JP6446325B2 - 電源供給装置 - Google Patents

電源供給装置 Download PDF

Info

Publication number
JP6446325B2
JP6446325B2 JP2015095847A JP2015095847A JP6446325B2 JP 6446325 B2 JP6446325 B2 JP 6446325B2 JP 2015095847 A JP2015095847 A JP 2015095847A JP 2015095847 A JP2015095847 A JP 2015095847A JP 6446325 B2 JP6446325 B2 JP 6446325B2
Authority
JP
Japan
Prior art keywords
power supply
switch
communication
voltage
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015095847A
Other languages
English (en)
Other versions
JP2016213965A (ja
Inventor
悠司 小原
悠司 小原
博樹 北島
博樹 北島
太一 森
太一 森
拓朗 土屋
拓朗 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Nidec Mobility Corp
Original Assignee
Suzuki Motor Co Ltd
Omron Automotive Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd, Omron Automotive Electronics Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP2015095847A priority Critical patent/JP6446325B2/ja
Publication of JP2016213965A publication Critical patent/JP2016213965A/ja
Application granted granted Critical
Publication of JP6446325B2 publication Critical patent/JP6446325B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、電圧変換回路を備え、電圧の異なる複数の電源からの電力を電気負荷に供給する電源供給装置に関するものである。
電圧の異なる複数の電源と、これら電源の電力を電気負荷に供給する電源供給装置を備えた電気自動車やハイブリッド自動車が提案されている(たとえば特許文献1〜5)。
特許文献1〜4の電源供給装置は、電装品などの電気負荷に対して、直流の低電圧電源の電力を供給する。また、電源供給装置は、直流の高電圧電源の高電圧をDC−DCコンバータ(直流−直流変換器)などの電圧変換回路により低電圧に変換して、電気負荷や低電圧電源に電力を供給する。低電圧電源から電気負荷までの電力供給経路の途中に、高電圧電源からの電力供給経路が接続されている。低電圧電源と高電圧電源の間には、電圧変換回路とスイッチが直列に接続されている。電源供給装置は、車両側のECU(電子制御装置)などの上位装置から、車両の状態を示す信号などを受信して、電圧変換回路とスイッチの動作を制御し、電力の供給状態を切り替える。
特許文献1では、停車中にDC−DCコンバータに過電流が流れた場合に、電気負荷への電力供給が停止される。特許文献4では、電気負荷の要求電力に対して低電圧電源の給電能力が不足しているか否かが判断され、その結果に基づいてDC−DCコンバータの電力供給や電気負荷の作動が制御される。
特許文献2および3では、通常は、スイッチがオンされて、高電圧電源と低電圧電源の電力が電気負荷に供給される。然るに、低電圧電源とスイッチの間に、大電流が流れるスタータ(セルモータ)が接続されているため、アイドリングストップ後に、エンジンを再始動するためにスタータを駆動すると、電気負荷への供給電圧が低下して、電気負荷が正常に動作しなくなることがある。これを防止するため、スタータの駆動に先立って、上位装置からスタータが駆動されることを示す信号を受信した場合に、スイッチをオンからオフに切り替えて、スタータおよび低電圧電源を高電圧電源および電気負荷から電気的に切り離す。
一方、特許文献5には、DC−DCコンバータを制御する制御部が、メイン制御部との間に通信異常が生じて、メイン制御部からDC−DCコンバータの始動要求や停止要求を受信できなくなった場合に、DC−DCコンバータの入力電圧などに基づいて、DC−DCコンバータを始動または停止させる技術が開示されている。
特開2013−34328号公報 特開2011−155791号公報 特開2004−222475号公報 特開2008−289303号公報 特開2008−11639号公報
特許文献2および3のような回路構成において、たとえば、上位装置との間で通信異常が発生して、スタータが駆動されることを示す信号を受信できなくなった場合、スタータの駆動に先立って、スイッチをオンからオフに切り替えることができなくなる。このため、スタータの駆動時に、スイッチがオンされたままとなり、スタータに大電流が流れることで、電気負荷への供給電圧が低下し、電気負荷の駆動が停止されることがある。
本発明の課題は、上位装置との間で通信異常が発生した場合でも、電力供給対象の各電気負荷を駆動することができる電源供給装置を提供することである。
本発明による電源供給装置は、一端が第1電源に接続され、他端が第1電気負荷に接続された第1電力供給経路と、一端が第1電源とは電圧が異なる第2電源に接続され、他端が第1電力供給経路の途中にある接続点に接続された第2電力供給経路と、第2電力供給経路に設けられ、第2電源の電圧の大きさを変換する電圧変換回路と、第1電力供給経路の、上記接続点より第1電源側に設けられ、第1電源から接続点までの電路を、オン状態で閉路させてオフ状態で開路させるスイッチと、上位装置と通信を行うための通信部と、電圧変換回路およびスイッチの動作を制御する制御部とを備える。制御部は、電圧変換回路の動作中に、スイッチをオンし、この状態でさらに、第1電源とスイッチとの間の電路に接続された第2電気負荷が駆動されることを示す信号を、通信部により受信した場合に、スイッチをオフする。そして、本発明ではさらに、通信部の通信異常を検出する異常検出部が設けられ、制御部は、異常検出部により通信部の通信異常を検出した場合に、電圧変換回路の状態にかかわらず、スイッチをオフ状態にする。
上記によると、上位装置との間で通信異常が発生して、第2電気負荷が駆動されることを示す信号を上位装置から受信できなくなっても、異常検出部により通信異常が検出されて、スイッチがオフする。このため、第2電源からの電力が第2電気負荷や第1電源に供給されなくなる。そして、その後の第2電気負荷の駆動時に、第2電源の電力が電圧変換回路を経由して第1電気負荷に供給され、第1電源の電力が第2電気負荷に供給される。よって、第2電気負荷に大電流が流れても、第1電気負荷への供給電圧が低下せず、電力供給対象の第1電気負荷と第2電気負荷を両方とも安定に駆動することができる。
また、本発明では、上記電源供給装置において、第1電源は、直流低電圧電源であり、第2電源は、直流低電圧電源より電圧が高い直流高電圧電源であり、電圧変換回路は、直流高電圧電源の直流高電圧を直流低電圧に変換してもよい。
また、本発明では、上記電源供給装置において、制御部は、電圧変換回路の動作中に、異常検出部により通信部の通信異常を検出した場合に、スイッチをオンからオフに切り替え、かつ電圧変換回路の動作を継続させてもよい。
また、本発明では、上記電源供給装置において、制御部は、電圧変換回路の停止中に、異常検出部により通信部の通信異常を検出した場合に、スイッチをオフし、かつ電圧変換回路を動作させてもよい。
また、本発明では、上記電源供給装置において、異常検出部は、通信部と上位装置との通信が途絶えた場合に、通信部の通信異常が生じたと判断してもよい。
さらに、本発明では、上記電源供給装置において、電圧変換回路が動作中でかつスイッチがオン状態にある場合に、第1電源の電圧が所定値まで低下していないときは、第1電源と第2電源からの電力が第1電気負荷に供給され、第1電源の電圧が所定値まで低下しているときは、第2電源からの電力が第1電気負荷と第1電源とに供給されて、第1電源が充電されてもよい。
本発明によれば、上位装置との間で通信異常が発生した場合でも、電力供給対象の各電気負荷を駆動することができる電源供給装置を提供することが可能となる。
本発明の実施形態による電源供給装置の回路構成を示した図である。 通常時に低電圧バッテリの電圧が低下していない場合の、図1の回路の動作を示した図である。 通常時に低電圧バッテリの電圧が低下した場合の、図1の回路の動作を示した図である。 アイドリングストップ後のエンジン再始動時の、図1の回路の動作を示した図である。 通信異常時の、図1の回路の動作を示した図である。 通信正常時の、図1の回路の動作の一例を示したタイムチャートである。 通信異常時の、図1の回路の動作の一例を示したタイムチャートである。 図1の電源供給装置の動作の一例を示したフローチャートである。 他の実施形態による電源供給装置の動作の一例を示したフローチャートである。
以下、本発明の実施形態につき、図面を参照しながら説明する。各図において、同一の部分または対応する部分には、同一符号を付してある。
まず、本発明の実施形態による電源供給装置100と、その周辺部の回路構成を、図1を参照しながら説明する。
図1に示す各部は、電気自動車またはハイブリッド自動車などの車両に搭載されている。電源供給装置100と高電圧バッテリ20とは、バッテリパック200内に設けられている。低電圧バッテリ10、スタータ(セルモータ)11、オルタネータ31、ACC(アクセサリ)リレースイッチ12、IG(イグニション)リレースイッチ13、上位ECU(電子制御装置)16、電装品18、充電装置19、およびヒューズ21〜27は、バッテリパック200外に設けられている。
低電圧バッテリ10は、直流低電圧電源であり、たとえば12Vの鉛バッテリから成る。低電圧バッテリ10の電力は、スタータ11、リレースイッチ12、13、および電装品18に供給される。低電圧バッテリ10は、本発明の「第1電源」の一例である。
スタータ11は、図示しない車両のエンジンを始動するために駆動される。スタータ11には、駆動時に大電流が流れる。車両には、アイドリングストップ制御システムが組み込まれている。電装品18は、たとえば、オーディオ、メータ、エアコンパネル、ABS(Antilock Brake System)、およびトランスミッションなどの電気装置から成る。このうち、殆どの電気装置は、低電圧(たとえば12V)で駆動する。電装品18は、本発明の「第1電気負荷」の一例である。スタータ11は、本発明の「第2電気負荷」の一例である。
オルタネータ31は、エンジンの動作中に発電する。オルタネータ31で発電された電力は、低電圧バッテリ10などに供給される。これにより、低電圧バッテリ10が充電される。
高電圧バッテリ20は、直流高電圧電源であり、たとえば100Vのリチウムイオンバッテリから成る。高電圧バッテリ20の電圧は、低電圧バッテリ10の電圧より高い。高電圧バッテリ20の電力は、図示しない車両の走行モータや電装品18や低電圧バッテリ10に供給される。高電圧バッテリ20は、本発明の「第2電源」の一例である。充電装置19は、高電圧バッテリ20の充放電を行う。
電源供給装置100には、第1電力供給経路1、第2電力供給経路2、DC−DCコンバータ3、電源切り替えスイッチ4、制御部7、ACC用スイッチ14、IG用スイッチ15、および電流検出回路32が備わっている。図1で電源供給装置100を示す破線上の白丸は、電源供給装置100に設けられた接続端子を示している(後述の図2〜図5も同様)。
第1電力供給経路1は、一端がヒューズ21、22を介して低電圧バッテリ10に接続され、他端がヒューズ23を介して電装品18に接続されている。低電圧バッテリ10の電力は、第1電力供給経路1を通って電装品18に供給される。
第2電力供給経路2は、一端が高電圧バッテリ20に接続され、他端が第1電力供給経路1の途中にある接続点8に接続されている。第2電力供給経路2には、DC−DCコンバータ3と電流検出回路32が設けられている。
DC−DCコンバータ3は、高電圧バッテリ20の直流高電圧を直流低電圧に変換する。高電圧バッテリ20の電力は、第2電力供給経路2とDC−DCコンバータ3と第1電力供給経路1とを通って、電装品18と低電圧バッテリ10にそれぞれ供給される。DC−DCコンバータ3は、本発明の「電圧変換回路」の一例である。電流検出回路32は、DC−DCコンバータ3から出力される電流を検出する。
第1電力供給経路1の、接続点8より低電圧バッテリ10側には、電源切り替えスイッチ4が設けられている。
電源切り替えスイッチ4は、たとえばFET(電界効果トランジスタ)から成る。電源切り替えスイッチ4は、第1電力供給経路1の低電圧バッテリ10から接続点8までの電路を、オン状態で閉路させて、オフ状態で開路させる。電源切り替えスイッチ4は、本発明の「スイッチ」の一例である。
電源切り替えスイッチ4と並列に接続されたダイオード4dは、たとえば、電源切り替えスイッチ4を構成するFETの寄生ダイオードから成る。ダイオード4dのアノードは低電圧バッテリ10と接続され、カソードは接続点8を経由してDC−DCコンバータ3および電装品18と接続されている。ダイオード4dは、低電圧バッテリ10から接続点8へ向かって電流を流す。
電源切り替えスイッチ4と低電圧バッテリ10との間の電路には、リレースイッチ12、13とスタータ11とが接続されている。
制御部7は、CPUとメモリから成り、DC−DCコンバータ3と電源切り替えスイッチ4の動作を制御する。制御部7には、CAN(Controller Area Network)通信部6と異常検出部9が設けられている。
CAN通信部6は、上位ECU16と通信線17を介してCAN通信を行うためのものである。制御部7はCAN通信部6により、上位ECU16から送信された車両の状態を示す信号やDC−DCコンバータ3の動作指示などを受信する。また、制御部7はCAN通信部6により、上位ECU16に対して種々の信号を送信する。たとえば、制御部7はCAN通信部6により、電流検出回路32により検出された電流値を上位ECU16へ送信する。CAN通信部6は、本発明の「通信部」の一例である。上位ECU16は、本発明の「上位装置」の一例である。
異常検出部9は、上位ECU16に対するCAN通信部6の通信異常を検出する。詳しくは、たとえば、通信線17の断線やCAN通信部6の故障などにより、CAN通信部6と上位ECU16との通信が途絶えた場合に、異常検出部9はCAN通信部6の通信異常が生じたと判断する。
また、制御部7には、ACCリレースイッチ12やIGリレースイッチ13のオン・オフ信号が入力される。ACCリレースイッチ12とIGリレースイッチ13は、図示しないエンジン始動停止操作キーの操作に応じてオン・オフされる。ACC用スイッチ14は、ACCリレースイッチ12のオン・オフ状態に応じた信号を電装品18に出力する。IG用スイッチ15は、IGリレースイッチ13のオン・オフ状態に応じた信号を電装品18に出力する。
次に、電源供給装置100の動作を、図2〜図5を参照しながら説明する。
ACCリレースイッチ12とIGリレースイッチ13がオン状態で、かつ車両が走行中である通常時は、制御部7が、図2および図3に示すように、電源切り替えスイッチ4をオンして、第1電力供給経路1を閉路させる。また、制御部7は、上位ECU16からの指示により、高電圧バッテリ20の直流高電圧をDC−DCコンバータ3により直流低電圧に変換する。
このとき、低電圧バッテリ10の電圧が所定値まで低下していない場合は、図2の丸数字1の矢印のように、低電圧バッテリ10から電流が、ヒューズ21、22、電源切り替えスイッチ4、接続点8、およびヒューズ23を通って、電装品18に流れる。また、図2の丸数字2の矢印のように、高電圧バッテリ20から電流が、DC−DCコンバータ3、接続点8、およびヒューズ23を通って、電装品18に流れる。つまり、低電圧バッテリ10と高電圧バッテリ20の電力が、第1電力供給経路1と第2電力供給経路2を通って電装品18に供給される。これにより、電装品18が安定に駆動可能となる。
一方、低電圧バッテリ10の電圧が所定値まで低下した場合は、図3の丸数字3の矢印のように、高電圧バッテリ20から電流が、DC−DCコンバータ3を通って接続点8へ流れる。そして、電流は接続点8で分岐して、ヒューズ23を通って電装品18に流れるとともに、電源切り替えスイッチ4とヒューズ21、22を通って低電圧バッテリ10に流れる。つまり、高電圧バッテリ20の電力が、第2電力供給経路2と第1電力供給経路1を通って電装品18と低電圧バッテリ10に供給される。これにより、電装品18が安定して駆動可能となり、かつ低電圧バッテリ10が充電される。なお、上記の低電圧バッテリ10の電圧の所定値は、DC−DCコンバータ3の出力電圧より低い値である。
図2または図3の状態において、車両のアイドリングストップ後に、エンジンを再始動するために、スタータ11が駆動されると、スタータ11に大電流が流れる。すると、第1電力供給経路1と第2電力供給経路2の電圧が瞬間的に低下するので、電装品18への供給電圧が低下して、電装品18が正常に動作しなくなることがある。これを防止するため、スタータ11の駆動に先立って、図4の丸数字4の矢印のように、上位ECU16から送信されたスタータ11が駆動されることを示す信号を、CAN通信部6により受信した場合に、制御部7は、電源切り替えスイッチ4をオフする。
これにより、第1電力供給経路1における、低電圧バッテリ10と接続点8との間の電路が電源切り替えスイッチ4で切断されて、高電圧バッテリ20からの電流がスタータ11や低電圧バッテリ10に流れなくなる。この状態で、図4の丸数字5の矢印のように、低電圧バッテリ10から電流が、ヒューズ21を通ってスタータ11に流れて、スタータ11が駆動される。また、図4の丸数字2の矢印のように、高電圧バッテリ20から電流が、DC−DCコンバータ3、接続点8、およびヒューズ23を通って電装品18に流れて、電装品18の駆動が継続される。
その後、エンジンが駆動されて、スタータ11が停止すると、制御部7は、図2および図3に示した通常の電力供給状態に戻すために、電源切り替えスイッチ4をオフからオンに切り替える。
一方、図2および図3の状態において、上位ECU16との間で通信異常が生じると、異常検出部9がCAN通信部6の通信異常を検出して、制御部7が、図5に示すように、電源切り替えスイッチ4をオフ状態に固定する。これにより、高電圧バッテリ20からの電流がスタータ11や低電圧バッテリ10に流れなくなる。このため、その後エンジンを再始動するためにスタータ11が駆動される際に、図5の丸数字5の矢印のように、低電圧バッテリ10から電流が、ヒューズ21を通ってスタータ11に流れて、スタータ11が駆動する。また、図5の丸数字2の矢印のように、高電圧バッテリ20から電流が、DC−DCコンバータ3、接続点8、およびヒューズ23を通って電装品18に流れて、電装品18の駆動が継続される。
次に、電源供給装置100の動作の一例を、図2〜図8を参照しながら説明する。
ACCリレースイッチ12やIGリレースイッチ13がオンされると、制御部7は、図2に示すように、電源切り替えスイッチ4をオンする(図8のステップS1)。これにより、低電圧バッテリ10の電力が電装品18に供給されて、電装品18が駆動される。
また、上位ECU16からCAN通信により、車両の状態を示す信号など(指示も含む)が送信される。ここで送信される信号としては、たとえば、アイドリングストップの終了(または停止)を示す信号、エンジンが駆動状態であることを示す信号、およびDC−DCコンバータ3の停止指示などがある。このとき、上位ECU16との間で通信異常が生じていなければ、制御部7はCAN通信部6により、上位ECU16から送信された上記信号を受信する(図6参照)。
そして、上位ECU16から送信されたDC−DC出力の開始指示をCAN通信部6により受信すると(図6のT1)、制御部7は、DC−DCコンバータ3の動作を開始して(図8のステップS2)、DC−DCコンバータ3の出力電圧を目標電圧Vaまで上昇させる(図6のT2)。これにより、高電圧バッテリ20の電力がDC−DCコンバータ3を経由して電装品18に供給される。
そして、制御部7は、スタータ11が駆動直前にならない間は(図8のステップS3:NO)、電源切り替えスイッチ4のオン状態を維持する(図8のステップS4)。これにより、低電圧バッテリ10の電圧が低下していないときは、図2に示すように、低電圧バッテリ10と高電圧バッテリ20の電力が電装品18に供給される。そして、低電圧バッテリ10の電圧が低下すると、図3に示すように、高電圧バッテリ20の電力が電装品18と低電圧バッテリ10に供給される。
その後、CAN通信部6の通信異常が検出されず(図8のステップS6:NO)、またACCリレースイッチ12がオフされることなく(図8のステップS7:NO)、上位ECU16からアイドリングストップの開始を示す信号が送信される。この場合、制御部7はCAN通信部6により、そのアイドリングストップの開始信号を受信すると(図6のT3)、スタータ11が駆動される直前であると判断する(図8のステップS3:YES)。そして、制御部7は、DC−DCコンバータ3の出力電圧を下げて(図6のT4)、電源切り替えスイッチ4をオフに切り替える(図8のステップS5、図6のT5、図4)。
それから、制御部7は、再びDC−DCコンバータ3の出力電圧を目標電圧Vaまで上昇させる(図6のT6)。そして、車両では、エンジンが停止して、アイドリングストップ状態となる。エンジンが停止すると、上位ECU16からエンジンが停止状態であることを示す信号が送信されるので、制御部7はCAN通信部6により、そのエンジンの停止信号を受信する(図6のT7)。エンジンが停止する際、低電圧バッテリ10の電圧は乱れる(図6のP1)。
その後、アイドリングストップが終了して、エンジンを再始動するために、スタータ11が駆動された場合、図4および図6に示すように、電源切り替えスイッチ4がオフ状態にあり、高電圧バッテリ20の電力が電装品18に供給されている。このため、スタータ11が駆動されても、電装品18への供給電圧が低下せず、電装品18が安定に駆動を継続する。スタータ11が駆動される際、低電圧バッテリ10の電圧は乱れる(図6のP2)。エンジンが駆動すると、スタータ11は停止する。
アイドリングストップが終了すると、上位ECU16から、アイドリングストップの終了を示す信号が送信される。そして、エンジンが駆動されると、上位ECU16から、エンジンが駆動されたことを示す信号が送信される。この際、CAN通信部6の通信異常が生じていなければ(図8のステップS6:NO)、制御部7はCAN通信部6により、アイドリングストップの終了を示す信号を受信した(図6のT8)後、エンジンが駆動されたことを示す信号を受信する(図6のT9)。
この後、ACCリレースイッチ12がオフされなければ(図8のステップS7:NO)、制御部7は、スタータ11が駆動される直前でないと判断する(図8のステップS3:NO)。そして、制御部7は、DC−DCコンバータ3の出力電圧を下げて(図6のT10)、電源切り替えスイッチ4をオンに切り替える(図8のステップS4、図6のT11)。これにより、図2および図3に示すように、通常の電力供給状態に戻される。
その後、CAN通信部6の通信異常が検出されることなく(図8のステップS6:NO)、ACCリレースイッチ12がオフされると(図8のステップS7:YES)、制御部7は、電源切り替えスイッチ4をオフし(図8のステップS8)、DC−DCコンバータ3の動作を停止させる(図8のステップS11)。
一方、DC−DCコンバータ3の動作を開始した(図8のステップS2)後、図5および図7に示すように、CAN通信部6による上位ECU16との通信が所定時間途絶えたとする。この場合、異常検出部9が、CAN通信部6の通信異常を検出する(図8のステップS6:YES、図7のTa)。
図7では、通信異常状態の例として、アイドリングストップの終了(または停止)を示す信号、エンジンの駆動状態を示す信号、およびDC−DC出力の開始指示を、上位ECU16から受信できなくなった場合を示している。然るに、このとき上位ECU16から送信される信号は、これらに限定されるものではない。これら以外に、たとえば、車両の走行・停止を示す信号や、車両の加速・減速を示す信号などがある。これら車両の状態を示す信号や指示は、上位ECU16から電源供給装置100にCAN通信により所定の周期で送信されている。
異常検出部9がCAN通信部6の通信異常を検出すると(図8のステップS6:YES、図7のTa)、制御部7は、DC−DCコンバータ3の出力電圧を下げて(図7のTb)、電源切り替えスイッチ4をオンからオフに切り替える(図8のステップS9、図7のTc)。そして、ACCリレースイッチ12がオフされることなく(図8のステップS10:NO)、CAN通信部6の通信異常が続く間(図8のステップS6:YES)、制御部7は、電源切り替えスイッチ4のオフ状態(図8のステップS9)を維持する。またこのとき、制御部7は、DC−DCコンバータ3の動作状態も維持する。
電源切り替えスイッチ4のオフにより、高電圧バッテリ20からの電流がスタータ11や低電圧バッテリ10に流れなくなる。また、図5の丸数字2の矢印のように、高電圧バッテリ20の電力がDC−DCコンバータ3を経由して電装品18に供給され続ける。このため、その後アイドリングストップが終了して、エンジンの再始動のために、スタータ11が駆動される際に(図7のTd)、スタータ11に大電流が流れても、高電圧バッテリ20から電装品18への供給電圧は低下せず、電装品18が安定に駆動を継続する。また、スタータ11も、低電圧バッテリ10により安定に駆動される。
その後、ACCリレースイッチ12がオフされると(図8のステップS10:YES)、制御部7は、DC−DCコンバータ3の動作を停止させる(図8のステップS11)。
上記実施形態によると、上位ECU16との間で通信異常が発生して、スタータ11が駆動されることを示す信号を上位ECU16から受信できなくなっても、異常検出部9により通信異常が検出され、電源切り替えスイッチ4がオフする。このため、高電圧バッテリ20からの電流がスタータ11や低電圧バッテリ10に流れなくなる。そして、その後のスタータ11の駆動時に、高電圧バッテリ20の電力がDC−DCコンバータ3を経由して電装品18に供給され、低電圧バッテリ10の電力がスタータ11に供給される。よって、スタータ11に大電流が流れても、電装品18への供給電圧が低下せず、電力供給対象である電装品18とスタータ11を両方とも安定に駆動することができる。
また、上記実施形態では、DC−DCコンバータ3の動作中に、上位ECU16との間で通信異常が発生しても、異常検出部9により通信異常が検出されると、電源切り替えスイッチ4がオフし、かつDC−DCコンバータ3が動作を継続する。このため、スタータ11の状態にかかわらず、高電圧バッテリ20の電力を、DC−DCコンバータ3を経由して電装品18に供給し続けて、電装品18を安定して継続駆動することができる。
また、上記実施形態では、CAN通信部6と上位ECU16とのCAN通信が途絶えた場合に、異常検出部9がCAN通信部6の通信異常が生じたと判断する。このため、アイドリングストップの開始信号などのような、スタータ11が駆動直前であることを判断するための信号を受信できなくなっても、通信異常を検出して、電源切り替えスイッチ4をオフ状態にすることができる。
本発明は、上述した以外にも種々の実施形態を採用することができる。たとえば、以上の実施形態では、DC−DCコンバータ3の動作中、つまり高電圧バッテリ20の高電圧を低電圧に変換して、電装品18に電力を供給しているときに、異常検出部9によりCAN通信部6の通信異常を検出した例を示したが、本発明はこれのみに限定するものではない。これ以外に、DC−DCコンバータ3の停止中にも、異常検出部9によりCAN通信部6の通信異常を検出してもよい。この場合の実施形態を、図9に示す。
図9において、ACCリレースイッチ12などがオンされると、制御部7は、電源切り替えスイッチ4をオンし(ステップS1)、CAN通信部6の通信異常が検出されたか否かを確認する(ステップS1a)。ここで、CAN通信部6による上位ECU16との通信が所定時間途絶えた場合は、異常検出部9によりCAN通信部6の通信異常が検出される(ステップS1a:YES)。すると、制御部7は、電源切り替えスイッチ4をオフし(ステップS1b)、かつ、DC−DCコンバータ3の動作を開始させる(ステップS1c)。これにより、高電圧バッテリ20の電力が、DC−DCコンバータ3を経由して電装品18に供給され、電装品18が駆動される。そして、ACCリレースイッチ12がオフされなければ(ステップS1d:NO)、制御部7は、再びCAN通信部6の通信異常が検出されたか否かを確認する(ステップS1a)。
ステップS1aで、CAN通信部6の通信異常が検出されずに(ステップS1a:NO)、上位ECU16からのDC−DC出力の開始指示をCAN通信部6により受信すると、制御部7は、DC−DCコンバータ3の動作を開始または継続させる(ステップS2a)。そして、前述した実施形態と同様に、ステップS3以降の処理を実行する。
図9の実施形態によると、DC−DCコンバータ3の停止中に、上位ECU16との間で通信異常が発生して、DC−DC出力の開始指示を上位ECU16から受信できなくなっても、異常検出部9により通信異常が検出されると、電源切り替えスイッチ4がオフし、かつDC−DCコンバータ3が動作する。このため、高電圧バッテリ20からの電流がスタータ11や低電圧バッテリ10に流れなくなる。また、低電圧バッテリ10の電力がスタータ11に供給可能となり、高電圧バッテリ20の電力がDC−DCコンバータ3を経由して電装品18に供給される。そして、その後のスタータ11の駆動時に、スタータ11に大電流が流れても、電装品18への供給電圧が低下せず、電装品18とスタータ11を両方とも安定に駆動することができる。
以上の実施形態では、アイドリングストップの開始を示す信号をCAN通信部6により受信したときに、スタータ11が駆動される直前であると判断した例を示したが、本発明はこれのみに限定するものではない。これ以外に、たとえば、アイドリングストップによりエンジンが停止したことを示す信号、アイドリングストップの開始信号と終了信号の両方、またはスタータ11が動作することを示す信号を、CAN通信部6により受信したときに、スタータ11が駆動される直前であると判断してもよい。そして、電源切り替えスイッチ4をオフ状態に切り替えればよい。
また、以上の実施形態では、上位ECU16から信号や指示が所定の周期で送信されていて、該信号などをCAN通信部6により所定時間受信できなかった場合に、通信が途絶えたため、CAN通信部6の通信異常が生じたと判断した例を示したが、本発明はこれのみに限定するものではない。これ以外に、たとえば、車両の状態が変化したときなどに、上位ECU16から信号や指示が一時的に送信されてもよい。また、異常検出部9はCAN通信部6により、上位ECU16に対して問い合わせ信号などを送信した後、上位ECU16からの応答信号を所定時間内に受信できなかった場合に、CAN通信部6の通信異常が生じたと判断するようにしてもよい。
また、以上の実施形態では、低電圧バッテリ10から電装品18までの第1電力供給経路1に電源切り替えスイッチ4を設け、高電圧バッテリ20から接続点8までの第2電力供給経路2にDC−DCコンバータ3を設けた例を示したが、本発明はこれのみに限定するものではない。これ以外に、たとえば、電圧の異なる2つの電源のうち、高電圧の電源から電気負荷までの第1電力供給経路にスイッチを設け、低電圧の電源から第1電力供給経路の接続点までの第2電力供給経路に昇圧機能を有するDC−DCコンバータなどの電圧変換回路を設けてもよい。また、電圧変換回路は、降圧と昇圧の両方の機能を備えたものでもよい。
また、以上の実施形態では、FETから成る電源切り替えスイッチ4を、本発明のスイッチとして用いた例を示したが、本発明はこれのみに限定するものではない。これ以外に、たとえばトランジスタやリレーなどをスイッチとして用いてもよい。また、それらと並列に、独立した回路素子としての整流器を接続してもよい。
また、以上の実施形態では、上位ECU16と通信する通信部として、CAN通信部6を設けた例を示したが、本発明はこれのみに限定するものではない。これ以外に、たとえばLIN(Local Interconnect Network)などの他の通信方式に従った通信部を電源供給装置に設けてもよい。
さらに、以上の実施形態では、車載用の電源供給装置100に本発明を適用した例を示したが、本発明はその他の用途の電源供給装置に対しても適用することができる。
1 第1電力供給経路
2 第2電力供給経路
3 DC−DCコンバータ(電圧変換回路)
4 電源切り替えスイッチ(スイッチ)
6 CAN通信部(通信部)
7 制御部
8 接続点
9 異常検出部
10 低電圧バッテリ(第1電源)
11 スタータ(第2電気負荷)
16 上位ECU(上位装置)
18 電装品(第1電気負荷)
20 高電圧バッテリ(第2電源)
100 電源供給装置

Claims (6)

  1. 一端が第1電源に接続され、他端が第1電気負荷に接続された第1電力供給経路と、
    一端が前記第1電源とは電圧が異なる第2電源に接続され、他端が前記第1電力供給経路の途中にある接続点に接続された第2電力供給経路と、
    前記第2電力供給経路に設けられ、前記第2電源の電圧の大きさを変換する電圧変換回路と、
    前記第1電力供給経路の、前記接続点より前記第1電源側に設けられ、前記第1電源から前記接続点までの電路を、オン状態で閉路させてオフ状態で開路させるスイッチと、
    上位装置と通信を行うための通信部と、
    前記電圧変換回路および前記スイッチの動作を制御する制御部と、を備え、
    前記制御部は、前記電圧変換回路の動作中に、前記スイッチをオンし、この状態でさらに、前記第1電源と前記スイッチとの間の電路に接続された第2電気負荷が駆動されることを示す信号を、前記通信部により受信した場合に、前記スイッチをオフする電源供給装置において、
    前記通信部の通信異常を検出する異常検出部をさらに備え、
    前記制御部は、前記異常検出部により前記通信部の通信異常を検出した場合に、前記電圧変換回路の状態にかかわらず、前記スイッチをオフ状態にする、ことを特徴とする電源供給装置。
  2. 請求項1に記載の電源供給装置において、
    前記第1電源は、直流低電圧電源であり、
    前記第2電源は、前記直流低電圧電源より電圧が高い直流高電圧電源であり、
    前記電圧変換回路は、前記直流高電圧電源の直流高電圧を直流低電圧に変換する、ことを特徴とする電源供給装置。
  3. 請求項1または請求項2に記載の電源供給装置において、
    前記制御部は、前記電圧変換回路の動作中に、前記異常検出部により前記通信部の通信異常を検出した場合に、前記スイッチをオンからオフに切り替え、かつ前記電圧変換回路の動作を継続させる、ことを特徴とする電源供給装置。
  4. 請求項1ないし請求項3のいずれかに記載の電源供給装置において、
    前記制御部は、前記電圧変換回路の停止中に、前記異常検出部により前記通信部の通信異常を検出した場合に、前記スイッチをオフし、かつ前記電圧変換回路を動作させる、ことを特徴とする電源供給装置。
  5. 請求項1ないし請求項4のいずれかに記載の電源供給装置において、
    前記異常検出部は、前記通信部と前記上位装置との通信が途絶えた場合に、前記通信部の通信異常が生じたと判断する、ことを特徴とする電源供給装置。
  6. 請求項1ないし請求項5のいずれかに記載の電源供給装置において、
    前記電圧変換回路が動作中でかつ前記スイッチがオン状態にある場合に、
    前記第1電源の電圧が所定値まで低下していないときは、前記第1電源と前記第2電源からの電力が前記第1電気負荷に供給され、
    前記第1電源の電圧が所定値まで低下しているときは、前記第2電源からの電力が前記第1電気負荷と前記第1電源とに供給されて、前記第1電源が充電される、ことを特徴とする電源供給装置。
JP2015095847A 2015-05-08 2015-05-08 電源供給装置 Active JP6446325B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015095847A JP6446325B2 (ja) 2015-05-08 2015-05-08 電源供給装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015095847A JP6446325B2 (ja) 2015-05-08 2015-05-08 電源供給装置

Publications (2)

Publication Number Publication Date
JP2016213965A JP2016213965A (ja) 2016-12-15
JP6446325B2 true JP6446325B2 (ja) 2018-12-26

Family

ID=57551996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015095847A Active JP6446325B2 (ja) 2015-05-08 2015-05-08 電源供給装置

Country Status (1)

Country Link
JP (1) JP6446325B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7077971B2 (ja) * 2018-04-10 2022-05-31 株式会社デンソー 電子制御装置
US10752189B2 (en) * 2018-04-17 2020-08-25 Aptiv Technologies Limited Electrical power supply device and method of operating same
US11342705B2 (en) 2018-04-17 2022-05-24 Aptiv Technologies Limited Electrical power supply device and method of operating same
US10635150B2 (en) * 2018-04-17 2020-04-28 Aptiv Technologies Limited Electrical power supply device and method of operating same
US11652315B2 (en) 2018-04-17 2023-05-16 Aptiv Technologies Limited Electrical power supply device
EP3627646A1 (en) * 2018-09-18 2020-03-25 KNORR-BREMSE Systeme für Nutzfahrzeuge GmbH A power supply and a method for supplying power
JP7277253B2 (ja) * 2019-05-16 2023-05-18 株式会社Subaru 車両用電源装置
CN110571753A (zh) * 2019-09-12 2019-12-13 珠海格力电器股份有限公司 安全控制方法、装置和系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141706A (ja) * 1997-07-18 1999-02-12 Meidensha Corp エンジン発電機を有する電気自動車
JP2011155791A (ja) * 2010-01-28 2011-08-11 Panasonic Corp 車両用電源装置
JP5278485B2 (ja) * 2011-04-25 2013-09-04 日産自動車株式会社 アイドリングストップ制御装置
JP5786787B2 (ja) * 2012-04-16 2015-09-30 株式会社デンソー 車載制御システム

Also Published As

Publication number Publication date
JP2016213965A (ja) 2016-12-15

Similar Documents

Publication Publication Date Title
JP6446325B2 (ja) 電源供給装置
US11752874B2 (en) Power source system
CN110087934B (zh) 车载控制装置
US10992169B2 (en) Vehicle-mounted backup device
CN107949972B (zh) 车载电源用的开关装置以及控制装置
US11349321B2 (en) Power source system and electric vehicle
US20150336523A1 (en) Vehicle power supply apparatus and vehicle power regeneration system
JP6378267B2 (ja) 車両
US20150097501A1 (en) Electric vehicle power conversion system
WO2017187984A1 (ja) 車載電源用のスイッチ装置および車載用電源システム
US9843184B2 (en) Voltage conversion apparatus
JP2010093934A (ja) 車載機器
JP2015217734A (ja) 自動車の電源装置
JP6365226B2 (ja) 電動車両
JP6545230B2 (ja) 車両の電源システム
JP2011036048A (ja) 電動車両
US20200376971A1 (en) Controller for dc-dc converter and dc-dc converter
JP2015196447A (ja) 車両用電源システム
JP2016213969A (ja) 電源供給装置
JP2013150525A (ja) 電気自動車
JP6541414B2 (ja) 電源供給装置
US20220052602A1 (en) High-voltage apparatus control device
WO2016017106A1 (ja) 車両用電動圧縮機
JP2016213967A (ja) 電源供給装置
JP2016213966A (ja) 電源供給装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181203

R150 Certificate of patent or registration of utility model

Ref document number: 6446325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250