図8Aの装置においては、回転ステージリフト手段は、上昇位置86において示されている。上昇位置86にある間に、試料ホルダ50を設置してもよく、或いは、調節自在の位置決めステージ45から取り外してもよい。又、上昇位置86にある際には、調節自在の位置決めステージ45の第1位置調節手段及び第2位置調節手段を調節してもよく、これにより、試料6内の対象領域の調製が促進される。図8Aの装置は、試料が調製される真空チャンバ10と、光学的に透明な真空ウィンドウ70を有する着脱自在且つ交換可能なチャンバカバー18と、中心イオンビーム軸22を有するイオンビームを生成すると共に試料6に向かって導くイオンビーム照射手段20と、少なくとも2つの異なるイオンビーム強度を提供するように機能するイオンビーム強度制御手段24と、イオンビーム照射手段20の少なくとも2つの異なる傾斜角度を提供するように機能するイオンビーム傾斜制御手段26と、イオンビームミリングに適した真空レベルに真空チャンバ10を設定するように協働する第1ポンピングマニホルド92a及びポンピング手段90と、試料ホルダ50が保持されうる調節自在の位置決めステージ45に対して結合された回転ステージ40と、回転ステージ40に対して動作可能に結合された回転ステージリフト手段80であって、真空封止形状が真空チャンバ10と回転ステージ40の間において係合して真空チャンバ10内において真空状態を維持する上昇位置86を有することを更に特徴とする回転ステージリフト手段80と、シャッタ開放位置及びシャッタ閉鎖位置を有するシャッタ手段72であって、シャッタ開放位置は、試料がイオンビームによって調製される際に、真空チャンバ10の外部から、真空ウィンドウ70を通じて、且つ、試料6上への試料6の直接的な視準線観察を許容することを更に特徴とするシャッタ手段72と、シャッタ開放位置とシャッタ閉鎖位置の両方を提供するためにシャッタ手段72に対して動作可能に結合されたシャッタ作動手段73と、その少なくとも一部分が試料に入射する光を試料6に向かって導く第1照明源60aと、を有するものとして示されている。
図8Bは、真空チャンバ10上において設置され、且つ、これにより、装填チャンバ16を生成するチャンバカバー18を有する図8Aの装置を示しており、装填チャンバ16は、外部雰囲気と真空チャンバ10の残りの部分の両方から隔離されている。好適な一実施形態においては、チャンバカバー18が外部雰囲気から装填チャンバを封止するための所定の位置にある際には、装填チャンバ16の容積は、真空チャンバ10の容積よりも格段に小さい。装置が図8Bと同様に構成されている際には、第2ポンピングマニホルド92b及びポンピング手段90を使用することにより、試料6を処理位置に降下させるための準備作業として装填チャンバ16を排気してもよい。
図8Cは、図8A及び図8Bと同一の装置を示しているが、回転ステージリフト手段80が、回転ステージを処理位置88に運動させるべく動作済みである。処理位置88にある際には、回転ドライブ42は、回転ステージ40と係合しており、且つ、回転軸44を中心として回転するように動作可能である。処理位置88においては、試料6は、試料6の1つ又は複数の表面がイオンビームによって処理されうる位置に配設される。図8Cは、シャッタ閉鎖位置にあるシャッタ手段72を更に示しており、この場合には、真空ウィンドウ70は、真空チャンバ10の残りの部分から隔離されてもよく、これにより、真空ウィンドウ70上に堆積しうるスパッタリングされた物質の量が極小化される。
図8Dは、図8A、図8B、及び図8Cと同一の装置を示しているが、シャッタ作動手段73が、真空ウィンドウ70を通じた、且つ、イオンビーム内において調製されている試料上への、直接的な視準線観察を許容するシャッタ開放位置にシャッタ手段72を運動させるべく動作済みである。シャッタ手段72により、シャッタ開放位置においては、必要に応じて、処理が適用されている間に、試料を真空ウィンドウ70を通じて観察してもよい。限定を伴うことなしに、光学顕微鏡、スチールカメラ、デジタル画像キャプチャ、ビデオ、並びに、即座の又は時間遅延した分析用の画像をキャプチャするその他の手段を含む様々な手段を使用して試料を観察してもよい。
図8A、図8B、図8C、及び図8Dの装置は、特定の望ましい効率を許容することを理解することができよう。試料の位置決め調節を実施する必要がある際に、真空チャンバの全体を換気する代わりに、回転ステージリフト手段80を動作させて試料を装填チャンバ16内に上昇させてもよい。好適な実施形態においては、装填チャンバの容積は、真空チャンバの容積よりも格段に小さい。回転ステージが上昇位置にある際には、真空チャンバの残りの部分内において真空状態が維持される。装填チャンバの小さな容積の換気及び排気に所要する時間は、チャンバ全体の換気及び排気よりも格段に少ない。装填チャンバが、イオンビームミリングに適した圧力に排気された際に、回転ステージリフト手段を動作させて試料を処理位置に運動させてもよく、且つ、再度、試料をイオンビーム内において調製してもよい。
次に図9を参照すれば、図8A〜図8Dの装置の一実施形態が示されており、これは、試料6と回転軸44の交差によって表された領域に向かって方向付けされた光軸76を有する試料撮像手段74と、その少なくとも一部分が試料に入射する光を試料6に向かって導く第2照明源60bと、第1通信チャネル102aを通じて試料撮像手段74と通信すると共にその動作を調整し、第2通信チャネル102bを通じてシャッタ作動手段73と通信すると共にその動作を調整し、第3通信チャネル102cを通じてイオンビーム強度制御手段24と通信すると共にその動作を調整し、第4通信チャネル102dを通じてイオンビーム傾斜制御手段26と通信すると共にその動作を調整し、且つ、第5通信チャネル102eを通じて回転ドライブ42と通信すると共にその動作を調整するインスツルメントコントローラ100と、を更に有する。
図9に示されているイオンビーム試料調製装置2は、調製された試料の品質とその調製効率の両方において多数の改善を可能にする。試料撮像手段74は、撮像作業に適したものとなるように、異なる特徴を有する異なる形態を有してもよい。好適な実施形態において、試料撮像手段74は、画像を取得すると共に画像データをインスツルメントコントローラ100に伝達するように動作可能である。又、試料撮像手段74は、取得された画像を処理し、取得された画像から特徴を抽出し、且つ、それらの抽出された特徴をインスツルメントコントローラ100に伝達してもよい。次いで、インスツルメントコントローラ100は、インスツルメントコントローラ100が通信中であってもよいサブシステムを制御する際に、画像データ、処理された画像データ、及び画像データから抽出された特徴を使用してもよい。又、インスツルメントコントローラ100は、画像データ、処理された画像データ、及び抽出された画像の特徴を後からの使用のために保存してもよい。
好適な実施形態においては、試料撮像手段74は、デジタル画像センサと、前記デジタル画像センサに結合されると共にイオンビーム内において調製されている試料の少なくとも一部分上において合焦されたレンズ系と、レンズ系上において動作するように特性が光学的であるか又は取得されたデジタル画像上において動作するように特性がデジタル的であってもよいズーム能力と、を有する。好適な実施形態においては、第1通信チャネル102aは、インスツルメントコントローラ100と試料撮像手段74の間においてデータを双方向に搬送する。インスツルメントコントローラ100は、これにより、試料撮像手段74を通じた画像の取得のトリガと画像取得動作から導出されたデータの受取りの両方を実行してもよい。特定の好適な実施形態においては、試料撮像手段74は、第1照明源60a及び第2照明源60bを制御してもよく、且つ、これにより、取得された試料画像の品質に対する相対的に高度な制御機能を有してもよい。試料撮像手段74は、操作者ディスプレイを更に有してもよく、操作者ディスプレイは、試料がイオンビーム内において調製されている際に、試料からの画像又は画像のシーケンスを装置の操作者に対して示してもよい。試料撮像手段74は、予め取得された保存されている画像を更に表示してもよい。
その他の好適な実施形態においては、試料撮像手段74によって取得された画像を処理することにより、イオンビーム内において試料を調製するプロセスに関係する目的の特徴を抽出してもよい。好適な一実施形態においては、第1照明源60aは、試料撮像手段74が画像を取得する際に試料6の照明を提供してもよい。試料は、イオンビームによって処理されるのに伴って徐々に薄くなる。最終的には、試料に穿孔が形成され始めることになる。試料が背面照明されている際には、このような穿孔は、明るいスポットとして現れることになり、試料の穿孔されてはいない領域は、画像上において格段に暗いものとして現れることになる。別の好適な実施形態においては、第1及び第2照明源60a及び60bが、それぞれ、試料を照明してもよい。試料が薄くなるのに伴って、但し、試料の穿孔の前に、試料の最も薄いエリアの周りに位置した干渉リングが画像上において可視状態となろう。更には、イオンビームによって試料が穿孔される前に、干渉リングの色の変化が観察されることになろう。キャプチャされた画像又は画像のシーケンスから、これらの画像の特徴及びその他のものを抽出してもよく、且つ、インスツルメントコントローラ100は、装置の動作の際に、これらを使用してもよい。
インスツルメントコントローラ100は、第2通信チャネル102bを通じてシャッタ作動手段73を制御し、且つ、これにより、シャッタ手段72の少なくとも2つの位置を提供するように、機能する。更には、第2通信チャネル102bは、シャッタ手段72がどのような位置にあるのかを通知しうるデータをインスツルメントコントローラ100に送信するように、機能してもよい。インスツルメントコントローラ100は、これにより、シャッタ作動手段73及びシャッタ手段72の動作の制御及び観察の両方を実行してもよい。
インスツルメントコントローラ100は、第3通信チャネル102cを通じてイオンビーム強度制御手段24を制御し、これにより、イオンビームの少なくとも2つの異なる強度を提供するように、機能する。第3通信チャネル102cは、双方向データをインスツルメントコントローラ100とイオンビーム強度制御手段24の間において搬送してもよく、且つ、これにより、イオンビーム強度制御手段24の動作の制御及び観察の両方を実行してもよい。
インスツルメントコントローラ100は、第4通信チャネル102dを通じてイオンビーム傾斜制御手段26を制御し、これにより、イオンビームの少なくとも2つの異なる傾斜角度を提供するように、機能する。第4通信チャネル102dは、双方向データをインスツルメントコントローラ100とイオンビーム傾斜制御手段26の間において搬送してもよく、且つ、これにより、イオンビーム傾斜制御手段26の動作の制御及び観察の両方を実行してもよい。
インスツルメントコントローラ100は、第5通信チャネル102eを通じて回転ドライブ42を制御するように、機能する。インスツルメントコントローラ100は、これにより、回転ステージ40の位置、速度、及び加速度を制御してもよい。第5通信チャネル102eは、インスツルメントコントローラ100が回転ステージ40の動作の制御及び観察の両方を実行してもよいように、双方向データをインスツルメントコントローラ100と回転ドライブ42の間において搬送してもよい。
図10は、本開示の好適な一実施形態による図9の装置の動作のフローチャートを示している。図10のプロセスステップについては、装置のサブシステムの観測器及びコントローラの両方として機能するインスツルメントコントローラ100との関連において理解することができる。「取得準備」のプロセスステップ200によって開始することにより、インスツルメントコントローラ100は、調製されている試料の画像をキャプチャするべく装置の準備を開始する。好適な実施形態においては、「取得トリガ?」200は、既定の時点において又は既定の回転角度において発生してもよい。次いで、プロセスは、「シャッタ開放」のプロセスステップ202に移動し、このステップにおいて、シャッタ手段72をシャッタ開放位置に移動させてもよい。「画像取得」のプロセスステップ204に移動することにより、試料撮像手段74に画像を取得させてもよく、この後に、「シャッタ閉鎖」のプロセスステップ206により、シャッタ手段72をシャッタ閉鎖位置に移動させてもよい。次いで、「画像特徴抽出」のプロセスステップ208により、新たに取得された画像から目的の特徴を抽出してもよい。抽出された特徴の1つ又は複数が、試料が完成したことを示している場合には、「停止条件検出?」のプロセスステップ210により、停止条件を識別し、且つ、プロセスを停止する。停止条件が検出されない場合には、プロセスは、「調節を必要とする状態の検出?」のプロセスステップ212に移動し、なんらかの調節を装置に対して実施しなければならないかどうかを決定する。調節が不要である場合には、プロセスは、「取得トリガ?」のプロセスステップ200に遷移して戻り、且つ、反復する。調節が必要である場合には、「ビーム強度調節」214、「回転ドライブ調節」216、及び「ビーム角度調節」218という3つのプロセスステップのうちの1つ又は任意の組合せをトリガしてもよい。調節が実施された後に、プロセスは、「取得トリガ?」のプロセスステップ200に遷移して戻り、且つ、反復する。「ビーム強度調節」のプロセスステップ214においては、イオンビーム強度制御手段24にイオンビームの強度を増減させてもよい。「回転ドライブ調節」のプロセスステップ216においては、回転ドライブ42に回転ステージ40の回転位置、回転速度、又は加速度を増減させてもよい。「ビーム角度調節」のプロセスステップ218においては、イオンビーム傾斜制御手段26に中心イオンビーム軸22が試料6に入射する角度を調節させてもよい。
次いで、「画像取得」のプロセスステップ204については、図11のフローチャートを参照することにより、更に十分に理解することができよう。図11のフローチャートは、いくつかのサブステップを有益な方式で実行することにより、「画像取得」のプロセスステップ204を完了させてもよいことを示している。「取得パラメータ判定」のプロセスステップ300において、試料撮像手段74により、画像の取得を制御するパラメータを取得又は導出している。次いで、「照明調節」のプロセスステップ302により、取得又は判定されたパラメータを使用することにより、第1照明源60a、又は第2照明源60b、或いは、これらの両方の照明源によって提供される照明を調節している。次いで、「焦点調節」のプロセスステップ304により、取得又は判定されたパラメータを使用することにより、試料撮像手段74の焦点特性を調節している。「ズーム調節」のプロセスステップ306により、取得又は判定されたパラメータを使用することにより、試料撮像手段74のズーム特性を調節している。「露出調節」のプロセスステップ308により、取得又は判定されたパラメータを使用することにより、試料撮像手段74の露出特性を調節している。「回転ドライブ調節」のプロセスステップ310により、取得又は判定されたパラメータに従って回転ステージの位置、速度、及び加速度を調節してもよい。好適な実施形態においては、装置は、画像のキャプチャの前に、回転ステージを減速させるか又は停止させてもよい。次いで、装置は、「取得トリガ?」のプロセスステップにおいて、正確に既定された時点又は正確に判定された回転角度の発生を待つ。「取得トリガ?」が発生した際に、プロセスは、画像キャプチャのプロセスステップ314に遷移することになり、ここで、画像がキャプチャされることになる。画像は、不揮発性のストレージに保存されてもよく、或いは、その他の使用目的のために、別の場所に通信チャネルを介して送信されてもよい。キャプチャが完了した後に、プロセスは、「照明調節」のプロセスステップ316に進み、これにより、第1及び第2照明源を調節してもよく、これには、ターンオフが含まれてもよい。この後に、図11のフローチャートによって実施されるプロセスが完了する。
図9の装置は、多くの有益な能力及び特徴を可能にする。好適な1つの利益は、画像のシーケンスをキャプチャしてもよいという点にある。1つ又は複数のイオンビームが試料に対して導かれた際に、撮像手段74は、試料の様々な深さの領域に対応する試料の連続的な画像をキャプチャしてもよく、その理由は、イオンビームが連続的な画像の間において試料から物質を除去しているからである。この場合には、図9の実施形態によって取得される画像のシーケンスから、試料の3D復元を実施してもよい。
取得された画像に対して更なる画像処理を使用してもよい。好適な一実施形態においては、すべての画像が同一の角度においてキャプチャされたかのように見えるように、異なる回転角度においてキャプチャされた画像のそれぞれをインスツルメントコントローラ100によってプログラム的に回転させてもよい。このような方式で処理された画像のシーケンスは、試料が処理され、且つ、画像が取得されている際に、まったく回転していないように見えることになろう。操作者によって観察された際に、上述の方法で処理された画像は、装置の有用性を大幅に改善する。
次に図12を参照すれば、本開示による別の実施形態の有益な態様のフローチャートが示されている。図12のプロセスは、図9のイオンビーム試料調製装置2の操作者によって実行されてもよく、この場合には、インスツルメントコントローラ100は、画像を操作者に対して提示する表示システムと、操作者によって生成された注釈を受け付けるように機能可能な入力システムと、画像と共に注釈データを保存するように動作可能なストレージシステムと、を更に有する。試料が調製された際には、調製された試料内における対象領域の場所又はさまざまな目的の特徴の場所を記録する方法を有することが多くの場合に非常に有用である。イオンビーム装置の操作者は、図12のプロセスを実行することにより、これを効率的に実施することができる。まず、「画像注釈付加」のプロセスステップ400を開始している。操作者の選択内容に基づいて、又は自動的に試料の処理の末尾において、「画像提示」のプロセスステップ402により、試料撮像手段74によって取得された画像をインスツルメントコントローラ100の表示システムによって操作者に対して提示してもよい。「画像注釈受付」のプロセスステップ404において、操作者は、インスツルメントコントローラ手段100の入力システムを使用することにより、1つ又は複数の注釈データを入力してもよい。好適な実施形態においては、注釈データは、対象の1つ又は複数の点のx及びy座標、増加数列又は文字などの受け付けられたそれぞれの注釈ごとの一意の標識、1つ又は複数の目的の特徴の重心の場所、1つ又は複数の目的の特徴を含む画像の二次元サブ領域の場所及び範囲、及び現在の注釈に存在している特徴のタイプの分類又はその他の表現のうちの1つ又は任意の組合せを規定してもよい。注釈は、人間が判読可能なテキスト、グラフィックス、及び画像の形態であってもよく、或いは、その他の機器との間の交換を促進するように適合された機械可読フォーマットを有してもよい。「注釈停止?」のプロセスステップ406により、複数の注釈がそれぞれの画像ごとに生成されることを許容している。更なる注釈を生成する必要がない際には、「画像と共に注釈保存」のプロセスステップ408により、注釈が画像と関連付けられるように、すべての注釈をインスツルメントコントローラ100のストレージシステム内に保存する。「注釈完了」のプロセスステップ410により、このプロセスを終了させている。
イオンビーム内において調製され、撮像され、且つ、図12のプロセスに従って注釈が付与された試料は、その後に、観察のために、顕微鏡に転送されてもよい。顕微鏡の操作者は、顕微鏡機器内において試料を配置し、拡大し、合焦し、且つ、観察する際に、注釈が付与された画像の使用から、大きな利益を享受することになろう。
その好適な特定のバージョンを参照し、本発明についてかなり詳細に説明したが、その他のバージョンも可能である。さまざまな実施形態において示されている特徴を単一の実施形態に組み合わせることが望ましいであろう。異なる数及び構成の特徴を使用することにより、本開示の精神及び範囲に完全に含まれるイオンビーム試料調製装置の実施形態を構築してもよい。この場合に、添付の請求項の精神及び範囲は、本明細書に包含されている好適なバージョンの説明に限定されるものではない。
規定された機能を実行する「ための手段(means for)」又は特定の機能を実行する「ためのステップ(step for)」を明示的に記述していない請求項中の任意の要素は、米国特許法第112条第6段落に規定されている「手段(means)」又は「ステップ(step)」として解釈してはならない。具体的には、本明細書の請求項における「(ステップ)step of」の使用は、米国特許法第112条第6段落の条項の発動を意図したものではない。
2 イオンビーム試料調製装置
6 試料
8 試料周辺エッジ
9 試料表面
9a、9b 第1、第2試料表面
10 真空チャンバ
16 装填チャンバ
18 チャンバカバー
20 イオンビーム照射手段
20a、20b 第1、第2イオンビーム照射手段
22 中心イオンビーム軸
22a、22b 第1、第2中心イオンビーム軸
24 イオンビーム強度制御手段
24a、24b 第1、第2イオンビーム強度制御手段
26 イオンビーム傾斜制御手段
26a、26b 第1、第2イオンビーム傾斜制御手段
40 回転ステージ
42 回転ドライブ
44 回転軸
45 調節自在の位置決めステージ
46a、46b 第1、第2調節軸
47 位置決めステージカバー
48a、48b 第1、第2位置調節手段
49 試料ホルダ保持手段
50 試料ホルダ
51 試料ホルダ保持部分
52 試料支持アーム
52a、52b 第1、第2試料支持アーム
54 試料ホルダボア
60 照明源
60a、60b 第1、第2照明源
70 試料観察ウィンドウ
71 試料観察手段
72 シャッタ手段
73 シャッタ作動手段
74 試料撮像手段
76 光軸
80 回転ステージリフト手段
86 上昇位置
88 処理位置
90 真空ポンプ手段
92 ポンピングマニホルド
92a、92b 第1、第2ポンピングマニホルド
100 インスツルメントコントローラ
102a、102b、102c、102d、102e 第1、第2、第3、第4、第5通信チャネル
200、202、204、206、208、210、212、214、216、218 プロセスステップ
300、302、304、306、308、310、312、314、316 プロセスステップ
400、402、404、406、408、410 プロセスステップ

Claims (13)

  1. イオンビーム試料調製方法において、
    a)前記試料の少なくとも一部分が真空チャンバ内においてイオンビームによって調製されるように、所定の強度を有すると共に第1傾斜角度を有するイオンビームを前記試料に向かって導くステップと、
    b)光源により前記試料の少なくとも一部分を照明するステップと、
    c)前記イオンビームの一部分と実質的に交差する回転軸を有する回転ステージを使用して前記試料を回転させるステップと、
    d)前記試料の少なくとも一部分の実質的に合焦された画像を撮像するステップと、
    e)前記撮像された画像から1つ又は複数の特徴を機器制御装置内において抽出するステップであって、前記抽出された特徴のうちの少なくとも1つは、前記撮像された画像の一部分における色、前記撮像された画像の一部分における形状、及び前記撮像された画像の一部分における光学干渉リングの一部分、のうちの少なくとも1つである抽出するステップと、
    f)(i)前記イオンビームの前記傾斜角度を第2傾斜角度に変更すること、(ii)前記イオンビームの強度を第2の強度に変更することであって、ゼロよりも大きい第2の強度に変更すること、および(iii)前記回転ステージの前記回転角度を変更すること、のうちの少なくとも1つを実行することにより、前記1つ又は複数の特徴の前記抽出に対して前記機器制御装置内において応答するステップと、
    前記イオンビームを前記試料に向かって導くことを継続するステップであって、前記イオンビームまたは前記回転ステージが、(i)前記傾斜角度が変更された状態、(ii)前記第2の強度である状態、および(iii)前記回転角度が変更された状態、のうちの少なくとも1つであるステップと、
    を有することを特徴とする方法。
  2. 請求項1に記載の方法において、d)前記試料の少なくとも一部分の実質的に合焦された画像を撮像するステップの前に、前記回転ステージを既定の位置に回転させるステップが行われることを更に特徴とする方法。
  3. 請求項1に記載の方法において、d)前記試料の少なくとも一部分の実質的に合焦された画像を撮像するステップの前に、既定の時点まで待機するステップが行われることを更に特徴とする方法。
  4. 請求項1に記載の方法において、(i)前記イオンビームの前記傾斜角度を第2傾斜角度に変更することと、(ii)前記イオンビームの前記強度を第2の強度に変更することと、(iii)前記回転ステージの前記回転角度を変更することと、を含む群のうちの少なくとも1つを実行するための将来時点を前記機器制御装置内において推定するステップを更に有することを特徴とする方法。
  5. 請求項1に記載の方法において、前記撮像された画像から抽出される前記特徴のうちの1つ又は複数は、停止条件を表すことを更に特徴とする方法。
  6. 請求項1に記載のイオンビーム試料調製方法が、さらに、
    g)前記試料の一連の画像を撮像するステップであって、一連の各画像は、実質的に合焦されている、ステップと、
    h)前記撮像された一連の画像から1つ又は複数の特徴を前記機器制御装置内において抽出するステップと、
    i)(i)前記イオンビームの傾斜角度を変更すること、(ii)前記イオンビームの強度を変更すること、(iii)および前記回転ステージの位置を変更すること、のうちの少なくとも1つを実行することにより、前記撮像された一連の画像からの1つ又は複数の特徴の抽出に対して、前記機器制御装置において応答するステップと、
    を有することを特徴とする方法。
  7. 請求項6に記載の方法において、前記複数の画像のシーケンスから抽出される前記特徴のうちの少なくとも1つは、前記撮像された画像の一部分のサイズの時間に対する変化、前記撮像された画像の一部分における色の時間に対する変化、前記撮像された画像の一部分における形状の時間に対する変化、前記撮像された画像の一部分における強度の時間に対する変化、及び前記撮像された画像の一部分における光学干渉リングの一部分の時間に対する変化からなる群からのものであることを更に特徴とする方法。
  8. 請求項6に記載の方法において、それぞれの画像は、前記回転ステージが実質的に同一の回転角度において位置決めされた状態において撮像されることを更に特徴とする方法。
  9. 請求項8に記載の方法において、前記一連の画像が撮像された順序と同一の順序において前記複数の画像のシーケンスを表示するステップを更に有することを特徴とする方法。
  10. 請求項6に記載の方法において、
    a)1つ又は複数の撮像された前記画像のそれぞれが撮像される回転角度が異なってもよいことを更に特徴とする1つ又は複数の撮像された画像を前記機器制御装置内において処理するステップと、
    b)1つ又は複数のプログラムにより回転された画像を生成するステップであって、前記1つ又は複数のプログラムにより回転された画像のそれぞれが前記1つ又は複数の撮像された画像に対応していることを更に特徴とし、且つ、前記1つ又は複数のプログラムにより回転された画像のそれぞれが実質的に同一の既定の回転角度において撮像されたように見えることを更に特徴とするステップと、
    を更に有することを特徴とする方法。
  11. 請求項10に記載の方法において、前記プログラムにより回転された一連の画像を表示するステップを更に有することを特徴とする方法。
  12. 請求項10に記載の方法において、
    a)前記プログラムにより回転された一連の画像から1つ又は複数の特徴を機器制御装置内において抽出するステップと、
    b)(i)前記イオンビームの前記傾斜角度を第2傾斜角度に変更すること、(ii)前記イオンビームの前記強度を変更すること、および(iii)前記回転ステージの位置を変更すること、のうちの少なくとも1つを実行することにより、前記プログラムにより回転された一連の画像からの前記1つ又は複数の特徴の前記抽出に対して前記機器制御装置内において応答するステップと、
    を更に有することを特徴とする方法。
  13. 請求項10に記載の方法において、
    a)前記1つ又は複数のプログラムにより回転された画像を保存するステップと、
    b)前記1つ又は複数のプログラムにより回転された画像を取得するステップと、
    c)前記1つ又は複数のプログラムにより回転された画像を表示するステップと、
    を更に有することを特徴とする方法。
JP2015524432A 2012-07-27 2013-07-25 イオンビーム試料調製装置及び方法 Active JP6466329B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261676368P 2012-07-27 2012-07-27
US61/676,368 2012-07-27
US13/949,369 US10110854B2 (en) 2012-07-27 2013-07-24 Ion beam sample preparation apparatus and methods
US13/949,369 2013-07-24
PCT/US2013/051917 WO2014018694A2 (en) 2012-07-27 2013-07-25 Ion beam sample preparation apparatus and methods

Publications (2)

Publication Number Publication Date
JP2015532709A JP2015532709A (ja) 2015-11-12
JP6466329B2 true JP6466329B2 (ja) 2019-02-06

Family

ID=49994514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015524432A Active JP6466329B2 (ja) 2012-07-27 2013-07-25 イオンビーム試料調製装置及び方法

Country Status (4)

Country Link
US (1) US10110854B2 (ja)
EP (1) EP2878008B1 (ja)
JP (1) JP6466329B2 (ja)
WO (1) WO2014018694A2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10731246B2 (en) * 2014-07-28 2020-08-04 Gatan, Inc. Ion beam sample preparation and coating apparatus and methods
US9904874B2 (en) 2015-11-05 2018-02-27 Microsoft Technology Licensing, Llc Hardware-efficient deep convolutional neural networks
JP6574903B2 (ja) * 2016-07-01 2019-09-11 株式会社日立ハイテクノロジーズ イオンミリング装置
DE102017130797B4 (de) * 2017-12-20 2022-06-09 Leibniz-Institut für Oberflächenmodifizierung e.V. Verfahren zur Erzeugung eines gewünschten Oberflächenprofils
WO2019174884A1 (en) * 2018-03-16 2019-09-19 Inveox Gmbh Automated identification, orientation and sample detection of a sample container
CN108873282B (zh) * 2018-06-15 2023-05-05 山西爱尔眼科医院有限公司 一种新型眼科显微镜目镜防护装置
TWI794615B (zh) * 2019-07-26 2023-03-01 德商卡爾蔡司Smt有限公司 微加工裝置的自動運作控制
US20210256831A1 (en) * 2020-01-29 2021-08-19 Nicole Cora Ehrlich Smart kitchen monitoring system and methods
JP7285883B2 (ja) * 2021-06-04 2023-06-02 日本電子株式会社 試料加工装置および情報提供方法
JP7285884B2 (ja) * 2021-06-04 2023-06-02 日本電子株式会社 試料加工装置および試料加工方法
JP7407772B2 (ja) * 2021-07-16 2024-01-04 日本電子株式会社 試料加工装置および試料加工方法
CN114460114B (zh) * 2022-04-13 2022-06-21 季华实验室 样品分析方法、装置、设备及存储介质
CN115157153B (zh) * 2022-08-22 2023-10-17 深圳市赛马精密科技有限公司 一种激光检测定位结构

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272682A (en) 1979-08-10 1981-06-09 Gatan, Inc. Specimen elevator for an ion milling machine
JP3058394B2 (ja) 1994-06-23 2000-07-04 シャープ株式会社 透過電子顕微鏡用断面試料作成方法
US5472566A (en) 1994-11-14 1995-12-05 Gatan, Inc. Specimen holder and apparatus for two-sided ion milling system
DE29507225U1 (de) 1995-04-29 1995-07-13 Grünewald, Wolfgang, Dr.rer.nat., 09122 Chemnitz Ionenstrahlpräparationsvorrichtung für die Elektronenmikroskopie
JP3263920B2 (ja) 1996-02-01 2002-03-11 日本電子株式会社 電子顕微鏡用試料作成装置および方法
US5922179A (en) 1996-12-20 1999-07-13 Gatan, Inc. Apparatus for etching and coating sample specimens for microscopic analysis
JPH11132920A (ja) 1997-10-30 1999-05-21 Matsushita Electron Corp イオンミリング装置
JP3117079B2 (ja) 1998-06-29 2000-12-11 日本電気株式会社 イオンミリング装置およびイオンミリングの終点検出方法
JP2000186000A (ja) 1998-12-22 2000-07-04 Speedfam-Ipec Co Ltd シリコンウェーハ加工方法およびその装置
US6768110B2 (en) 2000-06-21 2004-07-27 Gatan, Inc. Ion beam milling system and method for electron microscopy specimen preparation
US6784427B1 (en) 2003-07-31 2004-08-31 Bal-Tec Ag Samples for transmission electron microscopy
JP4037809B2 (ja) 2003-08-20 2008-01-23 日本電子株式会社 イオンミーリング試料作製装置用マスクおよび試料作製装置
JP4557130B2 (ja) 2003-09-16 2010-10-06 日本電子株式会社 試料作製装置
JP2005099572A (ja) * 2003-09-26 2005-04-14 Chuo Electronics Co Ltd 広域撮影方法および表示方法
US7518122B2 (en) * 2003-10-16 2009-04-14 Alis Corporation Ion sources, systems and methods
JP2004301852A (ja) 2004-06-04 2004-10-28 Hitachi Ltd 3次元構造観察用試料作製装置、電子顕微鏡及びその方法
US7132673B2 (en) * 2004-07-30 2006-11-07 E.A. Fischione Instruments, Inc. Device and method for milling of material using ions
JP4664041B2 (ja) 2004-10-27 2011-04-06 株式会社日立ハイテクノロジーズ 荷電粒子ビーム装置及び試料作製方法
KR101311487B1 (ko) * 2004-11-12 2013-09-25 엑스트랄리스 테크놀로지스 엘티디. 입자 검출기, 시스템 및 방법
JP4594156B2 (ja) 2005-04-21 2010-12-08 日本電子株式会社 試料作製方法および試料作製装置
JP4691529B2 (ja) 2007-07-20 2011-06-01 株式会社日立ハイテクノロジーズ 荷電粒子線装置、及び試料加工観察方法
WO2010051546A2 (en) 2008-10-31 2010-05-06 Fei Company Measurement and endpointing of sample thickness
WO2011011661A2 (en) * 2009-07-24 2011-01-27 Omniprobe, Inc. Method and apparatus for the monitoring of sample milling in a charged particle instrument
US8350237B2 (en) 2010-03-31 2013-01-08 Fei Company Automated slice milling for viewing a feature
US8445874B2 (en) 2010-04-11 2013-05-21 Gatan Inc. Ion beam sample preparation apparatus and methods
US8384050B2 (en) 2010-04-11 2013-02-26 Gatan, Inc. Ion beam sample preparation thermal management apparatus and methods
US8283642B2 (en) 2010-04-11 2012-10-09 Gatan, Inc. Ion beam sample preparation apparatus and methods
US9733164B2 (en) * 2012-06-11 2017-08-15 Fei Company Lamella creation method and device using fixed-angle beam and rotating sample stage

Also Published As

Publication number Publication date
US20140028828A1 (en) 2014-01-30
JP2015532709A (ja) 2015-11-12
US10110854B2 (en) 2018-10-23
WO2014018694A3 (en) 2014-06-12
EP2878008A2 (en) 2015-06-03
WO2014018694A2 (en) 2014-01-30
EP2878008B1 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
JP6466329B2 (ja) イオンビーム試料調製装置及び方法
US9196455B2 (en) Ion beam sample preparation apparatus and methods
JP4474337B2 (ja) 試料作製・観察方法及び荷電粒子ビーム装置
JP4988662B2 (ja) 荷電粒子線装置
CN102207472A (zh) 用于观察特征的自动化片状铣削
JP2007333682A (ja) イオンビームを用いた断面試料作製装置
JP7340363B2 (ja) 顕微鏡試料を作製する装置および方法
JP5738980B2 (ja) イオンビーム試料準備装置及び方法
JP4156851B2 (ja) マイクロダイセクション装置
JP2012015029A (ja) 拡大観察装置
US8283642B2 (en) Ion beam sample preparation apparatus and methods
JP6474409B2 (ja) レーザーマイクロダイセクションシステムのレーザー偏向装置を較正するための方法およびレーザーマイクロダイセクションシステム
CA3061440C (en) Optical scanning arrangement and method
CN109906497B (zh) 带电粒子束装置以及试样观察方法
JP4654216B2 (ja) 荷電粒子線装置用試料ホールダ
JP2017526152A (ja) サンプルの準備及びコーティングのためのイオンビーム装置及び方法
JP7287957B2 (ja) 放射線検出装置、コンピュータプログラム及び位置決め方法
US11152187B2 (en) Method and apparatus for positioning microscopic specimens with the aid of a two-dimensional position table
US20230298855A1 (en) Method and apparatus for micromachining a sample using a focused ion beam
TWI813760B (zh) 試料加工觀察方法
JP4456962B2 (ja) 試料表示装置、試料表示装置の操作方法、試料表示装置操作プログラムおよびコンピュータで読み取り可能な記録媒体又は記録した機器
JPWO2016075759A1 (ja) 荷電粒子線装置、電子顕微鏡および試料の観察方法
JP4616631B2 (ja) 試料分析装置
JP2023054559A (ja) 画像表示方法、分析システムおよびプログラム
JP2005062130A (ja) 微小薄片作製装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170913

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181012

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190109

R150 Certificate of patent or registration of utility model

Ref document number: 6466329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250