WO2011142285A1 - 高強度鋼板とその製造方法 - Google Patents

高強度鋼板とその製造方法 Download PDF

Info

Publication number
WO2011142285A1
WO2011142285A1 PCT/JP2011/060495 JP2011060495W WO2011142285A1 WO 2011142285 A1 WO2011142285 A1 WO 2011142285A1 JP 2011060495 W JP2011060495 W JP 2011060495W WO 2011142285 A1 WO2011142285 A1 WO 2011142285A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
strength
thickness
rolling
mpa
Prior art date
Application number
PCT/JP2011/060495
Other languages
English (en)
French (fr)
Inventor
熊谷 達也
道典 後藤
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to JP2011539814A priority Critical patent/JP4897125B2/ja
Priority to BR112012020133A priority patent/BR112012020133B1/pt
Priority to CN201180005443.4A priority patent/CN102712972B/zh
Publication of WO2011142285A1 publication Critical patent/WO2011142285A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength steel plate having a yield strength of 885 MPa or more, a plate thickness of 6 mm or more and 32 mm or less, which is excellent in bending workability, weldability and toughness used for structural members of construction machines and industrial machines, and a method for producing the same.
  • Construction machines such as cranes and concrete pump cars tend to become larger and larger with the recent rise in buildings.
  • the need for weight reduction of structural members is increasing, and the demand for high-strength steel having a yield strength of 885 MPa or more or a tensile strength of 950 MPa or more is also increasing.
  • severe bending is often performed, for example, 2.0 t (bending radius is 2.0 times the plate thickness and 180 ° bending can be performed without cracking). In many cases, bending with such a severe bending radius is required.
  • Patent Document 1 discloses a high-strength steel sheet having a yield strength of 885 MPa class (approximately 950 MPa or more in tensile strength) as a high-strength steel sheet having a tensile strength of 950 MPa class.
  • a thick steel plate is assumed, bending workability is not particularly taken into consideration, and a large amount of Ni is indispensable for securing toughness, which is not economical for construction machinery.
  • Patent Document 2 relates to a method of manufacturing a steel sheet mainly for line pipes having a tensile strength of 950 MPa or more, but bending workability is not considered, and rolling in a two-phase region at a low temperature is essential. The low productivity is also a problem.
  • Patent Document 3 discloses a thick steel plate having a tensile strength of 950 MPa or more which is excellent in strain aging resistance, but this steel plate also does not consider bending workability at all.
  • Patent Document 4 also discloses a method for producing a steel sheet having a tensile strength of 980 MPa or more without being subjected to non-tempering.
  • Mn and the like are included. Since the amount of the alloy must be high, it is not economical, and the bending workability is not considered.
  • Patent Document 5 relates to a steel having a tensile strength of 980 MPa in which bending workability is also considered, but relies on refinement of the crystal grain size to improve the bending workability, and is offline in order to make the crystal grain size uniform and uniform. Since reheating and quenching is premised on, the productivity is low and it is not possible to sufficiently meet vigorous demand. Further, since the index of bending workability is only the elongation value, it is not clear whether bending work with a severe bending radius such as 2.0 t is possible.
  • Patent Document 6 relates to a hot-rolled steel sheet having a tensile strength of 950 MPa or more in consideration of bending workability and weldability.
  • a large amount of Ti is necessary, and when applied to a thick plate, the weldability is low. It seems to be reduced, and there is also a problem in economic efficiency because addition of Ni is essential in order to compensate for a decrease in toughness due to addition of high Ti.
  • the object of the present invention is to solve the above-mentioned conventional problems, yield strength of 885 MPa or more excellent in bending workability, weldability and toughness used for structural members of construction machinery and industrial machinery, tensile strength of 950 to 1200 MPa, plate It is to provide a high-strength steel sheet having a thickness of 6 mm or more and 32 mm or less and a method for producing the same.
  • the inventors diligently studied a method for greatly improving the bending workability of high-strength steel having a yield strength of 885 MPa or higher and a tensile strength of 950 to 1200 MPa. As a result, it became clear that the influence of the hardness on the outermost surface of the steel sheet is extremely large. In other words, even if the strength of the majority of the steel sheet is high, if the surface layer has a softened layer with a certain thickness, it is possible to suppress the occurrence of cracks on the surface during bending, greatly improving bending workability. can do.
  • the upper limit of yield strength and tensile strength shall be 1200 MPa. If necessary, the upper limit of yield strength or tensile strength may be limited to 1150 MPa or 1100 MPa. As the plate thickness increases, it becomes difficult to improve bending workability, strength, and weldability. Therefore, the upper limit of the plate thickness may be limited to 25 mm, 20 mm, or 16 mm. If the plate thickness becomes small, it becomes difficult to ensure the cooling start temperature, so the lower limit of the plate thickness may be limited to 8 mm or 10 mm.
  • the structure of the steel sheet is also important, and it has been found that there is a good correlation between the degree of elongation of prior austenite grains (hereinafter referred to as aspect ratio) in the direction parallel to the bending direction and bending workability.
  • aspect ratio degree of elongation of prior austenite grains
  • from the surface side of the steel plate where deformation due to bending increases specifically from the surface to a depth of 1/4 of the plate thickness (hereinafter referred to as “surface side from the plate thickness of 1/4 t”), 3 /
  • the aspect ratio from the depth of 4 to the back side (hereinafter referred to as “the back side from the plate thickness 3 / 4t”) is important.
  • the bending workability of high-strength steel can be greatly improved. Specifically, in order for a steel plate having a yield strength of 885 MPa or more and a thickness of 32 mm or less to satisfy bending workability at a severe bending radius of 2.0 t, the following control is necessary.
  • FIG. 1 is an example of a graph showing the relationship between hardness and elongation in a tensile test of various strength steel materials having almost uniform hardness. From this, it can be seen that the elongation of the steel material depends greatly on the hardness.
  • the 13B tensile test piece prescribed in JIS Z 2241 was used as the test piece.
  • Hv (Vickers hardness) of high strength steel having a yield strength of 885 MPa or more is about 300 or more, but when Hv is 300 to 250 or less, the elongation is improved by about 2% or more.
  • the softening layer of Hv 250 or less is 50 ⁇ m or more on the surface layer of the plate thickness, the elongation of the surface layer is improved and the occurrence of cracks during bending can be considerably suppressed, and the bending workability of the entire steel plate Can be greatly improved.
  • the thickness of the softened layer is too large, the average hardness of the entire thickness, that is, the strength of the tensile test is lowered.
  • the aspect ratio of the surface side from the plate thickness 1 / 4t and the back side from the plate thickness 3 / 4t are important, but the aspect ratio at the plate thickness 1 / 4t may be used as an index. .
  • 1 / 4t and 3 / 4t have substantially the same aspect ratio, and the aspect ratio is larger on the front side than 1 / 4t and on the back side than 3 / 4t. Accordingly, the aspect ratio from the front surface side to 1 / 4t and the back surface side from 3 / 4t can be considered to be equal to or higher than the aspect ratio of 1 / 4t.
  • FIG. 2 examined the relationship between the softened layer thickness and aspect ratio and bending workability in various high-strength steel sheets having a thickness of 12 mm or more and 32 mm or less, a yield strength of 885 MPa or more, and a tensile strength of 950 to 1200 MPa. It is a graph which shows a result.
  • the bending workability was evaluated in accordance with the method specified in JIS Z 2248 in the direction parallel to the final rolling direction (hereinafter referred to as “L”) using a No. 1 test piece with a bending radius (2.0 t) of 2.0 times the plate thickness.
  • the aspect ratio is a section parallel to the final rolling direction (hereinafter referred to as “L section”) in the case of bending in the L direction, and a section perpendicular to the final rolling direction (hereinafter referred to as “T section”) in the case of bending in the T direction. )),
  • L section a section parallel to the final rolling direction
  • T section a section perpendicular to the final rolling direction
  • the prior austenite grain boundary at the position of the thickness 1/4 t was revealed by picric acid corrosion, and 5 fields of 200 ⁇ m ⁇ 200 ⁇ m were measured and calculated by image analysis.
  • the steel of the present invention has a tempered martensite or bainite main structure, and the aspect ratio here is the average aspect ratio of the prior austenite grain boundaries.
  • the plate thickness surface layer has a softening layer of Hv 250 or less and a thickness of 50 ⁇ m or more. If the average aspect ratio of the prior austenite grains in the cross section is 1.6 or more, it can be bent without cracking even in the bending radius condition of 2.0t in both the L-direction bending and the T-direction bending. It turns out that it becomes.
  • FIG. 3 shows the relationship between the cumulative rolling reduction in the final rolling direction and the vertical direction and the average aspect ratio of the T-section structure in the temperature range of 1000 ° C. or less (non-recrystallization temperature range) in Nb-added steel. Is the relationship between the cumulative rolling reduction in the final rolling direction and the average aspect ratio of the L cross-sectional structure in the temperature range of 1000 ° C. or less. The aspect ratio is measured at a thickness of 1/4 t.
  • the component ranges of the test steel plates are C: 0.11 to 0.16%, Si: 0.27 to 0.33%, Mn: 0.95 to 1.31%, P : 0.001 to 0.004%, S: 0.001 to 0.002%, Mo: 0.16 to 0.35%, Al: 0.03 to 0.04%, Nb: 0.016 to 0 0.033%, Ti: 0.012 to 0.019%, B: 0.0009 to 0.0019%, N: 0.0033 to 0.0049%, Pcm: 0.24 to 0.29%, The thickness of the test steel plate was 6 mm to 32 mm.
  • the average aspect ratio is 1.6 or more when the cumulative rolling reduction in the temperature range of 1000 ° C. or less is 25% or more. Therefore, as a specific rolling method, after rolling out so that the cumulative reduction ratio in the temperature range of 1000 ° C. or less is 25% or more, the rolling direction is rotated by 90 °, and the cumulative reduction ratio is 25%. Rolling is performed in the final rolling direction so as to achieve the above. In order to obtain an appropriate aspect ratio by this method, it is essential to add Nb which has an effect of expanding the non-recrystallization temperature range.
  • the inventor conducted a y-type weld crack test specified in JIS Z3158 on various steel plates having a thickness of 25 mm to 32 mm, a yield strength of 885 MPa or more, and a tensile strength of 950 to 1200 MPa. The relationship with temperature was investigated. The result is shown in FIG.
  • the preheating temperature is as low as possible.
  • the target thickness was 25 to 32 mm and the preheating temperature at which the crack stop preheating temperature, that is, the root cracking rate becomes 0, was 50 ° C. or less.
  • FIG. 5 shows that the Pcm for the root crack rate to be completely 0 at a preheating temperature of 50 ° C. is 0.29% or less, and this is taken as a guideline for the upper limit of the alloy addition amount.
  • the average of the absorbed energy value of the impact test at ⁇ 40 ° C. of the JIS Z 2242 V notch test piece is 33 J / cm 2 or more which is considered to be sufficient as a structural member. This is achieved by regulating the upper limit of the amount of alloying elements to be inhibited and selecting an appropriate tempering temperature.
  • the gist of the present invention is as follows. (1) In mass%, C: 0.10% or more, 0.18% or less, Si: more than 0.20%, 0.80% or less, Mn: 0.20% or more, 1.60% or less, Mo: 0.10% or more, 0.60% or less, Nb: 0.010% or more, 0.050% or less, Ti: 0.005% or more, 0.030% or less, Al: 0.01% or more, 0.10% or less, B: 0.0003% or more, 0.0030% or less, P: 0.012% or less, S: 0.005% or less, N: 0.0060% or less, with the balance being Fe and inevitable impurities, and having a component composition satisfying that Pcm defined by the following (Formula 1) is 0.29% or less.
  • It has a softening layer of Hv250 or less, having a thickness of 50 ⁇ m or more and not exceeding 3% of the plate thickness of the steel plate, and is parallel to the final rolling direction at a position at a depth of 1/4 of the plate thickness from the surface.
  • the average aspect ratio of the prior austenite grains in the cross section and the cross section perpendicular to the final rolling direction is 1.6 or more, the yield strength is 885 MPa or more, and the average absorbed energy value in the impact test at ⁇ 40 ° C. is 33 J / cm 2 or more.
  • a high-strength steel sheet characterized by being.
  • a steel plate having a thickness of 6 mm or more and 32 mm or less is obtained by hot rolling. After rolling in the direction perpendicular to the final rolling direction so as to be not less than 90%, the rolling direction is rotated by 90 °, and the final rolling is performed so that the cumulative rolling reduction is not less than 25%.
  • the method for producing a high-strength steel sheet is characterized in that it is water-cooled to a temperature of 300 ° C. or lower and then tempered at a temperature of 400 ° C. or higher.
  • a high-strength steel sheet having an average of 33 J / cm 2 or more and a thickness of 6 mm or more and 32 mm or less can be economically provided.
  • C is an important element that greatly affects the strength of the steel of the present invention mainly composed of a tempered martensite structure or a tempered bainite structure.
  • a yield strength of 885 MPa or more In order to obtain a yield strength of 885 MPa or more, addition of 0.10% or more is necessary. However, if it exceeds 0.18%, bending workability deteriorates, so the upper limit is made 0.18%.
  • the lower limit of C may be set to 0.11% or 0.12%. In order to improve weldability, the upper limit of C may be 0.17%, 0.16%, or 0.15%.
  • Si has the effect of suppressing the cementite coarsening and improving the strength-toughness balance when the martensite structure is tempered.
  • Si is 0.2% or less, cementite of the martensite structure is likely to be coarsened, so the Si addition amount is set to exceed 0.2%.
  • Si is 0.25% or more.
  • the upper limit is made 0.80%. In order to improve toughness, the upper limit of Si may be limited to 0.55%, 0.40%, or 0.34%.
  • Mn is an element effective for improving hardenability and improving strength, and 0.20% or more is added. However, if it exceeds 1.60%, segregation is promoted and coarse MnS may be formed to inhibit bending workability, so 1.60% is made the upper limit of addition.
  • the amount of Mn added is desirably 1.40% or less.
  • the lower limit of Mn may be limited to 0.45%, 0.70%, 0.85%, or 0.95%.
  • the upper limit of Mn may be limited to 1.40%, 1.30% or 1.25%.
  • Mo improves hardenability with a relatively small amount of addition, and is very effective for improving the strength of the tempered martensite structure or tempered bainite structure by precipitation strengthening, so addition of 0.10% or more is essential. . However, if a large amount is added, weldability may be impaired, and it is also an expensive element, so the addition is made 0.60% or less.
  • the lower limit of Mo may be limited to 0.17%, 0.25%, or 0.30%.
  • the upper limit of Mo may be limited to 0.55%, 0.50%, or 0.45%.
  • Nb is an essential element for generating fine carbides during rolling to widen the non-recrystallization temperature range to enhance the control rolling effect and to increase the aspect ratio of austenite.
  • the precipitation strengthening effect is effective in improving the strength of the tempered martensite structure or tempered bainite structure.
  • Nb is added by 0.010% or more. However, if added excessively, weldability may be hindered, so the added amount is made 0.050% or less.
  • the lower limit of Nb may be set to 0.014% or 0.018% for strength improvement and fine graining. In order to improve weldability, the lower limit of Nb may be 0.040%, 0.035%, or 0.031%.
  • B is used to obtain sufficient hardenability, but it is necessary to secure free B during direct quenching heat treatment.
  • N is added for the purpose of fixing N as TiN.
  • Ti is added in an amount of 0.005% or more for this purpose, but excessive addition may reduce weldability, so the upper limit is made 0.030%.
  • the lower limit of Ti may be 0.008%, 0.010%, or 0.012%.
  • the upper limit of Ti may be 0.026% or 0.020%.
  • Al is added in an amount of 0.01% or more as a deoxidizer, but excessive addition may reduce toughness, so the upper limit is 0.10%.
  • the lower limit of Al may be set to 0.02% or 0.03%.
  • the upper limit of Al may be 0.07% or 0.05%.
  • B is required to be 0.0003% or more in order to exert the effect of improving hardenability and ensure the strength, but if added over 0.0030%, weldability and toughness may be lowered.
  • the content of is 0.0003% or more and 0.0030% or less.
  • the lower limit of B may be 0.0005%, 0.0008%, or 0.0010%.
  • the upper limit of B may be 0.0025%, 0.0022%, or 0.0019%.
  • P is a harmful element that reduces toughness as an inevitable impurity. Therefore, the content is suppressed to 0.012% or less. In order to improve toughness, it may be 0.010% or less, 0.008% or 0.005% or less.
  • S is an unavoidable impurity and is a harmful element that reduces the bending workability by forming MnS, so it is desirable to reduce it as much as possible. Therefore, the content is suppressed to 0.005% or less. In order to improve bending workability, it may be 0.004% or less, 0.003% or 0.002% or less.
  • the upper limit of N may be set to 0.0050% or 0.0041%. Since N is mixed as an unavoidable impurity during the production of steel, no lower limit is particularly provided.
  • Cu is an element that can improve strength without reducing toughness by solid solution strengthening, and may be added in an amount of 0.01% or more for that purpose. However, even if added in a large amount, the effect of improving the strength is limited, and the weldability may be impaired due to the excessive addition, so the addition is made 1.00% or less. In order to improve economy, the upper limit of Cu may be limited to 0.55%, 0.35%, or 0.25%.
  • Ni has the effect of improving hardenability and toughness, so 0.01% or more may be added.
  • Ni is an expensive element, and if a large amount of Ni is added, the decarburization reaction may be suppressed and the softening layer necessary for the present invention may not be obtained appropriately, so the addition is 0.25% or less. To do. As needed, it is good also as 0.20% or less and 0.15% or less.
  • Cr improves the hardenability and is effective in improving the strength, so 0.01% or more may be added. However, if excessively added, the weldability may be lowered, so the addition is made 2.00% or less. In order to improve economy, the upper limit of Cr may be limited to 1.00%, 0.55%, or 0.35%.
  • V also improves hardenability, has a precipitation strengthening effect in the tempered martensite structure or tempered bainite structure, and is effective in improving the strength. Therefore, V may be added in an amount of 0.005% or more. However, since a large amount of addition may impair weldability and is an expensive element, the addition is made 0.080% or less. In order to improve economy, the upper limit of V may be limited to 0.07%, 0.04%, or 0.03%.
  • Ca has the effect of reducing the influence of MnS, which is harmful to bending workability, by spheroidizing the sulfide of the steel sheet, and 0.0001% or more may be added for this purpose.
  • the upper limit of addition is made 0.0030% or less.
  • the upper limit of Ca may be limited to 0.0020%, 0.0015%, or 0.0010%.
  • the component composition in order to ensure weldability and strength, is limited so that Pcm defined by the following (Formula 1) is 0.29% or less. To do. In order to improve weldability, the upper limit of Pcm may be limited to 0.28%, 0.27%, or 0.26%. In order to improve the strength, the lower limit of Pcm may be limited to 0.22%, 0.23%, or 0.24%.
  • Pcm [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 [B] ...
  • (Formula 1) it is preferable to limit the component composition so that Ceq defined by the following (formula 2) is 0.38 to 0.60.
  • the upper limit of Ceq may be limited to 0.55%, 0.52, or 0.49%.
  • the lower limit of Ceq may be limited to 0.40%, 0.42%, or 0.44%.
  • the slab having the above steel component composition is heated for 3 hours or more at a temperature of 1250 ° C. or more and 1350 ° C. or less in an atmosphere having an oxygen concentration of 3% or more. This is to form a relatively thick decarburized layer on the surface of the slab in order to form a softened layer on the surface layer of the steel plate, and when the steel plate finally has a plate thickness of 32 mm or less by hot rolling, it is 50 ⁇ m on the surface of the steel plate.
  • the purpose is to leave the above decarburized layer.
  • the heating temperature is less than 1250 ° C.
  • a sufficient decarburized layer thickness of 50 ⁇ m or more cannot be obtained. If the heating temperature exceeds 1350 ° C., the decarburized layer becomes too thick and the average hardness of the entire thickness or the strength of the tensile test may be lowered. Therefore, the upper limit of the heating temperature is 1350 ° C.
  • the thickness of the slab is large, the thickness of the decarburized layer of the rolled steel sheet becomes relatively thin. Therefore, it is desirable that the thickness of the slab to be heated does not exceed 350 mm.
  • the thickness of the slab may be 300 mm or less or 250 mm or less. It is good also considering the thickness of a slab as 50 mm or more, 80 mm or more, or 100 mm or more so that the ratio of the decarburization layer in a steel plate may not become large. Even if the heating time is excessively long, the decarburized layer may be too thick, which may reduce the average hardness of the entire thickness or the strength of the tensile test. Therefore, it is desirable that the heating time does not exceed 30 hours.
  • the slab after heating may be cooled once as it is depending on the timing of input to the next step, or may be subsequently input to the next step of reheating to 1100 ° C. or higher.
  • the conditions for cooling are not particularly limited in terms of the material, but may be cooled after preliminary hot rolling or forging to an appropriate thickness according to the final steel plate thickness.
  • the slab is reheated to 1100 ° C. or higher so that Nb is sufficiently dissolved, and is hot rolled to obtain a steel plate having a thickness of 6 mm to 32 mm.
  • the rolling direction After rolling so that the cumulative reduction ratio in the temperature range of 1000 ° C. or lower is 25% or more, the rolling direction is rotated by 90 °, and further rolling is performed so that the cumulative reduction ratio is 25% or more. If necessary, the rolling direction may be rotated 90 ° thereafter.
  • the average aspect ratio of both the T cross-sectional structure and the L cross-sectional structure is 1.6 or more, and by having a softened layer of 50 ⁇ m or more on the plate thickness surface layer, a high strength of 32 mm or less and a yield strength of 885 MPa or more is obtained.
  • the steel plate In both the L-direction bending and the T-direction bending, the steel plate can be bent without being broken even by bending at a bending radius of a steel plate thickness of 2.0 t.
  • the cumulative reduction ratio in each direction or both directions may be 30% or more or 35% or more.
  • On-line water cooling is to perform water cooling subsequent to hot rolling by water cooling equipment arranged on the same line as the rolling mill, and so-called direct quenching.
  • the purpose of direct quenching is also to make the structure martensite or bainite to obtain high strength.
  • direct quenching that does not require off-line quenching, that is, quenching after reheating is advantageous.
  • the water cooling start temperature is high. If the temperature is Ar3 or higher, it may be 750 ° C or higher, 780 ° C or higher, or 800 ° C or higher.
  • the yield stress is much lower than the tensile strength.
  • a tempering heat treatment is performed at a temperature of 400 ° C. or higher to obtain a tempered martensite or tempered bainite structure, whereby a high strength of a yield strength of 885 MPa or more can be obtained and an excellent toughness can be obtained.
  • the reason why the tempering temperature is set to 400 ° C. or higher is to avoid a brittle region of 300 ° C. to 400 ° C. and to obtain sufficient precipitation strengthening by fine carbides such as Mo.
  • the time for the tempering heat treatment may be about 15 minutes or more.
  • the upper limit of the tempering temperature may be 600 ° C, 575 ° C, or 550 ° C.
  • the lower limit of the tempering temperature may be 425 ° C, 450 ° C, or 475 ° C.
  • high-temperature long-time heating to form a decarburized layer is also possible by heating at the time of hot rolling of the steel sheet, but in that case, the austenite coarsening by high-temperature long-time heating is the coarsening of the austenite grain size after rolling Therefore, it is preferable to use a soaking heat treatment of the slab for the purpose of reducing segregation.
  • Steel pieces obtained by melting steels of A to AI having the composition shown in Table 1 are manufactured according to the production conditions of Examples 1 to 18 of the present invention and Comparative Examples of 19 to 49 shown in Table 2, respectively. Steel plates having a thickness of 6 to 32 mm were produced.
  • Decarburization treatment in Table 2
  • all cooling was performed once.
  • reheating to 1100 ° C. or higher (“Hot rolling and accelerated cooling / rolling heating temperature” in Table 2) was performed.
  • Ar3 is an actual measurement value measured by detecting thermal expansion when a sample collected from a steel sheet is heated to 1100 ° C. and then cooled at 2.5 ° C./min.
  • the thickness of the softening layer of Hv 250 or less on the steel sheet surface layer and the aspect ratio of the austenite grains in the L direction and the T direction are measured, and the yield strength, tensile strength, weld cracking property, bending workability, and toughness are measured. evaluated.
  • the thickness of the softening layer of Hv250 or less in the steel sheet surface layer was measured by carrying out the micro Vickers hardness test (Hv0.1) defined in JIS Z 2244 at a pitch of 10 ⁇ m, and the ratio of the surface softening layer to the plate thickness was determined. .
  • the aspect ratio of the prior austenite grains in the L direction and the T direction was calculated by image analysis by measuring the prior austenite grain boundary at the plate thickness 1 / 4t position by picric acid corrosion and measuring 5 fields of 200 ⁇ m ⁇ 200 ⁇ m. .
  • the yield strength and the tensile strength were measured by taking the No. 1A tensile test piece specified in JIS Z 2241 and measured by the tensile test specified in JIS Z 2241, and the yield strength passed 885 MPa or more.
  • the evaluation of bending workability was performed by 180 degree bending in the L direction and the T direction with a bending radius (2.0 t) of 2.0 times the plate thickness with the No. 1 test piece according to the method specified in JIS Z 2248. In any direction, the test was accepted if no cracks or other defects occurred outside the curved portion after the bending test.
  • the weld cracking property was evaluated in a y-type weld cracking test specified in JIS Z 3158.
  • the welding conditions are CO2 welding with a heat input of 15 kJ / cm, and the steel plate thickness used for the evaluation is 25 mm and 32 mm.
  • the root cracking rate was 0 at a preheating temperature of 50 ° C., it was evaluated as acceptable.
  • the weldability is considered to be the same as that of Examples 2, 5, and 9 of the same component, so the y-type weld cracking test was omitted. .
  • the toughness was obtained by taking a JIS Z 2242 V notch test piece from the center of the plate thickness at right angles to the rolling direction, and evaluating it with the average value of the three absorbed energy values of the impact test at ⁇ 40 ° C., with a target of 33 J / cm 2 or more. Value.
  • board thickness is 6 mm, it was set as the target value that it was set as the Charpy test piece of 5 mm subsize, and the absorbed energy value was 33 J / cm ⁇ 2 > or more.
  • Comparative Examples 19 to 37 in which the chemical components indicated by the underline in the table deviate from the scope limited by the present invention, the yield strength and the bending work were obtained even though the production method was the method of the present invention.
  • One or more of the properties, weld cracking properties, and toughness is less than the target value.
  • Comparative Example 38 in which the Pcm value deviates from the range of the present invention has a poor weld cracking property.
  • Comparative Example 39 having a low heating temperature for decarburization heat treatment
  • Comparative Example 41 having a short heating time for decarburization heat treatment
  • furnace oxygen concentration during decarburization heat treatment In Comparative Examples 42 having a low thickness, the thickness of the surface softening layer is small, so that the bending workability is unacceptable.
  • Comparative Example 40 where the heating temperature of the decarburization heat treatment is too high, the yield ratio is low because the thickness ratio of the surface softening layer is too large.
  • Comparative Example 43 having a low rolling heating temperature, since Nb does not dissolve, austenite is not sufficiently refined and bending workability is unacceptable.
  • Comparative Example 44 having a low cumulative rolling reduction in the final rolling direction and perpendicular direction at 1000 ° C. or lower, and Comparative Example 45 having a low cumulative rolling reduction in the final rolling direction at 1000 ° C. or lower have aspect ratios in the T direction and L direction, respectively. Is low and bending workability is unacceptable.
  • the comparative example 46 having a low water cooling start temperature and the comparative example 47 having a high water cooling end temperature have low yield strength because a necessary quenched structure cannot be obtained.
  • Comparative Example 48 without tempering heat treatment has low yield strength, and Comparative Example 49 with low tempering heat treatment temperature has low toughness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

曲げ加工性、溶接性および靭性に優れる降伏強度885MPa以上、-40℃における衝撃試験の吸収エネルギー値の平均が33J/cm2以上の高張力鋼板、及びその製造方法を提供する。 質量%でC:0.10%以上、0.18%以下、Si:0.20%超、0.80%以下、Mn:0.20%以上、1.60%以 下、Mo:0.10%以上、0.60%以下、Nb:0.010%以上、0.050%以下、Ti:0.005%以上、0.030% 以下、Al:0.01%以上、0.10%以下、B:0.0003%以上、0.0030%以下、P:0.012%以下、S:0.0 05%以下、N:0.0060%以下、Pcmが0.29%以下の組成を有し、鋼板表層に50μm以上で、かつ鋼板厚の3%を超えない厚さのHv250以下の軟化層を有し、さらに表面から板厚の1/4の深さの位置におい て、L断面及びT断面における旧オーステナイト粒の平均アスペクト比がそれぞれ1.6以上である。

Description

高強度鋼板とその製造方法
 この発明は、建設機械や産業機械の構造部材に用いられる曲げ加工性、溶接性および靭性に優れる降伏強度885MPa以上、板厚6mm以上、32mm以下である高強度鋼板およびその製造方法に関する。
 クレーンやコンクリートポンプ車などの建設機械は、近年の建造物の高層化に伴ってますます大型化する傾向にある。建設機械の大型化に伴う重量増を抑制するため、構造部材の軽量化ニーズがより高まってきており、降伏強度885MPa以上又は引張強さ950MPa以上の高強度鋼の需要もさらに増加傾向にある。クレーンのブーム材などに適用する場合には厳しい曲げ加工が施される場合が多く、例えば、2.0t(曲げ半径が板厚の2.0倍で、割れなく180°曲げ加工ができること)というような苛酷な曲げ半径での曲げ加工が要求される場合も多い。さらに製造工程で不可避の溶接性、構造部材としての靭性も具備すべき重要な特性である。すなわち高強度であることと、優れた曲げ加工性、溶接性、靭性のいずれをも兼ね備えることが鋼板に要求される。
 降伏強度885MPa級の高強度鋼板(引張強さでは概ね950MPa以上)に関しては、例えば特許文献1には、引張強さ950MPa級の高張力鋼板で開示されているが、これはペンストックなど比較的肉厚の厚い鋼板を想定したものであり、特に曲げ加工性が考慮されておらず、また靭性確保のために多量のNi添加が必須となっており、建機用途としては経済性に欠ける。
 特許文献2は、引張強さ950MPa以上の主にラインパイプ用との鋼板の製造方法に関するものであるが、曲げ加工性が考慮されておらず、低温である2相域での圧延が必須となっており生産性が低いことも難点である。
 特許文献3には、耐歪時効特性に優れた引張強さ950MPa以上の厚鋼板が開示されているが、この鋼板も曲げ加工性については全く考慮されていない。
 特許文献4にも、引張強さ980MPa以上の鋼板を非調質で製造する方法が示されているが、0.025%以下の極低Cで引張強さ980MPaとするために、Mnをはじめ合金量が高くならざるを得ないために経済的でなく、またやはり曲げ加工性については考慮されていない。
 特許文献5は、曲げ加工性も考慮された引張強さ980MPa鋼に関するものであるが、曲げ加工性の改善を結晶粒径微細化に頼っており、結晶粒径を微細均一に揃えるためオフラインでの再加熱焼入れが前提となっていることから生産性が低く、旺盛な需要に十分応えられない。また曲げ加工性の指標が伸び値のみであるため、2.0tというような苛酷な曲げ半径での曲げ加工が可能であるかどうか明確でない。
 特許文献6は、曲げ加工性および溶接性が考慮された引張強さ950MPa以上の熱延鋼板に関するものであるが、多量のTi添加が必要であり、厚板に適用した場合には溶接性が低下するものと思われ、また高Ti添加による靭性低下を補うためにNi添加が必須であることから経済性にも問題がある。
特開平10−265893号公報 特開平8−269546号公報 特開2001−59142号公報 特開2004−84019号公報 特開平2009−242832号公報 特開平5−230529号公報
 本発明の目的は上記した従来の問題点を解決して、建設機械や産業機械の構造部材に用いられる曲げ加工性、溶接性および靭性に優れる降伏強度885MPa以上、引張強さ950~1200MPa、板厚6mm以上、32mm以下である高強度鋼板およびその製造方法を提供することである。
 発明者らは、降伏強度885MPa級以上、引張強さ950~1200MPaの高強度鋼の曲げ加工性を、大幅に改善する方法を鋭意検討した。その結果、鋼板の最表面における硬さの影響が極めて大きいことが明らかとなった。すなわち、鋼板の大部分の強度が高くても、表層に一定厚さの軟化層があれば、曲げ加工の際に表面におけるき裂の発生を抑制することができるので、曲げ加工性を大きく改善することができる。なお、降伏強度および引張強さが1200MPaを超えると曲げ加工性が劣化するため、降伏強度および引張強さの上限は1200MPaとすることが好ましい。必要に応じて、降伏強度又は引張強さの上限を1150MPa又は1100MPaに制限してもよい。板厚が大きくなるほど曲げ加工性、強度及び溶接性の向上が困難になるため、板厚の上限を25mm、20mm又は16mmに限定しても差し支えない。板厚が小さくなると、冷却開始温度を確保し難くなるので、板厚の下限を8mm又は10mmに限定しても差し支えない。
 さらに、鋼板の組織も重要であり、曲げ方向と平行な方向の旧オーステナイト粒の伸長度(以下アスペクト比と記す)と曲げ加工性によい相関があることを見出した。特に曲げ加工による変形が大きくなる鋼板の表面側、具体的には表面から板厚の1/4の深さまで(以下、「板厚1/4tより表面側」という)と、板厚の3/4の深さから裏面まで(以下、「板厚3/4tより裏面側」という)のアスペクト比が重要である。
 上記軟化層とアスペクト比の両方を制御することで、高強度鋼の曲げ加工性を大幅に向上することができる。具体的には、降伏強度885MPa以上の強度を有する板厚32mm以下の鋼板が、2.0tという厳しい曲げ半径での曲げ加工性を満足するためには、以下の制御が必要である。
 図1は、硬さがほぼ均一な種々の強度の鋼材の、引張試験における硬さと伸びとの関係を示すグラフの一例であり、ここから鋼材の伸びが硬さに大きく依存することがわかる。図1では、試験片として、JIS Z 2241に規定の13B号引張試験片を使用した。降伏強度885MPa以上の高強度鋼のHv(ビッカース硬さ)は概ね300程度以上であるが、Hvが300から250以下となることで、伸びは2%程度以上改善する。具体的には、Hv250以下の軟化層が板厚表層に50μm以上あると、表層の伸びが向上して曲げ加工の際のき裂の発生をかなり抑制することができ、鋼板全体の曲げ加工性を大きく向上させることができる。しかしあまり軟化層の厚さが大きいと、全厚の平均硬さつまり引張試験の強度を低下させるので、軟化層の厚さは鋼板の厚さの3%以下とする。
 アスペクト比については、上述のように板厚1/4tより表面側と、板厚3/4tより裏面側のアスペクト比が重要であるが、板厚1/4tにおけるアスペクト比を指標とすればよい。通常の圧延では1/4tと3/4tはほぼ同じアスペクト比となり、1/4tより表面側、3/4tより裏面側はそれよりもアスペクト比が大きくなる。したがって、1/4tより表面側および3/4tより裏面側のアスペクト比は、それぞれ1/4tのアスペクト比と同程度か、あるいはそれ以上とみなせるからである。
 図2は、板厚が12mm以上32mm以下、降伏強度が885MPa以上、引張強さが950~1200MPaのさまざまな高強度鋼板において、軟化層厚さおよびアスペクト比と曲げ加工性との関係を調べた結果を示すグラフである。曲げ加工性の評価は、JIS Z 2248に規定の方法で、1号試験片により板厚の2.0倍の曲げ半径(2.0t)での最終圧延方向に平行な方向(以下、「L方向」という。))あるいは最終圧延方向に垂直な方向(以下、「T方向」という。))の180度曲げを行い、曲げ試験後に湾曲部の外側に裂け疵や、その他の欠陥が生じない場合に合格とした。アスペクト比は、L方向曲げの場合は最終圧延方向に平行な断面(以下、「L断面」という。))、T方向曲げの場合最終圧延方向に垂直な断面(以下、「T断面」という。))において、ピクリン酸腐食により板厚1/4t位置における旧オーステナイト粒界を現出させて、200μm×200μmを5視野測定して、画像解析により算出した。なお、本発明鋼は焼戻しマルテンサイトまたはベイナイト主体組織であり、ここでのアスペクト比は、旧オーステナイト粒界の平均アスペクト比のことである。
 図2より、板厚32mm以下、降伏強度885MPa以上の高強度鋼板において、板厚表層にHv250以下で厚さ50μm以上の軟化層を有するとともに、板厚の1/4t位置において、L断面およびT断面における旧オーステナイト粒の平均アスペクト比がそれぞれ1.6以上であれば、L方向曲げ、T方向曲げいずれの場合にも、2.0tの曲げ半径条件でも割れることなく曲げ加工をすることが可能となることがわかる。
 鋼板のアスペクト比を大きくするためには、未再結晶温度域での制御圧延が有効であるが、通常の一方向のみの圧延ではL断面組織のアスペクト比は大きくなるものの、T断面組織のアスペクト比はあまり大きくならない。L断面組織、T断面組織いずれもアスペクト比を大きくするためには、熱間圧延に際して、未再結晶温度域で適切な幅出し圧延(最終圧延方向と垂直方向に圧延)をした後、圧延方向を90°回転して、最終圧延方向に圧延することが有効である。
 図3は、Nb添加鋼における1000℃以下(未再結晶温度域)の温度範囲での、最終圧延方向と垂直方向の累積圧下率とT断面組織の平均アスペクト比との関係であり、図4は、同じく1000℃以下の温度範囲での、最終圧延方向の累積圧下率とL断面組織の平均アスペクト比との関係である。アスペクト比の測定は板厚1/4t位置で行っている。図3及び図4において、供試鋼板の成分範囲としては、C:0.11~0.16%、Si:0.27~0.33%、Mn:0.95~1.31%、P:0.001~0.004%、S:0.001~0.002%、Mo:0.16~0.35%、Al:0.03~0.04%、Nb:0.016~0.033%、Ti:0.012~0.019%、B:0.0009~0.0019%、N:0.0033~0.0049%、Pcm:0.24~0.29%、また、供試鋼板の板厚範囲としては6mm~32mmのものを使用した。
 これらから、T断面組織、L断面組織いずれの場合も、1000℃以下の温度範囲の累積圧下率が25%以上であれば、平均アスペクト比が1.6以上となることがわかる。したがって、具体的な圧延方法としては、1000℃以下の温度範囲での累積圧下率が25%以上となるように幅出し圧延した後、圧延方向を90°回転し、さらに累積圧下率が25%以上となるように最終圧延方向に圧延を行う。この方法によって適切なアスペクト比を得るためには、未再結晶温度域を広げる効果のあるNb添加は必須である。
 高強度を得るために合金元素が増加すると溶接性や靭性が低下する。発明者は板厚25mm~32mmで、かつ降伏強度885MPa以上、引張強さ950~1200MPaの種々の鋼板について、JIS Z3158に規定のy型溶接割れ試験を実施し、溶接割れ感受性指標Pcmと、予熱温度との関係を調査した。その結果を図5に示す。溶接施工上の負荷を軽減するためには、できるだけ予熱温度が低いことが望ましい。ここでは、板厚25~32mmで割れ停止予熱温度すなわちルート割れ率が0となる予熱温度が50℃以下であることを目標とした。図5から、予熱温度50℃で、ルート割れ率が完全に0となるためのPcmは0.29%以下であり、これを合金添加量の上限の目安とした。
 また靭性については、JIS Z 2242 Vノッチ試験片の−40℃における衝撃試験の吸収エネルギー値の平均が、構造部材として十分であると考えられる33J/cm以上であることを目標とし、靭性を阻害する合金元素の添加量の上限を規制することと、適切な焼戻し温度の選択によりこれを実現する。
 本発明の要旨とするところは下記のとおりである。
(1)質量%で、
C:0.10%以上、0.18%以下、
Si:0.20%超、0.80%以下、
Mn:0.20%以上、1.60%以下、
Mo:0.10%以上、0.60%以下、
Nb:0.010%以上、0.050%以下、
Ti:0.005%以上、0.030%以下、
Al:0.01%以上、0.10%以下、
B:0.0003%以上、0.0030%以下、
P:0.012%以下、
S:0.005%以下、
N:0.0060%以下
を含み、残部がFe及び不可避的不純物からなり、下記(式1)で定義されるPcmが0.29%以下であることを満たす成分組成を有し、鋼板表層に50μm以上で、かつ鋼板の板厚の3%を超えない厚さの、Hv250以下の軟化層を有し、さらに表面から板厚の1/4の深さの位置において、最終圧延方向に平行な断面および最終圧延方向に垂直な断面における旧オーステナイト粒の平均アスペクト比がそれぞれ1.6以上であり、降伏強度885MPa以上、−40℃における衝撃試験の吸収エネルギー値の平均が33J/cm以上であることを特徴とする高強度鋼板。
Pcm=〔C〕+〔Si〕/30+〔Mn〕/20+〔Cu〕/20+〔Ni〕/60+〔Cr〕/20+〔Mo〕/15+〔V〕/10+5〔B〕
・・・(式1)
 ここで、〔C〕、〔Si〕、〔Mn〕、〔Cu〕、〔Ni〕、〔Cr〕、〔Mo〕、〔V〕〔B〕は、それぞれC、Si、Mn、Cu、Ni、Cr、Mo、V、Bの質量%で表した含有量を意味する。
(2)さらに、
Cu:0.01%以上、1.00%以下、
Ni:0.01%以上、0.25%以下、
Cr:0.01%以上、2.00%以下、
V:0.005%以上、0.080%以下、
Ca:0.0001%以上、0.0030%以下
のうち1種類以上含有することを特徴とする(1)に記載の高強度鋼板。
(3)板厚が6mm以上、32mm以下であり、引張強さが950MPa以上、1200MPa以下であることを特徴とする(1)又は(2)に記載の高強度鋼板。
(4)(1)又は(2)に記載の化学組成を有するスラブを、酸素濃度3%以上の雰囲気下で1250℃以上、1350℃以下の温度で3時間以上加熱した後に、一旦冷却後、あるいは引き続き、該スラブを1100℃以上に再加熱後、熱間圧延により板厚6mm以上、32mm以下の鋼板となし、その熱間圧延に際しては、1000℃以下の温度範囲での累積圧下率が25%以上となるように最終圧延方向と垂直方向に圧延した後、圧延方向を90°回転し、さらに累積圧下率が25%以上となるように最終圧延を行い、熱間圧延後Ar3以上の温度から、300℃以下の温度まで水冷し、その後400℃以上の温度で焼戻し熱処理することを特徴とする、高強度鋼板の製造方法。
 本発明によれば、建設機械や産業機械の構造部材に用いられる曲げ加工性、溶接性および靭性に優れる降伏強度885MPa以上、引張強さ950~1200MPa、−40℃における衝撃試験の吸収エネルギー値の平均が33J/cm以上で、板厚6mm以上、32mm以下である高強度鋼板を経済的に提供することができる。
硬さが均一な鋼材の、引張試験における硬さと伸びとの関係の一例を示すグラフである。 軟化層厚さおよびアスペクト比と曲げ加工性との関係を示すグラフである。 1000℃以下の温度範囲での、最終圧延方向と垂直方向の累積圧下率とT断面組織の平均アスペクト比との関係を示すグラフである。 1000℃以下の温度範囲での、最終圧延方向の累積圧下率とL断面組織の平均アスペクト比との関係を示すグラフである。 Pcmとy型溶接割れ試験における割れ停止予熱温度との関係を示すグラフである。
 以下、本発明について詳細に説明する。
 まず、本発明の鋼成分の限定理由を述べる。
 Cは、焼戻しマルテンサイト組織または焼戻しベイナイト組織を主体とする本発明鋼の強度に大きく影響する重要な元素である。885MPa以上の降伏強度を得るために0.10%以上の添加が必要であるが、0.18%超では曲げ加工性が低下するため、上限を0.18%とする。強度を安定して確保するために、Cの下限を0.11%又は0.12%としてもよい。溶接性の改善のため、Cの上限を0.17%、0.16%又は0.15%としてもよい。
 Siは、マルテンサイト組織を焼戻し熱処理した際にセメンタイトの粗大化を抑制して強度靭性バランスを改善させる効果がある。Siが0.2%以下ではマルテンサイト組織のセメンタイトが粗大化しやすいので、Si添加量は0.2%超とする。望ましくはSiは0.25%以上がよい。一方、Siは過剰に添加するとかえって靭性を阻害する恐れがあるため、上限を0.80%とする。靭性の向上ために、Siの上限を0.55%、0.40%又は0.34%に制限してもよい。
 Mnは、焼入性を高め、強度を向上させるのに有効な元素であり、0.20%以上を添加する。しかし1.60%を超えると偏析を助長するとともに粗大なMnSを形成して曲げ加工性を阻害することがあるので、1.60%を添加の上限とする。Mnの添加量は、望ましくは1.40%以下である。強度向上のため、Mnの下限を0.45%、0.70%、0.85%又は0.95%に制限してもよい。曲げ加工性の向上のため、Mnの上限を1.40%、1.30%又は1.25%に制限してもよい。
 Moは、比較的少量の添加で焼入性を向上させ、析出強化により焼戻しマルテンサイト組織または焼戻しベイナイト組織の強度向上に非常に有効であることから、0.10%以上の添加は必須である。しかしながら、多く添加すると溶接性を損ねることがあり、高価な元素でもあるため、添加は0.60%以下とする。強度向上のため、Moの下限を0.17%、0.25%又は0.30%に制限してもよい。溶接性の改善のため、Moの上限を0.55%、0.50%又は0.45%に制限してもよい。
 Nbは、圧延中に微細炭化物を生成して未再結晶温度域を広げて制御圧延効果を高め、オーステナイトのアスペクト比を高めるために必須の元素である。また、析出強化効果により焼戻しマルテンサイト組織または焼戻しベイナイト組織の強度向上にも有効である。未再結晶温度域を1000℃以下とするために、Nbは0.010%以上添加する。しかし過剰に添加すると溶接性を阻害することがあるため、添加量は0.050%以下とする。強度向上と細粒化のために、Nbの下限を0.014%又は0.018%としてもよい。溶接性の改善のため、Nbの下限を0.040%、0.035%又は0.031%としてもよい。
 本発明では、十分な焼入性を得るためにBを利用するのであるが、直接焼入れ熱処理時にフリーBを確保することが必要である。NはBNを生成してフリーBを低下させるために、NをTiNとして固定する目的でTiを添加する。
 Tiは、この目的で0.005%以上添加するが、過剰な添加は溶接性を低下させる場合があるので上限は0.030%とする。Nを確実にTiNとして固定するために、Tiの下限を0.008%、0.010%又は0.012%としてもよい。溶接性の向上のため、Tiの上限を0.026%又は0.020%としてもよい。
 Alは、脱酸材として0.01%以上添加するが、過剰な添加は靭性を低下させる場合があるので上限は0.10%とする。確実に脱酸を行うため、Alの下限を0.02%又は0.03%としてもよい。靭性向上のため、Alの上限を0.07%又は0.05%としてもよい。
 Bは、その焼入性向上効果を発揮し強度を確保するには0.0003%以上必要であるが、0.0030%を超えて添加すると溶接性や靭性を低下させることがあるので、Bの含有量は0.0003%以上、0.0030%以下とする。強度向上のため、Bの下限を0.0005%、0.0008%又は0.0010%としてもよい。溶接性や靭性の向上のために、Bの上限を0.0025%、0.0022%又は0.0019%としてもよい。
 Pは、不可避的不純物として、靭性を低下させる有害な元素である。したがって、含有量を0.012%以下に抑制する。靭性向上のため、0.010%以下、0.008%又は0.005%以下としてもよい。
 Sは、不可避的不純物であり、MnSを形成して曲げ加工性を低下させる有害な元素であるので極力低下させることが望ましい。したがって、含有量を0.005%以下に抑制する。曲げ加工性の向上のため、0.004%以下、0.003%又は0.002%以下としてもよい。
 Nは、過剰に含有されると上述のようにBNを生成してBの焼入性向上効果を阻害し、かつ靱性を低下させるので、含有量を0.006%以下に抑制する。Bの焼入性向上効果を確実に発揮させるため、Nの上限を0.0050%又は0.0041%としてもよい。鋼の製造時にNは不可避的不純物として混入するため、下限は特に設けないものとする。
 以上は本発明における鋼の基本成分であるが、さらに本発明では上記成分の他に、Cu、Ni、Cr、V、Caのうち一種または二種以上添加することができる。これらの成分は、下記のような特性向上効果があるが、建設機械や産業機械用鋼板として求められる経済性の向上ためには、添加しないことが好ましい。
 Cuは、固溶強化により靭性を低下させないで強度を向上させ得る元素であり、その目的のために0.01%以上添加してもよい。しかしながら、多量に添加しても強度向上効果には限りがあり、過剰の添加により溶接性を損ねる場合があるため、添加は1.00%以下とする。経済性の向上のため、Cuの上限を0.55%、0.35%又は0.25%に制限してもよい。
 Niは、焼入性および靭性を向上させる効果があるので、0.01%以上を添加してもよい。しかし、Niは高価な元素であり、またNiを多量に添加すると脱炭反応を抑制して本発明に必要な軟化層が適切に得られない場合があるので、添加は0.25%以下とする。必要に応じて、0.20%以下、0.15%以下としてもよい。
 Crは、焼入性を向上させ、強度向上に有効であることから、0.01%以上添加してもよい。しかしながら、過剰に添加すると溶接性を低下させることがあるため、添加は2.00%以下とする。経済性の向上のため、Crの上限を1.00%、0.55%又は0.35%に制限してもよい。
 Vも、焼入性を向上させ、焼戻しマルテンサイト組織または焼戻しベイナイト組織中での析出強化効果もあり、強度向上に有効であることから、0.005%以上添加してもよい。しかしながら、多量の添加は溶接性を阻害する場合があり、高価な元素でもあるため、添加は0.080%以下とする。経済性の向上のため、Vの上限を0.07%、0.04%又は0.03%に制限してもよい。
 Caは、鋼板の硫化物を球状化して、曲げ加工性に有害なMnSの影響を軽減する効果があり、この目的のため0.0001%以上添加してもよい。しかし多量の添加は溶接性を低下させることがあるので、添加の上限は0.0030%以下とする。経済性の向上のため、Caの上限を0.0020%、0.0015%又は0.0010%に制限してもよい。
 以上の成分範囲の限定に加え、上述したように本発明では、溶接性および強度を確保するため、下記(式1)で定義されるPcmが0.29%以下となるように成分組成を限定する。溶接性の改善のため、Pcmの上限を0.28%、0.27%又は0.26%に制限してもよい。強度向上のために、Pcmの下限を0.22%、0.23%又は0.24%に制限してもよい。
Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5[B]
・・・(式1)
 また、下記(式2)で定義されるCeqが0.38~0.60となるように成分組成を限定することが好ましい。溶接性の改善のため、Ceqの上限を0.55%、0.52又は0.49%に制限してもよい。強度向上のために、Ceqの下限を0.40%、0.42%又は0.44%に制限してもよい。
Ceq=[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+
[Mo]/4+[V]/14 ・・・(式2)
ここで、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[B]はそれぞれ、C、Si、Mn、Cu、Ni、Cr、Mo、V、Bの質量%である。
 次に本発明である高強度鋼板の好ましい製造方法について述べる。まず、上記の鋼成分組成のスラブを、酸素濃度3%以上の雰囲気下で1250℃以上、1350℃以下の温度で3時間以上加熱する。これは、鋼板表層に軟化層を形成させるべく、スラブ表面に比較的厚い脱炭層を形成させるためであって、熱間圧延により最終的に板厚32mm以下の鋼板としたときに鋼板表面に50μm以上の脱炭層を残存させることを目的とするものである。酸素濃度が3%未満であったり、加熱温度が1250℃未満であると50μm以上の十分な脱炭層厚さを得ることができない。加熱温度が1350℃を超えるとまた、脱炭層が厚くなりすぎて全厚の平均硬さあるいは引張試験の強度を低下させることがあるので、加熱温度の上限は1350℃とする。このときスラブの厚さが大きいと、圧延鋼板の脱炭層の厚さが相対的に薄くなるので、加熱するスラブの厚さは350mmを超えないことが望ましい。鋼板での脱炭層の厚さを確実に確保するために、スラブの厚さを300mm以下又は250mm以下としてもよい。鋼板での脱炭層の比率が大きくならないように、スラブの厚さを50mm以上、80mm以上又は100mm以上としてもよい。
 加熱時間が過剰に長くても、やはり脱炭層が厚くなりすぎて全厚の平均硬さあるいは引張試験の強度を低下させることがあるので、加熱時間は30時間を超えないことが望ましい。
 加熱後のスラブは、次の工程への投入タイミングにより、一旦そのまま冷却するか、あるいは引き続き次の工程である1100℃以上への再加熱工程に投入しても構わない。冷却する場合の条件は材質上特に限定はないが、最終的な鋼板板厚に応じた適当な厚さまで予備的に熱間圧延ないしは鍛造した後に冷却しても差し支えない。該スラブを、Nbが十分固溶するように1100℃以上に再加熱し、熱間圧延により板厚6mm以上、32mm以下の鋼板とする。
 1000℃以下の温度範囲での累積圧下率が25%以上となるように圧延した後、圧延方向を90°回転し、さらに累積圧下率が25%以上となるように圧延を行う。必要に応じて、この後圧延方向を90°回転してもよい。これにより、T断面組織、L断面組織いずれも平均アスペクト比が1.6以上となり、あわせて板厚表層に50μm以上の軟化層を有することにより、板厚32mm以下、降伏強度885MPa以上の高強度鋼板において、L方向曲げ、T方向曲げいずれの場合にも、鋼板厚2.0tの曲げ半径での曲げ加工でも割れることなく曲げ加工をすることが可能となる。曲げ加工性をより向上させるために、それぞれの方向又は両方の方向の累積圧下率を30%以上又は35%以上としてもよい。
 熱間圧延で導入した組織のアスペクト比を維持するため、熱間圧延に引き続きオンラインで、Ar3以上の温度から、300℃以下の温度まで水冷する必要がある。オンラインでの水冷とは、圧延機と同じライン上に配置された水冷設備により、熱間圧延に引き続いて水冷することであり、いわゆる直接焼入れを行うことである。直接焼入れの目的は、高強度を得るために組織をマルテンサイトまたはベイナイトとすることにもある。また、生産性の面からも、オフラインでの焼入つまり再加熱後の焼入れを必要としない直接焼入れは有利である。熱間圧延で導入した組織のアスペクト比を維持するためには、水冷開始温度は高い方が望ましく、Ar3以上の温度であれば、750℃以上、780℃以上又は800℃以上としてもよい。
 焼入れままのマルテンサイトまたはベイナイト組織は可動転位の密度が高いので引張強さに比べて降伏応力が非常に低くなる。焼入れ後、400℃以上の温度で焼戻し熱処理を行って、焼戻しマルテンサイトまたは焼戻しベイナイト組織とすることにより、降伏強度885MPa以上の高強度を得ると同時に優れた靭性を得ることができる。焼戻し温度を400℃以上とするのは、300℃~400℃の脆化域を避けるとともに、Moなどの微細炭化物による十分な析出強化を得るためである。焼戻し熱処理の時間は15分程度以上あればよい。強度向上のため、焼戻し温度の上限を600℃、575℃又は550℃としてもよい。十分な析出強化を得るため、焼戻し温度の下限を425℃、450℃又は475℃としてもよい。
 なお、脱炭層を形成させる高温長時間加熱は、鋼板の熱間圧延時の加熱でも可能であるが、その場合、高温長時間加熱によるオーステナイトの粗大化が、圧延後のオーステナイト粒径の粗大化を招いて材質を低下させることがあるので、偏析軽減目的で行われるスラブの均熱処理を活用して実施するのがよい。
 表1に示す成分組成を有するA~AIの鋼を溶製して得られた鋼片を、表2に示す1~18の本発明例と19~49の比較例のそれぞれの製造条件により、板厚6~32mmの鋼板を製造した。尚、1250℃以上、1350℃以下の温度で3時間以上加熱(表2の「脱炭処理」)後には全て一旦冷却をおこなった。その後1100℃以上への再加熱(表2の「熱間圧延および加速冷却/圧延加熱温度」)を行った。Ar3は、鋼板から採取したサンプルを1100℃に加熱した後に2.5℃/minの条件で冷却した際の熱膨張を検出して測定した、実測値である。
 これらの鋼板について、鋼板表層におけるHv250以下の軟化層の厚さ、およびL方向およびT方向のオーステナイト粒のアスペクト比を測定し、降伏強度、引張強さ、溶接割れ性、曲げ加工性、靭性を評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 鋼板表層におけるHv250以下の軟化層の厚さは、JIS Z 2244に規定のマイクロビッカース硬さ試験(Hv0.1)を10μmピッチで実施して測定し、板厚に対する表面軟化層の比を求めた。
 L方向およびT方向の旧オーステナイト粒のアスペクト比は、ピクリン酸腐食により板厚1/4t位置における旧オーステナイト粒界を現出させて、200μm×200μmを5視野測定して、画像解析により算出した。
 降伏強度と引張強さは、JIS Z 2241に規定の1A号引張試験片を採取して、JIS Z 2241に規定の引張試験により測定し、降伏強度は885MPa以上を合格とした。
 曲げ加工性の評価は、JIS Z 2248に規定の方法で、1号試験片により板厚の2.0倍の曲げ半径(2.0t)でのL方向およびT方向の180度曲げを行い、いずれの方向でも曲げ試験後に湾曲部の外側の裂けきずその他の欠陥が生じない場合に合格とした。
 溶接割れ性は、JIS Z 3158に規定のy型溶接割れ試験での評価を行った。溶接条件はCO2溶接で入熱15kJ/cmであり、評価に供した鋼板の板厚は25mmおよび32mmである。試験の結果、予熱温度50℃でルート割れ率が0となれば合格と評価した。また、板厚が12mm、6mmの実施例1、4、8の鋼板については、溶接性は同一成分の実施例2、5、9と同じと考えられることから、y型溶接割れ試験は省略した。
 靱性はJIS Z 2242 Vノッチ試験片を板厚中心部から圧延方向に直角に採取し、−40℃における衝撃試験の吸収エネルギー値の3本の平均値で評価し、33J/cm以上を目標値とした。なお、板厚が6mmの鋼板については5mmサブサイズのシャルピー試験片とし、吸収エネルギー値が33J/cm以上であることを目標値とした。
 なお、表1中で下線を付した化学成分、Pcm値は、その値が本発明外であることを示し、表2中で下線を付した数値は、製造条件が本発明外であること、あるいは特性が不十分なものを示している。
 表2の本発明例1~18においては、すべて鋼板表層に50μm以上で、かつ鋼板厚の3%を超えない厚さの、Hv250以下の軟化層を有し、さらに板厚の1/4t位置において、L方向およびT方向における旧オーステナイト粒の平均アスペクト比がそれぞれ1.6以上を満たし、前記の降伏強度、曲げ加工性、溶接割れ性、靭性の目標値を満足している。
 これに対し、表中下線で示す化学成分が本発明により限定された範囲を逸脱している比較例19~37においては、製造法は本発明法であるにもかかわらず、降伏強度、曲げ加工性、溶接割れ性、靭性のうちひとつ以上で目標値に満たない。
 鋼成分組成は本発明範囲内であるが、Pcm値が本発明範囲を逸脱している比較例38は、溶接割れ性が不合格である。
 鋼成分組成、Pcm値がいずれも本発明範囲内であっても、脱炭熱処理の加熱温度の低い比較例39、脱炭熱処理の加熱時間の短い比較例41、脱炭熱処理時の炉酸素濃度の低い比較例42は、いずれも表面軟化層の厚さが小さいため、曲げ加工性が不合格である。脱炭熱処理の加熱温度の高すぎる比較例40は表面軟化層の厚さ比が大きすぎるため降伏応力が低い。圧延加熱温度の低い比較例43は、Nbが固溶しないためオーステナイトの微細化が不十分となり曲げ加工性が不合格である。1000℃以下での最終圧延方向と垂直方向の累積圧下率が低い比較例44、および1000℃以下での最終圧延方向の累積圧下率が低い比較例45は、それぞれT方向およびL方向のアスペクト比が低く、曲げ加工性が不合格である。水冷開始温度が低い比較例46、および水冷終了温度が高い比較例47は、必要な焼入れ組織が得られないため、それぞれ降伏強度が低い。焼戻し熱処理がない比較例48は、降伏強度が低く、焼戻し熱処理温度が低い比較例49は、靭性が低い。

Claims (4)

  1.  質量%で、
    C:0.10%以上、0.18%以下、
    Si:0.20%超、0.80%以下、
    Mn:0.20%以上、1.60%以下、
    Mo:0.10%以上、0.60%以下、
    Nb:0.010%以上、0.050%以下、
    Ti:0.005%以上、0.030%以下、
    Al:0.01%以上、0.10%以下、
    B:0.0003%以上、0.0030%以下、
    P:0.012%以下、
    S:0.005%以下、
    N:0.0060%以下
    を含み、残部がFe及び不可避的不純物からなり、下記(式1)で定義されるPcmが0.29%以下であることを満たす成分組成を有し、鋼板表層に50μm以上で、かつ鋼板の板厚の3%を超えない厚さの、Hv250以下の軟化層を有し、さらに表面から板厚の1/4の深さの位置において、最終圧延方向に平行な断面および最終圧延方向に垂直な断面における旧オーステナイト粒の平均アスペクト比がそれぞれ1.6以上であり、降伏強度885MPa以上、−40℃における衝撃試験の吸収エネルギー値の平均が33J/cm以上であることを特徴とする高強度鋼板。
    Pcm=〔C〕+〔Si〕/30+〔Mn〕/20+〔Cu〕/20+〔Ni〕/60+〔Cr〕/20+〔Mo〕/15+〔V〕/10+5〔B〕
    ・・・(式1)
     ここで、〔C〕、〔Si〕、〔Mn〕、〔Cu〕、〔Ni〕、〔Cr〕、〔Mo〕、〔V〕〔B〕は、それぞれC、Si、Mn、Cu、Ni、Cr、Mo、V、Bの質量%で表した含有量を意味する。
  2.  さらに、
    Cu:0.01%以上、1.00%以下、
    Ni:0.01%以上、0.25%以下、
    Cr:0.01%以上、2.00%以下、
    V:0.005%以上、0.080%以下、
    Ca:0.0001%以上、0.0030%以下
    のうち1種類以上含有することを特徴とする請求項1に記載の高強度鋼板。
  3.  板厚が6mm以上、32mm以下であり、引張強さが950MPa以上、1200MPa以下であることを特徴とする請求項1又は請求項2記載の高強度鋼板。
  4.  請求項1又は2に記載の化学組成を有するスラブを、酸素濃度3%以上の雰囲気下で1250℃以上、1350℃以下の温度で3時間以上加熱した後に、一旦冷却後、あるいは引き続き、該スラブを1100℃以上に再加熱後、熱間圧延により板厚6mm以上、32mm以下の鋼板となし、その熱間圧延に際しては、1000℃以下の温度範囲での累積圧下率が25%以上となるように最終圧延方向と垂直方向に圧延した後、圧延方向を90°回転し、さらに累積圧下率が25%以上となるように最終圧延を行い、熱間圧延後Ar3以上の温度から、300℃以下の温度まで水冷し、その後400℃以上の温度で焼戻し熱処理することを特徴とする、高強度鋼板の製造方法。
PCT/JP2011/060495 2010-05-14 2011-04-22 高強度鋼板とその製造方法 WO2011142285A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011539814A JP4897125B2 (ja) 2010-05-14 2011-04-22 高強度鋼板とその製造方法
BR112012020133A BR112012020133B1 (pt) 2010-05-14 2011-04-22 chapa de aço e método pa ra sua produção
CN201180005443.4A CN102712972B (zh) 2010-05-14 2011-04-22 高强度钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-111603 2010-05-14
JP2010111603 2010-05-14

Publications (1)

Publication Number Publication Date
WO2011142285A1 true WO2011142285A1 (ja) 2011-11-17

Family

ID=44914341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060495 WO2011142285A1 (ja) 2010-05-14 2011-04-22 高強度鋼板とその製造方法

Country Status (4)

Country Link
JP (1) JP4897125B2 (ja)
CN (1) CN102712972B (ja)
BR (1) BR112012020133B1 (ja)
WO (1) WO2011142285A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605253A (zh) * 2012-04-18 2012-07-25 江苏省沙钢钢铁研究院有限公司 低成本高强度高韧性钢板及其生产工艺
CN103725985A (zh) * 2013-12-28 2014-04-16 首钢总公司 一种超高强度钢板及其生产方法
JP2016079424A (ja) * 2014-10-10 2016-05-16 新日鐵住金株式会社 靭性に優れた鋼板およびその製造方法
JP2016204734A (ja) * 2015-04-28 2016-12-08 新日鐵住金株式会社 高強度熱延鋼板及びその製造方法
JP2017512903A (ja) * 2014-03-25 2017-05-25 宝山鋼鉄股▲分▼有限公司 降伏強度890MPa級の低溶接割れ感受性鋼板及びその製造方法
WO2018020660A1 (ja) * 2016-07-29 2018-02-01 新日鐵住金株式会社 高強度鋼板
EP3235924A4 (en) * 2014-12-19 2018-05-09 Baoshan Iron & Steel Co., Ltd. Quenched-tempered high-strength steel with yield strength of 900 mpa to 1000 mpa grade, and manufacturing method therefor
CN110468327A (zh) * 2019-08-01 2019-11-19 石家庄钢铁有限责任公司 一种空心活塞杆用钢及其生产方法
EP3633060A4 (en) * 2018-08-20 2020-05-06 Nippon Steel Corporation STEEL SHEET AND PROCESS FOR PRODUCING THE SAME
JP2021507107A (ja) * 2017-12-22 2021-02-22 ポスコPosco 曲げ性及び低温靭性に優れた高強度熱延鋼板及びその製造方法
CN113061815A (zh) * 2021-03-24 2021-07-02 宝武集团鄂城钢铁有限公司 一种800MPa级全截面冲击性能稳定的调质态高强钢及其生产方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101838424B1 (ko) * 2014-03-20 2018-03-13 제이에프이 스틸 가부시키가이샤 후육 고인성 고장력 강판 및 그 제조 방법
CA2945439C (en) 2014-04-24 2020-03-10 Jfe Steel Corporation Steel plate and method of producing same
CN104073719A (zh) * 2014-06-25 2014-10-01 宝山钢铁股份有限公司 一种高强度焊接钢管及其制造方法
CN105369155B (zh) * 2015-11-17 2017-05-10 国家电网公司 一种特高压输电电塔用高强钢
MX2019009701A (es) * 2017-02-20 2019-10-02 Nippon Steel Corp Lamina de acero de alta resistencia.
US11655519B2 (en) * 2017-02-27 2023-05-23 Nucor Corporation Thermal cycling for austenite grain refinement
CN111088456A (zh) * 2019-11-04 2020-05-01 江阴兴澄特种钢铁有限公司 一种as/nzs 3678-350l15z35结构用钢板及其制造方法
CN113604736B (zh) * 2021-07-26 2022-10-04 莱芜钢铁集团银山型钢有限公司 一种屈服强度800MPa级高强度中厚板及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4077049B2 (ja) * 1995-07-28 2008-04-16 株式会社日立ハイテクインスツルメンツ 電子部品供給装置
JP2009242840A (ja) * 2008-03-31 2009-10-22 Jfe Steel Corp 曲げ加工性および低温靭性に優れる高張力鋼材ならびにその製造方法
JP2010043323A (ja) * 2008-08-12 2010-02-25 Sumitomo Metal Ind Ltd 熱間プレス用熱延鋼板およびその製造方法ならびに熱間プレス鋼板部材の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477049A (ja) * 1990-07-16 1992-03-11 Ricoh Co Ltd 書き込み制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4077049B2 (ja) * 1995-07-28 2008-04-16 株式会社日立ハイテクインスツルメンツ 電子部品供給装置
JP2009242840A (ja) * 2008-03-31 2009-10-22 Jfe Steel Corp 曲げ加工性および低温靭性に優れる高張力鋼材ならびにその製造方法
JP2010043323A (ja) * 2008-08-12 2010-02-25 Sumitomo Metal Ind Ltd 熱間プレス用熱延鋼板およびその製造方法ならびに熱間プレス鋼板部材の製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605253B (zh) * 2012-04-18 2013-12-25 江苏省沙钢钢铁研究院有限公司 低成本高强度高韧性钢板及其生产工艺
CN102605253A (zh) * 2012-04-18 2012-07-25 江苏省沙钢钢铁研究院有限公司 低成本高强度高韧性钢板及其生产工艺
CN103725985A (zh) * 2013-12-28 2014-04-16 首钢总公司 一种超高强度钢板及其生产方法
JP2017512903A (ja) * 2014-03-25 2017-05-25 宝山鋼鉄股▲分▼有限公司 降伏強度890MPa級の低溶接割れ感受性鋼板及びその製造方法
JP2016079424A (ja) * 2014-10-10 2016-05-16 新日鐵住金株式会社 靭性に優れた鋼板およびその製造方法
EP3235924A4 (en) * 2014-12-19 2018-05-09 Baoshan Iron & Steel Co., Ltd. Quenched-tempered high-strength steel with yield strength of 900 mpa to 1000 mpa grade, and manufacturing method therefor
JP2016204734A (ja) * 2015-04-28 2016-12-08 新日鐵住金株式会社 高強度熱延鋼板及びその製造方法
WO2018020660A1 (ja) * 2016-07-29 2018-02-01 新日鐵住金株式会社 高強度鋼板
JP2021507107A (ja) * 2017-12-22 2021-02-22 ポスコPosco 曲げ性及び低温靭性に優れた高強度熱延鋼板及びその製造方法
JP7032537B2 (ja) 2017-12-22 2022-03-08 ポスコ 曲げ性及び低温靭性に優れた高強度熱延鋼板及びその製造方法
US11732339B2 (en) 2017-12-22 2023-08-22 Posco Co., Ltd High-strength hot-rolled steel sheet having excellent bendability and low-temperature and method for manufacturing same
EP3633060A4 (en) * 2018-08-20 2020-05-06 Nippon Steel Corporation STEEL SHEET AND PROCESS FOR PRODUCING THE SAME
CN110468327A (zh) * 2019-08-01 2019-11-19 石家庄钢铁有限责任公司 一种空心活塞杆用钢及其生产方法
CN113061815A (zh) * 2021-03-24 2021-07-02 宝武集团鄂城钢铁有限公司 一种800MPa级全截面冲击性能稳定的调质态高强钢及其生产方法

Also Published As

Publication number Publication date
BR112012020133B1 (pt) 2018-07-17
CN102712972B (zh) 2013-08-07
BR112012020133A2 (pt) 2017-07-11
JPWO2011142285A1 (ja) 2013-07-22
CN102712972A (zh) 2012-10-03
JP4897125B2 (ja) 2012-03-14

Similar Documents

Publication Publication Date Title
JP4897125B2 (ja) 高強度鋼板とその製造方法
JP4538094B2 (ja) 高強度厚鋼板およびその製造方法
JP5277648B2 (ja) 耐遅れ破壊特性に優れた高張力鋼板並びにその製造方法
JP4542624B2 (ja) 高強度厚鋼板およびその製造方法
JP4730088B2 (ja) 低降伏比高強度厚鋼板およびその製造方法
JP5439973B2 (ja) 優れた生産性と溶接性を兼ね備えた、pwht後の落重特性に優れた高強度厚鋼板およびその製造方法
JP5182642B2 (ja) 耐遅れ破壊特性および溶接性に優れる高強度厚鋼板およびその製造方法
JP5659758B2 (ja) 優れた生産性と溶接性を兼ね備えた、PWHT後の落重特性に優れたTMCP−Temper型高強度厚鋼板の製造方法
KR20120099160A (ko) 내지연 파괴 특성이 우수한 고장력 강재 그리고 그 제조 방법
JP5407478B2 (ja) 1層大入熱溶接熱影響部の靭性に優れた高強度厚鋼板およびその製造方法
JP5692305B2 (ja) 大入熱溶接特性と材質均質性に優れた厚鋼板およびその製造方法
JP2010121191A (ja) 耐遅れ破壊特性および溶接性に優れる高強度厚鋼板およびその製造方法
JP5089224B2 (ja) オンライン冷却型高張力鋼板の製造方法
JP2007039795A (ja) 耐疲労亀裂伝播特性および靭性に優れた高強度鋼材の製造方法
JP4998708B2 (ja) 材質異方性が小さく、耐疲労亀裂伝播特性に優れた鋼材およびその製造方法
JP2007197823A (ja) 低降伏比550MPa級高張力厚鋼板およびその製造方法
JP5200600B2 (ja) 高強度低降伏比鋼材の製造方法
JP4770415B2 (ja) 溶接性に優れた高張力厚鋼板およびその製造方法
JP4924047B2 (ja) 表面残留応力の絶対値が150N/mm2以下の耐疲労亀裂伝播特性に優れた鋼材の製造方法
JP4427521B2 (ja) 溶接性に優れる引張強さ780MPa級高張力厚鋼板の製造方法
JP5477457B2 (ja) 板厚40mm以下の鋼構造用高強度低降伏比鋼材
JP5170212B2 (ja) 高い降伏点を有する高張力鋼材の製造方法
JP5245414B2 (ja) 低降伏比高強度鋼管用鋼板とその製造方法および低降伏比高強度鋼管
JP2011195944A (ja) 耐疲労き裂伝播特性に優れた鋼材の製造方法
JP5903907B2 (ja) 引張強さ(TS)が780MPa以上の大入熱溶接熱影響部の靭性と小入熱溶接熱影響部の耐硬化特性に優れた高強度厚鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180005443.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011539814

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780542

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 6513/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11780542

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012020133

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012020133

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120810