JP6443592B1 - 高強度鋼板 - Google Patents

高強度鋼板 Download PDF

Info

Publication number
JP6443592B1
JP6443592B1 JP2018533278A JP2018533278A JP6443592B1 JP 6443592 B1 JP6443592 B1 JP 6443592B1 JP 2018533278 A JP2018533278 A JP 2018533278A JP 2018533278 A JP2018533278 A JP 2018533278A JP 6443592 B1 JP6443592 B1 JP 6443592B1
Authority
JP
Japan
Prior art keywords
steel sheet
hardness
less
plate thickness
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018533278A
Other languages
English (en)
Other versions
JPWO2018151322A1 (ja
Inventor
裕也 鈴木
裕也 鈴木
克哉 中野
克哉 中野
玄紀 虻川
玄紀 虻川
邦夫 林
邦夫 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of JP6443592B1 publication Critical patent/JP6443592B1/ja
Publication of JPWO2018151322A1 publication Critical patent/JPWO2018151322A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Abstract

板厚中心部と、該板厚中心部の片側または両側に配置された表層軟化部とを含む引張強度が800MPa以上の高強度鋼板であって、各表層軟化部が10μm超から板厚の30%以下の厚さを有し、前記表層軟化部の平均ビッカース硬さが板厚1/2位置の平均ビッカース硬さの0.60倍超0.90倍以下であり、前記表層軟化部のナノ硬さの標準偏差が0.8以下であることを特徴とする高強度鋼板が提供される。

Description

本発明は、高強度鋼板、より詳しくは引張強度が800MPa以上、好ましくは1100MPa以上の高強度鋼板に関するものである。
近年、環境保全につながる燃費向上の観点から、自動車用鋼板の高強度化が強く求められている。一般的に、超高強度冷延鋼板では、絞り成形や張出し成形といった軟鋼板で適用される成形手法は適用できず、成形手法としては曲げ成形が主体となる。さらに、高強度化のためには、良好な曲げ性に加えて高い曲げ荷重が必要である。したがって、自動車の構造部品として超高強度冷延鋼板を用いる場合、良好な曲げ性と曲げ荷重が重要な選定基準となる。
ところで、鋼板の曲げ加工においては、曲げ外周表層部の円周方向に大きな引張応力がかかり、一方で、曲げ内周表層部には大きな圧縮応力がかかるため、超高強度冷延鋼板の曲げ性には表層部の状態が大きく影響する。そこで、表層に軟質層を有することで、曲げ加工時に鋼板表面に生じる引張応力、圧縮応力を緩和し、曲げ性を改善することが知られている。このような表層に軟質層を有する高強度鋼板に関しては、特許文献1〜3に以下のような鋼板およびそれらの製造方法が開示されている。
まず、特許文献1では、鋼板とめっき層との界面から鋼板側に向って順に、Siおよび/またはMnの酸化物を含む内部酸化層と、前記内部酸化層を含む軟質層と、マルテンサイトとベイナイトを主体とする組織で構成される硬質層とを有し、前記軟質層の平均深さTが20μm以上、および前記内部酸化層の平均深さtが4μm以上、前記T未満を満足することを特徴とする高強度めっき鋼板およびその製造方法が記載されている。
次に、特許文献2では、鋼板表面から100μm位置のビッカース硬度から、鋼板表面から深さ20μm位置のビッカース硬度を差し引いた値(△Hv)が30以上であることを特徴とする高強度溶融亜鉛めっき鋼板およびその製造方法が記載されている。
次に特許文献3では、表層から板厚方向へ5μm位置のビッカース硬度が板厚方向の1/2位置の硬度の80%以下であり、表層から板厚方向へ15μm位置の硬度が板厚方向の1/2位置のビッカース硬度の90%以上であることを特徴とする高強度溶融亜鉛めっき鋼板およびその製造方法が記載されている。
しかしながら、特許文献1〜3のいずれにおいても、軟質層の硬さのばらつきについては十分な検討がなされていない。たとえば、特許文献1では、軟質層が内部酸化層を有することが記載されているが、この場合、軟質層内で酸化物とそれ以外の組織の間で硬さにばらつきが生じることが推定される。軟質層の硬さにばらつきがあると、このような軟質層を有する鋼板において十分な曲げ性を達成できない場合がある。また、特許文献1〜3のいずれにおいても、表層の軟質層と内部の硬質層との間の遷移帯における硬さの傾斜を制御することについては言及されていない。また、表層に軟質層を有することで曲げ荷重の劣化が推定されるが、特許文献1〜3のいずれにおいても、曲げ荷重については言及されていない。
特開2015−34334号公報 特開2015−117403号公報 国際公開第2016/013145号
本発明は、上記した従来技術が抱える問題を有利に解決し、自動車部品用素材として好適な、曲げ加工性を有する高強度鋼板を提供することを目的とする。
本発明者らは、超高強度鋼板の曲げ性に関連する問題を解決するため、鋭意検討を行った。まず、本発明者らは従来の知見を参考とし、表層に軟質層を有する鋼板を製造し、曲げ性を調査した。表層に軟質層を有する鋼板は、いずれも曲げ性の改善がみられた。このとき、軟質層の平均硬さをより低くすることと軟質層厚さをより厚くすることは、おおよそ曲げ性が改善し、曲げ荷重が劣化する方向であることがわかった。しかし、本発明者らはより詳細な調査を続けた結果、多種多様な方法で表層の軟質化を行った場合、単に表層の軟質層の平均硬さや軟質層の厚さを調整しただけでは、鋼板の曲げ性が十分に改善されないこと、または曲げ荷重が著しく劣化することに気がついた。
そこで、本発明者らはさらに詳細な検討を行った。その結果、ある特徴を持つ鋼板を母材の片面または両面に溶接し、特定の条件で熱間圧延または焼鈍することで得られる複層鋼板が曲げ荷重を劣化させることなく最も曲げ性を改善できることがわかった。そして、上記の方法で曲げ性が改善する最大の理由は、軟質層でのミクロな硬さばらつきを抑制することであることを明らかにした。この効果は非常に顕著であり、軟質層の硬さばらつきが大きい場合と比較し、軟質層の平均硬さが高くても、また、軟質層の厚さが小さくても十分な曲げ性の改善が得られた。これにより、軟質層による引張強さの劣化を最小にし、従来にない引張強さ、具体的には800MPa以上、好ましくは1100MPa以上の引張強さと曲げ性の両立が可能となった。この効果のメカニズムは完全には明らかではないが、以下が考えられる。軟質層において硬さがばらつきを有する場合は、軟質層内で複数の組織(フェライト、パーライト、ベイナイト、マルテンサイト、残留オーステナイト)および/または酸化物を有することが多い。これらの機械特性が異なる第二相(または第二組織)は、曲げ加工時にひずみや応力が集中する原因となり、ボイドが生成することで割れの起点となる可能性がある。そのため、軟質層の硬さばらつきを抑えることで、曲げ性を向上させることができたと考えられる。また、本発明者らは、表層の軟質層でのミクロな硬さばらつきを抑制することに加えて、当該表層の軟質層から内部の硬質層へ遷移する領域(以下、遷移帯と称する)における、板厚方向の硬さの傾斜を小さくすることを同時に満たすことで曲げ性がさらに向上することを見出した。軟質層と硬質層の遷移帯の硬さの傾斜が急なときは、軟質層と硬質層の塑性変形量が大きく乖離し、遷移帯で破断が生じる可能性が高くなる。このことから、軟質層でのミクロな硬さばらつきを抑制することに加えて、軟質層と硬質層の遷移帯における、板厚方向の硬さの傾斜を小さくすることを同時に満たすことで曲げ性がさらに向上したものと考えられる。
なお、表層軟化部以外(以下、硬質層と称する)の硬さのばらつきは曲げ性に影響を与えなかった。このことから、従来、曲げ性に不利とされていた、延性に優れるDP鋼およびTRIP(変態誘起塑性:Transformation Induced Plasticity)鋼などを硬質層に用いることができ、引張強さと曲げ性に加えてさらに延性を両立可能な点が、本発明の優れる点の一つである。
このようにして得られた本発明の要旨は以下のとおりである。
(1)板厚中心部と、該板厚中心部の片側または両側に配置された表層軟化部とを含む引張強度が800MPa以上の高強度鋼板であって、各表層軟化部が10μm超から板厚の30%以下の厚さを有し、前記表層軟化部の平均ビッカース硬さが板厚1/2位置の平均ビッカース硬さの0.60倍超0.90倍以下であり、前記表層軟化部のナノ硬さの標準偏差が0.8以下であり、前記板厚中心部が、質量%で、
C :0.05〜0.8%、
Si:0.01〜2.50%、
Mn:0.010〜8.0%、
P :0.1%以下、
S :0.05%以下、
Al:0〜3%、および
N :0.01%以下を含有し、
残部が鉄および不可避不純物からなることを特徴とする、高強度鋼板。
(2)前記板厚中心部と各表層軟化部との間でそれらに隣接して形成された硬さ遷移帯をさらに含み、該硬さ遷移帯の板厚方向の平均硬さ変化が5000(ΔHv/mm)以下であることを特徴とする、上記(1)に記載の高強度鋼板。
(3)前記板厚中心部が残留オーステナイトを面積分率で10%以上含むことを特徴とする、上記(1)又は(2)に記載の高強度鋼板。
)前記板厚中心部が、更に、質量%で、
Cr:0.01〜3%、
Mo:0.01〜1%、および
B :0.0001%〜0.01%
よりなる群から選択される少なくとも一種を含有することを特徴とする、上記(1)〜(3)のいずれか1項に記載の高強度鋼板。
)前記板厚中心部が、更に、質量%で、
Ti:0.01〜0.2%、
Nb:0.01〜0.2%、および
V :0.01〜0.2%
よりなる群から選択される少なくとも一種を含有することを特徴とする、上記(1)〜(4)のいずれか1項に記載の高強度鋼板。
)前記板厚中心部が、更に、質量%で、
Cu:0.01〜1%、および
Ni:0.01〜1%
よりなる群から選択される少なくとも一種を含有することを特徴とする、上記()〜()のいずれか1項に記載の高強度鋼板。
)前記表層軟化部のC量が前記板厚中心部のC量の0.30倍以上0.90倍以下であることを特徴とする、上記()〜()のいずれか1項に記載の高強度鋼板。
)前記表層軟化部のMn量、Cr量およびMo量の総和が前記板厚中心部のMn量、Cr量およびMo量の総和の0.3倍以上であることを特徴とする、上記()〜()のいずれか1項に記載の高強度鋼板。
)前記表層軟化部のB量が前記板厚中心部のB量の0.3倍以上であることを特徴とする、上記()〜()のいずれか1項に記載の高強度鋼板。
10)前記表層軟化部のCu量およびNi量の総和が前記板厚中心部のCu量およびNi量の総和の0.3倍以上であることを特徴とする、上記()〜()のいずれか1項に記載の高強度鋼板。
11)前記表層軟化部の表面に、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、または電気亜鉛めっき層を更に含むことを特徴とする、上記(1)〜(10)のいずれか1項に記載の高強度鋼板。
本発明の高強度鋼板は、自動車部品用素材として好適な、優れた曲げ加工性を有する。したがって、本発明の高強度鋼板は、自動車部品用素材として好ましく利用することができる。加えて、当該高強度鋼板の板厚中心部と表層軟化部との間に板厚方向の平均硬さ変化が5000(ΔHv/mm)以下の硬さ遷移帯を含む場合には、曲げ加工性をさらに向上させることができる。また、板厚中心部が残留オーステナイトを面積分率で10%以上含む場合には、曲げ加工性の向上に加えて延性も向上させることが可能である。
本発明の好ましい実施形態に係る高強度鋼板に関する硬さ分布の一例を示す。 本発明の高強度鋼板を製造する際のC原子の拡散を説明する模式図である。 本発明の高強度鋼板を製造する方法において用いられる粗圧延に関する圧延パス後の転位密度変化を示すグラフである。
以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
本発明による鋼板は、10μm超から板厚の30%以下の厚さを有する表層軟化部の平均ビッカース硬さ、より具体的には表層軟化部全体の平均ビッカース硬さが板厚1/2位置の平均ビッカース硬さの0.60倍超0.90倍以下である必要がある。表層軟化部の厚さが10μm以下では十分な曲げ性の改善が得られず、30%より大きいと引張強さの劣化が顕著となる。表層軟化部の厚さは、より好ましくは板厚の20%以下、さらに好ましくは10%以下である。表層軟化部の平均ビッカース硬さが板厚1/2位置の平均ビッカース硬さの0.90倍より大きいと十分な曲げ性の改善が得られない。
本発明において、「表層軟化部の平均ビッカース硬さ」は、以下のようにして決定される。まず、板厚の1/2位置から表面に向かって板厚方向に一定の間隔(例えば板厚の5%毎。必要に応じて1%や0.5%毎)で、ある板厚方向位置でのビッカース硬さを押し込み荷重100g重で測定し、次いでその位置から板厚垂直方向で圧延方向に平行な線上に同様に押し込み荷重100g重で合計3点以上、例えば5点又は10点のビッカース硬さを測定し、それらの平均値をその板厚方向位置での平均ビッカース硬さとする。なお、板厚方向および圧延方向に並ぶ各測定点の間隔は、可能な場合には圧痕の4倍以上の距離とすることが好ましい。本明細書において「圧痕の4倍以上の距離」とは、ビッカース硬さの測定の際にダイヤモンド圧子によって生じた圧痕の矩形状開口における対角線の長さの4倍以上の距離を意味するものである。ある板厚方向位置での平均ビッカース硬さが、同様に測定した板厚1/2位置での平均ビッカース硬さの0.90倍以下となったとき、その位置より表面側を表層軟化部と定義する。このようにして定義された表層軟化部内でランダムに10点のビッカース硬さを測定し、それらの平均値を算出することによって表層軟化部の平均ビッカース硬さが決定される。表層軟化部の平均ビッカース硬さは、板厚1/2位置の平均ビッカース硬さの0.60倍超0.90倍以下でより曲げ性が向上する。さらに好ましくは0.60倍超0.85倍以下、さらに好ましくは0.60倍超0.80倍以下である。
表層軟化部のナノ硬さの標準偏差が0.8以下である必要がある。これは、前述の通り、表層軟化部の硬さばらつきを抑制することで、曲げ性が顕著に向上するためである。標準偏差が0.8より大きいとこの効果が不十分である。その観点から、標準偏差は0.6以下がより望ましく、0.4以下がさらに望ましい。標準偏差の下限は指定しないが、0.05以下とすることは技術的に困難である。曲げ性に影響するのは、特に表層軟化部の板厚垂直方向でのミクロな硬さばらつきであり、表層軟化部内で板厚方向に緩やかな硬さの傾斜を持っていても本発明の効果は阻害しない。そこで、ナノ硬さの標準偏差は、ある板厚方向位置で板厚方向に垂直な位置において測定する必要がある。本発明において、「表層軟化部のナノ硬さの標準偏差」とは、上で定義した表層軟化部の厚さの1/2位置で板厚方向に垂直かつ、圧延方向に平行な線上に、Hysitron社のtribo−900を用い、バーコビッチ形状のダイヤモンド圧子により80nmの押し込み深さの条件にて、3μmの間隔をあけて、計100箇所のナノ硬さを測定し、得られたナノ硬さのヒストグラムから求めた標準偏差を言うものである。
高強度鋼板の曲げ性をさらに向上させるためには、硬さ遷移帯の板厚方向の平均硬さ変化が5000(ΔHv/mm)以下であることが好ましい。本発明において「硬さ遷移帯」は、以下のように定義される。まず、板厚の1/2位置から表面に向かって板厚方向に一定の間隔(例えば板厚の5%毎。必要に応じて1%や0.5%毎)で、ある板厚方向位置でのビッカース硬さを押し込み荷重100g重で測定し、次いでその位置から板厚垂直方向で圧延方向に平行な線上に同様に押し込み荷重100g重で合計3点以上、例えば5点又は10点のビッカース硬さを測定し、それらの平均値をその板厚方向位置での平均ビッカース硬さとする。なお、板厚方向および圧延方向に並ぶ各測定点の間隔は、可能な場合には圧痕の4倍以上の距離とすることが好ましい。ある板厚方向位置での平均ビッカース硬さが、同様に測定した板厚1/2位置での平均ビッカース硬さの0.95倍以下となったとき、その位置から先に定義した表層軟化部までの領域が硬さ遷移帯として定義される。
硬さ遷移帯の板厚方向の平均硬さ変化(ΔHv/mm)は以下の式で定義される。
平均硬さ変化(ΔHv/mm)=(硬さ遷移帯のビッカース硬さの最大平均硬さ)−(硬さ遷移帯のビッカース硬さの最小平均硬さ)/硬さ遷移帯の厚さ
ここで、硬さ遷移帯のビッカース硬さの最大平均硬さとは、硬さ遷移帯内の各板厚方向位置での平均ビッカース硬さのうち、最も大きい値であり、硬さ遷移帯のビッカース硬さの最小平均硬さとは、硬さ遷移帯内の各板厚方向位置での平均ビッカース硬さのうち、最も小さい値である。
硬さ遷移帯の板厚方向の平均硬さ変化が5000(ΔHv/mm)よりも大きいと曲げ性が低下する場合がある。好ましくは4000(ΔHv/mm)以下、より好ましくは3000(ΔHv/mm)以下、最も好ましくは2000(ΔHv/mm)以下である。硬さ遷移帯の厚さは規定しない。しかし、硬さ遷移帯が板厚に占める割合が大きいと引張強さが低下することから、硬さ遷移帯は片面で板厚の20%以下が好ましい。より好ましくは10%以下である。
高強度鋼板の曲げ荷重を劣化させないためには、表層軟化部の平均ビッカース硬さは、板厚1/2位置の平均ビッカース硬さの0.60倍超であることが必要である。0.60倍以下では、曲げ加工時に表層軟化部が大きく変形して板厚中心部が曲げ外に寄ることで早期に割れが発生するため、曲げ荷重が著しく劣化する。なお、ここで言う曲げ荷重とは、鋼板から60mm×60mmの試験片を採取し、ドイツ自動車工業会(VDA)規格238−100に準拠して、パンチ曲率が0.4mm、ロール径が30mm、ロール間距離が2×板厚+0.5(mm)、最大押し込みストロークが11mmの条件で曲げ試験を行い得られる最大荷重を指す。
図1に本発明の好ましい実施形態に係る高強度鋼板に関する硬さ分布の一例を示す。板厚1mmの鋼板の表面から板厚1/2位置までの硬さ分布を示す。横軸は板厚方向の位置(mm)であり、表面では0mm、板厚1/2位置では0.5mmである。縦軸は各板厚方向位置でのビッカース硬さの5点平均を示す。板厚1/2位置のビッカース硬さは430Hvであり、その0.90倍以下となった点よりも表面側が表層軟化部、0.95倍以下となった点と表層軟化部の間の範囲が硬さ遷移帯となる。
高強度鋼板の延性を向上させるためには、板厚中心部は残留オーステナイトを面積分率で10%以上含むことが好ましい。これは、残留オーステナイトの変態誘起塑性により延性が向上するためで、残留オーステナイトの面積分率が10%以上で、15%以上の延性が得られる。この残留オーステナイトの効果を用いると、軟質なフェライトを含まない場合であっても、15%以上の延性を確保できることから、板厚中心部の高強度化を進めることができ、高強度と高延性の両立が可能となる。なお、ここで言う延性とは、鋼板から圧延方向に直角に日本工業規格JIS5号試験片を採取し、JIS Z2241に準拠して引張試験を行い得られる全伸びを指す。
続いて、本発明の効果を得るために望ましい板厚中心部の化学組成について述べる。なお、元素の含有量に関する「%」は、特に断りがない限り「質量%」を意味する。なお、板厚中心部において表層軟化部との境界付近では表層軟化部との合金元素の拡散により化学組成が境界から十分に離れた位置と異なる場合がある。例えば、本発明の高強度鋼板が上記の硬さ遷移帯を含むときには、板厚中心部において当該硬さ遷移帯との境界付近とその境界から十分に離れた位置とでは化学組成が異なる場合がある。そのような場合は、板厚1/2位置付近で測定される化学組成を以下に定める。
「C:0.05〜0.8%」
Cは、鋼板の強度を高めるものであり、高強度鋼板の強度を高めるために添加される。しかし、Cの含有量が0.8%を超えると靭性が不十分となる。また、Cの含有量が0.05%未満であると強度が不十分となる。Cの含有量は、0.6%以下の範囲であることが好ましく、0.5%以下の範囲であることがより好ましい。
「Si:0.01〜2.50%」
Siは、フェライト安定化元素であり、Ac3変態点を増加させることから、広い焼鈍温度にて多量のフェライトを形成させることが可能であり、組織制御性向上の観点から添加される。こうした効果を得るには、Si量を0.01%以上にする必要がある。一方、延性確保の観点からは、Siの含有量が0.30%未満では粗大な鉄系炭化物が多量に生成し、内部ミクロ組織の残留オーステナイト組織分率を10%以上とすることが出来ず、伸びが低下してしまう場合がある。この観点から、Siの下限値は0.30%以上であることが好ましく、0.50%以上がより好ましい。加えて、Siは、板厚中心部における鉄系炭化物の粗大化を抑制し、強度と成形性を高めるために必要な元素でもある。また、固溶強化元素として、鋼板の高強度化に寄与するため添加する必要がある。これらの観点から、Siの下限値は1%以上であることが好ましく、1.2%以上がより好ましい。しかし、Siの含有量が2.50%を超えると板厚中心部が脆化し、延性が劣化するため、上限を2.50%とする。延性確保の観点から、Siの含有量は2.20%以下であることが好ましく、2.00%以下であることがより好ましい。
「Mn:0.010〜8.0%」
Mnは、高強度鋼板の強度を高めるために添加される。こうした効果を得るには、Mn量を0.010%以上にする必要がある。しかし、Mnの含有量が8.0%を超えるとMnの偏析に起因した鋼板表層の硬度分布が大きくなる。その観点で、好ましくは5.0%以下、さらに好ましくは4.0%、さらにより好ましくは3.0%以下である。
「P:0.1%以下」
Pは鋼板の板厚中央部に偏析する傾向があり、溶接部を脆化させる。0.1%を超えると溶接部の脆化が顕著になるため、その適正範囲を0.1%以下に限定した。Pの含有量の下限は規定しないが、0.001%未満とすることは、経済的に不利である。
「S:0.05%以下」
Sは、溶接性ならびに鋳造時および熱延時の製造性に悪影響を及ぼす。このことから、その上限値を0.05%以下とした。Sの含有量の下限は規定しないが、0.0001%未満とすることは、経済的に不利である。
「Al:0〜3%」
Alは、脱酸剤として作用し、脱酸工程で添加することが好ましい。こうした効果を得るには、Al量を0.01%以上にする必要がある。一方、Al量が3%を超えると、連続鋳造時のスラブ割れの危険性が高まる。
「N:0.01%以下」
Nは、粗大な窒化物を形成し、曲げ性を劣化させることから、添加量を抑える必要がある。これは、Nが0.01%を超えると、この傾向が顕著となることから、N含有量の範囲を0.01%以下とした。加えて、Nは、溶接時のブローホール発生の原因になることから少ない方が良い。Nの含有量の下限値は、特に定めることなく本発明の効果は発揮されるが、Nの含有量を0.0005%未満とすることは、製造コストの大幅な増加を招くことから、これが実質的な下限値である。
「Cr:0.01〜3%、Mo:0.01〜1%、およびB:0.0001〜0.01%よりなる群から選択される少なくとも一種」
Cr、MoおよびBは、強度の向上に寄与する元素であり、Mnの一部に代えて用いることができる。Cr、MoおよびBは、1種又は2種以上を、それぞれ、0.01%以上、0.01%以上および0.0001%以上含有することが好ましい。一方、各元素の含有量が多すぎると、酸洗性や溶接性、熱間加工性などが劣化することがあるため、Cr、MoおよびBの含有量はそれぞれ3%以下、1%以下および0.01%以下であることが好ましい。
「Ti:0.01〜0.2%、Nb:0.01〜0.2%、およびV:0.01〜0.2%よりなる群から選択される少なくとも一種」
Ti、NbおよびVは、強化元素である。析出物強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化にて、鋼板の強度上昇に寄与する。この目的で添加する際は0.01%以上添加することが好ましい。しかし、それぞれ含有量が0.2%を超えると、炭窒化物の析出が多くなり成形性が劣化する。
「Cu:0.01〜1%、およびNi:0.01〜1%よりなる群から選択される少なくとも一種」
CuおよびNiは、強度の向上に寄与する元素であり、Mnの一部に代えて用いることができる。CuおよびNiは、1種又は2種を、それぞれ、0.01%以上含有することが好ましい。一方、各元素の含有量が多すぎると、酸洗性や溶接性、熱間加工性などが劣化することがあるため、CuおよびNiの含有量は1.0%以下であることが好ましい。
さらに、板厚中心部には以下の元素を意図的または不可避的に添加しても本発明の効果を阻害しない。すなわち、O:0.001〜0.02%、W:0.001〜0.1%、Ta:0.001〜0.1%、Sn:0.001〜0.05%、Sb:0.001〜0.05%、As:0.001〜0.05%、Mg:0.0001〜0.05%、Ca:0.001〜0.05%、Zr:0.001〜0.05%、ならびにY:0.001〜0.05%、La:0.001〜0.05%、およびCe:0.001〜0.05%等のREM(希土類金属:Rare−Earth Metal)である。
本発明における鋼板は、表層軟化部と板厚中心部で化学組成が異なる場合がある。後述するが、本発明における重要な点は表層をほぼ低温変態組織(ベイナイト、マルテンサイトなど)とし、フェライトやパーライト変態を抑制することで硬さのばらつきを低減することである。このような場合、表層軟化部における好ましい化学組成は以下の通りである。
「C:板厚中心部のC量の0.30倍以上0.90倍以下かつ0.72%以下」
Cは、鋼板の強度を高めるものであり、高強度鋼板の強度を高めるために添加される。表層軟化部のC量が板厚中心部のC量の0.90倍以下が好ましい。表層軟化部の硬さを板厚中心部の硬さより低くするためである。0.90倍より大きいと、表層軟化部の平均ビッカース硬さが板厚1/2位置の平均ビッカース硬さの0.90倍以下とはならない場合がある。より好ましくは表層軟化部のC量は板厚中心部のC量の0.80倍以下、さらにより好ましくは0.70倍以下である。表層軟化部のC量は板厚中心部のC量の0.30倍以上である必要がある。0.30倍よりも低い場合、表層軟化部の平均ビッカース硬さが板厚1/2位置の平均ビッカース硬さの0.60倍超とならない場合がある。表層軟化部のC量が板厚中心部のC量の0.90倍以下である場合、板厚中心部の好ましいCの含有量は0.8%以下であるため、表層軟化部の好ましいCの含有量は0.72%以下となる。好ましくは0.5%以下、さらに好ましくは0.3%以下、最も好ましくは0.1%以下である。C量の下限は特に規定しない。工業用の極低C鋼を用いる場合、0.001%程度が実質的な下限であるが、固溶C量という観点からは、TiやNbなどを用いて固溶Cを完全に排除した、Interstitial Free鋼を用いてもよい。
「Si:0.01〜2.5%」
Siは、マルテンサイトの焼き戻し軟化を抑制する元素であり、添加することで焼戻しによる強度の低下を抑制することができる。こうした効果を得るには、Si量を0.01%以上にする必要がある。しかし、2.5%より多い添加は靭性を劣化させるため、2.5%以下とする。
「Mn:0.01〜8.0%」
Mnは、高強度鋼板の強度を高めるために添加される。こうした効果を得るには、Mn量を0.01%以上にする必要がある。しかし、Mnの含有量が8.0%を超えるとMnの偏析に起因した鋼板表層の硬度分布が大きくなる。その観点で、好ましくは5%以下、さらに好ましくは3%以下である。
加えて、表層軟化部のMn量、Cr量およびMo量の総和が板厚中心部のMn量、Cr量およびMo量の総和の0.3倍以上が好ましい。これは後述するが、表層軟化部は組織の大部分を低温変態組織(ベイナイトおよびマルテンサイトなど)とすることで硬さばらつきを低減している。焼き入れ性を向上させるMn量、Cr量およびMo量の総和が板厚中心部のMn量、Cr量およびMo量の総和の0.3倍よりも小さいとフェライト変態が生じやすく、硬さのばらつきの原因となる。より好ましくは0.5倍以上、さらにより好ましくは0.7倍以上である。それぞれの上限値は規定しない。
「P:0.1%以下」
Pは溶接部を脆化させる。0.1%を超えると溶接部の脆化が顕著になるため、その適正範囲を0.1%以下に限定した。Pの含有量の下限は規定しないが、0.001%未満とすることは、経済的に不利である。
「S:0.05%以下」
Sは、溶接性ならびに鋳造時および熱延時の製造性に悪影響を及ぼす。このことから、その上限値を0.05%以下とした。Sの含有量の下限は規定しないが、0.0001%未満とすることは、経済的に不利である。
「Al:0〜3%」
Alは、脱酸剤として作用し、脱酸工程で添加することが好ましい。こうした効果を得るには、Al量を0.01%以上にする必要がある。一方、Al量が3%を超えると、連続鋳造時のスラブ割れの危険性が高まる。
「N:0.01%以下」
Nは、粗大な窒化物を形成し、曲げ性を劣化させることから、添加量を抑える必要がある。これは、Nが0.01%を超えると、この傾向が顕著となることから、N含有量の範囲を0.01%以下とした。加えて、Nは、溶接時のブローホール発生の原因になることから少ない方が良い。Nの含有量の下限値は、特に定めることなく本発明の効果は発揮されるが、Nの含有量を0.0005%未満とすることは、製造コストの大幅な増加を招くことから、これが実質的な下限値である。
「Cr:0.01〜3%、Mo:0.01〜1%、およびB:0.0001〜0.01%よりなる群から選択される少なくとも一種」
Cr、MoおよびBは、強度の向上に寄与する元素であり、Mnの一部に代えて用いることができる。Cr、MoおよびBは、1種又は2種以上を、それぞれ、0.01%以上、0.01%以上および0.0001%以上含有することが好ましい。一方、各元素の含有量が多すぎると、酸洗性や溶接性、熱間加工性などが劣化することがあるため、Cr、MoおよびBの含有量はそれぞれ3%以下、1%以下および0.01%以下であることが好ましい。また、CrとMoはMnとの総和に好ましい範囲があり、上記の通りである。
また、表層軟化部のB量が板厚中心部のB量の0.3倍以上が好ましい。焼き入れ性を向上させるB量が板厚中心部のB量の0.3倍よりも小さいとフェライト変態が生じやすく、硬さのばらつきの原因となる。より好ましくは0.5倍以上、さらにより好ましくは0.7倍以上である。上限値は規定しない。
「Ti:0.01〜0.2%、Nb:0.01〜0.2%、およびV:0.01〜0.2%よりなる群から選択される少なくとも一種」
Ti、NbおよびVは、強化元素である。析出物強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化にて、鋼板の強度上昇に寄与する。この目的で添加する際は0.01%以上添加することが好ましい。しかし、それぞれ含有量が0.2%を超えると、炭窒化物の析出が多くなり成形性が劣化する。
「Cu:0.01〜1%、およびNi:0.01〜1%よりなる群から選択される少なくとも一種」
CuおよびNiは、強度の向上に寄与する元素であり、Mnの一部に代えて用いることができる。CuおよびNiは、1種又は2種を、それぞれ、0.01%以上含有することが好ましい。一方、各元素の含有量が多すぎると、酸洗性や溶接性、熱間加工性などが劣化することがあるため、CuおよびNiの含有量は1.0%以下であることが好ましい。
また、表層軟化部のCu量およびNi量の総和が板厚中心部のCu量およびNi量の総和の0.3倍以上とすることが好ましい。焼き入れ性を向上させるCu量およびNi量の総和が板厚中心部のCu量およびNi量の総和の0.3倍よりも小さいとフェライト変態が生じやすく、硬さのばらつきの原因となる。より好ましくは0.5倍以上、さらにより好ましくは0.7倍以上である。それぞれの上限値は規定しない。
さらに、表層軟化部には以下の元素を意図的または不可避的に添加しても本発明の効果を阻害しない。すなわち、O:0.001〜0.02%、W:0.001〜0.1%、Ta:0.001〜0.1%、Sn:0.001〜0.05%、Sb:0.001〜0.05%、As:0.001〜0.05%、Mg:0.0001〜0.05%、Ca:0.001〜0.05%、Zr:0.001〜0.05%、ならびにY:0.001〜0.05%、La:0.001〜0.05%、およびCe:0.001〜0.05%等のREM(希土類金属:Rare−Earth Metal)である。
本発明の効果、すなわち優れた曲げ加工性および/または延性は、表層軟化部の表面に溶融亜鉛めっき、合金化溶融亜鉛めっき、電気亜鉛めっきを施した場合も同様に達成することが可能である。
次に、本発明の高強度鋼板を得るための製法の形態を説明する。以下の説明は、本発明の高強度鋼板を得るための製法の単なる例示を意図するものであって、本発明の高強度鋼板を以下に説明するような2つの鋼板を積層した複層鋼板に限定することを意図するものではない。例えば、単層鋼板を脱炭処理してその表層部分を軟化することにより、表層軟化部と板厚中心部からなる高強度鋼板を製造することも可能である。
本発明における重要な点に表層の硬さのばらつきを低減させる点がある。表層の硬さのばらつきは、表層にフェライトやパーライトなどの比較的軟らかい組織と低温変態組織(ベイナイトやマルテンサイト)が両方存在するときに大きくなる。以下の製法では、本発明では表層をほぼ低温変態組織とする方法を説明する。
上記の板厚中心部の成分を満足する表面を脱脂した母材鋼板の片面または両面に、表層用鋼板を積層する。
上記の積層体(複層鋼板)に熱延・冷延、連続焼鈍、連続溶融めっきなどを施すことで、本発明による高強度鋼板、より具体的には熱延鋼板、冷延鋼板、めっき鋼板を得ることができる。
例えば、本発明に包含される高強度鋼板のうちの熱延鋼板を製造する方法は、上で説明した化学組成を有する板厚中心部を構成する母材鋼板の片面または両面に、同様に上で説明した化学組成を有する表層軟化部を構成する表層用鋼板を積層して複層鋼板を形成する工程、
前記複層鋼板を加熱温度1100℃以上1350℃以下、好ましくは1150℃超1350℃以下で加熱し、次いで熱間圧延する熱間圧延工程であって、前記熱間圧延工程が粗圧延および仕上げ温度800〜980℃での仕上げ圧延を含み、前記粗圧延が粗圧延温度:1100℃以上、1パスあたりの板厚減少率:5%以上50%未満、およびパス間時間:3秒以上の条件下で2回以上行われる熱間圧延工程、ならびに
熱間圧延された複層鋼板を冷却過程において750℃〜550℃までの温度を平均冷却速度2.5℃/s以上で冷却し、次いで巻取り温度550℃以下で巻き取る工程
を含むことを特徴としている。
母材鋼板と表層用鋼板の間で元素を拡散させ、両者の間に板厚方向の平均硬さ変化が5000(ΔHv/mm)以下の硬さ遷移帯を形成させる場合には、上記熱間圧延工程において複層鋼板を加熱温度1100℃以上1350℃以下で2時間以上加熱することが好ましく、1150℃超1350℃以下で2時間以上加熱することがより好ましい。
高強度鋼板における板厚中心部の残留オーステナイトを面積分率で10%以上にして当該高強度鋼板の延性を向上させるためには、上で規定される熱間圧延後の工程に代えて、熱間圧延された複層鋼板を冷却過程において700℃〜500℃の温度で3秒以上保持し、次いで母材鋼板のマルテンサイト変態開始温度Ms以上ベイナイト変態開始温度Bs以下の温度で巻き取る工程を含むことが好ましい。
ここで、
Bs(℃)=820―290C/(1−Sf)−37Si−90Mn−65Cr−50Ni+70Al
Ms(℃)=541−474C/(1−Sf)−15Si−35Mn−17Cr−17Ni+19Al
ここで、C、Si、Mn、Cr、NiおよびAlは前記母材鋼板の各元素の含有量[質量%]であり、Sfは前記母材鋼板のフェライトの面積分率である。
各工程についてより詳しく説明すると、熱延鋼板を得る場合、まず、上記の方法で作製した複層鋼板を、加熱温度1100℃以上、好ましくは1150℃超1350℃以下で加熱する。鋳造に起因する結晶方位の異方性を抑制するため、スラブの加熱温度を1100℃以上とすることが好ましい。一方、スラブの加熱温度は1350℃を超えて加熱するには多量のエネルギーを投入する必要があり製造コストの大幅な増加を招くことから、1350℃以下とする。また、表層軟化部のナノ硬さの標準偏差を0.8以下に制御するためには、さらに硬さ遷移帯が存在する場合にそれに緩やかな硬さの変化を与えるためには、合金元素、特にC原子の濃度が緩やかに分布するように制御する必要がある。C濃度の分布はC原子の拡散によって得られ、C原子の拡散頻度は高温ほど増加する。したがって、C濃度を制御するためには、熱延加熱から粗圧延における制御が重要となる。熱延加熱では、C原子の拡散を促すために、加熱温度を高温化する必要があり、好ましくは1100℃以上1350℃以下、より好ましくは1150℃超1350℃以下である。熱延加熱では、図2に示す(i)および(ii)の変化が生じる。(i)は板厚中心部から表層軟化部へのC原子の拡散であり、(ii)は表層軟化部から外部へと脱離するCの脱炭反応である。この(i)と(ii)のC原子の拡散と脱離反応の兼ね合いによりC濃度に分布が生じる。1100℃未満では、(i)の反応が不足するため、好ましいC濃度分布が得られない。一方、1350℃超では、(ii)の反応が過度に生じるため、同様に好ましい濃度分布が得られない。
さらに、熱延加熱温度の調節により好ましいC濃度分布に制御した上で、さらに最適なC濃度分布を得るためには、粗圧延でのパス制御が極めて重要となる。粗圧延は、粗圧延温度:1100℃以上、1パスあたりの板厚減少率:5%以上50%未満、およびパス間時間:3秒以上の条件下で2回以上行われる。これは、粗圧延で導入される歪により、図2中の(i)のC原子の拡散を促すためである。仮に、熱延加熱でC濃度を好ましい状態に制御したスラブを常法で粗圧延および仕上げ圧延すると、C原子が表層軟化部内で十分に拡散できないまま板厚が減少することになる。したがって、200mmを超える厚みをもつスラブから、厚さ数mmの熱延鋼板を常法の熱延にて製造すると、表層軟化部でC濃度が急激に変化する鋼板となり、緩やかな硬さ変化が得られなくなる。これを解決するために見出された方法が上記の粗圧延のパス制御である。C原子の拡散は、温度だけでなく歪(転位密度)の影響を大きく受ける。特に、格子拡散に比べて、転位拡散では10倍以上に拡散頻度が高まるため、転位密度を残しつつ、圧延により板厚を薄くする工夫が必要となる。図3の曲線1は粗圧延の1パスあたりの板厚減少率が小さい場合の、圧延パス後の転位密度変化を示しており、長時間にわたって歪が残存していることがわかる。このように長時間にわたって歪を表層軟化部に残存させることで、表層軟化部内のC原子の拡散が十分に起こり、最適なC濃度分布を得ることが可能となる。一方、曲線2は板厚減少率が大きな場合の転位密度の変化であり、圧延により導入される歪量が高まると、回復が促進されやすくなり、転位密度が急激に低下する。このため、最適なC濃度分布を得るためには、曲線2のような転位密度の変化を生じさせないことが必要である。このような観点から、1パスあたりの板厚減少率の上限が50%未満となる。なお、表層軟化部でのC原子の拡散を促すために、ある量の転位密度と保持時間の確保が必要となるため、板厚減少率の下限が5%となり、パス間時間として3秒以上の確保が必要となる。
また、硬さ遷移帯を形成させる場合には、スラブの加熱時間は2時間以上とする。これはスラブ加熱中に母材鋼板と表層用鋼板の間で元素を拡散させ、両者の間に形成させる硬さ遷移帯の平均硬さ変化を小さくさせるためである。加熱時間が2時間より短いと硬さ遷移帯の平均硬さ変化は十分小さくならない。加熱時間の上限は規定しないが、8時間以上の加熱は多くの加熱エネルギーを必要とし、コスト面から好ましくない。
スラブを加熱した後、熱間圧延を行う。熱間圧延の完了温度(仕上げ温度)が800℃未満では、圧延反力が高まり、指定の板厚を安定して得ることが困難となる。このため、熱間圧延の完了温度は800℃以上とする。一方、熱間圧延の完了温度を980℃超とするには、スラブの加熱終了から熱間圧延の完了までの工程において鋼板を加熱する装置が必要となり、高いコストが必要となるため、熱間圧延の完了温度を980℃以下とする。
その後、冷却過程において、750℃〜550℃までの温度を平均冷却速度2.5℃/s以上で冷却する。これは本発明において重要な条件であり、表層軟化部の大部分を低温変態組織とし、硬さばらつきを低減させるために必要な工程である。平均冷却速度が2.5℃/sよりも遅い場合、表層軟化部でフェライト変態やパーライト変態が生じ、硬さばらつきの原因となる。好ましくは5℃/s以上、より好ましくは10℃/s以上である。750℃より高い温度ではフェライト変態やパーライト変態は生じにくいため、平均冷却速度は規定しない。550℃より低い温度では、低温変態組織に変態するため、平均冷却速度は定めない。
巻取り温度550℃以下とする。550℃より高い温度では、表層軟化部でフェライト変態やパーライト変態が生じ、硬さばらつきの原因となる。好ましくは500℃以下、さらに好ましくは300℃以下である。
一方、高強度鋼板における板厚中心部の残留オーステナイトを面積分率で10%以上にして当該高強度鋼板の延性を向上させるためには、上記熱間圧延の後、冷却過程において、700℃〜500℃の間の温度で3秒以上保持する。これは本発明において重要な条件であり、表層の軟質層のみをフェライト変態させ、硬さのばらつきを低減するために必要な工程である。温度700℃以上ではフェライト変態が遅延するため、表層をフェライトとすることができない。500℃以下では表層の一部が低温変態組織となる。フェライトと低温変態組織の複数の組織を有すると表層の硬さのばらつきの原因となるため、保持温度は500℃以上とする。保持時間は3秒以上とする。表層のフェライト変態を十分進行させるため、3秒以上保持する必要がある。好ましくは保持時間は5秒以上であり、より好ましくは10秒以上である。
巻取り温度は母材鋼板のベイナイト変態温度域の温度、すなわち母材鋼板のマルテンサイト変態開始温度Ms以上ベイナイト変態開始温度Bs以下の温度とする。これは、母材鋼板にベイナイトもしくはマルテンサイトを生成させて高強度鋼とし、さらに、残留オーステナイトを安定化させるためである。このように、母材鋼板と表層用鋼板の変態のタイミングを変えることで、表層に硬さばらつきが小さい組織を得ることが本発明の特徴の一つである。なお、本発明において、マルテンサイト変態開始温度Msおよびベイナイト変態開始温度Bsは、以下の式によって算出される。
Bs(℃)=820―290C/(1−Sf)−37Si−90Mn−65Cr−50Ni+70Al
Ms(℃)=541−474C/(1−Sf)−15Si−35Mn−17Cr−17Ni+19Al
ここで、C、Si、Mn、Cr、NiおよびAlは母材鋼板の各元素の含有量[質量%]であり、Sfは母材鋼板のフェライトの面積分率である。
なお、鋼板の製造中のフェライトの面積分率を求めることは困難であるため、本発明では、BsおよびMsの算出に当たって、焼鈍工程に入る前の冷延板を採取し焼鈍工程と同じ温度履歴で焼鈍し、求めたフェライトの面積分率が用いられる。
次に、本発明に包含される高強度鋼板のうちの冷延鋼板を得る方法を説明する。当該冷延鋼板を製造する方法は、
上で説明した化学組成を有する板厚中心部を構成する母材鋼板の片面または両面に、同様に上で説明した化学組成を有する表層軟化部を構成する表層用鋼板を積層して複層鋼板を形成する工程、
前記複層鋼板を加熱温度1100℃以上1350℃以下、好ましくは1150℃超1350℃以下で加熱し、次いで熱間圧延および冷間圧延する工程であって、前記熱間圧延が粗圧延および仕上げ温度800〜980℃での仕上げ圧延を含み、前記粗圧延が粗圧延温度:1100℃以上、1パスあたりの板厚減少率:5%以上50%未満、およびパス間時間:3秒以上の条件下で2回以上行われる工程、ならびに
圧延された複層鋼板を前記表層用鋼板のAc3点−50℃以上かつ前記母材鋼板のAc3点−50℃以上、900℃以下の温度で5秒以上保持し、次いで750℃から550℃以下まで平均冷却速度2.5℃/s以上で冷却する工程
を含むことを特徴としている。
ここで、
Ac3=910−203√C+44.7Si−30Mn+700P−20Cu−15.2Ni−11Cr+31.5Mo+400Ti+104V+400Al・・(式1)
ここで、C、Si、Mn、P、Cu、Ni、Cr、Mo、Ti、VおよびAlは各元素の含有量[質量%]である。
また、母材鋼板と表層用鋼板の間で元素を拡散させ、両者の間に板厚方向の平均硬さ変化が5000(ΔHv/mm)以下の硬さ遷移帯を形成させる場合には、上記複層鋼板を加熱温度1100℃以上1350℃以下または1150℃超1350℃以下で2時間以上加熱し、次いで熱間圧延および冷間圧延することが好ましい。
さらに、高強度鋼板における板厚中心部の残留オーステナイトを面積分率で10%以上にして当該高強度鋼板の延性を向上させるためには、上で規定される冷間圧延後の工程に代えて、圧延された複層鋼板を連続焼鈍ラインに通板して焼鈍する工程を含むことが好ましく、当該連続焼鈍ラインでの焼鈍は、まず、上記複層鋼板を700℃以上、900℃以下の加熱温度で5秒以上保持すること、
次いで、任意選択で、前記複層鋼板を前記加熱温度から上記母材鋼板のBs点以上Ac3点−20℃未満の予備冷却停止温度まで5秒以上400秒未満停留するように予備冷却すること、
次いで、前記複層鋼板を前記母材鋼板のMs−100℃以上Bs未満の冷却停止温度まで10℃/s以上の平均冷却速度で冷却すること、および
次いで、前記複層鋼板を前記母材鋼板のMs−100℃以上の温度域で30秒以上600秒以下停留させること
を含むことが好ましい。
Ac3(℃)=910−203√C+44.7Si−30Mn+700P−20Cu−15.2Ni−11Cr+31.5Mo+400Ti+104V+400Al・・(式1)
Bs(℃)=820―290C/(1−Sf)−37Si−90Mn−65Cr−50Ni+70Al・・(式2)
Ms(℃)=541−474C/(1−Sf)−15Si−35Mn−17Cr−17Ni+19Al・・(式3)
ここで、C、Si、Mn、P、Cu、Ni、Cr、Mo、Ti、VおよびAlは前記母材鋼板の各元素の含有量[質量%]であり、Sfは前記母材鋼板のフェライトの面積分率である。
各工程についてより詳しく説明すると、まず、上記の方法で作製した複層鋼板を、熱延鋼板を製造する方法において説明したように加熱温度1100℃以上1350℃以下または1150℃超1350℃以下で加熱し、次いで熱間圧延して、例えば巻取り温度20℃以上700℃以下で巻き取られる。次に、このようにして製造した熱延鋼板の酸洗を行う。酸洗は、熱延鋼板の表面の酸化物を除去するものであり、一回でも良いし、複数回に分けて行っても良い。硬さ遷移帯を形成させる場合には、まず、複層鋼板を加熱温度1100℃以上1350℃以下または1150℃超1350℃以下で2時間以上加熱することが好ましい。これは加熱中に母材鋼板と表層用鋼板の間で元素を拡散させ、両者の間に形成させる硬さ遷移帯の平均硬さ変化を小さくさせるためである。加熱時間が2時間より短いと硬さ遷移帯の平均硬さ変化は十分小さくならない。次に、このようにして製造した熱延鋼板の酸洗を行う。酸洗は、熱延鋼板の表面の酸化物を除去するものであり、一回でも良いし、複数回に分けて行っても良い。
冷間圧延では、圧下率の合計が85%を超えると、母材鋼板の延性が失われ、冷間圧延中に母材鋼板が破断する危険性が高まるため、圧下率の合計は85%以下が望ましい。一方、焼鈍工程における軟質層の再結晶を十分に進めるには、圧下率の合計を20%以上とすることが好ましく、30%以上とすることがより好ましい。冷延前に冷延荷重を低下させる目的で、700℃以下の温度で焼鈍してもよい。
続いて焼鈍について説明するが、焼鈍においても表層軟化部の硬さばらつきを低減するため、表層軟化部の組織の大部分を低温変態組織とし、フェライト変態やパーライト変態を抑制することが重要である。なお、表層用鋼板の化学組成が上記の適正な範囲を満たしていれば、表層軟化部の全体を低温変態組織として、表層軟化部の平均ビッカース硬さが板厚1/2位置の平均ビッカース硬さの0.90倍より高くなる懸念はない。
表層用鋼板のAc3点−50℃以上かつ母材鋼板のAc3点−50℃以上、900℃以下の温度で5秒以上保持する。母材鋼板のAc3点−50℃以上とする理由は、母材鋼板をフェライトとオーステナイトの2相域またはオーステナイト単相域に加熱することで、その後の熱処理により変態組織を得て、必要な強度を得るためである。これより低温度では強度が顕著に低下する。表層用鋼板のAc3点−50℃以上とする理由は、表層をフェライトとオーステナイトの2相域またはオーステナイト単相域に加熱することで、その後の熱処理により大部分を低温変態組織とし、硬さばらつきを低減するためである。これより低温では硬さばらつきが大きくなる。900℃以上に加熱すると、硬質層の旧γ粒径が粗大化し、靭性が劣化することから望ましくない。
その後750℃から550℃以下まで平均冷却速度2.5℃/s以上で冷却する。これは本発明において重要な条件であり、表層軟化部の大部分を低温変態組織とし、硬さばらつきを低減させるために必要な工程である。平均冷却速度が2.5℃/sよりも遅い場合、表層軟化部でフェライト変態やパーライト変態が生じ、硬さばらつきの原因となる。好ましくは5℃/s以上、より好ましくは10℃/s以上である。750℃より高い温度ではフェライト変態やパーライト変態は生じにくいため、平均冷却速度は規定しない。550℃より低い温度では、低温変態組織に変態するため、平均冷却速度は定めない。
550℃以下では、室温まで一定の冷却速度で冷却してもよいし、200℃〜550℃程度の温度で保持することで、ベイナイト変態を進行させたり、マルテンサイトを焼戻したりしてもよい。ただし、300℃〜550℃で長時間保持すると、強度が低下する可能性があるため、その温度で保持する場合は保持時間が600秒以下が望ましい。
高強度鋼板における板厚中心部の残留オーステナイトを面積分率で10%以上にして当該高強度鋼板の延性を向上させるためには、上で説明される焼鈍および冷却に代えて、以下の焼鈍および冷却を実施することが好ましい。まず、焼鈍では700℃以上、900℃以下まで加熱し、5秒以上保持する。700℃以上とする理由は、軟化層の再結晶を十分に進めて未再結晶分率を低下させ、硬さのばらつきを低下させるためである。700℃より低い温度では軟化層の硬さばらつきが大きくなる。900℃以上に加熱すると、硬質層の旧γ粒径が粗大化し、靭性が劣化することから望ましくない。加熱温度で5秒以上保持する必要がある。保持時間が5秒以下であると、母材鋼板のオーステナイト変態の進行が不十分となり、強度の低下が顕著となる。また、軟化層の再結晶が不十分となり、表層の硬さのばらつきも大きくなる。これらの観点から、保持時間は10秒以上が好ましい。さらに好ましくは20秒以上である。
焼鈍は、例えば、圧延された複層鋼板を連続焼鈍ラインに通板することによって行われる。ここで、連続焼鈍ラインでの焼鈍は、まず、複層鋼板を700℃以上、900℃以下の加熱温度で5秒以上保持すること、次いで、任意選択で、複層鋼板を当該加熱温度から母材鋼板のBs点以上Ac3点−20℃未満の予備冷却停止温度まで5秒以上400秒未満停留するように予備冷却することを含む。このような予備冷却工程は、必要に応じて行えばよく、当該予備冷却工程なしに以降の冷却工程を行ってもよい。
任意選択の予備冷却工程に続いて、連続焼鈍ラインでの焼鈍は、複層鋼板を母材鋼板のMs−100℃以上Bs未満の冷却停止温度まで10℃/s以上の平均冷却速度で冷却すること、および次いで、複層鋼板を母材鋼板のMs−100℃以上の温度域、より好ましくは300℃以上500℃以下の温度域で30秒以上600秒以下停留させることを含む。この停留中は必要に応じて加熱および冷却を複数回任意に行ってもよい。残留オーステナイトの安定化のために、この停留時間が重要である。必要停留時間が30秒未満では、10%以上の残留オーステナイトを得ることが困難である。一方、600秒以上では、組織全体の軟質化が進行することで十分な強度を得ることが困難となる。なお、本発明において、Ac3、BsおよびMsは、以下の式によって算出される。
Ac3(℃)=910−203√C+44.7Si−30Mn+700P−20Cu−15.2Ni−11Cr+31.5Mo+400Ti+104V+400Al・・(式1)
Bs(℃)=820―290C/(1−Sf)−37Si−90Mn−65Cr−50Ni+70Al
Ms(℃)=541−474C/(1−Sf)−15Si−35Mn−17Cr−17Ni+19Al
ここで、C、Si、Mn、P、Cu、Ni、Cr、Mo、Ti、VおよびAlは母材鋼板の各元素の含有量[質量%]であり、Sfは母材鋼板のフェライトの面積分率である。
なお、鋼板の製造中のフェライトの面積分率を求めることは困難であるため、本発明では、BsおよびMsの算出に当たって、焼鈍工程に入る前の冷延板を採取し焼鈍工程と同じ温度履歴で焼鈍し、求めたフェライトの面積分率が用いられる。
その後、溶融亜鉛めっきを施す場合はめっき浴温度は従来から適用されている条件で良く、例えば、440℃〜550℃といった条件が適用できる。また、溶融亜鉛めっきを施した後、加熱合金化処理し、合金化溶融亜鉛めっき鋼板を作製する場合の合金化の加熱温度としては従来から適用されている条件で良く、例えば、400℃〜600℃といった条件が適用できる。合金化の加熱方式は特に限定されるものではなく、燃焼ガスによる直接加熱や、誘導加熱、直接通電加熱等、従来からの溶融めっき設備に応じた加熱方式を用いることができる。
合金化処理の後、鋼板は200℃以下に冷却され、必要により調質圧延を施される。
電気亜鉛めっき鋼板を製造する場合は、例えば、めっきの前処理として、アルカリ脱脂、水洗、酸洗、並びに水洗を実施し、その後、前処理後の鋼板に対し、液循環式の電気めっき装置を用い、めっき浴として硫酸亜鉛、硫酸ナトリウム、硫酸からなるものを用い、電流密度100A/dm2程度で所定のめっき厚みになるまで電解処理する方法がある。
最後に表層用鋼板について、好ましい成分を記す。本発明における鋼板は、表層軟化部と板厚中心部で化学組成が異なる場合がある。このような場合、表層軟化部を構成する表層用鋼板における好ましい化学組成は以下の通りである。
表層用鋼板のC量が母材鋼板のC量の0.30倍以上0.90倍以下が好ましい。表層用鋼板の硬さを母材鋼板の硬さより低くするためである。0.90倍より大きいと、最終的に得られる高強度鋼板において表層軟化部の平均ビッカース硬さが板厚1/2位置の平均ビッカース硬さの0.90倍以下とはならない場合がある。より好ましくは表層用鋼板のC量は母材鋼板のC量の0.85倍以下、さらにより好ましくは0.80倍以下である。
表層用鋼板のMn量、Cr量およびMo量の総和が母材鋼板のMn量、Cr量およびMo量の総和の0.3倍以上が好ましい。焼き入れ性を向上させるMn量、Cr量およびMo量の総和が母材鋼板のMn量、Cr量およびMo量の総和の0.3倍よりも小さいと低温変態組織が生じにくく、硬さのばらつきの原因となる。より好ましくは0.5倍以上、さらにより好ましくは0.7倍以上である。
表層用鋼板のB量が母材鋼板のB量の0.3倍以上が好ましい。焼き入れ性を向上させるB量が母材鋼板の0.3倍よりも小さいと低温変態組織が生じにくく、硬さのばらつきの原因となる。より好ましくは0.5倍以上、さらにより好ましくは0.7倍以上である。
表層用鋼板のCu量およびNi量の総和が母材鋼板のCu量およびNi量の総和の0.3倍以上とすることが好ましい。焼き入れ性を向上させるCu量およびNi量の総和が母材鋼板のCu量およびNi量の総和の0.3倍よりも小さいと低温変態組織が生じにくく、硬さのばらつきの原因となる。より好ましくは0.5倍以上、さらにより好ましくは0.7倍以上である。
表層用鋼板は、上記の元素以外に、Si、P、S、Al、N、Cr、B、Ti、Nb、V、Cu、Ni、O、W、Ta、Sn、Sb、As、Mg、Ca、Y、Zr、La、Ceを有していてもよい。上記元素の好ましい組成範囲は板厚中心部の好ましい範囲と同様である。
続いて、本発明に係る鋼組織の同定方法を述べる。鋼組織は、鋼板の圧延方向および厚さ方向に平行な断面および/または圧延方向に垂直な断面を500倍〜10000倍の倍率で観察することで同定できる。例えば、鋼板を切り出した後、機械研磨により表面を鏡面に仕上げた後、ナイタール試薬を用いて鋼組織を現出する。その後、表面からの深さが当該鋼板の厚さの1/2程度の領域の鋼組織を走査型電子顕微鏡(SEM:scanning electron microscope)を用いて観察する。これによって母材鋼板のフェライトの面積分率を測定することができる。また、本発明において、板厚中心部の残留オーステナイトの面積分率は、X線測定により以下のようにして決定される。まず、鋼板の表面から当該鋼板の厚さの1/2までの部分を機械研磨および化学研磨により除去し、当該化学研磨した面に対して特性X線としてMoKα線を用いることにより測定を行う。そして、体心立方格子(bcc)相の(200)および(211)、ならびに面心立方格子(fcc)相の(200)、(220)および(311)の回折ピークの積分強度比から、次の式を用いて板厚中心部の残留オーステナイトの面積分率を算出する。
Sγ=(I200f+I220f+I311f)/(I200b+I211b)×100
(Sγは板厚中心部の残留オーステナイトの面積分率であり、I200f、I220fおよびI311fは、それぞれfcc相の(200)、(220)および(311)の回折ピークの強度を示し、I200bおよびI211bは、それぞれbcc相の(200)および(211)の回折ピークの強度を示す。)
本実施例では、得られた各製品について、ビッカース硬さ試験、ナノ硬さ試験、引張試験、V曲げ試験、および曲げ荷重試験を実施した。
平均ビッカース硬さは、以下のようにして決定した。まず、板厚の1/2位置から表面に向かって板厚方向に板厚の5%間隔で、ある板厚方向位置でのビッカース硬さを押し込み荷重100g重で測定し、次いでその位置から板厚垂直方向で圧延方向に平行な線上に同様に押し込み荷重100g重で合計5点のビッカース硬さを測定し、それらの平均値をその板厚方向位置での平均ビッカース硬さとした。なお、板厚方向および圧延方向に並ぶ各測定点の間隔は圧痕の4倍以上の距離とした。ある板厚方向位置での平均ビッカース硬さが、同様に測定した板厚1/2位置での平均ビッカース硬さの0.90倍以下となったとき、その位置より表面側を表層軟化部と定義した。表層軟化部全体の平均ビッカース硬さは、このようにして定義した表層軟化部内でランダムに10点のビッカース硬さを測定し、それらの平均として求められた。
また、本明細書内に規定する方法で表層軟化部の厚さを求め、板厚に対する比率を決定した。同様に、本明細書内に規定する方法で硬さ遷移帯の板厚方向の平均硬さ変化の値を決定した。
表層軟化部のナノ硬さは、表面から表層軟化部厚さの1/2位置で、ナノ硬さを板厚垂直方向に100点測定し、それらの値の標準偏差を表層軟化部のナノ硬さの標準偏差とした。
引張強度TSおよび伸び(%)は、圧延方向と直角方向に長軸をとってJIS Z 2201に記載の5号試験片を作成し、JIS Z 2241に従って測定を行った。
また、限界曲げ半径Rは、圧延方向に対して垂直な方向が長手方向(曲げ稜線が圧延方向と一致)となるようにJIS Z2204に記載の1号試験片を作成し、JIS Z2248に準じてV曲げ試験を行った。表層軟化部を片面のみに持つサンプルに対しては、表層軟化部を持つ面が曲げ外側になるように曲げた。ダイとパンチの角度は60°とし、パンチの先端半径を0.5mm単位で変えて曲げ試験を行い、亀裂が発生せずに曲げることができるパンチ先端半径を限界曲げ半径Rとして求めた。
また、曲げ荷重試験は、鋼板から60mm×60mmの試験片を採取し、ドイツ自動車工業会(VDA)規格238−100に準拠して、パンチ曲率が0.4mm、ロール径が30mm、ロール間距離が2×板厚+0.5(mm)、最大押し込みストロークが11mmの条件で曲げ試験を実施し、その際の最大荷重(N)を測定することにより行った。本実施例では、曲げ荷重(N)が板厚(mm)の3000倍超である場合を合格とした。
[実施例A]
表1に示す化学組成を持つ板厚20mmの連続鋳造スラブ(母材鋼板)について、表面を研削して表面酸化物を除去した後、その片面または両面に表1に示す化学組成を有する表層用鋼板をアーク溶接で積層した。板厚に対する表層用鋼板の厚さの割合は、表1の「表層用鋼板(片側)の割合(%)」に示す通りである。これを表2に示す加熱温度、仕上げ温度、巻取り温度の条件下で熱延し、積層熱延鋼板を得た。熱延鋼板を製品とする供試材の場合、熱延の700℃〜500℃での保持時間を表2に示す値に意図的に制御した。冷延鋼板を製品とする場合、その後、酸洗、50%の冷延を行い、表2に示す条件で焼鈍を行った。
なお、得られた製品に対し、表層から板厚の2%の位置の化学組成と板厚1/2位置の化学組成を実測したところ、それぞれ表1に示す母材鋼板、および表層用鋼板の化学組成とほぼ変化がなかった。
Figure 0006443592
Figure 0006443592
Figure 0006443592
Figure 0006443592
Figure 0006443592
Figure 0006443592
表2を参照すると、例えば、比較例7、27および28の鋼板では、表層軟化部の平均ビッカース硬さが板厚1/2位置の平均ビッカース硬さの0.60倍超0.90倍以下の要件を満たすものの、表層軟化部のナノ硬さの標準偏差は0.9であり、すなわち0.8以下の要件を満たしていないことがわかる。その結果として、これらの比較例の鋼板では、限界曲げ半径Rは2.5mmであった。これとは対照的に、上記の2つの要件を満たす本発明の実施例における鋼板では、限界曲げ半径Rは2mm未満、特には1.5mmまたは1mmであった。それゆえ、表層軟化部の硬さのばらつきを所定の範囲内に抑えることで、単に板厚中心部にそれよりも柔らかい表層軟化部を組み合わせた鋼板と比較して鋼板の曲げ性を顕著に改善できることがわかった。
また、比較例4の熱延鋼板を参照すると、熱間圧延後の冷却過程において750℃〜550℃での保持時間を1秒とした場合には、表層軟化部の平均ビッカース硬さは板厚1/2位置の平均ビッカース硬さの0.57倍、表層軟化部のナノ硬さの標準偏差は0.9であり、限界曲げ半径Rは2.5mmであった。これとは対照的に、保持時間を5秒および巻取り温度を180℃としたこと以外は比較例4と同様にして作製された実施例3の熱延鋼板では、表層軟化部の平均ビッカース硬さは板厚1/2位置の平均ビッカース硬さの0.86倍、表層軟化部のナノ硬さの標準偏差は0.5であり、限界曲げ半径Rは1mmであった。
また、実施例5および8の冷延鋼板を参照すると、表層用鋼板のAc3点−50℃以上かつ母材鋼板のAc3点−50℃以上、900℃以下の温度、5秒以上保持、および750℃から550℃以下までの平均冷却速度2.5℃/s以上の要件を満たすように、焼鈍の際の温度、保持時間および平均冷却速度を適切に選択することで、表層軟化部の硬さのばらつきを抑制し(表層軟化部のナノ硬さの標準偏差:0.4または0.5)、その結果として冷延鋼板の曲げ性を顕著に改善できることがわかった(限界曲げ半径Rは1.5mm)。一方、上記の要件を満たさない比較例6、7および9の冷延鋼板では、表層軟化部のナノ硬さの標準偏差は0.9であり、限界曲げ半径Rは2.5mmであった。
また、熱間圧延において粗圧延を粗圧延温度:1100℃以上、1パスあたりの板厚減少率:5%以上50%未満、およびパス間時間:3秒以上の条件下で2回以上実施することなしに製造された鋼板では、限界曲げ半径Rが高くおよび/または曲げ荷重が低く、十分な曲げ加工性を達成することができなかった。
[実施例B:硬さ遷移帯の形成]
表3に示す化学組成を持つ板厚20mmの連続鋳造スラブ(母材鋼板)について、表面を研削して表面酸化物を除去した後、その片面または両面に表1に示す化学組成を有する表層用鋼板をアーク溶接で積層した。板厚に対する表層用鋼板の厚さの割合は、表3の「表層用鋼板(片側)の割合(%)」に示す通りである。これを表4に示す加熱温度、加熱時間、仕上げ温度、巻取り温度の条件下で熱延し、積層熱延鋼板を得た。熱延鋼板を製品とする供試材の場合、熱延の750℃〜550℃の平均冷却速度を表4に示す値に意図的に制御した。冷延鋼板を製品とする場合、その後、酸洗、50%の冷延を行い、表4に示す条件で焼鈍を行った。
なお、得られた製品に対し、表層から板厚の2%の位置の化学組成と板厚1/2位置の化学組成を実測したところ、それぞれ表3に示す母材鋼板、および表層用鋼板の化学組成とほぼ変化がなかった。
Figure 0006443592
Figure 0006443592
Figure 0006443592
Figure 0006443592
Figure 0006443592
Figure 0006443592
表4を参照すると、例えば、比較例107、128および129の鋼板では、表層軟化部の平均ビッカース硬さが板厚1/2位置の平均ビッカース硬さの0.60倍超0.90倍以下の要件を満たし、さらに硬さ遷移帯の板厚方向の平均硬さ変化が5000(ΔHv/mm)以下の要件を満たすものの、表層軟化部のナノ硬さの標準偏差は0.9であり、すなわち0.8以下の要件を満たしていないことがわかる。その結果として、これらの比較例の鋼板では、限界曲げ半径Rは2.5mmであった。一方、実施例110では、表層軟化部の平均ビッカース硬さが板厚1/2位置の平均ビッカース硬さの0.60倍超0.90倍以下の要件を満たし、さらに表層軟化部のナノ硬さの標準偏差が0.8以下の要件を満たすものの、硬さ遷移帯の板厚方向の平均硬さ変化が5015(ΔHv/mm)であり、すなわち5000(ΔHv/mm)を超えていることがわかる。その結果として、実施例110の鋼板では、限界曲げ半径Rは1.5mmであった。これとは対照的に、「表層軟化部の平均ビッカース硬さが板厚1/2位置の平均ビッカース硬さの0.60倍超0.90倍以下」および「表層軟化部のナノ硬さの標準偏差が0.8以下」の2つの要件を満たしかつ「硬さ遷移帯の板厚方向の平均硬さ変化が5000(ΔHv/mm)以下」である実施例における鋼板では、限界曲げ半径Rは1mmであった。それゆえ、表層軟化部の硬さのばらつきおよび硬さ遷移帯の板厚方向の平均硬さ変化の両方を特定の範囲内に制御することで、単に板厚中心部にそれよりも柔らかい表層軟化部等を組み合わせた鋼板であって、表層軟化部の硬さのばらつきおよび硬さ遷移帯の板厚方向の平均硬さ変化の一方しか特定の範囲内に制御されていない鋼板と比較して鋼板の曲げ性を顕著に改善できることがわかった。
また、比較例104の熱延鋼板を参照すると、熱間圧延後の冷却過程において750℃〜550℃での保持時間を1秒とした場合には、表層軟化部のナノ硬さの標準偏差は0.9であり、限界曲げ半径Rは2.5mmであった。これとは対照的に、保持時間を5秒および巻取り温度を180℃としたこと以外は比較例104と同様にして作製された実施例103の熱延鋼板では、表層軟化部のナノ硬さの標準偏差は0.5であり、限界曲げ半径Rは1mmであった。
また、実施例105および108の冷延鋼板を参照すると、表層用鋼板のAc3点−50℃以上かつ母材鋼板のAc3点−50℃以上900℃以下の温度で5秒以上保持、および750℃から550℃以下まで平均冷却速度2.5℃/s以上で冷却の要件を満たすように、焼鈍の際の温度、保持時間および平均冷却速度を適切に選択することで、表層軟化部の硬さのばらつきを抑制し(表層軟化部のナノ硬さの標準偏差:0.4または0.5)、その結果として冷延鋼板の曲げ性を顕著に改善できることがわかった(限界曲げ半径Rは1mm)。一方、上記の要件を満たさない比較例106、107および109の冷延鋼板では、表層軟化部のナノ硬さの標準偏差は0.9であり、限界曲げ半径Rは2.5mmであった。
また、熱間圧延において粗圧延を粗圧延温度:1100℃以上、1パスあたりの板厚減少率:5%以上50%未満、およびパス間時間:3秒以上の条件下で2回以上実施することなしに製造された鋼板では、限界曲げ半径Rが高くおよび/または曲げ荷重が低く、十分な曲げ加工性を達成することができなかった。
[実施例C:残留オーステナイトを面積分率で10%以上含む板厚中心部の形成]
表5に示す化学組成を持つ板厚20mmの連続鋳造スラブ(母材鋼板)について、表面を研削して表面酸化物を除去した後、その片面または両面に表5に示す化学組成を有する表層用鋼板をアーク溶接で積層した。これを表6に示す加熱温度、仕上げ温度、巻取り温度の条件下で熱延し、積層熱延鋼板を得た。熱延鋼板を製品とする供試材の場合、熱延の700℃〜500℃での保持時間を表6に示す値に意図的に制御した。冷延鋼板を製品とする場合、その後、酸洗し、表6に示す冷延率にて冷延を行い、さらに表6に示す条件下で焼鈍を行った。
なお、得られた製品に対し、表層から板厚の2%の位置の化学組成と板厚1/2位置の化学組成を実測したところ、それぞれ表5に示す母材鋼板、および表層用鋼板の化学組成とほぼ変化がなかった。
Figure 0006443592
Figure 0006443592
Figure 0006443592
Figure 0006443592
Figure 0006443592
Figure 0006443592
Figure 0006443592
Figure 0006443592
Figure 0006443592
Figure 0006443592
引張強度が800MPa以上であり、限界曲げ半径Rが2mm未満であり、曲げ荷重(N)が板厚(mm)の3000倍超である場合を曲げ性に優れた高強度鋼板として評価した(表6中の実施例)。さらに伸びが15%以上である場合を曲げ性および延性に優れた高強度鋼板として評価した(表6中の実施例201〜241)。一方、「引張強度が800MPa以上」、「限界曲げ半径Rが2mm未満」および「曲げ荷重(N)が板厚(mm)の3000倍超」の性能のうち、何れか一つでも満足しない場合は、比較例とした。
また、熱間圧延において粗圧延を粗圧延温度:1100℃以上、1パスあたりの板厚減少率:5%以上50%未満、およびパス間時間:3秒以上の条件下で2回以上実施することなしに製造された鋼板では、限界曲げ半径Rが高くおよび/または曲げ荷重が低く、十分な曲げ加工性を達成することができなかった。
[実施例D:硬さ遷移帯および残留オーステナイトを面積分率で10%以上含む板厚中心部の形成]
表7に示す化学組成を持つ板厚20mmの連続鋳造スラブ(母材鋼板)について、表面を研削して表面酸化物を除去した後、その片面または両面に表7に示す化学組成を有する表層用鋼板をアーク溶接で積層した。これを表8に示す加熱温度、加熱時間、仕上げ温度、巻取り温度の条件下で熱延し、積層熱延鋼板を得た。熱延鋼板を製品とする供試材の場合、熱延の700℃〜500℃での保持時間を表8に示す値に意図的に制御した。冷延鋼板を製品とする場合、その後、酸洗し、表8に示す冷延率にて冷延を行い、さらに表8に示す条件下で焼鈍を行った。
なお、得られた製品に対し、表層から板厚の2%の位置の化学組成と板厚1/2位置の化学組成を実測したところ、それぞれ表7に示す母材鋼板、および表層用鋼板の化学組成とほぼ変化がなかった。
Figure 0006443592
Figure 0006443592
Figure 0006443592
Figure 0006443592
Figure 0006443592
Figure 0006443592
Figure 0006443592
Figure 0006443592
Figure 0006443592
Figure 0006443592
引張強度が800MPa以上であり、限界曲げ半径Rが2mm未満であり、曲げ荷重(N)が板厚(mm)の3000倍超である場合を曲げ性に優れた高強度鋼板として評価した(表8中の実施例)。特に、実施例356では、表層軟化部の平均ビッカース硬さが板厚1/2位置の平均ビッカース硬さの0.60倍超0.90倍以下の要件を満たし、さらに表層軟化部のナノ硬さの標準偏差が0.8以下の要件を満たすものの、硬さ遷移帯の板厚方向の平均硬さ変化が5000(ΔHv/mm)を超えていることがわかる。その結果として、実施例356の鋼板では、限界曲げ半径Rは1.5mmであった。これとは対照的に、「表層軟化部の平均ビッカース硬さが板厚1/2位置の平均ビッカース硬さの0.60倍超0.90倍以下」および「表層軟化部のナノ硬さの標準偏差が0.8以下」の2つの要件を満たしかつ「硬さ遷移帯の板厚方向の平均硬さ変化が5000(ΔHv/mm)以下」である実施例の鋼板では、限界曲げ半径Rは1mmであった。さらに、板厚中心部が残留オーステナイトを面積分率で10%以上含む場合には、伸びが15%以上となり、曲げ性に加えて、延性にも優れた高強度鋼板を得ることができた(表8中の実施例301〜341)。一方、「引張強度が800MPa以上」、「限界曲げ半径Rが2mm未満」および「曲げ荷重(N)が板厚(mm)の3000倍超」の性能のうち、何れか一つでも満足しない場合は、比較例とした。
また、熱間圧延において粗圧延を粗圧延温度:1100℃以上、1パスあたりの板厚減少率:5%以上50%未満、およびパス間時間:3秒以上の条件下で2回以上実施することなしに製造された鋼板では、限界曲げ半径Rが高くおよび/または曲げ荷重が低く、十分な曲げ加工性を達成することができなかった。

Claims (11)

  1. 板厚中心部と、該板厚中心部の片側または両側に配置された表層軟化部とを含む引張強度が800MPa以上の高強度鋼板であって、各表層軟化部が10μm超から板厚の30%以下の厚さを有し、前記表層軟化部の平均ビッカース硬さが板厚1/2位置の平均ビッカース硬さの0.60倍超0.90倍以下であり、前記表層軟化部のナノ硬さの標準偏差が0.8以下であり、前記板厚中心部が、質量%で、
    C :0.05〜0.8%、
    Si:0.01〜2.50%、
    Mn:0.010〜8.0%、
    P :0.1%以下、
    S :0.05%以下、
    Al:0〜3%、および
    N :0.01%以下を含有し、
    残部が鉄および不可避不純物からなることを特徴とする、高強度鋼板。
  2. 前記板厚中心部と各表層軟化部との間でそれらに隣接して形成された硬さ遷移帯をさらに含み、該硬さ遷移帯の板厚方向の平均硬さ変化が5000(ΔHv/mm)以下であることを特徴とする、請求項1に記載の高強度鋼板。
  3. 前記板厚中心部が残留オーステナイトを面積分率で10%以上含むことを特徴とする、請求項1又は2に記載の高強度鋼板。
  4. 前記板厚中心部が、更に、質量%で、
    Cr:0.01〜3%、
    Mo:0.01〜1%、および
    B :0.0001%〜0.01%
    よりなる群から選択される少なくとも一種を含有することを特徴とする、請求項1〜3のいずれか1項に記載の高強度鋼板。
  5. 前記板厚中心部が、更に、質量%で、
    Ti:0.01〜0.2%、
    Nb:0.01〜0.2%、および
    V :0.01〜0.2%
    よりなる群から選択される少なくとも一種を含有することを特徴とする、請求項1〜4のいずれか1項に記載の高強度鋼板。
  6. 前記板厚中心部が、更に、質量%で、
    Cu:0.01〜1%、および
    Ni:0.01〜1%
    よりなる群から選択される少なくとも一種を含有することを特徴とする、請求項のいずれか1項に記載の高強度鋼板。
  7. 前記表層軟化部のC量が前記板厚中心部のC量の0.30倍以上0.90倍以下であることを特徴とする、請求項のいずれか1項に記載の高強度鋼板。
  8. 前記表層軟化部のMn量、Cr量およびMo量の総和が前記板厚中心部のMn量、Cr量およびMo量の総和の0.3倍以上であることを特徴とする、請求項のいずれか1項に記載の高強度鋼板。
  9. 前記表層軟化部のB量が前記板厚中心部のB量の0.3倍以上であることを特徴とする、請求項のいずれか1項に記載の高強度鋼板。
  10. 前記表層軟化部のCu量およびNi量の総和が前記板厚中心部のCu量およびNi量の総和の0.3倍以上であることを特徴とする、請求項のいずれか1項に記載の高強度鋼板。
  11. 前記表層軟化部の表面に、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、または電気亜鉛めっき層を更に含むことを特徴とする、請求項1〜10のいずれか1項に記載の高強度鋼板。
JP2018533278A 2017-02-20 2018-02-20 高強度鋼板 Active JP6443592B1 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017029295 2017-02-20
JP2017029283 2017-02-20
JP2017029283 2017-02-20
JP2017029295 2017-02-20
PCT/JP2018/006053 WO2018151322A1 (ja) 2017-02-20 2018-02-20 高強度鋼板

Publications (2)

Publication Number Publication Date
JP6443592B1 true JP6443592B1 (ja) 2018-12-26
JPWO2018151322A1 JPWO2018151322A1 (ja) 2019-02-21

Family

ID=63169528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018533278A Active JP6443592B1 (ja) 2017-02-20 2018-02-20 高強度鋼板

Country Status (9)

Country Link
US (1) US11408046B2 (ja)
EP (1) EP3584348A4 (ja)
JP (1) JP6443592B1 (ja)
KR (1) KR102289151B1 (ja)
CN (1) CN110177894B (ja)
BR (1) BR112019016852A2 (ja)
MX (1) MX2019009701A (ja)
TW (1) TWI656037B (ja)
WO (1) WO2018151322A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110168125B (zh) * 2017-02-20 2021-11-26 日本制铁株式会社 高强度钢板
JP6816729B2 (ja) * 2018-01-25 2021-01-20 Jfeスチール株式会社 クラッド鋼板およびその製造方法
KR102527545B1 (ko) * 2019-03-28 2023-05-03 닛폰세이테츠 가부시키가이샤 고강도 강판
WO2020203934A1 (ja) * 2019-03-29 2020-10-08 日本製鉄株式会社 高強度熱間圧延鋼板
CN110846564A (zh) * 2019-09-30 2020-02-28 邯郸钢铁集团有限责任公司 低成本高强大梁钢750l及其生产方法
KR20210080670A (ko) * 2019-12-20 2021-07-01 주식회사 포스코 표면품질과 전기저항 점 용접성이 우수한 고강도 용융아연도금 강판 및 그 제조방법
US20230078690A1 (en) * 2020-02-13 2023-03-16 Nippon Steel Corporation Hot-stamped product
JP7273354B2 (ja) * 2020-03-16 2023-05-15 日本製鉄株式会社 鋼板
US20230097055A1 (en) * 2020-05-08 2023-03-30 Nippon Steel Corporation Hot-rolled steel sheet and manufacturing method thereof
KR20220156962A (ko) * 2020-08-07 2022-11-28 닛폰세이테츠 가부시키가이샤 강판
CN115605625B (zh) * 2020-08-07 2024-03-22 日本制铁株式会社 钢板
JP7176665B1 (ja) * 2021-03-31 2022-11-22 Jfeスチール株式会社 クラッド鋼板および部材、ならびに、それらの製造方法
JPWO2022234792A1 (ja) * 2021-05-06 2022-11-10
JPWO2022234791A1 (ja) * 2021-05-06 2022-11-10
WO2024029145A1 (ja) * 2022-08-03 2024-02-08 日本製鉄株式会社 鋼板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011150217A2 (en) * 2010-05-28 2011-12-01 Greatpoint Energy, Inc. Conversion of liquid heavy hydrocarbon feedstocks to gaseous products
WO2011152017A1 (ja) * 2010-05-31 2011-12-08 Jfeスチール株式会社 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
WO2016111272A1 (ja) * 2015-01-09 2016-07-14 株式会社神戸製鋼所 高強度めっき鋼板、並びにその製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130782A (ja) 1996-11-01 1998-05-19 Nippon Steel Corp 超高強度冷延鋼板およびその製造方法
JP4586449B2 (ja) * 2004-02-27 2010-11-24 Jfeスチール株式会社 曲げ性および伸びフランジ性に優れた超高強度冷延鋼板およびその製造方法
JP5223360B2 (ja) * 2007-03-22 2013-06-26 Jfeスチール株式会社 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP4977879B2 (ja) * 2010-02-26 2012-07-18 Jfeスチール株式会社 曲げ性に優れた超高強度冷延鋼板
WO2011142285A1 (ja) * 2010-05-14 2011-11-17 新日本製鐵株式会社 高強度鋼板とその製造方法
JP5273324B1 (ja) * 2011-07-29 2013-08-28 新日鐵住金株式会社 曲げ性に優れた高強度亜鉛めっき鋼板およびその製造方法
US9540720B2 (en) * 2011-09-30 2017-01-10 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet and high-strength alloyed hot-dip galvanized steel sheet having excellent formability and small material anisotropy with ultimate tensile strength of 980 MPa or more
JP6246621B2 (ja) * 2013-05-08 2017-12-13 株式会社神戸製鋼所 引張強度が1180MPa以上の強度−曲げ性バランスに優れた溶融亜鉛めっき鋼板もしくは合金化溶融亜鉛めっき鋼板
JP2015034334A (ja) * 2013-07-12 2015-02-19 株式会社神戸製鋼所 めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法
JP5862651B2 (ja) 2013-12-18 2016-02-16 Jfeスチール株式会社 耐衝撃性および曲げ加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
EP2886332B1 (de) * 2013-12-20 2018-11-21 ThyssenKrupp Steel Europe AG Stahlflachprodukt, und verfahren zur herstellung eines bauteils für eine fahrzeugkarosserie und einer karosserie für ein kraftfahrzeug.
JP2015193907A (ja) * 2014-03-28 2015-11-05 株式会社神戸製鋼所 加工性、および耐遅れ破壊特性に優れた高強度合金化溶融亜鉛めっき鋼板、並びにその製造方法
JP6044576B2 (ja) * 2014-03-31 2016-12-14 Jfeスチール株式会社 成形性および耐水素脆性に優れた高強度薄鋼板およびその製造方法
CN106574337B (zh) 2014-07-25 2018-08-24 杰富意钢铁株式会社 高强度熔融镀锌钢板及其制造方法
JP6010144B2 (ja) * 2015-01-09 2016-10-19 株式会社神戸製鋼所 めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法
WO2016111273A1 (ja) * 2015-01-09 2016-07-14 株式会社神戸製鋼所 高強度めっき鋼板、並びにその製造方法
WO2016111274A1 (ja) * 2015-01-09 2016-07-14 株式会社神戸製鋼所 めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法
JP6093411B2 (ja) 2015-01-09 2017-03-08 株式会社神戸製鋼所 めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法
WO2016111275A1 (ja) * 2015-01-09 2016-07-14 株式会社神戸製鋼所 めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法
JP6085348B2 (ja) 2015-01-09 2017-02-22 株式会社神戸製鋼所 高強度めっき鋼板、並びにその製造方法
JP6093412B2 (ja) 2015-01-09 2017-03-08 株式会社神戸製鋼所 めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法
MX2017009017A (es) * 2015-01-09 2018-04-13 Kobe Steel Ltd Lamina de acero chapada de alta resistencia y metodo para su produccion.
CN107636184A (zh) 2015-06-11 2018-01-26 新日铁住金株式会社 合金化热浸镀锌钢板及其制造方法
JP6524810B2 (ja) 2015-06-15 2019-06-05 日本製鉄株式会社 耐スポット溶接部破断特性に優れた鋼板及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011150217A2 (en) * 2010-05-28 2011-12-01 Greatpoint Energy, Inc. Conversion of liquid heavy hydrocarbon feedstocks to gaseous products
WO2011152017A1 (ja) * 2010-05-31 2011-12-08 Jfeスチール株式会社 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
WO2016111272A1 (ja) * 2015-01-09 2016-07-14 株式会社神戸製鋼所 高強度めっき鋼板、並びにその製造方法

Also Published As

Publication number Publication date
CN110177894B (zh) 2021-11-19
TWI656037B (zh) 2019-04-11
US11408046B2 (en) 2022-08-09
US20200010919A1 (en) 2020-01-09
TW201834846A (zh) 2018-10-01
BR112019016852A2 (pt) 2020-04-07
EP3584348A4 (en) 2020-08-05
WO2018151322A1 (ja) 2018-08-23
KR20190108129A (ko) 2019-09-23
CN110177894A (zh) 2019-08-27
MX2019009701A (es) 2019-10-02
EP3584348A1 (en) 2019-12-25
JPWO2018151322A1 (ja) 2019-02-21
KR102289151B1 (ko) 2021-08-13

Similar Documents

Publication Publication Date Title
JP6443593B1 (ja) 高強度鋼板
JP6443592B1 (ja) 高強度鋼板
JP5578289B2 (ja) 冷延鋼板、及びその製造方法、並びにホットスタンプ成形体
JP5021108B2 (ja) 延性と伸びフランジ性に優れた高強度鋼板、高強度亜鉛めっき鋼板およびこれらの製造方法
KR101613806B1 (ko) 가공성이 우수한 고강도 강판의 제조 방법
JP5971434B2 (ja) 伸びフランジ性、伸びフランジ性の面内安定性および曲げ性に優れた高強度溶融亜鉛めっき鋼板ならびにその製造方法
JP6540162B2 (ja) 延性および伸びフランジ性に優れた高強度冷延鋼板、高強度合金化溶融亜鉛めっき鋼板、およびそれらの製造方法
JP5251208B2 (ja) 高強度鋼板とその製造方法
JP5924332B2 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2012002565A1 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010275627A (ja) 加工性に優れた高強度鋼板および高強度溶融亜鉛めっき鋼板並びにそれらの製造方法
KR20140117584A (ko) 강판, 도금 강판 및 그들의 제조 방법
JP6750771B1 (ja) 溶融亜鉛めっき鋼板およびその製造方法
KR102177591B1 (ko) 고강도 강판 및 그 제조 방법
KR20220068245A (ko) 고강도 강판 및 그의 제조 방법
WO2017131052A1 (ja) 温間加工用高強度鋼板およびその製造方法
CN114945694B (zh) 钢板及其制造方法
JP4622783B2 (ja) 剛性に優れた高強度薄鋼板およびその製造方法
JP4858232B2 (ja) 高張力冷延鋼板、高張力亜鉛めっき鋼板およびそれらの製造方法
WO2020110795A1 (ja) 高強度鋼板およびその製造方法
JP5987999B1 (ja) 高強度鋼板およびその製造方法
WO2023002910A1 (ja) 冷延鋼板及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180622

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180622

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181112

R151 Written notification of patent or utility model registration

Ref document number: 6443592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350